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We theoretically study misallocation of labor in a heterogeneous-firm model with im-

perfectly directed search. Some workers can direct their search, while others are un-

informed about the location of wage offers ex ante and are assigned to job open-

ings randomly. The main result is that too many workers apply to high-productivity

firms, relative to the social optimum. This occurs because too many firms take ad-

vantage of their market power, attracting only random searchers. Because it is the

low-productivity firms that do so, this induces all the directed searchers to concen-

trate at the high-productivity firms, a “flight-to-quality” phenomenon. Improvements

in information have ambiguous effects on worker allocation, wages, and worker utility.

A minimum wage can increase employment and welfare by reallocating workers across

firms. With an endogenous entry choice, policy design meets with a tradeoff in balanc-

ing the misallocation inefficiency and a standard entry externality.
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1 Introduction

Do labor market frictions lead to an inefficient allocation of workers across jobs? Do policy

interventions mitigate or exacerbate these distortions? These classic economic questions

have returned to the forefront of economists’ attention, thanks to recent evidence on rising

labor market power and the ongoing debates about the desirability of policies such as the

minimum wage. It is well-known that labor market frictions distort aggregate employment,

and that the minimum wage has the potential to mitigate this inefficiency: this is a robust

prediction of both the textbook monopsony model (e.g. Manning, 2011), and the search and

matching literature that we build on here (e.g. Hosios, 1990). The focus on aggregates,

however, potentially misses important distributional effects. If heterogeneous firms do not

take advantage equally of their market power, employment will be distorted more at some

firms than others, leading to misallocation of labor. Policy interventions, in turn, may affect

firms unequally as well, inducing reallocation of workers across jobs. Understanding such

allocative effects requires combining heterogeneity with labor market frictions.

In this paper we theoretically analyze misallocation of labor in a parsimonious frame-

work with two key ingredients: heterogeneous firms and partially directed search. The labor

market is frictional in the tradition of the competitive search literature: firms post wages,

understanding that higher-wage job openings will be filled more quickly. Firms differ in their

productivity. Workers differ in whether they can direct their search. A fraction of work-

ers are directed searchers, who choose which job openings to apply for, understanding that

higher posted wages attract more competing applicants. The remaining fraction are random

searchers, who are assigned to vacancies randomly; hence their only decision is whether to

accept or reject the posted wage. This modeling assumption can be interpreted as differences

in information about available job openings. An alternative interpretation is differences in

mobility, whereby some workers have lower costs of moving for a high-wage job than oth-

ers. Firms in this economy will face a choice between attracting only random searchers or

attracting both kinds of searchers. This friction will constrain both the socially efficient

allocation and the equilibrium allocation of workers across firms of different productivities.1

Our first and main result is that, in equilibrium, too many workers are employed at

high-productivity firms, compared to the social optimum. This contrasts with the intuitive

prediction that lack of information results in too many workers at low-productivity firms.

Both the constrained efficient allocation and the decentralized equilibrium in this environ-

ment are characterized by a threshold rule: firms above some productivity threshold attract

1The idea that either information costs or mobility costs lead to market power, and constrain efficient
allocation of workers across firms, has a long tradition in the history of thought: see e.g. Pigou (1932),
Robinson (1933), Manning (2003).
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both random and directed searchers, whereas firms with productivity below this threshold

attract only random searchers. However, the equilibrium productivity threshold is always

higher than the socially efficient one. In other words, too many firms take advantage of their

market power in equilibrium. These firms forego attracting directed searchers so as to ex-

tract more surplus from the random searchers. This induces too many directed searchers to

queue up at the higher-productivity firms. As a result, there is a misallocation of labor away

from the middle and toward the top of the productivity distribution, a “flight to quality”

type phenomenon. As we discuss below, this flight to quality is a manifestation of a novel

externality that would be absent if search were either purely directed or purely random.

Our second result is that improvements in information - captured by the fraction of

directed searchers among workers - have ambiguous effects on worker allocation and wages.

An increase in the fraction of directed searchers may lower wages and increase congestion

at high productivity firms, and is more likely to do so when firms’ productivity is very

dispersed. In fact, we show that the effect of information on worker utility, allocation and

wages depends on a tradeoff between the dispersion of productivity and the curvature of the

matching technology. In particular, such a perverse effect of information would be impossible

under homogeneous productivity. One intriguing implication of our finding is that, to the

extent that innovations such as online job search led to improvements in information about

available job openings, they need not have led to an increase in wages.

Our third result concerns the effect of the minimum wage. A suitably chosen minimum

wage does not bind for the high-productivity firms that attract directed searchers, but binds

for the low-productivity firms attracting random searchers only. The latter firms are then

induced to pay higher wages, thereby attracting workers away from the high-productivity

firms. This reallocation of workers is efficiency-improving since it alleviates the congestion

at high-productivity firms; in fact, we show that an appropriately chosen minimum wage

restores the constrained-efficient allocation. While the previous literature has focused over-

whelmingly on the aggregate employment effects of the minimum wage, we emphasize its

allocative effects. Notably, the minimum wage does affect employment in our framework,

even in the absence of an extensive entry margin; in fact, the minimum wage just described

raises employment. However, the reasons for this are distinct from the conventional narra-

tive. In the standard monopsony model, mandating higher wages results in more workers

willing to work because of an upward-sloping labor supply curve. In our model, mandating

higher-wages results in a reallocation of workers from firms with many applicants to firms

with few applicants; this raises employment in spite of total labor supply remaining constant.

Finally, we extend the model to allow endogenous entry choice by firms. In this case, the

misallocation inefficiency described above coexists with a standard congestion externality
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from entry. Not surprisingly, a single policy instrument, such as a minimum wage, is insuffi-

cient to correct both inefficiencies simultaneously. However, we show that the combination

of an appropriate hiring subsidy and a minimum wage can restore the constrained-efficient

allocation.

1.1 Relationship to literature

Our paper builds on, and contributes to, the existing literature on imperfectly directed

search, such as Lester (2011), Lentz and Moen (2017), Shi (2018), or Cheremukhin et al.

(2020). Our model environment follows Lester (2011), in which a fraction of workers are

directed searchers, while the remaining workers are random searchers. The model in Lester

(2011) can be thought of as a special case of ours, with homogeneous firms; we provide a

formal discussion of this in Section 4.3.2 In this setting, like ours, the fraction of firms that

choose to attract only random searchers differs from what would be socially efficient. How-

ever, in Lester (2011) all the firms are identical, and hence the planner would set the measure

of firms attracting only random searchers to zero. In fact, because firms are homogeneous,

the fraction of random searchers among workers does not affect the constrained-efficient al-

location. We contribute to this literature by introducing heterogeneity among firms. As

a result of this important modification, the information friction constrains the social plan-

ner as well, and in general there is a non-zero measure of firms exclusively targeting random

searchers even at the social optimum. Constrained inefficiency is now driven by a suboptimal

allocation of workers across firms of differing productivities.

Our paper is directly relevant for work on labor misallocation induced by search frictions.

This literature has recognized that frictions can lead to an inefficient composition of jobs or

inefficient allocation of workers among them. For example, in Bertola and Caballero (1994),

Acemoglu (2001), and Davis (2001), too many workers are allocated to low-productivity

firms: there, search is random, and the key friction leading to inefficiency is akin to an

investment holdup problem in the labor market. In Acemoglu and Shimer (1999) and Golosov

et al. (2013), search is directed, but workers are risk-averse; these papers show that there

will likewise be misallocation towards low-productivity firms if workers cannot insure against

the risk of not finding a job. In Galenianos et al. (2011), as in our work, it is market power,

driven by a finite number of firms, that leads to misallocation of workers, namely too many

workers being employed at low-productivity firms. In our paper, where market power is

2See also Bethune et al. (2020) for an application to a monetary economy. Both Lester (2011) and
Bethune et al. (2020) are set in the context of a product market rather than a labor market, and hence
agents are buyers and sellers rather than workers and firms, but this distinction is inconsequential except
for the interpretation.
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instead driven by imperfectly directed search, we show that there is misallocation toward

high-productivity firms, contrary to the previous literature. Notably, such a result would not

arise when search is either fully random or fully directed. We also share with Galenianos

et al. (2011) the prediction that a binding minimum wage reallocates workers towards low-

productivity firms; however, in our setting this reallocation can be welfare-improving. More

broadly, we believe that our results provide a new perspective on misallocation. Since too

many workers apply to high-productivity firms, average output per employed worker is higher

that in the constrained-efficient outcome. Misallocation in our model manifests itself in the

aggregate as low employment, not low productivity.

Finally, our framework and results extend existing analysis of congestion externalities in

search and matching, emanating from Hosios (1990) and generalized by work such as Albrecht

et al. (2010), Masters (2015), Julien and Mangin (2017), Mukoyama (2019), and Julien and

Mangin (2019); all of these papers study versions of the Hosios condition in a random search

environment. The standard congestion externality identified in the literature stems from the

fact that a firm does not internalize the effect of its entry on the hiring probabilities of other

firms. The misallocation inefficiency found in our paper is the result of a novel externality.

When a firm restricts its employment in order to exploit random searchers, it foregoes hiring

directed searchers, but does not internalize the congestion these directed searchers cause

at other firms. In the extension with endogenous entry, this misallocation inefficiency is

combined with the standard congestion externality from entry, leading to a model that, as

we argue in Section 5, can be thought of as generalizing the work of Albrecht et al. (2010),

Masters (2015), and Julien and Mangin (2017) to a partially directed search environment.

This paper is organized as follows. After describing the environment in Section 2, we

first characterize the planner’s solution in Section 3. Section 4 presents the main results of

the paper: we characterize the decentralized equilibrium (4.1) and show that the equilibrium

features misallocation (4.2), that information has ambiguous effects (4.4), and that a mini-

mum wage can be welfare-improving (4.5). Section 5 considers an extension with endogenous

entry by firms. Finally, Section 6 concludes.

2 Environment

We consider a static model. There is a measure 1 of firms, indexed by j ∈ [0, 1], each with

one vacancy.3 Firms are heterogeneous in productivity: we denote the productivity of firm j

by y (j), which we assume to be continuous and strictly increasing in j. On its support, the

cumulative distribution of productivity F is therefore given by F (x) = sup {j|y (j) ≤ x},
3Section 5 considers an extension with endogenous entry of firms.

5



which is continuous and strictly increasing in x.4

There is a measure 1 of workers, all initially unemployed. A fraction ψ ∈ [0, 1] of workers

are random searchers, who will be assigned randomly across all the vacancies. The remaining

fraction 1 − ψ are directed searchers, who can choose which vacancy to target. Matching

works as follows. If the searcher-vacancy ratio at a particular vacancy is λ, the vacancy gets

filled with probability m(λ), and each worker applying to that vacancy has a probability

m (λ) /λ of being matched. The matching function m (λ) satisfies the standard assumptions

m (λ) ≤ 1, m′ > 0,m′′ < 0, as well as m (0) = 0, lim
λ→0

m′ (λ) = ∞ and lim
λ→∞

m′ (λ) = 0.

For future reference, we also define the elasticity ε (λ) = λm′ (λ) /m (λ), and the function

g (λ) = m (λ) − λm′ (λ). By the assumptions on m, we see that g satisfies g′ (λ) > 0 and

g (λ) < m (λ). A worker matched with firm j produces y (j); unmatched workers and firms

produce 0.

Note that if ψ = 0, this is a standard competitive search environment. However, with

ψ > 0, there will be at least ψ workers at each vacancy. Hence, the queue length at each

vacancy satisfies λ ≥ ψ. At the other extreme, ψ = 1, we have a standard random search

environment in which λ = 1 always.

There are multiple ways to interpret the partial randomness of search. One is in terms of

differential information: random searchers could be viewed as workers uninformed about the

posted wages of the various job openings. Alternatively, one could interpret some workers as

more mobile across firms than others. The idea that frictions such as imperfect information or

imperfect mobility lead to market power - and impede efficient allocation of labor - has a long

tradition in economics; see e.g. Pigou (1932), Robinson (1933), Manning (2003). Crucially,

information or mobility frictions that constrain individual workers will also constrain the

social planner - an insight that will be important below.

3 Planner’s problem

The planner chooses the distribution of workers across posted vacancies. Thus, the planner’s

problem can be written as choosing λ (j) for every j ∈ [0, 1] so as to maximize∫ 1

0

m (λ (j)) y (j) dj. (1)

4The homogeneous-productivity economy can be dealt with by considering the limiting case as y (0) →
y (1). We discuss the homogeneous-productivity case formally in Section 4.3.
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The planner maximizes (1) subject to two constraints. First, there is a resource constraint,

which says that the total measure of workers at all the vacancies must add up to 1:∫ 1

0

λ (j) dj = 1. (2)

Second, and crucially, the planner must respect the randomness of search for some workers.

This means that the planner must assign the ψ random searchers randomly across all the

posted vacancies, thereby assigning at least ψ workers to each vacancy. Hence, the random

search constraint states

λ (j) ≥ ψ ∀j ∈ [0, 1] . (3)

Let η be the Lagrange multiplier on (2), and let µ (j) dj be the Lagrange multiplier on (3)

for each j. The first-order condition for λ (j) can be written as

µ (j) = η −m′ (λ (j)) y (j) . (4)

When constraint (3) does not bind, we have m′ (λ (j)) y (j) = η and µ (j) = 0, yielding

λ (j) = (m′)−1 (η/y (j)). Whenever constraint (3) binds, we have λ (j) = ψ and µ (j) =

η −m′ (ψ) y (j) > 0. We can therefore write

λp (j) = max
{
ψ, (m′)

−1
(η/y (j))

}
, (5)

where the subscript p denotes the planner’s allocation throughout. Moreover, η−m′ (ψ) y (j)

is clearly decreasing in j. Therefore, the constraint binds for all j below some threshold jp

and does not bind for j above it. This threshold is given by jp = inf {j : m′ (ψ) y (j) ≥ η}; if

jp > 0, it is the unique solution to m′ (ψ) y (jp) = η. We can then rewrite (5) as

λp (j) =

ψ, j < jp

(m′)−1 (η/y (j)) , j ≥ jp
(6)

The queue length λp (j) thus defined is non-increasing in η for each j, and non-decreasing in

j. The multiplier η is then pinned down as the unique value for which the resource constraint

holds with equality, i.e.

jpψ +

∫ 1

jp

(m′)
−1

(η/y (j)) dj = 1. (7)

Uniqueness of the solution follows from the fact that the integral is strictly decreasing in η.

This can be summarized as
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Lemma 1. The constrained-efficient allocation is characterized by a number η, a threshold

jp ∈ [0, 1] and a function λp (·) satisfying (5), (6), and (7). There exists a solution to this

system, and it is unique.

Proof. See Appendix A.1.

Note that the continuity of y (j) implies the continuity of λp (j), which will be important

below in the comparison to the market equilibrium.

Next, we consider the conditions under which constraint (3) in fact binds. The following

result shows that this requires productivity dispersion and the fraction of random searchers

to be sufficiently large.

Lemma 2. A necessary and sufficient condition for jp > 0 is∫ 1

0

(m′)
−1
(
m′ (ψ)

y (0)

y (j)

)
dj > 1. (8)

Proof. See Appendix A.2.

Intuitively, the partial randomness of search captured by (3) is more likely to severely

constrain the social planner when productivity is very dispersed. In fact, consider the limiting

case with homogeneous productivity. The social planner would never want to assign different

queue lengths to firms with the same productivity, due to the concavity of the matching

function; with constant productivity, the social planner would therefore assign the same

λ = 1 to all firms, and (3) clearly would not bind. Further, even when productivity is

dispersed, the random search constraint (3) would not bind for a low enough ψ.

4 Equilibrium

We now analyze the decentralized equilibrium and show how and in what respects it differs

from the planner’s allocation. Each firm decides what wage to post. The 1 − ψ directed

searchers observe all the posted wages and decide to which firm to apply. As is standard in

competitive search theory, we restrict attention to symmetric applications strategies. The

ψ random searchers are assigned to vacancies randomly. The combination of these choices

determines the queue length at each firm, and hence its profits, as a function of the wage it

posted.

The definition of equilibrium requires us to specify the queue length λ∗ (w) attracted by

a firm as a function of the wage w it posts, even for wages that are not posted in equilibrium.

This is specified as follows. If a firm posts a wage w and attracts a queue length λ, the utility
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of a directed searcher applying to that firm is m(λ)
λ
w. Define the market utility U to be the

maximum utility across all submarkets that a directed searcher can obtain:

U ≡ max
w,λ

m (λ)

λ
w, (9)

where the maximization is performed over all the submarkets w, λ active in equilibrium.

While U is an equilibrium object, each firm takes it as given when deciding what wage to

post. In particular, each firm understands that, if the wage-queue combination it offers

provides utility of less than U , then it will not attract any directed searchers, and its queue

length must therefore equal ψ. As for random searchers, their only decision is whether to

accept or reject the posted wage of the firm they meet; this decision simply constrains wages

to be non-negative due to individual rationality. Each firm j maximizes its profits taking

this worker behavior into account.

Definition 1. An equilibrium consists of a market utility U , a function λ∗ (w) ≥ ψ, and a

function w (j) that satisfy:

1. Worker optimization:
m (λ∗ (w))

λ∗ (w)
w ≤ U ∀w (10)

and
m (λ∗ (w))

λ∗ (w)
w < U =⇒ λ∗ (w) = ψ (11)

2. Firm optimization: for each j ∈ [0, 1],

w (j) ∈ arg max
w′≥0

m (λ∗ (w′)) (y (j)− w′) (12)

3. Market clearing: ∫ 1

0

λ∗ (w (j)) dj = 1 (13)

The first two items formalize the optimizing behavior of workers and firms described

above. The market-clearing condition (13) is the analogue of (2), stating that the total

measure of workers adds up to one. The resulting equilibrium allocation consists of an

assignment of queue length to each firm, λd (j), satisfying λd (j) = λ∗ (w (j)).

4.1 Characterization, existence and uniqueness

We now characterize the equilibrium allocation λd (j). Consider a firm’s choice of what wage

to post. If firm j offers less than the market utility U , it will attract random searchers only,
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therefore receiving profits m (ψ) (y (j)− w). From this it is easy to conclude that a firm that

chooses not to attract directed searchers will offer a wage of zero, and its profits are therefore

πR (j) = m (ψ) y (j) . (14)

On the other hand, if firm j would like to attract some directed searchers, it solves the

problem

πD (j) = max
w,λ

m (λ) (y (j)− w) (15)

subject to
m (λ)

λ
w ≥ U . (16)

It is easy to see that (16) will bind. Solving for w using the binding constraint (16) and

substituting into (15), we get the maximization problem

πD (j) = max
λ

m (λ) y (j)− λU ; (17)

the solution satisfies

m′ (λ) y (j) = U , (18)

and the maximized profit is therefore

πD (j) = g
(

(m′)
−1

(U/y (j))
)
y (j) , (19)

recalling that g (λ) = m (λ) − λm′ (λ). Comparing (19) to (14), we conclude firm j weakly

prefers to attract directed searchers if and only if

g
(

(m′)
−1

(U/y (j))
)
≥ m (ψ) (20)

Since m is concave and y (j) is continuous and strictly increasing, the left-hand side of (20)

is strictly increasing in j. This means that there is a unique threshold

jd = inf
{
j : g

(
(m′)

−1
(U/y (j))

)
≥ m (ψ)

}
, (21)

which, at an interior (jd > 0) equilibrium, solves g
(
(m′)−1 (U/y (jd))

)
= m (ψ). The equi-

librium queue length of firm j, denoted by λd (j), then satisfies

λd (j) =

ψ, if j < jd,

(m′)−1 (U/y (j)) , if j ≥ jd.
(22)

10



Finally, the market utility U of directed searchers is pinned down by the market clearing

condition

jdψ +

∫ 1

jd

(m′)
−1

(U/y (j)) dj = 1. (23)

To summarize, we have

Lemma 3. The decentralized equilibrium allocation is characterized by a market utility U , a

threshold jd, and a function λd (j) satisfying (21), (22) and (23). There exists a decentralized

equilibrium, and it is unique.

Proof. See Appendix A.3.

An immediate corollary, which will be important below, is that the equilibrium queue

length λd (j) is necessarily discontinuous at jd, as long as jd > 0. This follows directly since

g (λ) < m (λ) for any λ, and so g (λ) = m (ψ) requires λ > ψ.

Corollary 1. If 0 < jd < 1, the equilibrium queue length λd (j) is discontinuous at j = jd.

This result has a very clear and interesting economic interpretation. Intuitively, suppose

that firm jd is indifferent between posting a wage of 0 (hence attracting a queue length of

ψ) and posting a strictly positive wage high enough to attract directed searchers. Since the

latter entails a discrete increase in the wage, indifference requires a discrete increase in the

queue length.

4.2 Constrained inefficiency

We next compare the equilibrium to the constrained efficient allocation. To understand

the mechanism leading to the main result below, consider the tradeoff for a firm j > jp,

for whom λp (j) > ψ. In order for the equilibrium to be efficient, λp (j) must also be the

equilibrium queue length faced by such a firm; but then it must hold that g (λp (j)) ≥ m (ψ),

since otherwise the firm would prefer to forego attracting directed searchers and exploit the

random searchers instead. If the queue length λp (j) prescribed by the social planner is not

high enough, a firm that should efficiently be attracting directed searchers may wish not to

do so in equilibrium. This logic leads to the main inefficiency result.

Proposition 1. Assume ψ ∈ (0, 1). Let η, λp (·) be the constrained efficient allocation, with

the corresponding threshold jp. Let U , λd (·) be the decentralized equilibrium allocation, with

the corresponding threshold jd. Then the following hold: (i) U ≤ η, (ii) jd ≥ jp, and (iii)

λd (j) ≥ λp (j) for all j ≥ jd. Moreover, if either (8) holds or g (1) < m (ψ), then the

allocation is constrained inefficient and (i)-(iii) hold strictly.

11



Proof. See Appendix A.4.

The productivity threshold for attracting directed searchers is at least as high in the

market equilibrium as the constrained-efficient one. Moreover, this inequality is strict—and

hence the equilibrium is inefficient—if either the constrained efficient threshold is interior,

or the fraction of random searchers is high enough, or both.

Suppose that (8) holds; in this case, the constrained-efficient threshold jp is strictly

positive, i.e. the partial randomness of search in fact constrains the social planner. The

constrained-efficient queue length λp (jp) is clearly continuous at jp. Now, consider the

equilibrium queue length λd (j), given by (22). Unlike the planner’s λp (j), the equilibrium

queue length is necessarily discontinuous at the threshold jd by Corollary 1, as discussed

above. In other words, there is a jump in the queue length at the threshold jd. This

immediately shows that the equilibrium allocation is constrained-inefficient. Next, we argue

that this implies jd > jp. The key technical point is that, for any j ≥ max {jp, jd}, we must

have m′ (λd (j)) /m′ (λp (j)) = U/η, or, in other words, the equilibrium and planner’s queue

lengths cannot intersect for j ≥ max {jp, jd}. For market clearing to hold, i.e. for the average

equilibrium queue length to still equal 1 despite the jump at jd, it must be that the threshold

is strictly greater than the planner’s threshold jp.

Alternatively, suppose that the constrained-efficient allocation is a corner solution: jp =

0. In this case, the constrained-efficient allocation has all the firms attracting a queue length

strictly greater than ψ; but note that the lowest queue length must satisfy λp (0) ≤ 1;

otherwise, the resource constraint would be violated.5 Then, if g (1) < m (ψ), this allocation

is inconsistent with equilibrium, since the lowest-productivity firm would prefer not to attract

directed searchers. As a result, if g (1) < m (ψ), the equilibrium must have λd (0) = ψ and

hence jd > 0, by the argument made above that λp (j) and λd (j) do not cross.

Consider now the implications of this inefficiency for the distribution of workers across

firms. If jd > jp, too many firms attract a queue length of ψ rather than a strictly higher

queue length. In other words, too few firms attract random searchers only rather than

attracting some directed searchers. Market clearing implies that the firms that do attract

directed searchers necessarily attract more of them than socially optimal, hence λd (j) >

λp (j) for all j ≥ jd. This main result is illustrated in Figure 1, which plots both λp (j)

and λd (j), for the case of an interior jp. The planner’s queue length λp (j) is continuous

everywhere, flat at ψ for j ≤ jp and strictly increasing thereafter. The equilibrium λd (j) is

continuous in j for all j 6= jd, but jumps from ψ to some Λd = (m′)−1 (U/y (jd)) > ψ at jd,

and stays strictly above λp (j) thereafter.

5In fact, we must have λp (0) < 1 strictly, except in the limiting case of homogeneous productivity,
considered in section 4.3, for which λp (j) = 1 ∀j.
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Intuitively, in equilibrium, too many firms choose to attract only random searchers in

order to extract the full surplus from those random searchers. As a result, all the directed

searchers are allocated to a smaller subset of firms, leading to a higher queue length at those

firms. Since it is the low-productivity firms that choose to attract random searchers and the

high-productivity firms that continue to attract directed searchers, this results in too many

workers employed at the high-productivity firms, relative to the social optimum. Note that

this misallocation of labor manifests itself as lower employment, not lower productivity. In

fact, average output per employed worker is higher in equilibrium than under the efficient

allocation, since more searchers queue up at higher-productivity firms.

The misallocation of labor can be interpreted as the result of a novel congestion external-

ity. When a firm decides whether or not to attract directed searchers, it does not internalize

the effect this has on congestion at other firms. Specifically, when low-productivity firms

forego attracting directed searchers by posting a low wage, they do not internalize that these

directed searchers will now apply for higher-productivity firms, driving up congestion at

those firms. Such an externality would, of course, be absent if search were fully directed

(ψ = 0), since firms then fully internalize the effect of their posted wage on congestion

through market utility. Such an externality would also be absent if search were fully random

(ψ = 1), because in this case the wage is not allocative: what is crucial is that directed

searchers are driven away when a firm decides to exploit random searchers.

The inefficiency can also be interpreted in terms of a labor demand distortion. Recall

that in a standard directed search framework, the market utility U can be interpreted as

the shadow price of labor, as is evident from the formulation in (17). When search is purely

directed, we have U = η; the shadow price of labor is equal to the planner’s shadow value.

When search is imperfectly directed, firms can hire random searchers, so they perceive labor

as less costly, and we have U < η. Thus, in equilibrium, directed searchers are “too cheap,”

and hence the firms that do hire directed searchers demand too many of them.

4.3 Comparison to the homogeneous-productivity case

It is instructive to compare our results to the homogeneous-productivity environment, which

is the special case handled in the previous literature, such as Lester (2011) and Bethune et al.

(2020). Suppose that y (j) = y for all j. This is equivalent to a productivity distribution

putting probability 1 on y, and can be thought of as the limiting case of our model as

y (0) → y (1).6 In this case, the constrained-efficient allocation has jp = 0 and λp (j) = 1

for all j (in particular, (8) trivially does not hold). This is because, by the concavity of

6The analysis below closely follows Lester (2011); we include it for completeness and make no claims of
originality here.
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Figure 1: Equilibrium (λd (j)) vs. efficient allocation (λp (j)).

the matching technology, the social planner would have all the workers searching in one

submarket, and that submarket has queue length strictly larger than ψ. In other words,

if all the firms are identical, the partial randomness of search is immaterial for the social

planner.

To characterize equilibrium behavior, suppose first that the equilibrium has all the

firms efficiently choosing identical queue lengths, λd (j) = 1. Each firm then attracts di-

rected searchers, getting profits of g (1) y. In order for this to be optimal, we must have

g (1) ≥ m (ψ). If g (1) < m (ψ), however, this cannot be an equilibrium, and the unique equi-

librium must have firms randomizing between attracting directed searchers and not doing so.

Because of homogeneous productivity, all the firms attracting directed searchers will have

the same queue length, denoted Λd. Since the equilibrium has identical-productivity firms

randomizing, we must have the indifference condition g (Λd) = m (ψ). Without loss of gen-

erality, assume that firms with j < jd have λ (j) = ψ, and firms with j ≥ jd have λ (j) = Λd;

the threshold jd must then satisfy the market-clearing condition jdψ+ (1− jd) Λd = 1. This
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yields

Corollary 2. In the homogeneous-productivity case, the equilibrium takes one of two forms:

1. If m (ψ) ≤ g (1), the equilibrium allocation is constrained-efficient: jd = 0 and λ (j) = 1

for all j.

2. If m (ψ) > g (1), the equilibrium allocation is constrained-inefficient; λ (j) = ψ for

j < jd and λ (j) = Λd for j ≥ jd, where

jd =
Λd − ψ
Λd − 1

(24)

and g (Λd) = m (ψ).

With homogeneous firms, g (1) ≥ m (ψ) is both necessary and sufficient for constrained

efficiency. Intuitively, when ψ is high, firms are indifferent between attracting directed

searchers and exploiting random searchers; this leads to identical firms choosing different

queue lengths, which is socially suboptimal. This can be thought of as a limiting case of our

misallocation result.

4.4 Comparative statics with respect to ψ

The analysis leading to Proposition 1 has established that imperfectly directed search leads

to a misallocation of labor, which has a “flight to quality” nature: too many workers queue

up at high-productivity firms. A natural conjecture is that an improvement in information,

i.e. a decrease in ψ, would mitigate this flight to quality. We will show that the opposite

may be true: an improvement in information may lower wages and increase congestion at

high-productivity firms. We provide conditions for this to occur, which suggest that such

a reversal is more likely when there is a lot of heterogeneity. We focus on the effect of ψ

on market utility, U . Since λd (j) = (m′)−1 (U/y (j)) for j ≥ jd, there is a direct mapping

from U to the queue length; in particular a higher U is equivalent to lower queue length

at high-productivity firms. Moreover, under the natural condition that the elasticity of the

matching function ε (λ) is decreasing in λ, a higher U implies higher wages. The analysis will

therefore have implications for, e.g., the response of wages to improvements in information

technology.

We focus throughout on the case where y (j) is continuously differentiable in j, and

parameters are such that the equilibrium is interior, i.e. jd > 0. In this case, the threshold
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firm jd is exactly indifferent between attracting directed searchers and not doing so:

g
(

(m′)
−1

(U/y (jd))
)

= m (ψ) (25)

Together, the indifference condition (25) and the market-clearing condition (23) constitute

a system of two equations in two unknowns, uniquely determining market utility U and

threshold jd. Differentiating this system with respect to ψ yields:

Proposition 2. Suppose that y (j) is continuously differentiable in j. We have djd
dψ
≥ 0

always, with strict inequality unless jd = 0; and

dU
dψ

> 0 ⇐⇒ m′ (ψ) (Λd − ψ)

m (Λd)−m (ψ)
<
jdy
′ (jd)

y (jd)
(26)

where g (Λd) = m (ψ).

Proof. See Appendix A.5.

An improvement in information unambiguously lowers the measure of firms who attract

only random searchers. However, it has an ambiguous effect on the market utility of directed

searchers. To understand why, note that U = m′ (Λd) y (jd), where Λd is the queue length

of the threshold firm jd, satisfying g (Λd) = m (ψ). An improvement in information, i.e. a

decrease in ψ, lowers Λd, raising m′ (Λd). However, it also lowers jd and hence y (jd). These

have opposing effects on U . Intuitively, an improvement in information draws more firms

into attracting directed searchers, but the marginal firms that get drawn into this market are

lower-productivity. Since market utility is pinned down by the productivity of the marginal

firm, the latter effect lowers market utility. In other words, it is the marginal firm that

“prices” a directed searcher. Which effect dominates depends on the relative size of the

effect on Λd and y (jd), which in turn depends on the tradeoff, shown in (26), between the

concavity of the matching function and the dispersion of productivity. An improvement in

information lowers market utility if the productivity of the threshold firm changes much

more than the queue length of the threshold firm, which happens when productivity is very

dispersed.

Note than improvement in information necessarily cannot decrease market utility in the

homogeneous-productivity case.

Corollary 3. Suppose y (j) = y for all j. Then:

1. If m (ψ) ≤ g (1), then dU
dψ

= 0.

2. If m (ψ) > g (1), then dU
dψ
< 0.
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This is precisely the result from Lester (2011). That paper also showed that this result

can be reversed in the finite-agent version of the economy, where an improvement in infor-

mation can indeed reduce wages. Here, we have shown that an improvement in information

can reduce wages in the economy with a continuum of agents, if firms are sufficiently het-

erogeneous. The channel behind this reversal is different. In Lester (2011), the key intuition

is that an increase in the number of informed workers would raise firms’ incentives to post

high wages, but would also raise the degree of competition among the informed workers.

The former was shown to always dominate in the continuum economy, but not in the fi-

nite economy. Here, we show that the effect of information is ambiguous in the continuum

economy with heterogeneous firms: an improvement in information raises firms’ incentive

to attract directed searchers, but lowers the productivity of the marginal firm attracting

directed searchers.

Our results imply that an improvement in information, captured by an increase in the

fraction of directed searchers, may lower wages and raise congestion at high-productivity

firms. Moreover, we argued that such an outcome is more likely if there is a lot of hetero-

geneity. In the context of recent labor market trends, our results suggest that improvements

in information technology, such as online job search, are not necessarily at odds with the

observed fall in the labor share, especially in light of the high and growing productivity

dispersion.

4.5 Policy implications: the minimum wage

The inefficiency identified in our analysis naturally raises the question of whether simple

policy interventions can improve worker allocation and welfare. Our focus on the minimum

wage is motivated by its prominence in policy debates surrounding growing employer mar-

ket power. In particular, it is well known that employer market power can easily reverse

theoretical predictions regarding the effects of the minimum wage on total employment (see

e.g. Stigler, 1946; Bhaskar et al., 2002; Manning, 2011). Here, we identify a complementary

mechanism through which the minimum wage may mitigate the misallocation of workers

across firms.

Consider the effect of introducing a minimum wage wmin. We will focus on parameters

such that (8) holds. The definition of equilibrium is largely unchanged from Definition 1,

except that firms’ profit maximization in Equation (12) is now performed subject to the

constraint w′ ≥ wmin. There are two cases to consider. A minimum wage below a threshold

will bind for firms attracting only random searchers (who would otherwise pay a wage of zero),

but will not bind for firms attracting directed searchers. In this case, the equilibrium queue
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length λ∗ (w) and market utility U are such that λ∗ (wmin) = ψ and m(λ∗(wmin))
λ∗(wmin)

wmin < U .On

the other hand, if the minimum wage is above the threshold, it will also bind for at least

some firms attracting directed searchers. In this case, we have λ∗ (wmin) ≥ ψ (strict if the

minimum wage is strictly above the threshold) and m(λ∗(wmin))
λ∗(wmin)

wmin = U . This is formalized

in the following intuitive result:

Lemma 4. A minimum wage wmin is binding for some firms attracting directed searchers if

and only if wmin ≥ ε (ψ) y (jp).

Proof. See Appendix A.6.

The threshold ε (ψ) y (jp) is the “shadow” wage for the marginal firm attracting directed

searchers in the constrained-efficient allocation. Intuitively, suppose that some of the firms

attracting directed searchers pay the minimum wage; such firms would have a queue length

strictly higher than ψ. Since a firm attracting only random searchers would still have to pay

the minimum wage, there are no firms that attract only random searchers. In other words,

the minimum wage is so high that the presence of ψ random searchers is immaterial for the

equilibrium allocation.7 In particular, this means that the minimum wage “overshoots” the

planner’s shadow wage.

For this reason, we focus on the case when wmin < ε (ψ) y (jp) and characterize the effects

of a raise in the minimum wage in this range. We first observe that the equilibrium still has

the cutoff property, whereby firms below some jd attract random searchers only. Since the

minimum wage does not bind for any firm attracting directed searchers, the profit of such a

firm looks the same, taking market utility U as given. Therefore, we have

πD (j) = g
(

(m′)
−1

(U/y (j))
)
y (j) (27)

On the other hand, if a firm chooses to only attract random searchers, it must pay them at

least the minimum wage wmin. Its profit is therefore

πR (j) = m (ψ) (y (j)− wmin) (28)

Applying the envelope theorem to πD (j), we obtain

d

dj

[
πD (j)− πR (j)

]
= m

(
(m′)

−1
(U/y (j))

)
−m (ψ) > 0 (29)

7In fact, under such a minimum wage the equilibrium allocation to the equilibrium of an economy with
ψ = 0.
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This implies that πD (j) ≥ πR (j) if and only if j ≥ jd, where the unique cutoff jd satisfies

g
(

(m′)
−1

(U/y (jd))
)
y (jd) = m (ψ) (y (jd)− wmin) (30)

As before, the queue length is determined by

λd (j) =

ψ, j ≤ jd

(m′)−1 (U/y (j)) , j > jd
(31)

The equilibrium is therefore pinned down by (30), (31), and the market-clearing condition.

We now consider the effect of raising the minimum wage. Taking as given the market

utility, this has no effect on the expression in (27), but lowers the profits of a firm attracting

only random searchers, given by (28). In equilibrium, this will induce more firms to attract

directed searchers, lowering jd and raising U . This gives the following result:

Proposition 3. Suppose there is a minimum wage wmin < y (jp) ε (ψ). The unique equi-

librium is characterized by (30), (31), and the market-clearing condition (23). As long as

it does not surpass y (jp) ε (ψ), an increase in wmin (i) lowers jd, (ii) raises U , (iii) raises

employment, and (iv) raises total welfare.

Proof. See Appendix A.7.

Intuitively, a small enough minimum wage is non-binding for firms already attracting

directed searchers; however, it forces firms attracting solely random searchers to pay a higher

wage. This lowers the opportunity cost of attracting directed searchers, inducing more firms

to do so. The minimum wage thus reallocates some workers from firms with very high

productivity to firms with medium productivity. Because there was too much congestion

at high-productivity firms, this reallocation increases employment and welfare. It is worth

noting that a minimum wage that is set too high will be efficiency-reducing. In particular,

a minimum wage above ε (ψ) y (jp) will bind for directed searchers, and therefore will result

in inefficiently high queue lengths for low-productivity firms. In fact, the above analysis

directly implies that the optimal minimum wage is precisely ε (ψ) y (jp), which achieves the

constrained-efficient outcome:

Corollary 4. The constrained-efficient outcome is achieved by setting wmin = ε (ψ) y (jp).

This minimum wage is increasing in ψ.

Proof. See Appendix A.8.
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The last part of the claim, that the efficiency-restoring minimum wage is increasing in

ψ, follows directly from the fact (shown in Appendix A.8) that ε (ψ) y (jp) is increasing in ψ.

Intuitively, a higher ψ raises the “shadow price” of an additional directed searcher, implying

that the equilibrium wage paid to the marginal directed searcher needs to rise as well.

5 Endogenous entry

In the previous analysis, the productivity distribution of firms was taken as exogenously

given. While this simplified exposition, there are a number of reasons to consider the firms’

entry decision. First, the social planner, who faces a lower bound constraint on the queue

of each operating firm, might prefer to shut down some low-productivity firms rather than

assigning a queue of random searchers to them. Second, policies such as the minimum wage

plausibly affect the extensive margin as well as the allocation of workers across firms.

In this section, we show the robustness of our findings by extending the model with an

endogenous choice for firms whether to operate. We show that this gives rise to a standard

entry externality in equilibrium, as low-productivity firms do not internalize that they crowd

out hiring at high-productivity firms when they enter. Given a level of entry, however, the

misallocation inefficiency that we highlight above continues to operate in the same way as

before.

To formalize this, we continue to assume that there is a measure 1 of firms indexed by

j ∈ [0, 1], with productivity y (j) which is continuous and strictly increasing in j. Each firm

decides whether or not to operate, at cost κ > 0. This endogenously determines the measure

of vacancies, v. The rest of the environment is unchanged. In particular, since a fraction ψ

of the workers are random searchers, the queue length at any firm cannot be less than ψ/v.

5.1 Planner’s problem

The planner chooses the set of firms that operate and the allocation of workers among those

firms. It is simple to show that, with regard to entry, the planner will follow a threshold

rule, where firm j enters if and only if j ≥ j∗p ; the total measure of vacancies is therefore

v = 1 − j∗p . Thus, the planner’s problem is to choose j∗p and λ (j) for each j ∈
[
j∗p , 1

]
to

maximize ∫ 1

j∗p

[m (λ (j)) y (j)− κ] dj (32)

subject to the constraints ∫ 1

j∗p

λ (j) dj = 1 (33)
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and

λ (j)
(
1− j∗p

)
≥ ψ ∀j ≥ j∗p (34)

To guarantee an interior solution for the measure of entering firms, we assume throughout

that m (ψ) y (0) < κ < y (1). To make the partial randomness of search relevant, we will

also make an assumption that guarantees that the marginal entrant will attract only random

searchers, i.e. that constraint (34) will bind for some entering firms.

Assumption 1.
∫ 1

n
(m′)−1

(
m′ (ψ) y(n)

y(j)

)
dj > 1, where n is the solution to g

(
ψ

1−n

)
y (n) = κ.

This assumption amounts to stating that productivity is sufficiently dispersed, and ψ is

sufficiently large, relative to the size of the entry cost κ.

As before, the constraint (34) will bind for j below some threshold jp and will not bind

for j above it. Under Assumption 1, we will have jp > j∗p , as the following result establishes.

Lemma 5. Under Assumption 1, the constrained-efficient allocation is characterized by num-

bers η, j∗p , jp > j∗p , and a function λp (j) defined on j ∈
[
j∗p , 1

]
, satisfying:

m′
(
ψ∗p
)
y (jp) = η, where ψ∗p = ψ/

(
1− j∗p

)
. (35)

λp (j) =

ψ∗p, if j ∈
[
j∗p , jp

)
(m′)−1 (η/y (j)) , if j ∈ [jp, 1] .

(36)

∫ 1

j∗p

λp (j) dj = 1 (37)

g
(
ψ∗p
)
y
(
j∗p
)
− κ = ψ∗pm

′ (ψ∗p) (E (min {y (j) , y (jp)} |j ≥ j∗p
)
− y

(
j∗p
))
. (38)

Proof. See Appendix A.9.

Given j∗p , conditions (35)-(37) characterize the socially optimal λp (j), jp, and η, similarly

to the exogenous entry case described in Lemma 1. Condition (35) pins down the threshold

jp for attracting directed searchers. Condition (36) characterizes the queue length for every

firm that operates, and Condition (37) is the resource constraint.

The new equation is Condition (38), which states that the marginal benefit of adding an

additional firm equals the marginal cost. The marginal cost of an additional entrant is κ.

The marginal benefit is the expected output of that extra firm, adjusted for the crowding-out

of hiring by other firms due to congestion in the matching function; this is captured by the

term g
(
ψ∗p
)
y
(
j∗p
)
. Because of heterogeneity, however, there is an additional cost: when the

marginal firm is added, that firm crowds out hiring by firms that are more productive. This

is captured by the right-hand side term ψ∗pm
′ (ψ∗p) (E (min {y (j) , y (jp)} |j ≥ j∗p

)
− y

(
j∗p
))

.

21



If search were purely random, we would have jp = 1 and hence this term would become

ψ∗pm
′ (ψ∗p) (E (y (j) |j ≥ j∗p

)
− y

(
j∗p
))

; we would be concerned about the firm with the low-

est productivity crowding out the average productivity. This crowding out effect is only

operative on random searchers, however, and so the marginal firm would never cause con-

gestion for any firm above jp; hence the adjustment term min {y (j) , y (jp)}. This is similar

to the constrained efficiency condition in search models with heterogeneity considered by

Albrecht et al. (2010), Masters (2015), and Julien and Mangin (2017); the difference is that

those papers restricted attention to the purely random search case.8

5.2 Equilibrium

We now consider the decentralized equilibrium. Each firm j decides whether or not to enter

and, conditional on entering, whether to attract directed searchers or not. Since the profits

of a firm are strictly increasing in j, firms will follow a threshold rule for entering: firms will

enter if and only if j ≥ j∗d . Conditional on entering, the problem of a firm is the same as in

the exogenous-entry case, except that ψ is replaced by ψ∗d = ψ/ (1− j∗d). We can establish

the following equilibrium characterization:

Lemma 6. Under Assumption 1, the equilibrium allocation is characterized by numbers U ,

j∗d, jd > j∗d, and a function λd (j) defined on j ∈ [j∗d , 1], satisfying:

g
(

(m′)
−1

(U/y(jd))
)

= m (ψ∗d) , where ψ∗d = ψ/ (1− j∗d) (39)

λd (j) =

ψ∗d, if j ∈ [j∗d , jd)

(m′)−1 (U/y (j)) , if j ∈ [jd, 1] .
(40)

∫ 1

j∗d

λd (j) dj = 1 (41)

m (ψ∗d) y (j∗d)− κ = 0 (42)

Proof. See Appendix A.10.

Conditions (39)-(41) are analogous to the equilibrium characterization for the exogenous-

entry case. Condition (42) is a free-entry condition, which says that the profit of the marginal

firm equals the entry cost. One can solve these conditions in two steps. First, the free-entry

condition determines the equilibrium threshold for entry j∗d , and therefore ψ∗d, in isolation

8These papers consider heterogeneity on the worker side rather than the firm side, but this difference is
less consequential for the main insight.
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from other equilibrium outcomes. Second, given this level of entry, the solution for U , jd and

λd (j) can be obtained in the same way as in Lemma 3.

Comparison of the equilibrium conditions (39)-(42) to the efficiency conditions (35)-(38)

reveals that the decentralized equilibrium is inefficient on two margins. First, the firms’ free

entry condition in equilibrium differs from the planner’s optimal entry condition. Second,

conditional on a level of entry, the equilibrium conditions for the allocation of workers across

firms are inefficient as well. This is formalized in the following result:

Proposition 4. Suppose Assumption 1 holds. Then equilibrium entry is too high: j∗d < j∗p .

Furthermore, consider the allocation problem

max
λ(j)

∫ 1

j∗d

m (λ (j)) y (j) dj s.t.

∫ 1

j∗d

λ (j) dj = 1 and λ (j) ≥ ψ∗d (43)

The solution satisfies λo (j) = max
{
ψ∗d, (m

′)−1
(
m′ (ψ∗d)

y(jo)
y(jd)

)}
, with jd > jo and λd (j) >

λo (j) ∀j ≥ jd.

Proof. See Appendix A.11.

The inefficiency is now the combination of a standard externality from excessive entry

and the misallocation of labor conditional on entry. The first part of the proposition states

that entry is excessive relative to the social optimum. This is a classic entry externality well

known in the literature, which occurs because an individual firm does not internalize either

the crowding-out effect on other firms or the fact that those firms are more productive. The

second part of the proposition states that, taking as given the entry threshold j∗d , it is possible

to reallocate workers across firms so as to improve welfare relative to the decentralized

equilibrium. This misallocation of labor is exactly the same as the one emphasized in the

exogenous-entry model: within the firms that entered, too many applicants concentrate

at the higher-productivity firms. This result therefore illustrates that the misallocation

inefficiency we have highlighted earlier is robust, and in fact reappears in much the same

form when entry is endogenous.

5.3 Policy interventions

The presence of a two-fold externality in the endogenous entry case raises the question of

whether a single policy instrument, such as a minimum wage, can still restore efficiency. In

this section, we discuss the effects of introducing a minimum wage on each of the margins of

adjustment, and the resulting effects on welfare.
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As before, we focus on the case in which the minimum wage is low enough to not bind

for firms attracting directed searchers. Such a minimum wage will lower profits for firms

attracting random searchers only, which now affects not only the allocation of workers across

firms but also the entry of firms into the labor market in the first place. We start with

analyzing the effect on equilibrium entry, as it can be pinned down in isolation from the

other equilibrium outcomes. The introduction of the minimum wage wmin changes firms’ free

entry condition, i.e. Condition (42) in Lemma 6, to m (ψ/ (1− j∗d)) (y (j∗d)− wmin)− κ = 0.

Total differentiation yields dj∗d/dwmin ≥ 0, with equality if and only if y′ (j∗d) → ∞. That

is, a marginal increase in the minimum wage reduces the number of firms that operate in

equilibrium, except in the limit case in which there is zero mass of firms around the original

entry cutoff j∗d .

With respect to the allocation of workers across firms, there are now two opposing effects

from the introduction of a minimum wage. As in the baseline model, there is a direct ef-

fect: the minimum wage lowers the opportunity cost of attracting directed searchers, which,

all else equal, will lower the productivity threshold for attracting directed searchers. In

addition, however, endogenous entry creates an indirect effect: the reduction in entry in-

creases the queue length at firms that attract random searchers only, which, all else equal,

will increase the productivity threshold for attracting directed searchers. Formally, Con-

dition (39) in Lemma 6—which states that the threshold firm jd should be indifferent be-

tween attracting random and directed searchers— now becomes g
(
(m′)−1 (U/y (jd))

)
y (jd) =

m (ψ∗d) (y (j)− wmin). As a result, the minimum wage can have ambiguous effects on market

utility and the allocation of workers across firms.

In what follows, we establish that a minimum wage alone does not suffice to restore

efficiency. To show this, consider first the optimal entry condition. As explained above, a

higher minimum wage leads to lower entry, therefore mitigating the excessive entry external-

ity. Inspection of (42) shows that the socially optimal entry threshold can be implemented by

setting the minimum wage wmin such that m
(
ψ/
(
1− j∗p

)) (
y
(
j∗p
)
− wmin

)
= κ. Combining

this with (38) shows that this minimum wage must satisfy

wmin = ε
(
ψ/
(
1− j∗p

))
E
(
min {y (j) , y (jp)} |j ≥ j∗p

)
(44)

This is very similar to the heterogeneity-adjusted Hosios condition characterized by Julien

and Mangin (2017) and Masters (2019), who consider purely random search. Efficient entry

is achieved by setting the wage paid by the marginal entrant firm so as to internalize the con-

gestion it inflicts on other firms. With homogeneous firms, this would amount to setting the

worker’s output share to the elasticity of the matching function, ε
(
ψ∗p
)
. With heterogeneous
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firms, an additional adjustment needs to be made for the fact that the marginal entrant

crowds out firms more productive than itself, leading to the expression in (44); consequently,

the required minimum wage is strictly larger than ε
(
ψ/
(
1− j∗p

))
y
(
j∗p
)
. Under purely ran-

dom search with heterogeneous firms, as considered in Albrecht et al. (2010), Masters (2015),

Julien and Mangin (2017), or Masters (2019), we would have ψ = 1, jp = 1, and the cor-

rective minimum wage would then take the form wmin = ε
(
1/
(
1− j∗p

))
E
(
y (j) |j ≥ j∗p

)
. In

fact, under purely random search, such a minimum wage alone would be sufficient to restore

efficiency, since entry was the only margin being distorted. In our environment with partially

directed search, a marginal entrant only causes a congestion externality on firms between

j∗p and jp, and the minimum wage implementing the efficient entry threshold takes account

of this fact. Moreover, at that minimum wage, there is a misallocation of labor across the

entering firms, precisely as in Proposition 1 and Proposition 4. To see this most clearly,

observe that – given j∗p – Corollary 4 implies that the efficient allocation of labor across

firms would be implemented by setting the minimum wage to

wmin = ε
(
ψ/
(
1− j∗p

))
y (jp) (45)

> ε
(
ψ/
(
1− j∗p

))
E
(
min {y (j) , y (jp)} |j ≥ j∗p

)
(46)

This means that the minimum wage achieving efficient entry is strictly smaller than the

minimum wage that – given efficient entry – would achieve efficient allocation of workers

across firms. Setting the minimum wage to (46) would implement efficient entry, j∗d = j∗p ,

but there would be misallocation of workers across operating firms. Setting the minimum

wage to (45) would drive too many firms out of the market. A single minimum wage cannot

simultaneously fix both inefficiency margins.

Because now two externalities operate in the market, it is not surprising that a single

policy instrument no longer suffices to implement the planner’s outcome. Nonetheless, a

minimum wage can still play an important role in improving welfare. For example, as the

following result shows, the combination of an appropriate corrective hiring subsidy and a

minimum wage can restore constrained efficiency.

Corollary 5. If Assumption 1 holds, the constrained-efficient outcome is achieved by setting

wmin = ε
(
ψ/
(
1− j∗p

))
y (jp) and a hiring subsidy

X = ε
(
ψ/
(
1− j∗p

)) [
y (jp)− E

(
min {y (j) , y (jp)} |j ≥ j∗p

)]
(47)

The proof follows directly from the reasoning above. Suppose that firms enter if and only if

j ≥ j∗p ; setting the minimum wage at wmin = ε
(
ψ/
(
1− j∗p

))
y (jp) would guarantee efficient
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allocation of workers across firms. It then remains to set a hiring subsidy so that profits for

firm j∗p are zero. This hiring subsidy is equal to the difference between (45) and (46).

6 Conclusion

We have developed a model with partially directed search and used it to study misalloca-

tion of labor. Inefficiency is driven by imperfect ability of workers to direct their search.

Importantly, the same inability to perfectly direct search also constrains the social planner;

nonetheless, the equilibrium allocation differs from the planner’s due to a novel externality.

The framework naturally leads to the interesting result that too many workers concen-

trate at high-productivity firms. This result serves as a cautionary note against treating

misallocation of resources as synonymous with low productivity. The misallocation high-

lighted here manifests itself instead as suboptimally low employment. Furthermore, we show

that improvements in information may decrease wages and amplify the “flight to quality.” In-

terpreted in light of recent trends, this suggests that growing prevalence of online job search

need not be inconsistent with a phenomenon like wage stagnation. Finally, our analysis

points to a potential of policy interventions, such as the minimum wage, to improve welfare

by reallocating workers across firms. Our findings are of relevance to the recent debates con-

cerning the consequences of employer market power in the US and the desirability of labor

market regulation, as well as to labor markets in developing countries, where information

frictions are rampant.

There are a number of directions for future research. First, we have assumed that the

fraction of directed searchers is exogenously given. If workers can decide, at a cost, whether

or not to direct their search, potential strategic complementarities can arise between workers’

investments in information and firms’ wage posting decisions, possibly leading to multiple

equilibria. Moreover labor market policies can now affect employment, output and welfare

not only directly, but also by changing the incentives to acquire information. Second the

framework presented here features heterogeneous productivity on the firm side only. An

extension to two-sided heterogeneity would allow for studying the implications of imperfectly

directed search for worker-firm sorting, which (as shown by Eeckhout and Kircher (2010)

in a purely directed search setting) crucially depends on the matching technology. Finally,

our analysis has been theoretical: to this end, the model is deliberately parsimonious and

stylized. Quantifying the model’s implications for employment, welfare, measured matching

efficiency, and the effects of policies is a promising but challenging research agenda, which

would surely require a dynamic model, most likely extended to allow on-the-job search. A

key challenge is identifying the degree to which search is directed; Lentz and Moen (2017)
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represent progress in this dimension.
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A Proofs

A.1 Proof of Lemma 1

Proof. Because jp = inf {j : m′ (ψ) y (j) ≥ η}, the left-hand side of resource constraint (7) is

a function of a single variable, η. Existence follows because the left-hand side is continuous

in η, approaches ψ as η → ∞, and approaches infinity as η → 0. To prove uniqueness,

we will show that the left-hand side is strictly decreasing in η. Suppose η′ > η; then the

corresponding j′p and jp satisfy j′p ≥ jp, and so

j′pψ +

∫ 1

j′p

(m′)
−1

(η′/y (j)) dj < j′pψ +

∫ 1

j′p

(m′)
−1

(η/y (j)) dj

= jpψ +

∫ 1

jp

(m′)
−1

(η/y (j)) dj

+

∫ j′p

jp

(
ψ − (m′)

−1
(η/y (j))

)
dj

≤ jpψ +

∫ 1

jp

(m′)
−1

(η/y (j)) dj,

where the last inequality used the fact that ψ < (m′)−1 (η/y (j)) for j > jp.

A.2 Proof of Lemma 2

Proof. Recall that (m′)−1 (·) is strictly decreasing. Therefore, (m′)−1 (m′ (ψ) y(0)/y(j)) ≥ ψ

for any j, which implies∫ 1

0

max

{
ψ, (m′)

−1
(
m′ (ψ)

y(0)

y(j)

)}
dj =

∫ 1

0

(m′)
−1
(
m′ (ψ)

y(0)

y(j)

)
dj.

Furthermore, η solves the resource constraint
∫ 1

0
max

{
ψ, (m′)−1 (η/y (j))

}
dj = 1. Since the

left-hand side of the resource constraint is strictly decreasing in η, this implies that∫ 1

0

max

{
ψ, (m′)

−1
(
m′ (ψ)

y(0)

y(j)

)}
dj > 1

if and only if η > m′ (ψ) y(0), which in turn is equivalent to jp > 0.
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A.3 Proof of Lemma 3

Proof. The proof is similar to the proof of Lemma 1. Because jd satisfies (21), the left-hand

side of the market-clearing condition (23) is a function of a single variable, U . Existence fol-

lows because the left-hand side is continuous in U , approaches ψ as U → ∞, and approaches

infinity as U → 0. To prove uniqueness, we will show that the left-hand side of (23) is strictly

decreasing in U . Note that (21) defines jd as a decreasing function of U . Suppose U ′ > U ;

the corresponding j′d and jd then satisfy j′d ≥ jd, and so

j′dψ +

∫ 1

j′d

(m′)
−1

(U ′/y (j)) dj < j′dψ +

∫ 1

j′d

(m′)
−1

(U/y (j)) dj

= jdψ +

∫ 1

jd

(m′)
−1

(U/y (j)) dj

+

∫ j′d

jd

(
ψ − (m′)

−1
(U/y (j))

)
dj

≤ jdψ +

∫ 1

jd

(m′)
−1

(U/y (j)) dj.

The last inequality has used the fact that, for j > jd, we have g
(
(m′)−1 (U/y (j))

)
>

m (ψ); since m (λ) > g (λ) ∀λ, this implies m
(
(m′)−1 (U/y (j))

)
> m (ψ) and therefore

(m′)−1 (U/y (j)) > ψ.

A.4 Proof of Proposition 1

Proof. We first consider the case of an interior solution. Suppose that (8) holds, so that

jp > 0. We will show that U < η. The proof is by contradiction. Suppose U ≥ η. Because

(m′)−1 (·) is strictly decreasing, resource constraints (7) and (23) imply jd ≤ jp. That is,

there exists a j such that g
(
(m′)−1 (U/y (j))

)
≥ m (ψ) but (m′)−1 (η/y (j)) ≤ ψ. However,

by the assumption U ≥ η,

g
(

(m′)
−1

(U/y (j))
)
≤ g

(
(m′)

−1
(η/y (j))

)
< m

(
(m′)

−1
(η/y (j))

)
,

where the first inequality follows from the fact that (m′)−1 (·) is strictly decreasing, and

the second inequality follows from g(λ) < m(λ). As a result, g
(
(m′)−1 (U/y (j))

)
≥ m (ψ)

implies m
(
(m′)−1 (η/y (j))

)
> m (ψ), which yields the desired contradiction. Therefore,

U < η. The resource constraints then imply jd > jp. Furthermore, for any j ≥ jd, we have

λp (j) = (m′)−1 (η/y (j)) and λd (j) = (m′)−1 (U/y (j)), so U < η implies λd (j) > λp (j).
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Next, consider the case when (8) does not hold, and so the constrained-efficient allocation

has jp = 0. In this case, a necessary and sufficient condition for the equilibrium to be

constrained-efficient is g (λp (0)) ≥ m (ψ). If g (λp (0)) < m (ψ), then in equilibrium we must

have λd (0) = ψ and therefore jd > 0. This implies U < η, since, as already argued above,

U ≥ η necessitates jd ≤ jp by the resource constraints. Since U < η, the definitions of λp (j)

and λd (j) imply λd (j) > λp (j) for all j ≥ jd. Finally, note that the resource constraint

(7) requires λp (0) < 1, which means g (1) < m (ψ) implies g (λp (0)) < m (ψ) and hence

constrained inefficiency.

A.5 Proof of Proposition 2

Proof. The indifference condition (25) and the market-clearing condition (23) constitute a

system of two equations in two unknowns, U and jd, therefore pinning down U and jd as

implicit functions of ψ. Totally differentiating (25 and (23) with respect to ψ, we get,

respectively,

ΛdU
y′ (jd)

y (jd)
× djd
dψ
− Λd ×

dU
dψ

= y (jd)m
′ (ψ) (48)

and

(Λd − ψ)× djd
dψ
−A× dU

dψ
= jd, (49)

where Λd ≡ λd (jd) is the unique solution to g (Λd) = m (ψ), and

A =

∫ 1

jd

1

y (j)m′′
(
(m′)−1 (U/y (j))

)dj < 0 (50)

Applying Cramer’s rule to (48)-(49), we get

djd
dψ

=
jdΛd − y (jd)m

′ (ψ)A
Λd (Λd − ψ)− ΛdU y

′(jd)
y(jd)
A

(51)

and

dU
dψ

=
ΛdU y

′(jd)
y(jd)

jd − (Λd − ψ) y (jd)m
′ (ψ)

Λd (Λd − ψ)− ΛdU y
′(jd)
y(jd)
A

(52)

The denominator of the above expressions is positive. Therefore, (51) immediately implies
djd
dψ
> 0; and (52) implies that dU

dψ
> 0 if and only if

ΛdU
y′ (jd)

y (jd)
jd > (Λd − ψ) y (jd)m

′ (ψ) (53)
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Finally, we use the fact that U = m′ (Λd) y (jd), and, by definition of Λd, Λdm
′ (Λd) =

m (Λd)−m (ψ). This means that (53) is equivalent to

m′ (ψ) (Λd − ψ)

m (Λd)−m (ψ)
<
jdy
′ (jd)

y (jd)
, (54)

which is precisely condition (26).

A.6 Proof of Lemma 4

Step 1: If wmin does not bind for firms attracting directed searchers, then wmin < ε (ψ) y (jp).

Proof. Suppose that wmin does not bind for firms attracting directed searchers. This means

that the inefficiency result of Proposition 1 applies, so jd > jp and U < η. This means that

firm jp strictly prefers not to attract directed searchers, and therefore

m (ψ) (y (jp)− wmin) > g
(

(m′)
−1

(U/y (jp))
)
y (jp) (55)

> g
(

(m′)
−1

(η/y (jp))
)
y (jp) (56)

= g (ψ) y (jp) (57)

= m (ψ) (1− ε (ψ)) y (jp) , (58)

where the second line follows from U < η and the concavity of m; the third line follows from

the fact that η = m′ (ψ) y (jp); and the last line follows from the definition of g. The above

implies wmin < ε (ψ) y (jp).

Step 2: If wmin < ε (ψ) y (jp), it does not bind for firms attracting directed searchers.

Proof. Suppose that the minimum wage binds for at least some firms who attract directed

searchers. This means that the smallest queue length obtaining in equilibrium, which we

denote by λ0, must satisfy
m (λ0)

λ0
wmin = U (59)

It then follows that λd (y (j)) = max
{
λ0, (m

′)−1 (U/y (j))
}

must satisfy

λd (j) =

λ0, j ≤ j0

(m′)−1 (U/y (j)) , j > j0
(60)

where the threshold j0 satisfies m′ (λ0) y (j0) = U . Finally, U must satisfy the modified
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market-clearing condition ∫ 1

0

max
{
λ0, (m

′)
−1

(U/y (j))
}
dj = 1 (61)

Note that (59) defines U as a decreasing function of λ0, and (61) defines U as an increasing

function of λ0, so that the equilibrium U and λ0, and hence j0, are uniquely determined for

any wmin. Next, if λ0 = ψ, (61) immediately gives U = η (planner’s Lagrange multiplier),

with the corresponding threshold necessarily equal to j0 = jp. This means that, in order to

have λ0 = ψ and j0 = jp, the minimum wage must then be equal to

ψ

m (ψ)
η =

ψ

m (ψ)
m′ (ψ) y (jp) = ε (ψ) y (jp) (62)

This also proves the claim in Corollary Corollary 4 that wmin = ε (ψ) y (jp) implements the

constrained-efficient allocation. Finally, since λ0 ≥ ψ, (61) also implies that U ≥ η, but then

the corresponding minimum wage must satisfy

λ0
m (λ0)

U ≥ ψ

m (ψ)
η = ε (ψ) y (jp) (63)

where the inequality transpires because λ/m (λ) is increasing in λ. This proves that a

minimum wage strictly less than ε (ψ) y (jp) cannot be binding for firms attracting directed

searchers.

A.7 Proof of Proposition 3

Proof. Consider a minimum wage wmin < ε (ψ) y (jp), which binds for firms attracting ran-

dom searchers only, and does not bind for firms attracting any directed searchers. The

equilibrium is fully characterized by a market utility U for directed searchers, and a thresh-

old jd above which firms attract directed searchers, satisfying the indifference condition (30)

and the market clearing condition (23).

Proof of (i) and (ii). We first analyze the effect of wmin on jd and U . Totally differentiating

(30) with respect to wmin, we obtain

−m (ψ) = (m (Λd)−m (ψ)) y′ (jd)
djd
dwmin

− Λd
dU
dwmin

, (64)

where Λd ≡ λd (jd) is the solution to m (ψ) (y (jd)− wmin) = g (Λd) y (jd). Totally differenti-
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ating the market clearing condition (23) with respect to wmin, we obtain

djd
dwmin

=
dU
dwmin

× 1

Λd − ψ

∫ 1

jd

1

y (j)m′′ (y (j))
dj (65)

Combining (64) with (65) gives

dU
dwmin

= m (ψ)

[
Λd −

(
m (Λd)−m (ψ)

Λd − ψ

)
y′ (jd)

∫ 1

jd

1

y (j)m′′ (y (j))
dj

]−1
> 0, (66)

from which (65) immediately implies djd
dwmin

< 0.

Proof of (iii). We now turn to characterizing the effect of the minimum wage on aggregate

employment, which is given by

E = jdm (ψ) +

∫ 1

jd

(m′)
−1
(
U
y (j)

)
dj (67)

Denote λd (j) = (m′)−1
(
U
y(j)

)
for notational convenience. Differentiating (67) with respect

to wmin and using (65), we get

dE
dwmin

=
djd
dwmin

× (m (ψ)−m (Λd)) +
dU
dwmin

×
∫ 1

jd

m′ (λd (j))

y (j)m′′ (λd (j))
dj (68)

=
dU
dwmin

×
∫ 1

jd

1

y (j)m′′ (λd (j))

[
m′ (λd (j))− m (Λd)−m (ψ)

Λd − ψ

]
dj (69)

> 0. (70)

The last line follows from the concavity of m, since m′′ < 0 and, for all j ≥ jd,

m′ (λd (j)) ≤ m′ (Λd) <
m (Λd)−m (ψ)

Λd − ψ
(71)

Proof of (iv). A similar argument applies to welfare, which is given by

W = m (ψ)

∫ jd

0

y (j) dj +

∫ 1

jd

(m′)
−1
(
U
y (j)

)
y (j) dj (72)
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Differentiating (72) with respect to wmin, we get

dW
dwmin

=
djd
dwmin

× (m (ψ)−m (Λd)) y (jd) +
dU
dwmin

×
∫ 1

jd

m′ (λd (j))

m′′ (λd (j))
dj (73)

=
dU
dwmin

×
∫ 1

jd

1

y (j)m′′ (λd (j))

[
m′ (λd (j)) y (j)− m (Λd)−m (ψ)

Λd − ψ
y (jd)

]
dj (74)

>0. (75)

The last inequality follows since m′′ < 0 and

m′ (λd (j)) y (j) = U = m′ (Λd) y (jd) <
m (Λd)−m (ψ)

Λd − ψ
y (jd) (76)

by the concavity of m and the definition of λd (j).

A.8 Proof of Corollary 4

Proof. The result that the minimum wage wmin = ε (ψ) y (jp) implements the constrained-

efficient allocation follows directly from the proof of Lemma 4, which is provided in sec-

tion A.6 above (see Equation (62)). It remains to show that ε (ψ) y (jp) is increasing in

ψ. Note that ε (ψ) y (jp) = ψ
m(ψ)

η, where η is the solution to the resource constraint∫ 1

0
max

{
ψ, (m′)−1 (η/y (j))

}
dj = 1. It then follows that η is increasing in ψ by the re-

source constraint, and ψ
m(ψ)

is increasing in ψ by the assumptions on m. This completes the

proof.

A.9 Proof of Lemma 5

Proof. The social planner is maximizing (32) subject to the constraints (33) and (34). Let

η be the Lagrange multiplier on (33), and let µ (j) dj be the Lagrange multiplier on (34) for

each j. The first-order condition for λ (j) is then

µ (j) = η −m′ (λ (j)) y (j) , (77)

which leads, as in the exogenous entry case, to the solution

λp (j) = max
{
ψ/
(
1− j∗p

)
, (m′)

−1
(η/y (j))

}
. (78)
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Define jp = inf
{
j : m′

(
ψ/
(
1− j∗p

))
y (j) ≥ η

}
. Guessing that jp > j∗p , which we will verify

below, immediately gives (35)-(37). Next, the first-order condition for j∗p reads

m
(
λp
(
j∗p
))
y
(
j∗p
)
− κ = λp

(
j∗p
)
η −

∫ 1

j∗p

λp (j)µ (j) dj (79)

Under the assumption that jp > j∗p , we must have λ
(
j∗p
)

= ψ∗p = ψ/
(
1− j∗p

)
and η =

m′
(
ψ∗p
)
y (jp). Moreover, this gives µ (j) = 1

1−j∗p
m′
(
ψ∗p
)

max {0, (y (jp)− y (j))}, so that (79)

becomes

m
(
ψ∗p
)
y
(
j∗p
)
− κ = ψ∗pm

′ (ψ∗p)× 1

1− j∗p

∫ 1

j∗p

min {y (j) , y (jp)} dj (80)

Subtracting ψ∗pm
′ (ψ∗p) y (j∗p) from both sides gives (38).

Finally, we verify that jp > j∗p . Suppose the contrary. This would imply that (34) never

binds. Then the solution to the planner’s problem, from the above first-order conditions,

must satisfy

η = m′
(
λp
(
j∗p
))
y
(
j∗p
)

(81)

and λp (j) = (m′)−1
(
m′
(
λp
(
j∗p
)) y(j∗p)

y(j)

)
for all j ≥ j∗p , together with

κ = g
(
λp
(
j∗p
))
y
(
j∗p
)
≥ g

(
ψ

1− j∗p

)
y
(
j∗p
)
. (82)

The latter implies j∗p ≤ n, where n solves g
(

ψ
1−n

)
y (n) = κ. Note that

∫ 1

s
(m′)−1

(
m′ (ψ) y(s)

y(j)

)
dj

is decreasing in s. By Assumption 1,

1 <

∫ 1

n

(m′)
−1
(
m′ (ψ)

y (n)

y (j)

)
dj (83)

≤
∫ 1

j∗p

(m′)
−1

(
m′ (ψ)

y
(
j∗p
)

y (j)

)
dj (84)

<

∫ 1

j∗p

(m′)
−1

(
m′
(

ψ

1− j∗p

)
y
(
j∗p
)

y (j)

)
dj (85)

≤
∫ 1

j∗p

(m′)
−1

(
m′
(
λp
(
j∗p
)) y (j∗p)

y (j)

)
dj (86)

contradicting the resource constraint (37). This completes the proof.
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A.10 Proof of Lemma 6

Proof. For any given j∗d , previous results imply that the equilibrium must be characterized

by a market utility U , and a threshold rule for the queue length, such that firms with j ≥ jd

attract random searchers, and firms with j < jd do not. Suppose that jd > j∗d , which we

will later verify. In other words, the marginal entrant attracts only random searchers. This

immediately gives the equilibrium conditions (39) - (41), very much the same as in Lemma 3

for the exogenous entry case. Next, by the assumption that the marginal entrant attracts

only random searchers, the zero profit condition for the marginal entrant yields (42).

It remains to verify that the marginal entrant attracts only random searchers in equilib-

rium. Suppose not. Then the equilibrium conditions would imply

U = m′ (λd (j∗d)) y (j∗d) (87)

and λd (j) = (m′)−1
(
m′ (λd (j∗d))

y(j∗d)
y(j)

)
for all j ≥ j∗d , together with

κ = g (λp (j∗d)) y (j∗d) ≥ g

(
ψ

1− j∗d

)
y (j∗d) , (88)

But then, Assumption (1) implies that the equilibrium allocation contradicts market clearing,

as in Appendix A.9.

A.11 Proof of Proposition 4

Proof. First, we show that entry is inefficiently high in equilibrium. This follows since

m
(
ψ∗p
)
y
(
j∗p
)
− κ > g

(
ψ∗p
)
y
(
j∗p
)
− κ > 0 = m (ψ∗d) y (j∗d)− κ,

and m (ψ/ (1− j)) y (j) is increasing in j. This immediately establishes that j∗d < j∗p .

Next, consider the problem of choosing λ (j) to maximize
∫ 1

j∗d
m (λ (j)) y (j) dj subject to

the constraints λ (j) ≥ ψ∗d and
∫ 1

j∗d
λ (j) dj = 1. Similarly to Lemma 1, the solution satisfies

λo (j) = max
{
ψ∗d, (m

′)−1 (ηo/y (j))
}

, where ηo = m′ (ψ∗d) y (jo) for some jo and∫ 1

j∗d

max
{
ψ∗d, (m

′)
−1

(ηo/y (j))
}
dj = 1. (89)

This system uniquely pins down jo and ηo. The proof that jd > jo, and λd (j) > λo (j) for

j ≥ jd, is then identical to the proof of Proposition 1 in Appendix A.4.
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