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Abstract

Multilateral comparison of outcomes drawn from multiple groups pervade the social

sciences and measurement of their variability, usually involving functions of respective

group location and scale parameters, is of intrinsic interest. However, such approaches

frequently mask more fundamental differences that more comprehensive examination

of relative group distributional structures reveal. Indeed, in categorical data contexts,

location and scale based techniques are no longer feasible without artificial and ques-

tionable cardinalization of categories. Here, Ginis’ Transvariation measure is extended

and employed in providing quantitative and visual multilateral comparison tools in

discrete, continuous, categorical, univariate or multivariate settings which are partic-

ularly useful in paradigms where cardinal measure is absent. Two applications, one

analyzing Eurozone cohesion in terms of the convergence or divergence of constituent

nations income distributions, the other, drawn from a study of aging, health and in-

come inequality in China, exemplify their use in a continuous and categorical data

environment.
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1 Introduction

Since the path breaking work of R.A. Fisher (Fisher 1932, 1935), multilateral com-

parisons of grouped outcomes have become ubiquitous in the social and physical sci-

ences rendering measurement of their collective variation of intrinsic interest. Equality

of opportunity and mobility literatures compare outcomes of distinct circumstance

groups (e.g. Arrow, Bowles and Durlauf 2000; Herrnstein and Murray 1994; Peragine,

Palmisano and Brunori 2014; Roemer 1998; Weymark 2003). Wellbeing measures for

ordering a collection of societies based upon functions of their respective income and

inequality levels are discussed in Blackorby and Donaldson (1978). In finance, finan-

cial returns of a collection of portfolios are compared on a combined mean-variance

basis (Markowitz, 1952; Bali, Brown, and Demirtas, 2013; Banz, 1981; Basu 1983;

Jegadeesh 1990). In treatment effect, event and matching study and policy evalua-

tion literatures (Angrist and Krueger, 2001) assessment is based upon comparisons of

conditional means across outcome states. Appropriate unit free measures of collective

between group variability would be helpful to all of these literatures.

With respect to assessing the extent of the variability in a collection of numbers,

there are basically three unit free approaches: relative ranges (relative range and inter

quantile ranges are examples); relative average distance from some location measure

(e.g. the coefficient of variation or Theil’s entropic measures, Theil 1967, Maassoumi

1986, Maassoumi, Racine and Stengos 2007), and average relative mean difference over

all possible pairs – the Gini coefficient (Gini 1921). Each approach has a purpose with

their specific advantages and challenges. Range type measures are easily computed and

capture the potential span of differences but fail to reflect the extent of differences with

respect to subgroups within the interior of the collection of numbers, that is to say they

are not subgroup decomposable. Relative average difference measures in accounting

for the difference from the average of each element in the collection reflect the extent of

differences within the collection much better and, like the closely associated ANOVA

technique, are often subgroup decomposable. However, Sen (1995) and Yitzhaki (2003)

argue that measures of average absolute differences such as the Gini and Absolute Gini

coeffcient (Gini 1921, Yitzhaki 1983, Chakravarty 1988), present a more comprehensive

measure of the totality of differences than variance-based measures. Unfortunately,

when analyzing subgroups, unlike variance-based measures, Gini-type measures are

not subgroup decomposable (Bourguignon 1979) except in exceptional circumstances
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(Mookherjee and Shorrocks 1982).

Carneiro, Hansen and Heckman (2002, 2003), in the context of treatment effects

models, highlight a problem with these approaches, successfully demonstrating that

using such summary statistics to explore distributional variation over collections of

populations can be misleading.1 Somewhat trivially, in a collection of distributions

with identical means, difference in means tests would have zero power against more

general distributional differences. The point is that considering a subset of conditional

moments ignores important information about distributional differences in moments

outside the subset that creates a “veil of ignorance” that is only countervailed by

comparing subgroup distributions in their entirety across their complete range. More-

over, such analyses are not feasible in ordered categorical data contexts encountered in

emerging subjective wellbeing measurement literatures (Kahneman and Krueger 2007)

without arbitrary assignment of cardinal scales to ordinal categories. Unfortunately

arbitrary scale assignment is not a solution because of the scale dependency problem

(Schroder and Yitzhaki 2017, Liddell and Kruschke 2018, Bond and Lang 2019) and,

since objects like the range, coefficient of variation and Gini coefficients are monotone

scale dependent, this carries over to inequality measurement.

Here, Gini’s Bilateral Distributional Transvariation (Gini 1916, 1959) is extended to

multilateral environments in generating new measures (together with their respective

asymptotically normal standard errors) which are distributional analogues of the three

basic measures of the extent of variation in a collection of numbers. The measures,

which record the relative distributional inequality in collections of discrete, continuous,

categorical and potentially multivariate distributions, are in the respective forms of

a Multilateral Transvariation (MGT) statistic, a distributional coefficient of variation

(DCV) and a Distributional Gini (DisGini) coefficient, all come in population weighted

and unweighted forms.

As illustrative applications, the new tools are employed in two situations. One

analyzes Eurozone cohesion in terms of the convergence or divergence of its constituent

income distributions in the 21st Century. The other, in a study of aging, and health

and income inequality in China, exemplifies its use in a multivariate categorical data

environment.

1In the context of growth and convergence models, Durlauf and Quah (2002) make a similar point in
noting that, if within subgroup variation grows sufficiently fast relative to average income variation,
distributions will increasingly overlap and become more alike, effectively converging regardless of
increasing subgroup mean variation (which records divergence).
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In the following, Section 2 introduces three new instruments, together with their

asymptotically normal standard errors, for assessing multilateral distributional differ-

ences. Section 2.1 develops the Multilateral Transvariation measure MGT. A natural

generalization to K distributions of Gini’s Bilateral Transvariation it was originally in-

troduced in Anderson, Linton and Thomas (2017), here its sampling distribution is also

developed. One problem with MGT is that it does not yield a sense of difference from

the “average” distribution. Section 2.2 introduces DCV, an alternative index, analo-

gous to the coefficient of variation, which measures relative distributional differences

from the “average distribution”. DCV is particularly useful in studying convergence

and divergence issues and prompts new concepts of universal convergence or divergence

(usefully visualized in radar charts) whereby all groups are simultaneously converging

or diverging in concert. Tests for such universality are provided. A problem with both

MGT and DCV is that they do not fully reflect the many bi-lateral functional differ-

ences and similarities within the collection of distributions. To overcome this limitation

section 2.3 introduces DisGini for measuring the totality of bilateral similarities or dif-

ferences in a collection of distributions much like a Gini coefficient does with respect to

a collection of numbers. Population weighted and unweighted versions of the statistics

are provided. Extensions and some properties of the measures are explored in Section

3. Section 4 reports the main results of two exemplifying applications. The first, a

study of the progress of the Eurozone income distribution, addresses the question of

increasing commonality in the income distributions of the Eurozone’s constituent na-

tions. The second, in exemplifying the efficacy of DisGini in ordered categorical data

contexts, examines the progress of health-income inequalities as they relate to the aging

process. Conclusions are drawn in Section 6.

2 Multilateral Transvariation

2.1 MGT: Generalizing Gini’s Transvariation measure

In his original transvariation measure GT, Gini (1916, 1959) provided a measure of the

difference between two distributions2 which, for two distributions fi (x) , fj (x) whose

support3 is confined to R+, can be defined, following Anderson, Linton and Thomas

2See Pittau and Zelli (2017) for an overview of Gini’s original concepts of transvariation.
3Since translation to discrete and categorical paradigms is straightforward, discussion is confined

to the continuous paradigm for brevity purposes. Furthermore since the Gini coefficient has problems
with negative values of x (Manero 2017), discussion is confined to distributions defined on the positive
orthant for comparison purposes. It should be noted that the MGT and DisGini measures proposed
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(2017), as follows:

GTij =
1

2

∫ ∞
0

|fi (x)− fj (x)| dx =

=
1

2

∫ ∞
0

[max (fi (x) , fj (x))−min (fi (x) , fj (x))]dx . (1)

Since 0 ≤
∫∞
0
|fi (x) − fj (x) |dx ≤ 2, pre-multiplying by 0.5 yields a statistic that

will be 0 when the two distributions are identical and 1 when they have mutually

exclusive support. Note that, by definition, GTij = GTji, furthermore it has a one to

one relationship with distributional overlap OVij measuring the extent of commonality

between the two distributions (Anderson, Linton and Whang 2012), which is given by:

OVij =

∫ ∞
0

min(fi (x) , fj (x))dx . (2)

Essentially GT = 1-OV.

Generalizing equation (1) to K distributions indexed k = 1, · · · , K, suggests con-

templating a Multilateral Gini Transvariation measure (MGT), defined as follows:

MGT =
1

K

∫ ∞
0

[max (f1 (x) , f2 (x) , · · · , fK (x))−

min (f1 (x) , f2 (x) , · · · , fK (x))]dx . (3)

As in the bilateral comparison, when the distributions have mutually exclusive

support MGT = 1, when the distributions are identical MGT = 0.

A weighted version of MGT, MGTW is also possible, and has the form:

MGTW =

∫ ∞
0

[max (w1f1 (x) , w2f2 (x) , ., wKfK (x))−

−min (w1f1 (x) , w2f2 (x) , ., wKfK (x))]dx (4)

where wk are possible weights associated to the distributions fk, k = 1, · · · , K.

When the K distributions are regarded as subgroups of an overall distribution, wk are

the proportions associated to each density function.

here are not subject to this difficulty and are well defined on all support types.
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2.1.1 Estimation and standard errors of MGT

Non-parametric estimation of MGT facilitates analysis of the collection of distributions

over their full range revealing the extent of their similarity and differentness without

reliance on the limited purview of summary statistics or visual perceptions.

In the case of discrete and categorical variables, estimation of category membership

probabilities and their sampling distributions is straightforward following Rao (1973).

Suppose C categories Γc indexed c = 1, · · · , C with a C vector of category membership

probabilities p with typical element pc and let x be an n vector of independent obser-

vations with typical element xi so that pc = P (xi ∈ Γc). Then, p̂c, the estimate of pc,

may be obtained by letting zi,c = 1 when xi ∈ Γc and 0 otherwise, so p̂c = 1
n

∑n
i=1 zi,k

and p̂ the estimator of the vector will be such that:

p̂ ∼asymp N


p1
p2
...
pC

;
1

n


p1(1− p1) −p1p2 · · · −p1pC
−p2p1 −p2(1− p2) · · · −p2pC

...
...

...
...

−pCp1 −pCp2 · · · pC(1− pC)


 (5)

Computation of the various transvariation measures will follow the same pattern

as the continuous distribution scenario.

For continuous distributions when kernel estimates of fk(x), k = 1, · · · , K are

available, standard errors can also be derived.

Letting fk (x) , k = 1, .., K, be continuous density functions with closed and bounded

support [a, b], and assume independent random samples from the k’th population

Xkh, h = 1, .., Tk. We define the kernel estimates:

f̂k (x) =
1

Tk

Tk∑
h=1

Kb (x−Xk,h) , (6)

where K is a (potentially d dimensioned multivariate) kernel with Kb(.) = K(./b)/bd,

where b is a positive bandwidth sequence. The estimated K distribution unweighted

multilateral transvariation index is of the form4

4Letting p̂c,k be the estimated membership probability of the c’th category in the k’th distribution,
then the categorical analogue is given by:

1

g(K)

C∑
c=1

(
max

k
(p̂c,1, p̂c,2, · · · , p̂c,K)−min

k
(p̂c,1, p̂c,2, · · · , p̂c,K)

)
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θ̂KT =

{∫ b

a
max

(
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

)
dx−

∫ b

a
min

(
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

)
dx
}

gKT (K)

= θ̂KTU − θ̂KTL,

where

θ̂KTU =

∫ b

a
max

(
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

)
dx

gKT (K)
,

θ̂KTL =

∫ b

a
min

(
f̂1 (x) , f̂2 (x) , . . . , f̂K (x)

)
dx

gKT (K)
,

and gKT (K) is a known linear function of K, the number of distributions in question.

Considering equation (6), assume for simplicity that the contact set (the set of

values for which the densities are equal) is of Lebesgue measure zero. Define the sets

CKi,∗ and CKi,∗:

CKi,∗ = {x : fi (x) < fj (x)∀j = 1, ..., K, j 6= i} and

CKi,∗ = {x : fi (x) > fj (x)∀j = 1, ..., K, j 6= i} .

Let pkU = Pr
(
Xk ∈ CK i,∗) and pkL = Pr (Xk ∈ CK i,∗) , and note that CKi,∗∩CKi,∗ =

∅ so that pkUL = Pr
(
Xk ∈ CK i,∗∩CKi,∗

)
= 0.

Then, under standard regularity conditions (see, e.g., Assumptions (A1) and (A3)

of Anderson, Linton and Whang (2012)), we have:

θ̂KTU − θKTU =
1

gKT (K)

K∑
k=1

∫
CKk,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx+ rT , (7)

where rT is generic notation for a remainder term that is of smaller order in probability

(rT may be different from expression to expression).

For notational convenience assume Tk = T for all k and independent sampling

over k = 1, .., K. Following Lemma A.6 of Anderson, Linton and Whang (2012), the

asymptotic variance of θ̂KTU is given by:

AVAR
(
θ̂KTU

)
=

1

(gKT (K))2
1

T

K∑
k=1

pkU (1− pkU) . (8)

Equation (8) can be consistently estimated by:

1

(gKT (K))2
1

T

K∑
k=1

p̂kU (1− p̂kU) ,
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where

p̂kU =
1

T

T∑
h=1

1
(
Xkh∈CK k,∗) . (9)

Similarly,

θ̂KTL − θKTL =
1

gKT (K)

K∑
k=1

∫
CKi,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx+ rT . (10)

The asymptotic variance of θ̂KTL is given by

AVAR
(
θ̂KTL

)
=

1

(gKT (K))2
1

T

K∑
k=1

pkL (1− pkL) , (11)

which can be consistently estimated by

1

(gKT (K))2
1

T

K∑
k=1

p̂kL (1− p̂kL) ,

where

p̂kL =
1

T

T∑
h=1

1 (Xkh∈CK k,∗) . (12)

Combining (7) and (10) toghether, we have

θ̂KT − θKT =
1

gKT (K)

K∑
k=1

∫
CKi,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx

− 1

gKT (K)

K∑
k=1

∫
CKi,∗

(
f̂k(x)− E

(
f̂k(x)

))
dx+ rT .

The asymptotic variance of θ̂KT is given by

AVAR
(
θ̂KT

)
=

1

(gKT (K))2
1

T

K∑
k=1

{pkU (1− pkU) + pkL (1− pkL) + 2pkUpkL},

using the fact that pkUL = Pr
(
Xk∈CK i,∗∩CK i,∗

)
= 0. It can be consistently estimated

by

1

(gKT (K))2
1

T

K∑
k=1

{p̂kU (1− p̂kU) + p̂kL (1− p̂kL) + 2p̂kU p̂kL}.

The distributional properties of MGTW can be derived as above by working with

wkf̂k (x) in place of f̂k (x) and modifying gKT (K) accordingly as in (4).

One problem with the multilateral transvariation measure is its maximum-minimum

nature. Like the range statistic for a collection of numbers which does not reflect
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differences in objects in the mid range, the MGT does not reflect the many bi-lateral

functional differences and similarities camouflaged by just considering extreme density

values. Indeed, it is in essence the distributional analogue of the relative range measure

of a collection of numbers wherein the relative locations of interior and low weight

members have little or no impact on its value. An alternative which is in effect an

aggregation of all distributional differences from the average distribution or what will

be referred to as the Distributional Coefficient of Variation (DCV) is introduced in the

next section.

2.2 DCV: A Distributional Coefficient of Variation

The collection of K subgroups indexed k = 1, · · · , K with respective distributions

fk(x) may be considered in the context of individual distributions being components

within a mixture f(x) representing the overall population distribution:

f (x) =
K∑
k=1

wkfk(x),
K∑
k=1

wk = 1 and wk≥0 for all k (13)

where wk are weights reflecting the importance of the component within the pop-

ulation. So, for example, f(x) may refer to a societal income distribution with fk(x)

being the income distribution of the k-th constituency and wk its relative population

size. Alternatively, from a representative agent or treatment effect perspective, the dis-

tributions describing outcomes of particular groups could be compared directly, without

reference to their relative importance in the collection, in which case wk would be set

to 1/K for all k.

OVko, the distributional overlap between the k’th subgroup distribution and the

overall mixture is such that:

OVko =

∫ ∞
0

min (fk(x), f(x)) dx (14)

The corresponding subgroup/overall transvariation is related to the overlap measure

as follows:

GTko = 1−OVko.

Then DCV, the weighted average of subgroup-overall distribution transvariations,

may then be written as:

DCV =
1

(1−
∑K

k=1w
2
k)

K∑
k=1

wkGTko =
1

(1−
∑K

k=1w
2
k)

K∑
k=1

wk(1−OVko). (15)
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Note that when subgroup distributions are identical they will be identical to their

weighted sum so that GTko = 0 for all k and DCV=0. When the subgroups have

mutually exclusive support GTko = 1− wk so that DCV=1.

This magnitude can be visualized in a radar chart whose spokes are the respective

subgroup/overall distribution transvariations. The center of the chart corresponds to

zero transvariation where all subgroups have identical distributions. The area of the

polygon formed by joining the points of spokes is a representation of the aggregated

extent of differences of the individual subgroups from the “average”, unfortunately it is

not independent of the ordering of the spokes. However, if polygon A, representing the

inequality measure in period A, is everywhere inside polygon B representing inequality

in period B, then A corresponds to an unequivocal or comprehensive reduction of

inequality over period B in the sense that all subgroup distributions are closer to the

mean distribution in A than they are in B.

In a convergence-divergence setting this suggests a notion of universal convergence

with all groups tending toward the population or average distribution, in a wellbeing

measurement setting it suggests the idea of a comprehensive reduction in inequality

with all groups converging to the overall norm. This may be examined statistically by

noting that the respective vectors of estimated spokes in A and B, ĜT
A

O and ĜT
B

O, are

respectively approximately distributed

N ∼
(
GTA

O ,
diag(GTA

O )−GTA
O ·GTA′

O

n

)
and N ∼

(
GTB

O ,
diag(GTB

O )−GTB
O ·GTB′

O

n

)
and testing the joint hypothesis:

H0 : GTA
O −GTB

O > 0, against H1 : GTA
O −GTB

O ≤ 0

or vice versa using the Maximum Modulus Distribution (Stoline and Ury 1979).

As with the Sen (1995) and Yitzhaki (2003) critiques of mean deviation measures,

DCV still does not reflect the full panoply of distributional differences between groups.

However a “Distributional” Gini Coefficient will.

2.3 DisGini: The “Distributional” Gini Coefficient

An examination of the subgroup decomposability of the standard Gini coefficient pro-

vides an insight into the development of the DisGini coefficient. Bourguignon (1979)

demonstrated that Gini’s relative mean difference coefficient (Gini 1921) is not sub-

group decomposable, but it can be seen to be the sum of three components, WGini,

BGini and NSF, as follows:
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Gini =
K∑
k=1

w2
k

µk

µ
Gk +

1

2µ

K∑
i=1

K∑
j=1

wiwj|µi − µj|+

1

2µ

K∑
i=1

K∑
j=1

wiwj

∫ ∞
0

fi(y)

∫ ∞
y

fj(x)(x− y)dxdy =

= WGini + BGini + NSF.

(16)

Here WGini is a weighted sum of subgroup Ginis’. BGini is a term equivalent to

a between group Gini coefficient of subgroup means measuring the relative inequal-

ity of distributional locations. It is a statistic often used in its unweighted form to

measure distributional differences in equality of opportunity and convergence analyses

(Peragine, Palmisano and Brunori 2014). NSF is a non-segmentation factor reflecting

the extent to which subgroup distributions overlap or are not segmented.5

BGini suggests the possibility of a Gini-like coefficient reflective all aspects of dis-

tributional differences above and beyond simple differences in location, from hereon

referred to as a distributional Gini coefficient or DisGini. To explore the connection

note that since µ =
∫
xf(x)dx =

∫
(1− F (x)) dx , BGini may be written:

BGini =

∑K
i=1

∑K
j=1wiwj|

∫
(Fi (x)− Fj (x)) dx |

2
∫

(1− F (x)) dx

Generally, µj − µi =
∫∞
0

(Fi(x)− Fj(x)) dx≤
∫∞
0
|Fi (x)− Fj (x) |dx , however when

distribution j first order dominates distribution i, equality prevails and, when the

relationship prevails for all pairs whose indices reflect the ordering, observe that:6

BGini =

∑K
i=1

∑K
j=1wiwj

∫
|Fi (x)− Fj (x) |dx

2
∫

(1− F (x)) dx
=

∑K
i=1

∑K
j=1wiwjGTFij∫

(1− F (x)) dx
,

where GTFij = 0.5
∫
|Fi (x)− Fj (x) |dx can be interpreted as the bilateral transvari-

ation applied to the cumulative density functions.

To fully explore distributional differences consider instead:

5Note that when sub-distributions have mutually exclusive closed and bounded support, NSF
disappears, hence the Mookherjee and Shorrocks (1982) result. On the geometric interpretation
of NSF see Lambert and Aronson (1993). This term can be also used to calculate a Gini based
“segmentation index” SI which reflects the extent of segmentation in the collection of distributions
where SI=1-NSF/Gini (Anderson et al. 2018; 2019)

6For example suppose one intersection point at 0 ≤ a ≤ ∞, where Fi (x) ≥ Fj (x) forx < a
and Fi (x) < Fj (x) forx > a, then

∫∞
0
|Fi (x) − Fj (x) |dx =

∫ a

0
(Fi (x)− Fj (x)) dx −∫∞

a
(Fi (x)− Fj (x)) dx =

∫∞
0

(Fi (x)− Fj (x)) dx − 2
∫∞
a

(Fi (x)− Fj (x)) dx >∫∞
0

(Fi (x)− Fj (x)) dx since 2
∫∞
a

(Fi (x)− Fj (x)) dx is negative.
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DisGini =
1

ϕ

K∑
i=1

K∑
j=1

0.5

∫ ∞
0

wiwj|fi(x)− fj(x)|dx =
1

ϕ

K∑
i=1

K∑
j=1

wiwjGTij (17)

Where ϕ is a scaling parameter. Note the term
∫∞
0
wiwj|fi(x) − fj(x)|dx may be

written as “wiwj2GTi,j” which is twice Gini’s Transvariation of sub distributions fi(x)

and fj(x), multiplied by the product of the respective population shares. Given the

relationship (2) between GT and the overlap measure OV, (17) may be written as:

DisGini =
1

ϕ

K∑
i=1

K∑
j=1

wiwj(1−OVij)

Which, letting c be a K element column vector of ones, may be written in matrix form:

1

ϕ
c′


0 w1w2(1−OV 12)

w2w1(1−OV 21) 0
. . . w1wK(1−OV 1K)
. . . w2wK(1−OV 2K)

...
...

wKw1(1−OV K1 ) wKw2(1−OV K2 )

. . .
...

. . . 0

 c (18)

Consider a typical element wiwj(1 − OVij), when i = j the element will be zero,

also when fi(x) = fj(x) for all x (i.e. subgroups i and j have identical distributions),

the term will be 0. It follows that when all subgroups have identical distributions,

expression (18) will be 0 since all of the elements are non-negative this will constitute

a lower bound for DisGini.

Now consider the situation where all of the respective subgroup income distributions

have mutually exclusive support, i.e. the subgroups are completely segmented so that

for all i 6= j and a given x, fi(x) ≥ 0 ⇒ fj(x) = 0 and fj(x) ≥ 0 ⇒ fi(x) = 0.

This corresponds to the mixture distribution situation where there is no distributional

overlap between any constituency pairing, thus Gini’s Transvariation would be at a

maximum value of 1.

In this case (17) may be written:

1

ϕ
c′


0 w1w2

w2w1 0
. . . w1wK

. . . w2wK
...

...
wKw1 wKw2

. . .
...

. . . 0

 c =
1

ϕ

K∑
k=1

wk(1− wk) =
1−

∑K
k=1w

2
k

ϕ

If the scaling parameter ϕ is set to (1 −
∑K

k=1w
2
k) then DisGini will always fall in

the interval [0,1] and be equal to 1 when there is complete distributional inequality
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in terms of complete segmentation of the constituency distributions. It follows that

DisGini may finally be written as:

DisGini =
1

(1−
∑K

k=1w
2
k)

K∑
i=1

K∑
j=1

wiwj(1−OVij) =
1

(1−
∑K

k=1w
2
k)

K∑
i=1

K∑
j=1

wiwjGTij.

(19)

If comparison of the distributions without subgroup weighting is desired, as in

the aforementioned representative agent type scenarios, simply set wi = 1
K

for all

i = 1, · · · , K.

2.3.1 Estimation and standard errors of DisGini

Estimation of the Distributional Gini Index (DisGini or DG) over K distributions is

of the form:

θ̂DG =
1

gDG(K)

K∑
i=1

K∑
j=1

wiwj

{
2−

∫ b

a

min
(
f̂i (x) , f̂j (x)

)
dx

}
, (20)

where f̂k (x) are kernel estimates of fk(x), k = 1, · · · , K, gDG (K) is a known function

of K and the wi’s are also assumed known. This may be written as

θ̂DG =
1

gDG(K)

(
2K2 −

K∑
i=1

K∑
j=1

wiwj

{∫ b

a

min
(
f̂i (x) , f̂j (x)

)}
dx

)
.

So, for the distributional properties of θ̂DG attention can be focussed upon:

θ̂OV =
K∑
i=1

K∑
j=1

wiwj

{∫ b

a

min
(
f̂i (x) , f̂j (x)

)
dx

}
=

K∑
i=1

K∑
j=1

wiwj

{
θ̂i,j

}
, (21)

where f̂k (x) are defined as in (6).

Considering the θ̂i,j, for simplicity assume independent samples of T observations

and that the contact sets are of measure 0. Define the sets Ci,j i, j = 1, .., K i 6=j as:

Ci,j = {x : fi (x) < fj (x)}.

Then

θ̂i,j − θi,j =

∫
Ci,j

(
f̂i (x)− E

(
f̂i (x)

))
dx +

∫
Cj .i

(
f̂j (x)− E

(
f̂j (x)

))
dx + rT
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and thus

θ̂OV =
K∑
i=1

K∑
j=1

wiwj

(
θ̂i,j − θi,j

)
=

=
K∑
i=1

K∑
j=1

wiwj

(∫
Ci,j

(
f̂i (x)− E

(
f̂i (x)

))
dx +

∫
Cj,i

(
f̂j (x)− E

(
f̂j (x)

))
dx

)
+ rT .

Turning to its asymptotic variation, define:

pi:ij = P (Xi∈Ci,j) and pij = Pr (Xi∈Ci,j∩Xj∈Cj,i) .

Then generally,

AV AR
(
θ̂i,j

)
=

1

T
(pi:ij (1− pi:ij) + pj:ji (1− pj:ji) + 2 (pij − pi:ijpj:ji)) ,

which may simplify with independent sampling. However even if Xi and Xj are inde-

pendent θ̂i,j and θ̂k,l will be dependent if they have one subscript in common so that

ACOV
(
θ̂i,j, θ̂k,l

)
6=0 when there is a commonality in subscripts. All such terms need

to be considered so that a threefold summation is required involving probabilities of

sets of the form:

Ci,j∩Ci,k = {x : fi (x) < min (fj (x) , fk (x))} .

Ultimately:

AVAR
(
θ̂OV

)
=

1

T

K∑
i=1

∑
j>i

w2
iw

2
j

(
Pr (Xi∈Cij )− Pr (Xi∈Cij )

2)+

+
2

T

K∑
i=1

∑
j>i

∑
k>j>i

w2
iwjwk (Pr (Xi∈Cij∩Cik)− Pr (Xi∈Cij ) Pr (Xi∈Cik)) ,

which may be consistently estimated by replacing the population quantities by their

sample analogues.

3 Further Extensions

3.1 Multivariate Distributions and Higher Order Integrals

An interesting feature of MGT, DCV and DisGini, is that they can handle multi-

variate distributions of discrete, continuous or categorical forms (or mixtures of both)
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which can be a challenge for the standard coefficients. Simply write (3), (15) and (17)

respectively as:

MGT =
1

K

∫∫ ∫ ∞
0

[max (f1 (x, y, z) , f2 (x, y, z) , .., fK (x, y, z))−

min (f1 (x, y, z) , f2 (x, y, z) , .., fK (x, y, z))]dxdydz ,

DCV =
1

(1−
∑K

k=1w
2
k)

K∑
k=1

wk

(
1−

∫∫ ∫ ∞
0

min (fk(x, y, z), f(x, y, z)) dxdydz
)

and

DisGini =
1

ϕ

K∑
i=1

K∑
j=1

wiwjGTij =

0.5

ϕ

K∑
i=1

K∑
j=1

∫∫ ∫ ∞
0

wiwj|fi(x, y, z)− fj(x, y, z)|dxdydz .

Formulae (4),(15) and (19) then follow directly. In addition, by replacing the fi(x)

with F h
i (x) where F h

i (x) =
∫ x

0
F

(h−1)
i (z)dz in (3), (15) or (17) and adjusting the nor-

malizing parameter accordingly, multilateral variation of higher order integrals of dis-

tribution functions could be contemplated reflecting the classic stochastic dominance

criteria for more restrictive wellbeing structures (see Anderson, Post and Whang, 2020).

All of which is are matters for future research.

3.2 Axiomatic properties of inequality indices

These indices provide a complete ordering of collections of distributions with respect to

their differentness, as such they satisfy some popular axioms in the inequality literature.

Anonymity, sometimes referred to as the symmetry axiom, requires that the index not

depend on who the groups are, so that groups switching places should not affect the

index, which is the case for these indices.

Scale invariance (multiplying x by a constant does not influence the index) and

translation invariance (adding a constant to each x does not influence the index) are

both satisfied by distributions in the sense that they do not change their relative shape

and thus they are satisfied by the indices.
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The normalization axioms (the index is bounded between 0 and 1 with 0 corre-

sponding to complete equality and 1 complete inequality) have already been shown to

be satisfied by MGT, DCV and DisGini.

Replication Invariance, an axiom requiring that a measure be unaffected by univer-

sally scaling up the population size is also satisfied by these measures.

When sub-distributions are posited to be the atomistic equivalents of the sub-

distributions employed in Duclos, Esteban and Ray (2004) and subjected to the same

transformations, they comply with the polarization axioms posed therein. Finally

it should also be noted that although the Gini coefficient has problems with negative

incomes (see Manero 2017), it is not a problem for MGT, DCV and DisGini coefficients.

3.3 Expanding the number of groups

It is of interest to understand how the DisGini coefficient is affected by the expansion

of the number of groups under consideration. Suppose K original groups indexed

k = 1, · · · , K possess a coefficient DisGiniK and contemplate the addition of a group

(indexed K + 1) which yields a coefficient DisGiniK+1, then it can be shown that

DisGini will increase or diminish as it is exceeded by or exceeds the weighted sum of

the new group’s transvariations with respect to the existing groups in the analysis (see

Appendix A).

4 Two empirical examples

4.1 Household income distributions in the Eurozone

Milanovic (2011) noted that growing divergence between constituencies within a fed-

eration can be a catalyst for the deterioration of its cohesion and the recent rise of

economic nationalism in Europe has given cause for concern regarding the European

Unions coherence (Krastev 2014, Webber 2018, Lindberg 2019). Formed to promote

commonality of wellbeing among its constituents, there is interest in seeing whether

the European nations household income distributions are converging. The growth and

convergence literature suggests that variation of average incomes across constituencies

is of interest since it speaks directly to the question of whether the distribution of

income across economies is becoming more or less equitable (Quah 1993). However,

deterioration of cohesiveness has much to do with the extent to which economic well-

being differs across constituencies, the sense in which such differences are perceived by
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agents within those constituencies and the relative importance of those constituencies.

In this context, cohesiveness is more than just a matter of whether or not constituencies

have similar average incomes, it is more a matter of whether or not they have common

income distributions. When member nations are equally unequal with relatively simi-

lar income levels and distributions, there is a commonality of situation among member

constituents which promotes cohesion, whereas a more divisive and alienated situation

arises when such inequalities and income levels are not so equally shared in a more

segmented society. To illustrate the efficacy of the new techniques, a study of the 21st

century evolution of household income inequality in the Eurozone is performed. What

emerges is a collection of distributions that result in a Eurozone with an increasingly

unequal overall income distribution comprised of an increasingly similar (i.e. conver-

gent) collection of unweighted distributions that, when population weighted, become

divergent as a collection.

Viewed as an entity, the overall Eurozone household income distribution f (x) is a

mixture of the household income distributions fk (x) k = 1, .., K of its K constituent

nations where the weights wk correspond to relative population sizes (see equation 13).

Stochastic processes are frequently used to rationalize distributional structures and

Gibrat’s Law of Proportional Effects and some of its modifications (Gabaix 1999, Reed

2001) have been foundational in providing a theoretical rationale for expecting increas-

ing income inequality. The Law posits that household incomes in subgroup k follow a

stochastic process which in its simplest form in period t, has the form:

xk,t = (1 + δk,t)xk,t−1

where δk,t is a random variable with mean δk (which is small relative to one in

absolute value) and variance σ2
k. The law predicts that, given a starting value x0 and

letting X = ln(x), after T periods XkT will have a mean equal to X0 + T (δk + 0.5σ2
k)

and variance equal to Tσ2
k, respectively i.e. log income variation that grows through

time. Following Modigliani and Brumberg (1954), classical economic models of income

(Hall 1978) use this idea to predict increasingly unequal income distributions (Bat-

tistin, Blundell, and Lewbel 2009, Blundell and Preston 1998, Browning and Lusardi

1996). When applied to the k = 1, · · · , K constituent societies in the Eurozone, clearly

different configurations of pairs (δk, σ
2
k) for k = 1, · · · , K will yield collections of distri-

butions that could be converging or diverging, segmenting or increasingly overlapping,

becoming more or less equal in distribution.
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The weighted and unweighted versions of the Multilateral Transvariation and Dis-

tributional Gini statistics can yield insights into the progress of such distributional

inequalities over the era, tending toward 0 as distributions converge and tending to-

ward 1 as they segment or diverge. The weighted versions give insight into distribu-

tional differences of the Eurozone as an entity, with small populations given low weight

and large populations high weight. The unweighted versions can be construed as a

representative agent model recording the juxtaposition of nation income distributions

directly without respect to their relative importance or impact in the overall Eurozone

income distribution.

The data source is the European Union Survey on Income and Living Conditions

(EU-SILC)7. To analyze the evolution of the Euro area income distribution over time,

four temporally equi-spaced waves, 2006, 2009, 2012 and 2015 were chosen. Since

data for Malta are only available from the 2008 wave, this country is excluded from

analysis leaving 18 Euro zone countries. Income is the total household net disposable

annual income (in thousands Euro) obtained by aggregation of all income sources from

all household members net of direct taxes and social contributions.8 All households

are weighted by cross-sectional weights. Assuming consumption economies of scale in

cohabitation, incomes are age and size-adjusted using the modified-OECD equivalence

scale. Given significant disparities in the cost of living between countries, the PPP

index for the household final consumption expenditure is used to adjust household

incomes.

As an entity, the Eurozone had overall household income Gini coefficients of 0.305,

0.313, 0.317, 0.335 for the years 2006, 2009, 2012 and 2015 respectively, suggesting ever

increasing household income disparities in the area over the period.

In the light of concerns regarding European disintegration, questions arise as to

the extent to which such inequalities are equally shared across its various nations,

thus considering the constituent nations as subgroups of the overall Eurozone income

distribution9. To get some sense of the nation based distributional changes in the

7Version estatCROS 2019ki9, released in May 2019. EU-SILC is a harmonized household-level
survey that is a collection of annual national surveys of socio-economic conditions of individuals and
households in EU countries.

8The income reference period refers to the previous year, consequently analysis with EU-SILC files
actually refers to 2005-2014.

9An alternative approach would consider a transnational decomposition based upon latent house-
hold income classes that transcend nation boundaries. These latent classes can be identified by a
semiparametric mixture distribution analysis (see Anderson, Pittau, Zelli and Thomas 2018).
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Eurozone, Table 1 shows the overall Gini coefficient and the decomposition results over

the period 2006–2015.

The BGini, the relative mean absolute difference of country means, being a func-

tion of the relative locations of distributions yields insight into their progress over the

period. Noting that, while the within group component WGini is growing steadily but

relatively slowly over the period, consistent with Gibrat’s law, there appears to be a

substantial increase in between nation inequality over the period reflecting a sustained

divergence of national average household incomes over the period in line with the over-

all Gini coefficient for the Eurozone which reflects potentially increasing inequality as

perceived by Eurozone member nations. However, recalling the Durlauf and Quah

(2002) and Carneiro, Hansen and Heckman (2002, 2003) veil of ignorance concerns,

be aware that these results are based on summary statistic comparisons (essentially

differences in means and progressions in variances) which veil overall distributional

differences.

Table 1: Gini overall inequality in the EuroArea and its decomposition

Year 2006 2009 2012 2015
Gini Total 30.48 31.30 31.74 33.52
WGini (Gini Within) 4.45 4.76 4.79 4.81
BGini (Gini Between) 9.62 9.65 10.90 16.07
NSF (Non Segmentation Factor) 16.41 16.05 15.84 12.64

Table 2 reports the unweighted and weighted Distributional Gini Coefficients (Dis-

Gini and DisGiniW) and Multilateral Gini Transvariation (MGT and MGTW). The

income densities fk(x) are kernel estimated including the sample weights and using

the Sheather and Jones (1991) bandwidth. Looking at the patterns of the indices

quite different stories emerge under population weighted and unweighted versions of

the statistics. While the nation weighted versions of the indices, after a slight dip in

2009, show a significant increase, the unweighted versions record a decline over the

whole period with respect to 2006. Thus a representative agent view of the Eurozone

suggests increasing commonality of household disposable income distributions whereas

the population weighted version suggests increasing segmentation. Thus nations with

larger populations appear to be segmenting whereas nations with small populations

are not.
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Table 2: Unweighted and weighted Distributional Gini coefficients and Multilateral
Gini Transvariation - nation group analysis

Year DisGini DisGiniW MGT MGTW
2006 0.386 0.237 0.135 0.291

(0.003) (0.003) (0.004) (0.005)
2009 0.341 0.222 0.111 0.279

(0.003) (0.003) (0.004) (0.005)
2012 0.326 0.282 0.106 0.323

(0.003) (0.003) (0.003) (0.005)
2015 0.341 0.361 0.107 0.349

(0.003) (0.003) (0.004) (0.005)
Note: Approximate standard errors are in brackets.

Following the interpretation of DisGini as the scaled average subgroup-overall dis-

tributional transvariation (see equation ??), a further insight on the extent to which

each country is converging or diverging to the Eurozone norm is given by the bilateral

transvariations between each country and the whole Eurozone distribution. Remem-

bering the measure GT equal to 1 means complete segmentation (two distribution are

far apart), while GT equal to 0 means complete overlapping, Figure 1 reports a radar

chart of the bilateral transvariation between each country and the Eurozone as a whole,

a decomposed distributional coefficient of variation as it were. The closer is a point on

a nations spoke to the periphery, the higher is the transvariation of that nations income

distribution with respect to Eurozone distribution. The closer to the center is a point

the closer is that nations income distribution to convergence with the Eurozone income

distribution. The points have been colour coded by year, so that intuitively nations

with green dots nearer the centre than black dots are converging to the Eurozone dis-

tribution, whereas nations with green dots outside of the black dots are diverging from

the Eurozone distribution over the observation period. The Radar Chart also suggests

another convergence index, the value of the area enclosed by connecting the dots of a

common colour. For Figure 1 this yields 2006 0.818, 2009 0.532, 2012 0.536 and 2015

0.571, reiterating the notion that the unweighted distributions are converging to the

overall Eurozone distribution over the period although the convergence does not appear

to be comprehensive since subsequent period polygons are not completely interior to

preceding period polygons.

The bilateral nation-overall transvariations range from 0.03 for Italy to 0.68 for

Slovakia in the year 2006. The pattern of this index shows a process of convergence
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Figure 1: Radar chart of bilateral transvariation of each country with respect to Eu-
rozone. The center of the wheel corresponds to the minimum value of the measure or
complete overlapping with respect to the Eurozone distribution. Moving to the periph-
ery reflects divergence to, or decreasing commonality with, the Eurozone distribution.
Countries are clockwise ordered starting with the largest positive difference between
2006 and 2015 (indicating convergence) and ending with the largest negative difference
(indicating divergence).
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toward the EuroArea distribution for Eastern European countries (notably low popu-

lation countries) and significant divergence from the Eurozone distribution for Spain,

Finland, France and Greece. Figures in appendix show the evolution of the income

distributions of constituent nations and their overlapping with respect to the Eurozone

distribution in 2006 and in 2015.

Summing up, the cohesiveness of a union of economies has much to do with the ex-
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tent to which its respective nation income distributions are segmenting or converging.

When constituent nations are equally unequal with relatively similar income levels, the

commonality of situation promotes cohesiveness, whereas, when such inequalities are

not equally shared, the situation is somewhat more divisive. The new measures are

employed to address these distinctions within a substantial subset of nations in the Eu-

ropean Union. Population weighted versions of the distributional inequality measures

indicate increasing distributional inequality in terms of increasingly segmented nations.

However, in a representative agent view of the world, similar to that pursued in the

sigma convergence literature wherein nations are equally weighted, a different story is

revealed. In this scenario the multilateral results present significant evidence of con-

vergence in nation based household income distributions. Comparison of the weighted

and unweighted versions of the statistic reveal that the lesser populated nations of the

Eurozone are exhibiting a convergence pattern whereas nations with larger populations

appear to be segmenting.

5 Health-income inequalities and the ageing pro-

cess in China

To exemplify the use of DisGini in situations where only categorical data is available,

age related inequalities in health and incomes in China are examined. The world wide

prevalence of aging populations has stimulated interest in the aging process and its

connection with wellbeing. For elderly populations, health, income and aging is inex-

tricably interlinked in this regard indeed, Anand (2004) argues that health should have

primacy over consumption in the wellbeing calculus. Welfare programs, in providing

support for the elderly and the poor especially in terms of their health outcomes, are

also integral to the process. Given its aging population, its unprecedented economic

growth and its recently developed welfare program Dibao, China is of particular interest

in this respect. Anderson and Fu (2020) study health and income wellbeing in China’s

older population groups and the impact that Dibao may have had on them. The cat-

egorical nature of self reported health status presents a particular challenge in this

regard with respect to quantifying wellbeing levels and inequalities, the Distributional

Gini provides a solution.

Gao (2017) presents an extensive analysis of the impact of Dibao on work and

welfare, and, along with Kakwani (2019), produces evidence of poor targeting, i.e.
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assistance does not always appear to be reaching those for which the program was

defined. However, little has been done to examine the health - income inequalities and

the impact that Dibao may have had on inequalities in those dimensions, especially

with regard to the elderly.

Here, employing survey data drawn from the China Health and Retirement Lon-

gitudinal Study (CHARLS) 2013 follow up to a 2011 baseline study, age group based

inequalities in health and incomes are examined. Groups based upon gender, ur-

ban/rural location, and Dibao recipient were established. Respondents who were at

least 45 years of age were asked to categorize their health as poor, fair, good, very

good, excellent and placed in income quintiles (adult equivalized incomes based upon

the square root rule were used). The sample was partitioned into age groups 45-50,

50-60, 60-70 and over 70 with respective sample sizes of 1823, 5396, 4782 and 2872

yielding an overall sample size of 14873.

Two exercises were performed using the unweighted formulation which treats all

groups equally which is as it should be in a representative agent situation which looks

at the health and income inequality risks facing a randomly selected member from

each group. One formulation separately identified Dibao recipients as a separate group

within each category, the other formulation did not separately identify Dibao recipients

(see Table 3). What is observed as part of the aging process is significantly increasing

inequality in the joint distribution of health and income in post retirement years. When

Dibao recipients are separately identified, distributional inequalities increase uniformly

across age groups which, from the earlier analysis regarding augmenting of groups,

indicates inequalities suffered by those groups are on average even greater than those

endured by non-Dibao recipients suggesting that targeting may well not be as bad as

has been claimed.

Of particular interest from an aging perspective is the radar chart (Figure 2) show-

ing that the 50-60 year olds polygon is completely inside the 60-70 year olds polygon

which in turn is completely inside over 70 year olds polygon reflecting a comprehen-

sive and unequivocal increase in health and income wellbeing inequality over the aging

process in later life for every category. This is verified in Table 4 which fails to reject

the hypothesis that older age group polygons lay outside younger age group polygons

for successive over 50’s age groups. Older age groups clearly suffer increasing health

and income inequalities with the aging process.
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Table 3: Distributional Gini coefficients: Age group analysis when Dibao recipients are
separately identified and when they are not.

Age groups DisGini
(Dibao Recipients

Separately
Identified)

DisGini
(Dibao Recipients

Not Identified)

45–50 0.3645 0.2170
(0.0019) (0.0024)

50–60 0.2625 0.1890
(0.0010) (0.0013)

60–70 0.3145 0.2839
(0.0011) (0.0016)

>70 0.3943 0.3103
(0.0015) (0.0021)

Note: Approximate standard errors are in brackets.

Table 4: Stoline Ury maximum modulus statistics (SUMMS) for spoke changes for
successive age groups

Age groups → 45–50 vs 50–60 50–60 vs 60–70 60–70 vs >70

Subgroups diff std err SUMMS diff std err SUMMS diff std err SUMMS
000 0.0809 0.0115 7.0348 -0.0538 0.008 -6.7102 -0.0274 0.0102 -2.6866
100 0.0884 0.0123 7.1642 -0.0358 0.0086 -4.1649 -0.0129 0.0105 -1.2237
001 0.0548 0.0114 4.8215 -0.0294 0.008 -3.6781 -0.0449 0.0101 -4.4245
101 0.0223 0.0121 1.8381 -0.0154 0.0088 -1.7481 -0.0149 0.0107 -1.397
010 0.1013 0.0129 7.8744 -0.0713 0.0092 -7.7723 -0.0702 0.0115 -6.1136
110 0.2032 0.0129 15.7308 -0.0455 0.0086 -5.2951 -0.2781 0.0113 -24.6222
011 0.0698 0.0124 5.6416 -0.0791 0.009 -8.824 -0.0364 0.0112 -3.2382
111 0.0933 0.0124 7.5327 -0.0336 0.0086 -3.911 -0.074 0.0109 -6.787

Note: Studentisize maximum modulus 5% critical value 2.8.
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Figure 2: Radar chart of bilateral transvariation of each group with respect to the
overall distribution (GTko), by age class. The center of the wheel corresponds to the
minimum value of GTko, that is the maximum overlapping. Moving to the periphery
reflects more dissimilarity with respect to the overall distribution. Groups are coded
from 000 to 111. The first digit indicates Dibao recipient (1) or not recipient (0). The
second digit indicates urban(1) or rural (0). The third digit indicates female (1) or
male (0).
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6 Conclusions

When comparing collections of groups, simple first and second order moment multi-

lateral comparisons can overlook substantive differences between groups that a more

comprehensive multilateral distributional comparison can reveal. Here, some new tools

for the multilateral comparison of many distributions in univariate or multivariate, dis-

crete and continuous, weighted and unweighted environments have been introduced.
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Based on extensions of Ginis’ Transvariation Measure, new Multilateral Transvariation

measures and more comprehensive Gini-like distributional difference measures, together

with their asymptotic distributions have been developed. The Distributional Gini mea-

sure can be shown to be a scaled weighted sum of subgroup distribution and overall

distribution transvariations the magnitude of which can be represented as a polygon

within a radar chart which in turn has prompted definition of the notion of compre-

hensive inequality reduction (increase), the consequence of all subgroups converging to

(diverging from) the overall distribution. Assessing distributional differences in cat-

egorical - non cardinal environments is particularly challenging and these techniques

have been shown to overcome these challenges in these situations. The measures have

been exemplified in applications which study national household income distributions

in the Eurozone in the 21st century and income and health inequalities and the aging

process.
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A Appendix: DisGini and additional groups

The relationship between DisGiniK and DisGiniK+1 may be understood as follows. Let

the original weights be wk, k = 1, · · · , K where
∑K

k=1wk = 1 and the new weights in

the extended collection of groups wnew
k , k = 1, · · ·K + 1 where

∑K+1
k=1 w

new
k = 1 are

such that:
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k(
1− wnew

K+1
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wnew

k

θ
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k )2
)
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B Appendix: Figures of income distribution over-

laps

Figure B.1: Income distribution of Slovakia and Estonia and their overlap with the
Eurozone income distribution: years 2006 and 2015.
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Figure B.2: Income distribution of Latvia and Lithuania and their overlap with the
Eurozone income distribution: years 2006 and 2015.
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Figure B.3: Income distribution of Greece and Spain and their overlap with the Euro-
zone income distribution: years 2006 and 2015.
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Figure B.4: Income distribution of Finland and France and their overlap with the
Eurozone income distribution: years 2006 and 2015.
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