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Abstract
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NFXP, NPL, and variations – have different merits and limitations. MPEC guarantees
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1 Introduction

Economic theory often delivers models in which the distribution of agents’ decisions is implic-
itly defined as a fixed point. For instance, this is the case in models where agents’ decisions
are interpreted via equilibrium conditions based on rational expectations. In this class of
models, there are typically two different objects of interest: the conditional choice probabili-
ties (CCPs), which are a probabilistic representation of agents’ behavior, and the structural
parameters of the model. In order to reduce the computational burden of estimating such
models, it is common practice to first estimate the CCPs in a flexible way and then to es-
timate the structural parameters conditional on these estimates. While consistent in large
samples, this two-step procedure is known to suffer from a few drawbacks. In particular,
biased and imprecise estimates in the first step may affect the properties of the second-step
estimator. Furthermore, consistent first-step estimates may not be available, as it is often
the case if choice probabilities depend on unobserved heterogeneity.

These drawbacks motivated the Nested Pseudo Likelihood (NPL) estimator proposed by
Aguirregabiria and Mira (2002; 2007): a fixed point of the so-called NPL mapping which
embeds both the pseudo maximum likelihood estimation of the structural parameters and
the equilibrium restrictions for the CCPs. As a method to obtain the NPL estimator, Aguir-
regabiria and Mira (2002; 2007) proposed the NPL algorithm, which iteratively updates the
estimated CCPs using the NPL mapping.

The NPL algorithm is a fixed point iterative method. Therefore, this algorithm is expected
to fail to converge to the consistent estimator when the data come from an unstable fixed
point (e.g., Pesendorfer and Schmidt-Dengler, 2008; 2010). Actually, Monte Carlo studies
have shown that this algorithm may fail to converge even when the data generating process
satisfies some stability conditions (Egesdal, Lai, and Su, 2015).

In this paper, we take another look at the sequential estimation of dynamic discrete games
in order to bridge the literature’s incomplete understanding of the NPL algorithm’s failure
to converge. We depart from existing works in two ways.

First, when studying the asymptotic properties of the NPL algorithm, the updating pro-
cedure is assumed to be performed in finite samples. Such an argument highlights how the
convergence properties of the NPL algorithm are related to the stability of the stochastic
mapping used to update the choice probabilities, rather than the stability of the equilibrium
generating the data. In other words, the convergence of the NPL algorithm is driven by the
stability of the NPL mapping in the sample, as opposed to the NPL mapping in the popula-
tion. This feature of our asymptotic approach – though apparently subtle – has important
implications. It explains why the NPL algorithm may fail to converge even if the data is
generated from a stable equilibrium.

Second, we present a new analysis of the implications of the fixed point algorithm’s
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lack of convergence on finite sample and asymptotic properties of the NPL estimator. This
estimator is defined upon convergence of the fixed point iterations in the sample. This is
a stochastic condition which does not have probability one, even when the data have been
generated from a stable equilibrium. In contrast, previous studies consider convergence of
the algorithm in the population. Using our approach we can show that the possibility of no
convergence generates a selection problem in the estimator, which we refer to as convergence
selection. Random samples for which the algorithm converges have statistical properties that
are different from samples where convergence fails. That is, convergence introduces selection
issues. We characterize the properties of this selection in terms of the empirical distribution
of the spectral radius of the sample fixed point mapping. In our Monte Carlo experiments
we show that this convergence selection problem affects especially the structural parameter
that represents competition effects: it introduces an attenuation bias in this parameter.

An additional contribution of this paper is that we propose an alternative iterative al-
gorithm to compute the NPL estimator. Instead of fixed point iterations, the proposed
algorithm uses a spectral approach to solve for the fixed points of the NPL mapping. Fixed
point instability therefore does not prevent this alternative algorithm to converge.

An insightful implication of our findings is that the lack of convergence of the NPL
algorithm when the equilibrium generating the data is stable is entirely due to the stochastic
nature of the sample NPL mapping. In that sense, the current paper fills an important gap
in the literature’s understanding of the properties of the NPL algorithm. More precisely,
even if the data generating process is stable, stability may fail to hold for the sample NPL
mapping. In such cases, the NPL algorithm will fail to converge to the NPL estimator. This
is exactly the reason why it matters to study the properties of the NPL algorithm iterated
in finite samples, i.e. considering the sample size to grow only after the iterative procedure is
completed. This important feature of the NPL algorithm is implicitly ignored when treating
the iterative procedure as being initiated at the true data generating process.

Another important implication of the randomness of the sample NPL mapping is that the
NPL algorithm is likely to fail to converge in finite samples if the data generating process is
stable, but close to being unstable. In order to appreciate this property of the NPL algorithm,
the Monte Carlo simulations included in this paper are repeated for a grid of data generating
processes that satisfy stability conditions to different degrees. We find that Aguirregabiria
and Mira (2007)’s data generating process – commonly used as a benchmark for Monte Carlo
experiments – is in fact close to being unstable.

The rest of the paper is organized as follows. Section 2 reviews the related literature. The
model of interest, a discrete choice dynamic game with incomplete information, is presented
in Section 3. The NPL estimator and different sequential estimators are described in Section
4. Section 5 presents our main results. We provide necessary and sufficient conditions for the
convergence of the NPL algorithm, and use these conditions to characterize the statistical
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properties of the estimator upon convergence. We also describe the selection bias due to
convergence. In Section 6, we present evidence that the selection problem generated by
the lack of convergence is the most important source of finite sample bias when the data
generating process is stable. Section 7 concludes. Codes in R for all our Monte Carlo
experiments are available here.

2 Related literature

A motivation behind the NPL estimator for dynamic games introduced by Aguirregabiria and
Mira (2007) is the reduction of the finite sample bias typically associated with the two-step
approach that is often preferred to a computationally costly full likelihood estimator. One
can extend a Nested Fixed Point (NFXP) algorithm similar to Rust (1987) to a game setting
to obtain a maximum likelihood estimator (MLE) of the structural parameters of interest.
Multiplicity of equilibria in games complicates the implementation of the NFXP algorithm
compared to its typical application to single-agent dynamic discrete choice problems. An
important reduction in the computational burden can be achieved by using a two-stage
approach in which reduced-form CCPs are estimated in the first step and then taken as given
when estimating the structural parameters in the second step. This approach corresponds to
an application of Hotz and Miller (1993)’s CCP estimator to the dynamic games framework
and was initially proposed by Aguirregabiria and Mira (2007).1 Different two-stage estimators
have been proposed in the context of dynamic games: Bajari, Benkard, and Levin (2007)’s
simulated minimum distance estimator; Pakes, Ostrovsky, and Berry (2007) advocating for
the use of method of moments estimators in the second step; and Pesendorfer and Schmidt-
Dengler (2008)’s asymptotic least squares estimator.

Despite being computationally convenient and having nice asymptotic properties, two-
stage approaches tend to perform poorly in small samples, especially when there is a large
number of states in the model. In that case, the CCPs from the first step are typically biased
and imprecise, therefore affecting the structural parameters’ estimates. It is also worth noting
that – since they are reduced-form estimates – the first-step CCPs do not satisfy the fixed
point restrictions in finite samples.

Aguirregabiria and Mira (2007) aim at addressing these issues by proposing the NPL
estimator and an iterative algorithm to compute this estimator.

The NPL estimator is defined as a vector of structural parameters and a vector of CCPs
that satisfy two conditions: the vector of structural parameters maximizes a pseudo likelihood
function that depends on the CCPs; and the vector of CCPs satisfies the model equilibrium

1An assumption commonly maintained when implementing this CCP estimator is that, while the game
theoretical model may admit multiple equilibria, the same equilibrium is realized whenever the same game
is played.
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conditions associated with the vector of structural parameters. These two conditions can be
represented as a single fixed point condition: the vector of CCPs is a fixed point of the so-
called NPL mapping. If the NPL mapping has multiple fixed points, then the NPL estimator
is the solution with the maximum value of the pseudo likelihood function.

To compute the NPL estimator, Aguirregabiria and Mira (2007) propose an iterative
procedure, denoted as the NPL algorithm. This procedure consists of fixed point iterations
in the NPL mapping. Given a vector of CCPs as input, a single iteration of the NPL algorithm
provides a new vector of CCPs that is equal to players’ best response to the input CCPs when
the vector of structural parameters is the one that maximizes the pseudo likelihood function
for the input CCPs. Upon convergence, the NPL algorithm delivers a fixed point of the NPL
mapping.

Aguirregabiria and Mira (2007) did not formally show the convergence of the NPL al-
gorithm. In a nutshell, the limitations of the NPL algorithm can be summarized in two
important criticisms. First, in some cases, none of the NPL fixed points found by the NPL
algorithm initiated at different values of the CCPs correspond to the NPL estimator. Then,
the NPL algorithm converges to an inconsistent estimator. Some explanations for such failure
of the NPL algorithm are available in the literature. In fact, insights from Pesendorfer and
Schmidt-Dengler (2010) and Kasahara and Shimotsu (2012) suggest that the NPL algorithm
cannot deliver the NPL estimator if the data is known to be generated from an unstable
equilibrium.

Second, even if the data generating process satisfies desirable stability conditions, the
NPL algorithm may still fail to converge (Egesdal, Lai, and Su, 2015). Unfortunately, the
literature has so far failed to provide a convincing explanation for this lack of convergence.
Numerical issues and tolerance level used to assess convergence have been accused with-
out much justification. Mogensen (2015) provides simulation evidence that non-converging
sequences typically coincide with parameters’ estimates for which the stability conditions
required for local contraction do not hold. This observation is, to the best of our knowledge,
the first attempt at understanding the NPL algorithm’s possible failure to converge when the
data is generated from a stable equilibrium.

It is important to highlight the fundamental difference between the NPL algorithm and
the NPL estimator. The NPL estimator, as defined by Aguirregabiria and Mira (2007, p.20),
is “the NPL fixed point in the sample with the maximum value of the pseudo likelihood”.
The nice asymptotic properties of the NPL estimator (stated in Aguirregabiria and Mira,
2007, Proposition 2) do not depend on stability conditions required for the NPL algorithm
to converge. In other words, the NPL estimator exists regardless whether the NPL algorithm
converges or not.

A contribution of the current paper is to propose an alternative to the NPL algorithm.
The proposed algorithm avoids fixed point iterations by using non-monotone spectral residual

4



methods to solve the system of nonlinear equations defining the fixed points of the NPL
mapping. Importantly, the convergence of the algorithm does not require fixed point stability.

At this point, it is worth mentioning that there are two different ways of investigating
the properties of the sequences of estimates generated by the NPL algorithm. The first one
– which is the one commonly used in the literature (e.g., Kasahara and Shimotsu, 2012) –
consists in considering an asymptotic approximation to the NPL algorithm, as if the iterations
were performed in a large sample. Under this interpretation, the convergence of the NPL
algorithm is determined by the stability of the equilibrium generating the data since one is
effectively updating the choice probablities using the NPL mapping in the population. Based
on this approach, one expects the NPL algorithm to converge to the consistent NPL estimator
if and only if the equilibrium generating the data is stable.

A second interpretation – motivated by Pesendorfer and Schmidt-Dengler (2010)’s criti-
cism – rather iterates the sequential estimator in finite samples and then considers the sample
size to grow to infinity. This is the interpretation that is considered in the current paper. In
fact, it seems to be the most sensible interpretation when the NPL algorithm is used as a
device to reduce the finite sample bias of two-stage estimators. It is also key to understand
the convergence issues of the NPL algorithm when the equilibrium generating the data is
stable.

Some alternative estimators have been proposed in hope of addressing the convergence
issues associated with the NPL algorithm. One of them is the modified NPL algorithm from
Kasahara and Shimotsu (2012). This iterative algorithm uses the relaxation method from
numerical analysis when updating the CCPs to guarantee that the modified NPL mapping
is locally contractive. In order to implement this approach, one must fix the value of the
parameter modifying the NPL mapping. Kasahara and Shimotsu (2012) provide simulation
evidence that this modified NPL algorithm works well if this parameter is set optimally.
However, such an optimal value is not available in practice since it requires the knowledge
of the NPL mapping in the population, which is obviously unknown to the econometrician.
Kasahara and Shimotsu (2012) therefore recommend using a small arbitrary value for this
parameter. Unfortunately, Egesdal, Lai, and Su (2015) have found the properties of the
modified NPL algorithm to be much less appealing when using such a small arbitrary value.

Another alternative approach is a class of Mathematical Program with Equilibrium Con-
straints (MPEC) estimators which was proposed by Su and Judd (2012) for single-agent
dynamic discrete choice models, and extended to dynamic games by Egesdal, Lai, and Su
(2015). This approach consists in computing the constrained MLE implemented using state
of the art optimization algorithms. On one hand, it has the important advantage of deliv-
ering the MLE, i.e. what one would obtain from the NFXP approach. On the other hand,
it now requires optimizing over a large vector of parameters which includes the structural
parameters, the equilibrium CCPs, and the Lagrange multipliers of all the equilibrium con-
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straints. While the dimensionality of the problem therefore increases with the state space,
the optimizer leverages the sparsity of the Jacobian and Hessian matrices involved in the
maximization problem. Egesdal, Lai, and Su (2015) provide simulation evidence suggesting
better convergence properties (in the sense of finding a solution to the maximization prob-
lem) than the estimator obtained using the NPL algorithm in the context of dynamic discrete
games.2

Dearing and Blevins (2019) have recently proposed the Efficient Pseudo Likelihood (EPL)
algorithm as an alternative to NPL. This algorithm is similar to NPL, but it iterates in the
space of conditional choice values, instead of the space of CCPs. The authors show that
their algorithm converges in situations where NPL does not. Nevertheless, similarly as other
papers in this literature, their asymptotic results only apply when the iterative process is
performed in large samples.

While alternatives such as Kasahara and Shimotsu (2012)’s modified NPL algorithm,
Egesdal, Lai, and Su (2015)’s MPEC approach and Dearing and Blevins (2019)’s estimator
clearly have merit, there is still room for a better understanding of the NPL algorithm’s
properties. While we are not aware of published work applying these alternative estimators
in models of dynamic games, MPEC has been used to estimate single-agent dynamic models
(Aksin, Ata, Emadi, and Su, 2013; Chen, Esteban, and Shum, 2013; Barwick and Pathak,
2015; Frechette, Lizzeri, and Salz, 2019) and in static games (Vitorino, 2012; Su, 2014). In
applications with large state spaces, the NPL algorithm is arguably much easier to implement
and has a substantially smaller computational cost. An important goal of the current paper is
to improve our understanding of the NPL algorithm’s failure to converge in hopes to identify
in which settings this method can be safely used in empirical applications. It is worth
noting that the NPL algorithm has been used to estimate several empirical applications
of single-agent dynamic models (Copeland and Monnet, 2009; De Pinto and Nelson, 2009;
Tomlin, 2014; Aguirregabiria and Alonso-Borrego, 2014), dynamic games (Sweeting, 2013;
Aguirregabiria and Ho, 2012; Collard-Wexler, 2013; Kano, 2013; Huang and Smith, 2014;
Lin, 2015; Gayle and Xie, 2018), static games (Ellickson and Misra, 2008; Han and Hong,
2011) and networks (Lin and Xu, 2017; Liu and Zhou, 2017).

Bugni and Bunting (2018) recently studied the properties of the variance of iterative K-
step estimators. More precisely, they compare the K-step variance of a maximum likelihood
(K-ML) and a minimum distance (K-MD) estimators. They find that, while the variance of
the K-ML estimator can be quite erratic with K, it is K-invariant for the K-MD. This result
is very interesting on its own, but it does not address the convergence and finite sample bias
problems that motivate the current paper.

2For single-agent dynamic discrete choice model, Iskhakov, Lee, Rust, Schjerning, and Seo (2016) provide
simulation evidence suggesting that the NFXP algorithm may actually have better convergence properties
than the MPEC estimator.
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3 The model

3.1 General framework

Let Y be a discrete and finite set and let P 0 (y|x) be the true probability distribution of the
realization of a N × 1 vector y ∈ YN , for N ≥ 1, conditional on some vector of realized
exogenous variables x ∈ X. Also, denote P0 =

{
P 0 (y|x) : y ∈ YN ,x ∈ X

}
∈ P. There is

a parametric structural model for this vector of conditional probabilities. Consider a finite-
dimensional vector of structural parameters θ ∈ Θ and denote the vector of parametrized
probabilities as P (θ) =

{
P (y|x,θ) : y ∈ YN ,x ∈ X

}
. The true value of the structural pa-

rameters in the population, denoted θ0 satisfies P
(
θ0
)

= P0.
There is no closed-form analytical expression for P (y|x,θ). The parametric distribution

of y is implicitly defined as a fixed point of the following mapping in the probability space:

P (θ) = Ψ (θ,P (θ)) (1)

where Ψ (·) : Θ × P → P and Ψ (θ,P) =
{

Ψ (y|x,θ,P) : y ∈ YN ,x ∈ X
}
is a vector with

elements organized in the same order as in P.
Typically, the researcher has a sample of M observations indexed by m ∈ {1, 2, . . . ,M}.

For each observation, the data set includes the realizations ym ∈ YN and xm ∈ X. The index
of the data could vary over more than one dimensions, allowing for time and geographical
variations for instance. The key element here is that all the asymptotic results depend on
one of these dimensions being large. For what follows, this dimension is the one indexed by
m, i.e. M →∞.

3.2 Dynamic discrete game of market entry and exit

In this section, we introduce the dynamic game of market entry and exit that will be used for
the Monte Carlo experiments in Section 6. This model comes from Aguirregabiria and Mira
(2007) and it is a special case of the general framework presented above. It has been used in
several simulation exercises, namely Pesendorfer and Schmidt-Dengler (2008), Kasahara and
Shimotsu (2012), and Egesdal, Lai, and Su (2015).3

Each firm – indexed by i ∈ {1, 2, . . . , N} – decides whether or not to operate in a market
– m ∈ {1, 2, . . . ,M} – at a given period – t ∈ {1, 2, . . . , T}). In this context, Y = {0, 1} is
each firm’s choice set, such that yimt = 1 if firm i operates in market m at time t. Let ymt

be the vector {yimt : i = 1, . . . , N}. A firm maximizes its expected and discounted stream of
current and future profits in the market: Et [

∑∞
s=0 β

sUim,t+s], where β ∈ (0, 1) is the discount

3Note that the Monte Carlo experiments in Pesendorfer and Schmidt-Dengler (2008) also use a dynamic
game of market entry-exit. Their specification can be seen as a particular case of the model in Aguirregabiria
and Mira (2007): no market size, and only two players.
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factor, and Uimt is the period profit.
Suppose that a firm’s decision to operate depends on the market size (Smt), the number

of competitors that are operating (
∑

j 6=i yjmt), an entry cost, a firm-specific fixed cost, and
the vector of variables εimt = [εimt (0) , εimt (1)]′, which are player i’s private information. Let
εmt be the vector {εimt : i = 1, . . . , N}. The dynamic dimension to the firm’s decision comes
from the firm paying the entry cost only if it has not been operating in the market during
the previous period.

An observation is a firm-market-period-tuple. Besides the decision of being active in the
market, the econometrician observes the market size (Smt) and the incumbency status of the
firms (ym,t−1). To be consistent with the notation introduced above, denote the observable
state variables in market m at period t as xmt =

[
Smt,y

′
m,t−1

]′. The following assumptions
are made by Aguirregabiria and Mira (2007) and are fairly standard in the literature.

Assumption 1 (Additive separability). The contemporaneous utility function is additively
separable in its observable and its unobservable components: Ui (ymt,xmt, εimt (yimt)) =

ui (ymt,xmt) + εimt (yimt).

Assumption 2 (Conditional independence). The joint transition probability of xm,t+1, εim,t+1

conditional on ymt is Pr (xm,t+1, εim,t+1|xmt, εimt,ymt) = Γ (xm,t+1|xmt,ymt)G (εim,t+1), where
G (·) is the cumulative distribution function of εimt, which is iid across players, markets, and
time periods.

Assumption 3 (Discrete support for observable state variables). The observable state vari-
ables xmt have a discrete and finite support.

For instance, Aguirregabiria and Mira (2007) consider the following specification of the
current utility function Ui (ymt,xmt, εimt (yimt)):

θRSSmt − θRN ln
[
1 +

∑
j 6=i yjmt

]
− θEC (1− yim,t−1)− θFC,i + εimt (1) , yimt = 1

εimt (0) , yimt = 0
(2)

where θRS measures the effect of the market size on the firm’s payoff; θRN is referred to
as the strategic interaction parameter; θEC corresponds to the entry cost; and θFC,i is the
firm-specific fixed cost.

We assume that players’ behavior can be rationalized via a Markov Perfect Equilibrium,
which implies that player i’s strategies only depend on this player’s payoff-relevant state
variables, more precisely xmt and εimt. At a given state – defined by xmt and εmt – let
σi (·) : X × R2 7→ Y be player i’s strategy function. Given the other firms’ strategies –
represented as σ−i,mt ≡ σ−i (xmt, ε−i,mt) – firm i’s best response is the solution of a dynamic
programming problem with the following value function and Bellman equation:
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Vi (xmt, εimt) = max
y∈{0,1}

{
Eε−i,mt

[
Ui (y,σ−i,mt,xmt, εimt (y))

+ β

∫ ∑
xm,t+1∈X

Vi (xm,t+1, εim,t+1) dΓ (xm,t+1|xmt, y,σ−i,mt) dG (εim,t+1)

]}
(3)

≡ max
y∈{0,1}

{
Eε−i,mt

[vi (y,σ−i,mt,xmt)] + εimt (y)
}
. (4)

From player i’s point of view, vi (y,σ−i,mt,xmt) is the sum of its current utility (without
εimt (y)) and its discounted future expected utility of choosing y when player i’s competitors
behave according to σ−i,mt for a given xmt.

In equilibrium, players’ strategies are best responses to each other and – taking the
strategies of the other players as given – a player’s best response is the solution of a single-
agent dynamic programming problem. The set of players’ strategies also determine their
CCPs such that:

P (yi|xmt,θ) =

∫
1 {yi = σi (xmt, εimt)} dG (εimt) . (5)

One can write the expectation with respect to ε−i,mt as a function of competitors’ CCPs. Let
vPi (y,xmt) ≡ Eε−i,mt

[vi (y,σ−i,mt,xmt)], where the superscript P is used to make explicit the
dependence on the distribution of y. Then:

vPi (y,xmt) =
∑

y−i∈YN−1

N∏
j 6=i

P (yj|xmt,θ) vi (y,y−i = σ−i,mt,xmt) . (6)

Provided that each firm’s strategy is to enter if and only if the expected payoff of entering
is greater than the expected payoff of not entering, the CCP of firm i entering market m at
time t, denoted Pi (1|xmt,θ) ≡ P (yi = 1|xmt,θ), is:

Pi (1|xmt,θ) =

∫
1
{
vPi (1,xmt)− vPi (0,xmt) ≥ εimt (0)− εimt (1)

}
dG (εimt) (7)

which can be used to construct the fixed point mapping in (1).
Before presenting the estimators of interest, Assumption 4 summarizes the conditions on

the data generating process typically supposed to be satisfied in the literature. In essence,
these restrictions guarantee that the sample consists of independent draws generated from a
single (given observed states) Markov Perfect Equilibrium.

Assumption 4 (Data generating process). (i) P 0 (ymt|xmt) = Ψ
(
ymt|xmt,θ

0,P0
)
∀m, t.
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(ii) Players expect P0 to be played in the future (out of sample periods). (iii) For any P that
solves P = Ψ (θ,P), P 6= P0 whenever θ 6= θ0. (iv) {ymt,xmt : m = 1, . . . ,M ; t = 1, . . . , T}
are independent across markets and Pr (xmt = x) > 0 ∀x ∈ X.

The following regularity conditions will be maintained.

Assumption 5 (Regularity conditions). (i) The mapping Ψ (θ,P) is twice continuously
differentiable. (ii) θ0 ∈ int (Θ). (iii) Θ is compact. (iv) There is an open ball around P0

that does not include any other fixed point of the mapping Ψ
(
θ0, ·

)
.

Throughout the paper, we use a hat superindex to indicate that an object is a statistic
or a stochastic function that has sampling variation. Objects without a hat superindex are
deterministic functions or parameters.

4 NPL estimator and sequential estimators

In this section, we introduce the NPL mapping and use it to define the (algorithm-free)
NPL estimator. We also present a series of sequential estimators including the Hotz-Miller
estimator, the K-step estimator, the NPL algorithm, and a new algorithm to compute the
NPL estimator.

4.1 NPL mapping and estimator

Let Q̂ (θ,P) ≡ M−1
∑M

m=1 ln [Ψ (ym|xm,θ,P)] be the pseudo log-likelihood function for any
θ ∈ Θ and any P ∈ P. Its population counterpart is Q0 (θ,P) ≡ E0 [ln [Ψ (ym|xm,θ,P)]],
where E0 [·] is computed with respect to the true probability distribution P0. By maxi-
mizing these functions over Θ for a given P ∈ P, one obtains the pseudo maximum like-
lihood estimator θ̂ (P) = arg maxθ∈Θ Q̂ (θ,P) and its population counterpart θ0 (P) =

arg maxθ∈ΘQ
0 (θ,P).

By maximizing the pseudo log-likelihood function evaluated at a consistent reduced-form
estimate of the CCPs, say P̂0, one obtains the two-step pseudo MLE or Hotz-Miller estimator
applied to dynamic discrete games. This estimator is formally defined in Definition 1.

Definition 1 (Two-step pseudo MLE). For a given consistent reduced-form estimate of the
CCPs P̂0, the two-step pseudo MLE estimator θ̂1 satisfies:

θ̂1 ≡ θ̂
(
P̂0

)
= arg max

θ∈Θ
Q̂
(
θ, P̂0

)
.

The vectors θ̂ (P) and θ0 (P) are also used to define the sample and the population NPL
mappings. As it is formally stated in Definition 2, for any P ∈ P, the NPL mapping is a
function that returns the vector of best response CCPs at the corresponding pseudo-maximum
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likelihood estimator of θ. The only difference between the population NPL mapping and its
sample counterpart is whether the pseudo-maximum likelihood estimator of θ is computed
in the population or in the sample.

Definition 2 (NPL mapping). For any P ∈ P, the sample NPL mapping is ϕ̂ (P) ≡
Ψ
(
θ̂ (P) ,P

)
; its population counterpart is ϕ0 (P) ≡ Ψ

(
θ0 (P) ,P

)
.

Notice that these NPL mappings are continuous functions of a compact set, i.e. P, to
itself. By Brouwer’s fixed point theorem, a fixed point of the NPL mapping always exists,
both for the sample and the population mappings. In other words, the vector mappings
φ̂ (P) ≡ P−ϕ̂ (P) and φ0 (P) ≡ P−ϕ0 (P) both have at least one root. However, uniqueness
is not guaranteed. Definition 3 formally states the conditions satisfied by a fixed point of the
sample NPL mapping.

Definition 3 (Fixed point of the sample NPL mapping). P̂∗ is a fixed point of the sample
NPL mapping if P̂∗ = ϕ̂

(
P̂∗

)
. This implies that for θ̂∗ ≡ θ̂

(
P̂∗

)
, the following conditions

hold: (i) θ̂∗ = arg maxθ∈Θ Q̂
(
θ, P̂∗

)
; and (ii) P̂∗ = Ψ

(
θ̂∗, P̂∗

)
.

The NPL estimator is formally stated in Definition 4.

Definition 4 (NPL estimator). The NPL estimator
(
θ̂NPL, P̂NPL

)
is defined as the fixed

point of the sample NPL mapping achieving the largest value of the pseudo-likelihood func-
tion. That is, it satisfies the following conditions: (i) P̂NPL = ϕ̂

(
P̂NPL

)
; (ii) θ̂NPL =

θ̂
(
P̂NPL

)
; and (iii)

(
θ̂NPL, P̂NPL

)
maximizes Q̂ (θ,P) within the set of fixed points of the

sample NPL mapping.

The NPL estimator is consistent and asymptotically normal. Furthermore, if the spec-
tral radius4 of the Jacobian matrix ∂ϕ0 (P) /∂P evaluated at P0 is smaller than one, it is
asymptotically more efficient than the two-step estimator (Proposition 2 in Aguirregabiria
and Mira, 2007). Proposition 1 is an alternative statement of the consistency and asymptotic
normality of the NPL estimator. Our proof is different from the one in Aguirregabiria and
Mira (2007). Some notation must be introduced before stating the result. Let the empirical
measure be denoted by P where:

P =

{
P (y|x) =

∑M
m=1 1 {ym = y}1 {xm = x}∑M

m=1 1 {xm = x}
: y ∈ YN ,x ∈ X

}
(8)

with the elements of P ordered in the same way as in P. Let H be a random vector such
that H ∼ Normal (0,Var [H]) where Var [H] is a block diagonal matrix with x-specific block
corresponding to:

4For a given square matrix A, let ρ (A) denote its spectral radius, i.e. its largest eigenvalue in absolute
value. The condition ρ (A) < 1 is sufficient, but not neccessary, for AK to converge to 0 for large enough K
(where AK denotes the matrix product of K matrices A).
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Var [P (y|x)] =
M∑M

m=1 1 {xm = x}
[
diag

{
P0 (y|x)

}
−P0 (y|x) P0 (y|x)′

]
(9)

and covariances between P (y|x) for different values of x are 0. It follows that, as M →∞:

√
M
(
P−P0

) d→ H. (10)

Let OPΨ(θ,P) and OθΨ(θ,P) respectively denote the Jacobians of Ψ (θ,P) with respect to P

and θ, when evaluated at (θ,P). Let Oϕ̂(P) be the Jacobian of the sample NPL mapping
evaluated at P. Similarly, let Oϕ0

(P) be its population counterpart. Let Oφ̂(P) denote the
Jacobian of φ̂ (P) evaluated at P. Define Oφ0

(P) similarly for φ0 (P). Finally, let OθQ̂(θ,P),
OPQ̂(θ,P), O2

θθQ̂(θ,P) and O2
θPQ̂(θ,P) be the matrices of first and second order derivatives of

Q̂ (·) evaluated at (θ,P). The matrices OθQ0
(θ,P), OPQ

0
(θ,P), O

2
θθQ

0
(θ,P) and O2

θPQ
0
(θ,P) are

equivalently defined for Q0 (·).
The asymptotic properties of the NPL estimator stated in Proposition 1 rely on the

asymptotic distribution of the sample NPL mapping which is given in Lemma 1.5

Lemma 1 (Asymptotic distribution of the sample NPL mapping). Let Assumptions 1-5 be
satisfied. Then, for any P ∈ P, as M → ∞, the maximum likelihood estimator θ̂ (P) has
limiting distribution:

√
M
(
θ̂ (P)− θ0 (P)

)
d→ L (P) ∼ Normal

(
0,
[
O2
θθQ

0

(θ0(P),P)

]−1
)
. (11)

The sample mappings φ̂ (P) and ϕ̂ (P) have a limiting distribution such that:

√
M
(
φ̂ (P)− φ0 (P)

)
= −
√
M
(
ϕ̂ (P)−ϕ0 (P)

) d→ Z (P) ∼ Normal
(
0,Σφ̂(P)

)

with Σφ̂(P) ≡ OθΨ(θ0(P),P)

[
O2
θθQ

0

(θ0(P),P)

]−1

OθΨ
′
(θ0(P),P).

Proof. See Appendix A.1.

Proposition 1 (Asymptotic properties of the NPL estimator). Let Assumptions 1-5 be sat-
isfied. As M →∞,

(
θ̂NPL, P̂NPL

)
satisfy:

5It could be interesting to extend Proposition 1 to the weak convergence of
√
M
(
P̂NPL −P0

)
to a tight

process. Two sufficient conditions for this would be that: (i) Oφ0
(P) is continuously invertible over P ∈ P;

and (ii) Z (P) converges uniformly in P ∈ P to a tight Gaussian process. One could then apply Kosorok
(2008, Corollary 13.6) to get the desired result. This result would still be valid even if φ0

(
P0
)
= 0 may have

multiple solutions.
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√
M
(
P̂NPL −P0

)
= −

[
Oφ0

(P0)

]−1√
M
(
φ̂
(
P0
)
− φ0

(
P0
))

+Op

(√
M
∥∥∥P̂NPL −P0

∥∥∥2
)

d→ Normal
(
0,
[
Oφ0

(P0)

]−1
Σφ̂(P0)

[
OPφ

0′
(P0)

]−1
)

and

√
M
(
θ̂NPL − θ0

)
=−

[
O2
θθQ

0

(θ0,P0)

]−1 {
O2
θPQ

0

(θ0,P0)

√
M
(
P̂NPL −P0

)
+OθΨ

′
(θ0,P0)D

0
√
M
(
P−P0

)}
+Op

(√
M
∥∥∥P̂NPL −P0

∥∥∥2
)

d→
[
O2
θθQ

0

(θ0,P0)

]−1 {
O2
θPQ

0

(θ0,P0)

[
Oφ0

(P0)

]−1
Z
(
P0
)
− OθΨ

′
(θ0,P0)D

0H
}

where D0 ≡ diag {P0}−1.

Proof. See Appendix A.2.

The main challenge in obtaining the NPL estimator is how to compute the fixed point(s) of
the sample NPL mapping. Aguirregabiria and Mira (2007) propose to use the NPL algorithm
that is defined in the next subsection.

4.2 NPL algorithm estimator

Let P̂0 be a vector of nonparametric or reduced-form estimates of the CCPs. Let θ̂1 be the
two-step pseudo maximum likelihood estimator – or Hotz-Miller estimator – as in Definition
1. These estimates can be used to update the CCPs using P̂1 = Ψ

(
θ̂1, P̂0

)
, construct a

new pseudo log-likelihood function Q̂
(
θ, P̂1

)
to be maximized, and so on. Such an iterative

process is referred to as the NPL algorithm. When iterated for a fixed K number of times,
this approach delivers the K-step estimator.

Definition 5 (K-step estimator). The k-th iteration of the NPL algorithm for k ∈ N is
defined as P̂k = ϕ̂

(
P̂k−1

)
, or equivalently:

P̂k = Ψ
(
θ̂k, P̂k−1

)
with

θ̂k ≡ θ̂
(
P̂k−1

)
= arg max

θ∈Θ
Q̂
(
θ, P̂k−1

)
and P̂0 is a reduced-form estimate of the CCPs. The K-step estimator iterates until k = K.
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It is easy to see that, upon convergence, the NPL algorithm delivers a fixed point of the
sample NPL mapping. It is worth repeating that the estimator obtained upon convergence
of the NPL algorithm does not necessarily correspond to the NPL estimator in Definition
4 as the NPL estimator is one of the potentially multiple fixed points of the sample NPL
mapping.

It is important to emphasize that iterating the NPL algorithm is one possible method
to obtain some NPL fixed point(s). The NPL algorithm failing to converge should therefore
not be interpreted as evidence against the existence of a NPL fixed point since – as already
mentioned above – the NPL mapping has at least one fixed point. Furthermore, even if
the NPL algorithm may converge to different NPL fixed points when initiated at distinct
starting values, it may still fail to obtain all NPL fixed points. The reasons for such lack of
convergence and failure to deliver the full set of NPL fixed points will be presented in Section
5, after having formally investigated the properties of the NPL algorithm iterated in small
samples.

Nonetheless, there are two cases where the NPL algorithm is guaranteed to converge to
the consistent NPL estimator in every sample. First, the NPL algorithm always converges
when applied to single-agent dynamic discrete choice models. For these models, convergence
follows from the zero-Jacobian property shown by Aguirregabiria and Mira (2002, Proposition
2). Second, Aguirregabiria and Mira (2007, Example 5) highlight several appealing properties
of the NPL algorithm when the number of structural parameters in θ is exactly equal to the
number of free probabilities in P. In fact, the NPL mapping then has a unique fixed point,
this fixed point is stable, and the NPL algorithm reaches this consistent fixed point in only
two iterations.

4.3 Spectral algorithm estimator

In this section, we propose an alternative iterative algorithm to compute the NPL estima-
tor. More precisely, computing the NPL estimator requires solving a system of nonlinear
equations. We now describe how a derivative-free non-monotone spectral residual method –
proposed by La Cruz, Martinez, and Raydan (2006) – can be implemented to find these fixed
points. In contrast to the NPL algorithm, the proposed method is not based on fixed point
iterations and can therefore be used to find unstable fixed points.

Notice that φ̂ (P) is a stochastic function since ϕ̂ (P) is stochastic through θ̂ (P). Finding
the solution(s) to φ̂ (P) = 0, where φ̂ (·) : P 7→ (−1, 1)dim{P} is a nonlinear function with
continuous partial derivatives, boils down to solving a large dimensional system of nonlinear
equations. A derivative-free spectral approach is especially appealing in the current setting
for two reasons. First, it does not require the computation, nor the approximation of the
Jacobian of φ̂ (·). Second, its small memory needs make it applicable to large-dimensional
P’s.
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Spectral methods initially proposed by Barzilai and Borwein (1988) are most easily un-
derstood by comparing them with other existing methods commonly used to solve nonlinear
systems of equations. For instance, Newton’s method would update P̂k to P̂k+1 as:

P̂k+1 = P̂k −
[
Oφ̂(P̂k)

]−1

φ̂
(
P̂k

)
(12)

which unfortunately requires computing and inverting the Jacobian matrix Oφ̂(P̂k) at each
iteration. Alternatively, quasi-Newton methods such as Broyden’s would use:

P̂k+1 = P̂k −B−1
k φ̂

(
P̂k

)
(13)

where the matrices Bk are defined sequentially as,

Bk+1 = Bk +
φ̂
(
P̂k+1

)
∆P̂′k+1

∆P̂′k+1∆P̂k+1

(14)

with ∆P̂k+1 ≡ P̂k+1 − P̂k and B0 is typically the identity matrix. While the latter avoids
having to compute Oφ̂(P̂k), it still requires the inversion of a potentially large dimensional
matrix. Spectral methods would rather propose to update the CCPs using:

P̂k+1 = P̂k − αkφ̂
(
P̂k

)
(15)

where αk is the spectral steplength. This spectral steplength can be interpreted as a Rayleigh
quotient with respect to a secant approximation of the Jacobian of φ̂ (·). More importantly,
this object is a scalar. Different αk’s have been proposed in the literature. Let ∆φ̂

(
P̂k

)
≡

φ̂
(
P̂k

)
− φ̂

(
P̂k−1

)
. Barzilai and Borwein (1988) proposed using:

αk =
∆P̂′k∆φ̂

(
P̂k

)
∆φ̂

(
P̂k

)′
∆φ̂

(
P̂k

) . (16)

Alternatively, La Cruz, Martinez, and Raydan (2006) proposed:

αk =
∆P̂′k∆P̂k

∆P̂′k∆φ̂
(
P̂k

) . (17)

Finally, Varadhan and Roland (2008) proposed using:

αk = sgn
(
∆P̂′k∆φ̂

(
P̂k

)) ∥∥∥∆P̂k

∥∥∥∥∥∥∆φ̂(P̂k

)∥∥∥ (18)

where sgn (a) = a/ |a| if a 6= 0; sgn (a) = 0 otherwise. Commonly used values of α0 are
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α0 = 1 or α0 = min
{

1, 1/
∣∣∣φ̂ (P0)

∣∣∣}.
A consequence of using spectral steplengths as the ones presented above is that they

generate non-monotone updating processes. An important contribution of La Cruz, Martinez,
and Raydan (2006) is that they propose a non-monotone line search as a globalization strategy
that allows for such non-monotone behavior. More precisely, for some merit function f (·)
such that f (P) = 0⇔ φ̂ (P) = 0, each step must satisfy:

f
(
P̂k+1

)
≤ max

0≤j≤J−1
f
(
P̂k−j

)
+ ηk − γα2

kf
(
P̂k

)
(19)

where J is a non-negative integer, 0 < γ < 1 and
∑

k ηk < ∞. This globalization strategy
is a safeguard that can improve the performance of the algorithm. La Cruz, Martinez, and
Raydan (2006, Theorem 4) show that if the point used to initialize the algorithm is close
enough to some strongly isolated solution,6 the whole sequence converges to this solution.

There are three important remarks that are worth mentioning. First, since there is no
guarantee that the NPL sample mapping has a unique fixed point, this iterative procedure
should be initiated at different starting values. Second, it is worth emphasizing that the
procedure described above is also iterative, just like the NPL algorithm. However, it does
not iterate over the NPL mapping. For this reason, the spectral approach is able to find
unstable fixed points that would not be attainable via the NPL algorithm. Third, it should
be noted that the spectral approach is not much harder to code than NPL: one basically
uses the code of a K = 1 step iteration to construct the system of nonlinear equations to be
solved.

4.4 Comparing domains of attraction

The spectral algorithm described above is therefore an alternative approach that can be
used to compute the NPL estimator. In order to appreciate how its convergence properties
compare to the NPL algorithm and to other iterative approaches available in the literature,
it is useful to highlight how a given solution’s domain of attraction may vary across different
methods.

There is an important consequence of using the NPL algorithm to find fixed points of
the sample NPL mapping: if the stability condition required for convergence – which will
be provided below – fails to hold, the relevant domain of attraction is a singleton. In other
words, the only way to find the NPL fixed point corresponding to the NPL estimator would be
to initiate the algorithm exactly at the solution. As a result, the domain of attraction of the
NPL estimator has zero Lebesgue measure when stability fails. This feature is a consequence

6They consider a solution P̂∗ to be strongly isolated if φ̂
(
P̂∗

)
= 0 and there exists δ > 0 such that∥∥∥P− P̂∗

∥∥∥ ≤ δ implies that φ̂ (P)
′
[
Oφ̂(P)

]′
φ̂ (P) 6= 0.
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of using fixed point iterations in an NPL mapping that – in the case of games – is not a
contraction.

As discussed above, fixed point iterations are not the only method available to solve for
the fixed points of a nonlinear system of equations. Under very general conditions – which
hold in our problem – Newton or quasi-Newton algorithms have desirable local convergence
properties. In fact, for these algorithms, the solution’s domain of attraction is a singleton
if and only if the Jacobian matrix of the system of equations to solve is singular when
evaluated at the solution. Under very mild conditions, the set of such unregular solutions
has zero Lebesgue measure, such that the domain of attraction of any solution is generically
larger than a singleton. This observation is true even if stability fails. It follows that, when
stability fails, estimating algorithms based on Newton methods are associated with domains
of attraction leading to a consistent estimator that are larger than the NPL algorithm’s.

This distinction between fixed point iterations and Newton methods is key to understand
the properties of different algorithms used to estimate dynamic discrete games. For instance,
the properties of the NFXP applied to dynamic games crucially depend on the method
used to solve for the fixed point in the inner algorithm. If one uses fixed point iterations,
instability of the best response mapping may prevent the inner algorithm to converge unless
this algorithm is initiated at the fixed point of interest. In such cases, the inner algorithm’s
domain of attraction being a singleton implies that the domain of attraction of the NFXP
algorithm must also have zero Lebesgue measure. For this reason, it may be preferable to
implement a NFXP algorithm that uses Newton methods to solve for the fixed point to ensure
that the algorithm locally converges to the consistent estimator.

MPEC methods can also be interpreted as a set of variations of Newton methods used to
find the solution of a constrained optimization problem. As a result, the MPEC algorithm
applied to dynamic discrete games should locally converge to a solution. Of course, this
algorithm may still fail to converge for a given initial value. However, the set of starting
values leading to a consistent estimator has a strictly positive Lebesgue measure. In fact,
simulation evidence from Egesdal, Lai, and Su (2015) suggests that the MPEC could always
be initiated at a starting value leading to a converging sequence, despite the algorithm failing
to converge for some sequences.

To sum up, one way to guarantee that the NPL algorithm locally converges to the NPL
estimator would be to propose a Newton NPL algorithm that does not rely on fixed point
iterations to find sample NPL fixed points. This is how the spectral algorithm described
above should be interpreted. It is worth emphasizing a considerable advantage of the spec-
tral approach over Newton and quasi-Newton algorithms that is especially relavant in the
context of dynamic discrete games with large state spaces: replacing the approximation of
the Jacobian to be inverted by a scalar. For instance, MPEC methods typically leverage
sparsity properties to reduce the computational burden is large state spaces, but they still
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require inverting matrices. Furthermore, the dimensionality of the problem remains smaller
than implementing the MPEC estimator of Egesdal, Lai, and Su (2015). While solving the
system of nonlinear equations requires searching over the CCPs’ space, MPEC is searching
over the spaces of the CCPs, the parameters, and the Lagrange multipliers. For that reason,
we expect the spectral approach to be feasible whenever MPEC is.

Should one conclude that the NPL algorithm is necessarily dominated by algorithms based
on Newton or spectral methods? A single iteration of the NPL algorithm is computationally
much cheaper than such alternative methods in very large state spaces. There may be relevant
cases where even state of the art algorithms are not applicable. Better understanding under
which conditions the NPL algorithm can be applied is therefore needed.

5 Convergence of the NPL algorithm in small samples

We now turn to assessing the convergence properties of the NPL algorithm when it is iterated
in small samples. We first define stability of the data generating process as it is understood in
the literature. Then, we investigate the convergence of the NPL algorithm iterated in small
samples to some NPL fixed point (Lemma 2). This result is key to explain why the NPL
algorithm may fail to converge even if the equilibrium generating the data is stable. Whether
the NPL algorithm converges to the NPL estimator is closely related to the properties of the
sample NPL mapping. We can therefore characterize the probability that the NPL algorithm
delivers the NPL estimator (Lemma 3). Furthermore, we investigate how the NPL algorithm
could lead to an estimator that is asymptotically different from the NPL estimator. We
consider two cases. First, the algorithm could converge to an inconsistent fixed point of
the sample NPL mapping (Proposition 2). Second, we show that the positive probability
of no convergence of the algorithm introduces a convergence selection in the NPL algorithm
estimator (Proposition 3). To the best of our knowledge, the implications of this selection
have never been explored in the literature. The relative relevance of these two cases depends
on the data generating process, as it will be highlighted in Section 6.

Kasahara and Shimotsu (2012, Propositions 1 and 2) show that the spectral radius of
Oϕ0

(P0), denoted ρ
(
Oϕ0

(P0)

)
, is an important determinant of the convergence of the sequence

of estimators generated by the NPL algorithm. The condition defining a stable population
NPL mapping at the true CCPs is stated in Definition 6.

Definition 6 (Stable population NPL mapping at true CCPs). Under Assumptions 1-5, the
data generating process is stable if ρ

(
Oϕ0

(P0)

)
< 1.

The condition established in Definition 6 implies that there is a neighborhood of P0 – say
N (P0) – such that a fixed point algorithm that starts at a vector P0 ∈ N (P0), and iterates
in the population NPL mapping, converges to P0. However, this stability condition in the
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population NPL mapping is not sufficient to guarantee the convergence of the NPL algorithm
in finite samples.

We now formally state Lemma 2 which establishes a sufficient condition for the NPL
algorithm to converge to some fixed point of the sample NPL mapping in finite samples.

Lemma 2 (Convergence of the NPL algorithm in finite samples). Consider a finite sample
size M . Let P̂∗ be a fixed point of the sample NPL mapping. Suppose that ρ

(
Oϕ̂(P̂∗)

)
< 1.

By continuity of ρ (·), there is a neighborhood of P̂∗, say N
(
P̂∗

)
, such that ρ

(
Oϕ̂(P)

)
< 1

for any P ∈ N
(
P̂∗

)
. Then, the NPL algorithm converges to P̂∗ if P̂0 ∈ N

(
P̂∗

)
.

Proof. See Appendix A.3.

Convergence of the NPL algorithm is studied by Kasahara and Shimotsu (2012, Propo-
sition 1) under the condition that the sample size is large enough such that: (i) the sample
NPL mapping can be approximated – arbitrarily well – using the population NPL mapping;
and (ii) a consistent estimator P̂0 is arbitrarily close to P0. This is the reason why their
convergence conditions are stated in terms of Oϕ0

(P0) as in Definition 6. Our Lemma 2 re-
laxes such conditions and allows the algorithm to be iterated in small samples. Our approach
echoes criticisms – formulated by Pesendorfer and Schmidt-Dengler (2010) – to the asymp-
totic approximation. For these reasons, the convergence properties of the NPL algorithm in
Lemma 2 are more in line with the idea of using the NPL algorithm as a device to reduce
the finite sample bias.

An important consequence of considering a fixedM is that the updating procedure is now
iterated over the sample NPL mapping. The convergence of the NPL algorithm to a given
NPL fixed point does not (directly) depend on the stability of the data generating process – as
stated in Definition 6 – but rather on the contraction properties of the sample NPL mapping
evaluated at this fixed point. More precisely, it depends on ρ

(
Oϕ̂(P̂∗)

)
. Furthermore, if

this fixed point corresponds to the NPL estimator – to the couple
(
θ̂∗, P̂∗

)
that maximizes

the pseudo likelihood function among the set of NPL fixed points – it follows that one can
deduce conditions which must be satisfied for the NPL algorithm iterated in small samples
to deliver the NPL estimator.

To alleviate the notation, let ρ̂NPL ≡ ρ
(
Oϕ̂(P̂NPL)

)
and ρ0 ≡ ρ

(
Oϕ0

(P0)

)
. Since the

sample NPL mapping is a random object, one cannot guarantee that the stability of the
equilibrium generating the data implies that ρ̂NPL < 1. The randomness of the stability con-
dition for the sample NPL mapping implies that there is always a strictly positive probability
that ρ̂NPL > 1, even when the population is such that ρ0 < 1. This observation can explain
the lack of convergence of the NPL algorithm when the data generating process is stable.

Lemma 3 establishes the asymptotic distribution of the statistic ρ̂NPL. The result is stated
as follows. It is worth mentioning that the required differentiability of the spectral radius
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operator holds under mild conditions.7

Lemma 3 (Asymptotic distribution of the sample spectral radius at NPL estimates). Suppose
that the spectral radius function ρ (·) is differentiable at the Jacobian matrices Oϕ̂(P0) =

OPΨ(θ̂(P0),P0) + OθΨ(θ̂(P0),P0)Oθ̂(P0) and Oϕ0
(P0) = OPΨ(θ0(P0),P0) + OθΨ(θ0(P0),P0)Oθ

0
(P0),

where Oθ̂(P0) and Oθ0
(P0) are the Jacobians of θ̂ (P) and θ0 (P) at P0. Then, as M →∞:

√
M
(
ρ̂NPL − ρ0

) d→ G0Z
(
P0
)

+ J0L
(
P0
)

where G0 and J0 are deterministic matrices defined in Appendix A.4; Z (P0) and L (P0) are
the vectors of normal random variables defined in Lemma 1. Therefore, as M → ∞, the
probability that the sample NPL mapping is stable at P̂NPL is:

Pr (ρ̂NPL < 1) = Φ

(√
M [1− ρ0]√
Var [ρ̂NPL]

)
where Φ (·) is the cumulative distribution function of the standard normal.

Proof. See Appendix A.4.

In Lemma 3, the expression for the probability of a stable NPL mapping is such that, as
M → ∞: it goes to 1 if the equilibrium in the population is stable – i.e., if ρ0 < 1; and it
goes to 0 if the equilibrium in the population is unstable – i.e., if ρ0 > 1.

It is worth briefly discussing how Lemma 3 relates to single-agent dynamic discrete choice
models. Single-agent models can be interpreted as special cases of games with strategic inter-
actions being 0 in the data generating process. By the zero-Jacobian property (Aguirregabiria
and Mira, 2002, Proposition 2), both ρ0 and ρ̂NPL are equal to 0 in such models. Therefore,
the distribution of ρ̂NPL should be degenerate at 0 as a consequence of strategic interactions
being constrained to 0 in the estimation of single-agent models. However, when estimating
an empirical game, strategic interactions are not constrained to 0 even if their true value in
the population may be 0 and ρ0 = 0. In other words, even if ρ0 = 0, not restricting the value
of strategic interactions implies that the distribution of ρ̂NPL is not degenerate, as suggested
by Lemma 3.

Let
(
θ̂K , P̂K

)
be the K-step NPL algorithm estimator. As a corollary of Lemma 2, we

have that if the sample is such that ρ̂NPL < 1, then there exists a large enough K̄ ∈ N and
a starting value P̂0 such that for any K ≥ K̄, θ̂K = θ̂NPL. That is, under this condition the
NPL algorithm returns the NPL estimator. Given this result, one could be tempted to claim
that – under the condition ρ̂NPL < 1 – the NPL algorithm estimator has the same (good)
asymptotic properties as the NPL estimator. However, one must take into account the

7In fact, eigenvalues are continuous and differentiable functions of the elements of a matrix. The spectral
radius is the maximum of the absolute values of these eigenvalues and the set of matrices for which there is
a tie between two or more eigenvalues for the maximum has zero Lebesgue measure.
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randomness introduced by this stochastic stability condition when defining the properties
of the K-step NPL algorithm estimator. For the rest of this section, we study how the
randomness of the stability condition of the sample NPL mapping affects the asymptotic
properties of the NPL algorithm estimator. Propositions 2 and 3 characterize the two sources
of asymptotic bias of the NPL algorithm estimator.

For a given sample, we can distinguish three different scenarios for the convergence of the
NPL algorithm: (i) the sample stability conditions holds such that the algorithm converges
to the NPL estimator; (ii) the sample stability condition does not hold, but the algorithm
converges to a fixed point of the sample NPL mapping – say, θ̂∗ – which is not the NPL
estimator; and (iii) the sample stability condition does not hold, the algorithm generates
cycles and it never converges. These possible results have the following implications for the
NPL algorithm estimator, as K →∞:

θ̂K =


θ̂NPL if the NPL algorithm converges and ρ̂NPL < 1

θ̂∗ 6= θ̂NPL if the NPL algorithm converges and ρ̂NPL ≥ 1

is not well defined if the NPL algorithm fails to converge

(20)

where we treat the K-step NPL estimator that fails to converge when K → ∞ as not well
defined since its properties would vary with K, even for very large values of K.

Expression (20) illustrates two sources of discrepancy between θ̂K and θ̂NPL, which corre-
spond to two sources of bias in the NPL algorithm estimator that may arise when the sample
NPL fixed point does not satisfy the stability condition. First, if ρ̂NPL ≥ 1 the algorithm
may still converge to a fixed point of the sample NPL mapping which satisfies the stability
condition. In such cases, the NPL algorithm converges to an inconsistent estimator. Second,
the randomness in ρ̂NPL explicited in Lemma 3 implies that two samples drawn from the
same data generating process – and therefore associated with the same value of ρ0 – may not
equally satisfy the convergence condition ρ̂NPL < 1. In other words, the randomness in the
sample NPL mapping introduces a convergence selection bias.

Another way to highlight this selection problem is to consider the following unfeasible
estimator:

θ̃NPL =

limK→∞ θ̂K = θ̂NPL if ρ̂NPL < 1

is not well defined if ρ̂NPL ≥ 1
(21)

which is unfeasible precisely because the stability condition ρ̂NPL < 1 is not observable to
the researcher. Since θ̂NPL and ρ̂NPL are not independent random variables, the sampling
distribution of θ̃NPL must be different from the one of the NPL estimator.

Proposition 2 focuses on the bias introduced by convergence to an inconsistent estimator:
for large enough K, θ̂K = θ̂∗ 6= θ̂NPL. For the sake of illustration and to isolate this source
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of bias we assume that the NPL algorithm always converges to θ̂∗ when ρ̂NPL ≥ 1.

Proposition 2 (Convergence to an inconsistent estimator). Let Assumptions 1-5 be satisfied.
Suppose that – with probability 1 – the NPL algorithm converges to some θ̂∗ whenever ρ̂NPL ≥
1. Define W∗ as

√
M
(
θ̂∗ − θ̂NPL

)
d→ W∗. Then, there exists a large enough K̄ ∈ N such

that ∀K ≥ K̄, θ̂K = θ̂NPL + 1 {ρ̂NPL ≥ 1}
[
θ̂∗ − θ̂NPL

]
and:

√
M
(
θ̂K − θ0

)
d→
√
M
(
θ̂NPL − θ0

)
+ W∗

[
1− Φ

(√
M [1− ρ0]√
Var [ρ̂NPL]

)]
.

Proof. See Appendix A.5.

The second term in the asymptotic distribution of
√
M
(
θ̂K − θ0

)
stated in Proposition

2 represents the effect of the possibility of converging to an inconsistent estimator when the
sample NPL mapping is unstable. It depends on the probability of that event. Even if ρ0 < 1,
this term contributes to the asymptotic distribution of the NPL algorithm estimator.

Proposition 3 focuses on the bias introduced by the convergence selection problem: the
estimator θ̂K is not well defined when the algorithm does not converge. To isolate this source
of bias, we assume that the algorithm never converges when ρ̂NPL ≥ 1.

Proposition 3 (Convergence selection). Let Assumptions 1-5 be satisfied. Suppose that –
with probability 1 – the NPL algorithm never converges whenever ρ̂NPL ≥ 1. Then, there
exists a large enough K̄ ∈ N such that ∀K ≥ K̄, any well-defined NPL algorithm estimator
satisfies θ̂K = θ̃NPL and:

√
M
(
θ̂K − θ0

)
d→
√
M
(
θ̂NPL − θ0

)
1

{√
M
(
ρ̂NPL − ρ0

)
<
√
M
(
1− ρ0

)}
.

Proof. See Appendix A.6.

The asymptotic distribution of
√
M
(
θ̂K − θ0

)
stated in Proposition 3 corresponds to

a truncated normal distribution with the variable defining the truncation distributed as in
Lemma 3. AsM →∞, Pr (ρ̂NPL < 1)→ 1 if the population NPL fixed point corresponding to
the data generating process is stable, such that the distribution of the well-defined estimator
is asymptotically equivalent to the NPL estimator’s distribution. However, if the equilibrium
generating the data is unstable, Pr (ρ̂NPL < 1) → 0 as M → ∞ such that the asymptotic
distribution does not exist, which is consistent with the estimator not being well-defined in
this case.

The results stated in Propositions 2 and 3 lead to interesting conclusions that shed light
on convergence issues associated with the NPL algorithm. These implications, which are
supported by the simulation evidence reported in Section 6, are summarized as follows.
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First, ρ0 < 1 is not sufficient for convergence when the iterative procedure is implemented
if finite samples. In fact, it fails to account for the randomness in the mapping used to update
the CCPs.

Second, the possibility of no convergence introduces a discrepancy between the NPL
algorithm estimator and the NPL estimator – even in the unfeasible case where the researcher
would know ρ̂NPL and could select the NPL algorithm estimator θ̂K only when the convergence
condition ρ̂NPL < 1 holds.

Third, one should expect convergence to the NPL estimator to be a much relevant issue
in cases where the data generating process is stable, but close to being unstable. For fixed
M , the randomness in the sample NPL mapping may make the iterative procedure unstable
even if it would be stable if one could update the CCPs using the mapping in the population.

Fourth, one should expect the randomness in the sample NPL mapping to be less concern-
ing when M →∞, even in stable data generating processes that are close to being unstable.
In other words, the NPL algorithm should deliver the NPL estimator with large samples even
if the data generating process is almost unstable.

Finally, if one could implement the NPL algorithm by updating the CCPs using the
population NPL mapping, then ρ0 < 1 would be sufficient for the NPL algorithm to converge,
even in samples of modest size.

6 Monte Carlo experiments

6.1 Data-generating process

The data generating process used for our simulations is based on Experiment 3 in Aguirre-
gabiria and Mira (2007). The same data generating process, or a simplified version of it, was
also used by Kasahara and Shimotsu (2012) and by Egesdal, Lai, and Su (2015).

The model corresponds to the dynamic game of market entry and exit presented in Section
3 above. A number N = 5 of firms must decide whether or not to operate in M independent
markets. There are N + 1 = 6 observable state variables: the market size (Smt) and the
incumbency status of each player (ym,t−1). Let the support of Smt be S = {1, 2, 3, 4, 5}. The
observable state space is denoted by X ≡ S × YN and the total number of possible different
states is given by dim (X) = 5× 25 = 160.

A transition probability distribution has to be specified for the vector of observable state
variables. The transition probability of incumbency statuses trivially corresponds to the
firms’ decisions CCPs. Let the transition matrix for market size Smt be given by:
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Figure 1: Spectral radii for different θRN – Population NPL mapping
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Let θRS = 1, θEC = 1, θFC,1 = 1.9, θFC,2 = 1.8, θFC,3 = 1.7, θFC,4 = 1.6 and θFC,5 = 1.5.
The discount rate is assumed to be known and equal to β = 0.95. With the values of these
parameters fixed, the stability of the data generating process is determined by the strategic
interaction parameter θRN. Notice that θRN = 0 would correspond to a single-agent dynamic
discrete choice model and stability in the sense of Definition 6 is guaranteed through the
zero-Jacobian property (Aguirregabiria and Mira, 2002, Proposition 2). The data generating
process will therefore be stable or unstable for positive values of θRN. Spectral radii ρ0 for
different values of θRN are graphed in Figure 1.8

Simulation exercises available in the literature – that have used this data generating
process – have typically focused on two specific values of θRN: θRN = 2 – which will be
referred to as the mildly stable case since the corresponding spectral radius at the true CCPs
is 0.9237 – and θRN = 4 – which will be the very unstable case with spectral radius of 1.6748.
We present below Monte Carlo experiments and convergence results for these two cases.

8The Jacobians used to compute these spectral radii have been approximated using numerical derivatives.
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Furthermore, to provide a finer picture of the properties of the sequential estimators, we also
consider a very stable case by setting θRN = 1 – corresponding spectral radius 0.4623 – and
a mildly unstable case where θRN = 2.4 – spectral radius equal to 1.1168. These four cases
allow us to study how different degrees of (in)stability – at the population level – affect the
statistical properties of the sample NPL mapping and the estimators.

Besides potentially affecting the convergence properties of the NPL algorithm, these dif-
ferent values of the strategic interaction parameter have important economic implications. In
order to appreciate how the strategic interaction parameter affects the level of competition,
we simulated firms’ decisions in 50000 markets drawn from the ergodic distribution of the
state variables. Summary statistics computed over these simulated markets are reported in
Table 1. Increasing the value of the strategic interaction parameter considerably reduces
the average number of active firms, generating larger reductions in the probabilities of being
active for the firms with larger fixed costs. Interestingly, the effect on the number of entry
and exits is non-monotonic: these numbers are larger for the “mildly stable” and the “mildly
unstable” cases than the other two data generating processes.

Table 1: Competition statistics for the different data generating processes

Very stable Mildly stable Mildly unstable Very unstable

Number of active firms
Average 2.7652 1.9939 1.8451 1.2225
Std. dev. 1.6622 1.4320 1.3635 1.0024

AR(1) parameter for number of active firms 0.7070 0.5691 0.5300 0.3519
Average number of entries 0.6917 0.7473 0.7380 0.5492
Average number of exits 0.6933 0.7569 0.7448 0.5558
Average excess turnover 0.4600 0.5110 0.4972 0.2879
Correlation between entries and exits -0.1743 -0.2225 -0.2201 -0.1854
Probabilities of being active

Firm 1 0.4993 0.3222 0.2866 0.1239
Firm 2 0.5222 0.3552 0.3219 0.1457
Firm 3 0.5536 0.3975 0.3662 0.1871
Firm 4 0.5797 0.4363 0.4098 0.2689
Firm 5 0.6103 0.4827 0.4606 0.4968

Notes: Statistics computed using M = 50000 markets drawn from the ergodic distribution of the state variables. Excess turnover defined as
(# entries+# exits)− abs (# entries−# exits).

The equilibrium CCPs needed to generate the data solve the fixed point mapping in
(1) when the unobservable state variables follow the extreme value type 1 distribution. The
equilibrium CCPs can be found by using a built-in solver for a system of nonlinear equations.9

For all our data generating processes, we select the equilibrium that this solver returns when
we initialize it with a vector of CCPs equal to 0.5 for all players and states.

For each data generating process, we take a random sample ofM markets from the ergodic
distribution of the state variables, and use the equilibrium CCPs to generate firms’ entry/exit

9We used R’s BBSolve function with its default settings. Similar solvers can be found in other softwares.
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decisions in each market. We implement experiments with M = 400 and with M = 5000

markets. For each experiment, we draw 500 Monte Carlo samples.
In order to illustrate the theoretical results derived in previous sections, we compute

and compare estimates obtained from the NPL and the spectral algorithms. In particular,
we iterate both algorithms K = 100 times, regardless whether convergence is reached, and
study the properties of the sequences of estimates for various subsets of samples to separate
the different sources of bias identified in Propositions 2 and 3. Both the NPL and the
spectral algorithms were initialized with 5 different starting values, including the frequency
estimator10 of the CCPs as one of them. For a given algorithm, if different starting points
generate different estimates, then the solution with the highest value of the pseudo likelihood
is selected as the estimator using that algorithm.

The spectral approach estimator was implemented in two different ways. First, we con-
sidered a simple version using the spectral steplength proposed by La Cruz, Martinez, and
Raydan (2006), without their non-monotone line search. This version was used to reduce the
computational burden when comparing the sequence of estimates generated by the spectral
approach with the sequence generated by the NPL algorithm. Second, spectral estimates
are obtained using R’s BBSolve function (Varadhan and Gilbert, 2009) which incorporates
the non-monotone line search along with other safeguards. In each model specification (very
stable, mildly stable, mildly unstable, and very unstable) and each sample size considered,
the BBSolve algorithm only failed to converge in at most 0.4% Monte Carlo samples. Inter-
estingly, the estimates obtained from the simple version of the spectral approach coincided
with the more involved implementation never less than in 98.6% Monte Carlo samples.

6.2 Results

6.2.1 Comparing convergence

We first assess whether, upon convergence, the NPL and the spectral algorithms deliver the
NPL estimator. More precisely, for each Monte Carlo sample, we compute the fixed points
that maximize the log-likelihood for the converged NPL algorithm and the spectral solver.
We call the NPL estimator the estimates that correspond to the fixed point that maximizes
the log-likelihood across both estimators (i.e., the best log-likelihood). Then, we compare
the value of the log-likelihood function achieved by each estimator to this best log-likelihood.
We consider that an estimator has reached the NPL estimator if it delivers a value of the log-
likelihood function that is within 10−5 of the best log-likelihood. The results are reported in
Table 2. We find that whenever the spectral solver converges (which happens in at least 99.6%
of the samples in each experiment) it delivers the NPL estimator. Furthemore, whenever the
NPL algorithm converges (which happens almost always in the very stable case, but almost

10Estimated zeros and ones are respectively replaced with 10−10 and 1− 10−10.
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never in the very unstable case), it delivers the NPL estimator. Of course, one caveat of
defining the NPL estimator as we do is that we cannot rule out the case where none of
the estimators we consider actually finds the NPL fixed point that truly maximizes the log-
likelihood function. However, the nice properties of the spectral solver estimator that will be
presented below suggest that the spectral algorithm succeeds in finding the NPL estimator
in our simulation experiments.

Table 2: Convergence to the NPL estimator

Very stable Mildly stable Mildly unstable Very unstable
400 5K 400 5K 400 5K 400 5K

% NPL algorithm = NPL estimator 92.4 99.6 57.6 74.0 43.6 29.2 3.2 0.0
% Spectral solver = NPL estimator 100.0 99.8 100.0 99.6 99.8 100.0 99.6 99.6
% Both = NPL estimator 92.4 99.6 57.6 74.0 43.6 29.2 3.2 0.0

Notes: Percentages computed over 500 Monte Carlo samples. For each sample, the NPL estimates correspond to the fixed point of the
sample NPL mapping that maximizes the log-likelihood function among all fixed points found by the NPL algorithm and the spectral
solver. An estimator is deemed converging to the NPL estimator if it generates a value of the log-likelihood function that is within
10−5 of the NPL estimator’s log-likelihood.

Table 3: Sample stability and convergence

Very stable Mildly stable Mildly unstable Very unstable
400 5K 400 5K 400 5K 400 5K

Spectral radius < 1 95.8 99.6 63.8 88.2 50.0 47.0 4.6 0.0
% NPL algo converged 92.4 99.4 57.2 73.6 43.4 29.2 3.2 0.0
% NPL algo did not converged 3.4 0.2 6.6 14.6 6.6 17.8 1.4 0.0
% Spectral algo converged 95.2 99.6 63.6 87.6 49.6 46.8 4.6 0.0
% Spectral algo did not converged 0.6 0.0 0.2 0.6 0.4 0.2 0.0 0.0

Spectral radius ≥ 1 4.2 0.2 36.2 11.4 49.8 53.0 95.0 99.6
% NPL algo converged 0.0 0.2 0.4 0.4 0.2 0.0 0.0 0.0
% NPL algo did not converged 4.2 0.0 35.8 11.0 49.6 53.0 95.0 99.6
% Spectral algo converged 4.2 0.2 35.2 10.8 49.8 52.8 94.8 99.2
% Spectral algo did not converged 0.0 0.0 1.0 0.6 0.0 0.2 0.2 0.4

Spectral solver did not converge 0.0 0.2 0.0 0.4 0.2 0.0 0.4 0.4

Notes: Percentages computed over 500 Monte Carlo samples. “Spectral radius” refers to ρ̂NPL. The NPL and spectral algorithms are
deemed having converged if max

{∣∣∣θ̂100 − θ̂99∣∣∣} < 10−5.

In Table 3, we compare the convergence frequencies of the NPL and the spectral algo-
rithms, broken down with respect to the value of the spectral radius of the Jacobian of the
sample NPL mapping evaluated at P̂NPL.11 For both algorithms, we generated a sequence of
K = 100 estimates and we consider the sequence to have converged if max

{∣∣∣θ̂100 − θ̂99

∣∣∣} <
10−5. The simulation results provide evidence supporting that the convergence properties of
the NPL algorithm iterated in fixed samples are driven by the spectral radius of the sample

11Given our results in Table 2, the spectral solver estimates are used as P̂NPL.
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NPL mapping evaluated at the NPL estimator. In fact, the fraction of samples for which the
NPL algorithm fails to converge and the share of ρ̂NPL being greater than 1 both increase
when the data generating process is further from being stable. When the data generating
process is “mildly stable”, the NPL algorithm is more likely to converge and ρ̂NPL is more
likely to be smaller than 1 in larger samples. One may notice that relatively large fractions of
Monte Carlo samples are such that the NPL algorithm fails to converge at K = 100 despite
ρ̂NPL < 1. However, further investigation of these cases showed that the K = 99 and the
K = 100 estimates are actually very close to each other (exactly the same up to the second
decimal for all parameters) despite not satisfying the convergence criterion. Interestingly,
these estimates are also associated with values of sample spectral radius that are relatively
close to 1 (greater than 0.9 on average).

In Propositions 2 and 3, we highlighted two potential sources of bias for the estimates
obtained from the converged NPL algorithm. On one hand, Proposition 2 implies that the
NPL algorithm could converge to an inconsistent estimator when ρ̂NPL ≥ 1. This would
be the case if there exist some stable fixed points of the sample NPL mapping in addition
to the unstable NPL fixed points defining the NPL estimator. According to Table 3, the
NPL algorithm almost never converges when ρ̂NPL ≥ 1. It follows that convergence to an
inconsistent estimator is unlikely to be a convincing explanation of the properties of the
NPL algorithm estimates in our experiments. On the other hand, Proposition 3 suggests
that the converged NPL algorithm sequences represent a selected subset of sequences that
may have properties that differ from those of the NPL estimator. Table 3 shows that the
NPL algorithm does not converge in a non-negligeable share of samples even when the data
generating process is stable – 25.6% in the mildly stable case with M = 5000 – and it does
converge in a non-negligeable proportion of samples when the population is unstable – 29.2%
in the mildly unstable case with M = 5000. It seems that convergence selection is a suitable
candidate to explain how the NPL algorithm estimator may differ from the consistent NPL
estimator.

In order to appreciate how the distribution of ρ̂NPL varies with ρ0 we drew boxplots of
ρ̂NPL from 50 Monte Carlo samples of M = 400 markets for the same grid of data generating
processes as in Figure 1. The results, which provide evidence supporting Lemma 3, are
summarized in Figure 2.12 As expected, ρ̂NPL < 1 is a more likely event in more stable data
generating processes. Once again, it is worth emphasizing that a large fraction of the sample
spectral radii can be on both sides of 1 when the data generating process is close to the
stability cut-off.

An important feature of the spectral algorithm that is observable from Table 3 is that it
almost always converges, regardless of the data generating process and the value of the sample

12For θRN = 1.4, there was a value of ρ̂NPL which was close to 6. We dropped this outlier when drawing
Figure 2 to make the figure easier to read.
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Figure 2: Boxplots of sample spectral radii at NPL estimates – M = 400

spectral radius. This observation confirms the importance of separating the properties of the
NPL estimator itself from the properties of the NPL algorithm. The definition of the NPL
estimator does not depend on the stability of the sample NPL fixed point: it exists even if
the NPL algorithm may fail to deliver it.

6.2.2 Average estimates and standard errors

Tables 4 and 5 report the averages and standard errors for five estimators of interest, re-
spectively for M = 400 and M = 5000, which are used to illustrate Propositions 2 and 3.
First of all, both for the NPL and the spectral algorithms, we report the properties of the
estimates obtained at K = 100 regardless whether the sequence of estimates has converged or
not. Such estimators always exist, but their properties may be negatively affected by the fact
that they contain estimates obtained from non-converging sequences. Then, we report the
properties of the estimates obtained from the converged NPL algorithm – where a sequence
is deemed having converged at K = 100 if max

{∣∣∣θ̂100 − θ̂99

∣∣∣} < 10−5 – and the spectral
solver. Finally, we consider a conditional estimator which corresponds to the K = 100 NPL
algorithm estimator when the spectral radius of the Jacobian of the sample NPL mapping
at the estimates obtained from the spectral solver is smaller than 1.

We find that restricting the NPL algorithm’s estimates to converged sequences can intro-
duce a substantial bias. What’s more, notice that none of the sequences converged in the
“very unstable” case with M = 5000. However, the results are much more encouraging for
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Table 4: Simulation results – M = 400

θRS = 1 θRN θEC = 1 θFC,1 = 1.9 θFC,2 = 1.8 θFC,3 = 1.7 θFC,4 = 1.6 θFC,5 = 1.5

All K = 100 NPL algorithm estimates

Very stable (θRN = 1) 1.0355 1.0882 0.9990 1.9058 1.8206 1.7124 1.6076 1.5156
(0.2217) (0.6761) (0.1177) (0.2304) (0.2313) (0.2181) (0.2055) (0.1998)

Mildly stable (θRN = 2) 0.9603 1.8406 1.0181 1.9082 1.8046 1.7043 1.6004 1.4957
(0.1953) (0.6930) (0.1098) (0.2218) (0.2130) (0.2062) (0.2069) (0.2059)

Mildly unstable (θRN = 2.4) 0.9154 2.0475 1.0476 1.8998 1.7899 1.6834 1.5802 1.4721
(0.1640) (0.6134) (0.1133) (0.2291) (0.2165) (0.2100) (0.2077) (0.2083)

Very unstable (θRN = 4) 0.7892 2.7388 1.2489 1.9232 1.8002 1.6744 1.5110 1.2762
(0.0869) (0.2833) (0.1105) (0.2769) (0.2620) (0.2491) (0.2426) (0.2311)

All K = 100 spectral algorithm estimates

Very stable (θRN = 1) 1.0416 1.1071 0.9973 1.9043 1.8192 1.7113 1.6064 1.5148
(0.2377) (0.7264) (0.1204) (0.2328) (0.2337) (0.2205) (0.2075) (0.2014)

Mildly stable (θRN = 2) 1.0308 2.0941 0.9869 1.9209 1.8212 1.7240 1.6244 1.5258
(0.2922) (1.0461) (0.1383) (0.2300) (0.2220) (0.2189) (0.2232) (0.2269)

Mildly unstable (θRN = 2.4) 1.0135 2.4333 0.9951 1.9230 1.8200 1.7192 1.6218 1.5230
(0.2722) (1.0528) (0.1509) (0.2416) (0.2318) (0.2289) (0.2335) (0.2429)

Very unstable (θRN = 4) 0.9818 3.8546 1.0316 1.9337 1.8250 1.7229 1.6106 1.4913
(0.1591) (0.7949) (0.1793) (0.3046) (0.2882) (0.2769) (0.2762) (0.2989)

Converged K = 100 NPL algorithm estimates

Very stable (θRN = 1) 1.0038 0.9891 1.0047 1.9186 1.8331 1.7238 1.6151 1.5231
(0.1949) (0.5923) (0.1156) (0.2250) (0.2224) (0.2101) (0.1999) (0.1935)

Mildly stable (θRN = 2) 0.8339 1.3737 1.0547 1.9126 1.8124 1.6974 1.5849 1.4729
(0.1503) (0.5272) (0.1094) (0.2081) (0.1928) (0.1882) (0.1915) (0.1876)

Mildly unstable (θRN = 2.4) 0.7677 1.4587 1.0974 1.9062 1.7887 1.6723 1.5512 1.4282
(0.1246) (0.4646) (0.1132) (0.2113) (0.1932) (0.1841) (0.1855) (0.1883)

Very unstable (θRN = 4) 0.6444 1.8959 1.3416 2.0073 1.8728 1.6933 1.4787 1.1595
(0.0930) (0.2967) (0.1131) (0.2946) (0.3246) (0.2873) (0.2853) (0.2722)

Spectral solver estimates

Very stable (θRN = 1) 1.0416 1.1071 0.9973 1.9043 1.8192 1.7113 1.6064 1.5148
(0.2377) (0.7264) (0.1204) (0.2328) (0.2337) (0.2205) (0.2075) (0.2014)

Mildly Stable (θRN = 2) 1.0308 2.0941 0.9869 1.9209 1.8212 1.7240 1.6244 1.5258
(0.2922) (1.0461) (0.1383) (0.2300) (0.2220) (0.2189) (0.2232) (0.2269)

Mildly Unstable (θRN = 2.4) 1.0135 2.4331 0.9953 1.9228 1.8199 1.7190 1.6217 1.5231
(0.2725) (1.0539) (0.1510) (0.2418) (0.2320) (0.2291) (0.2338) (0.2432)

Very unstable (θRN = 4) 0.9813 3.8541 1.0320 1.9315 1.8235 1.7213 1.6089 1.4898
(0.1592) (0.7964) (0.1796) (0.3031) (0.2878) (0.2763) (0.2754) (0.2987)

Conditional estimator

Very stable (θRN = 1) 1.0161 1.0269 1.0047 1.9148 1.8295 1.7214 1.6139 1.5212
(0.2050) (0.6224) (0.1150) (0.2252) (0.2231) (0.2104) (0.1997) (0.1935)

Mildly stable (θRN = 2) 0.8575 1.4615 1.0470 1.9133 1.8112 1.6974 1.5867 1.4753
(0.1614) (0.5667) (0.1105) (0.2165) (0.1995) (0.1950) (0.1985) (0.1944)

Mildly unstable (θRN = 2.4) 0.7935 1.5634 1.0880 1.9051 1.7896 1.6743 1.5550 1.4332
(0.1364) (0.5106) (0.1148) (0.2132) (0.1946) (0.1856) (0.1879) (0.1892)

Very unstable (θRN = 4) 0.6577 2.0094 1.3414 2.0072 1.8501 1.6777 1.4751 1.1581
(0.0831) (0.3030) (0.1052) (0.2638) (0.2829) (0.2564) (0.2502) (0.2308)

Notes: Averages and standard errors (in brackets) computed over 500 Monte Carlo samples. The K = 100 NPL algorithm is deemed having converged
if max

{∣∣∣θ̂100 − θ̂99∣∣∣} < 10−5. The conditional estimator is defined as the K = 100 NPL algorithm estimates provided that ρ̂NPL < 1 with P̂NPL

computed using the spectral solver.

30



Table 5: Simulation results – M = 5000

θRS = 1 θRN θEC = 1 θFC,1 = 1.9 θFC,2 = 1.8 θFC,3 = 1.7 θFC,4 = 1.6 θFC,5 = 1.5

All K = 100 NPL algorithm estimates

Very stable (θRN = 1) 1.0032 1.0086 1.0007 1.9010 1.8019 1.7016 1.6012 1.5004
(0.0659) (0.2052) (0.0355) (0.0661) (0.0664) (0.0642) (0.0600) (0.0582)

Mildly stable (θRN = 2) 0.9963 1.9875 1.0038 1.9005 1.7990 1.7010 1.5988 1.4994
(0.0806) (0.2944) (0.0387) (0.0661) (0.0664) (0.0622) (0.0625) (0.0647)

Mildly unstable (θRN = 2.4) 0.9696 2.2761 1.0123 1.8991 1.7949 1.6953 1.5947 1.4954
(0.0508) (0.1927) (0.0353) (0.0699) (0.0685) (0.0661) (0.0666) (0.0681)

Very unstable (θRN = 4) 0.7667 2.6684 1.2213 1.8942 1.7736 1.6647 1.4770 1.2901
(0.0240) (0.0603) (0.0338) (0.0820) (0.0791) (0.0760) (0.0744) (0.0678)

All K = 100 spectral algorithm estimates

Very stable (θRN = 1) 1.0032 1.0086 1.0007 1.9010 1.8019 1.7016 1.6012 1.5004
(0.0659) (0.2052) (0.0355) (0.0661) (0.0664) (0.0642) (0.0600) (0.0582)

Mildly stable (θRN = 2) 0.9990 1.9970 1.0029 1.9010 1.7996 1.7016 1.5993 1.4997
(0.0853) (0.3117) (0.0399) (0.0661) (0.0665) (0.0624) (0.0628) (0.0650)

Mildly unstable (θRN = 2.4) 1.0035 2.4121 0.9991 1.9049 1.8027 1.7042 1.6037 1.5034
(0.0886) (0.3486) (0.0465) (0.0708) (0.0707) (0.0689) (0.0706) (0.0736)

Very unstable (θRN = 4) 0.9993 3.9922 1.0025 1.9046 1.8019 1.7036 1.6020 1.5008
(0.0432) (0.2132) (0.0497) (0.0913) (0.0882) (0.0852) (0.0838) (0.0880)

Converged K = 100 NPL algorithm estimates

Very stable (θRN = 1) 1.0030 1.0079 1.0008 1.9011 1.8020 1.7017 1.6013 1.5004
(0.0659) (0.2053) (0.0355) (0.0662) (0.0665) (0.0643) (0.0601) (0.0583)

Mildly stable (θRN = 2) 0.9665 1.8753 1.0143 1.9037 1.7999 1.7004 1.5958 1.4931
(0.0658) (0.2374) (0.0350) (0.0634) (0.0647) (0.0590) (0.0602) (0.0609)

Mildly unstable (θRN = 2.4) 0.9069 2.0172 1.0402 1.9066 1.7977 1.6918 1.5840 1.4715
(0.0408) (0.1508) (0.0333) (0.0650) (0.0629) (0.0641) (0.0621) (0.0636)

Very unstable (θRN = 4) – – – – – – – –
(–) (–) (–) (–) (–) (–) (–) (–)

Spectral solver estimates

Very stable (θRN = 1) 1.0031 1.0082 1.0008 1.9011 1.8019 1.7017 1.6013 1.5004
(0.0659) (0.2052) (0.0355) (0.0661) (0.0664) (0.0643) (0.0600) (0.0583)

Mildly stable (θRN = 2) 0.9990 1.9972 1.0029 1.9011 1.7998 1.7017 1.5994 1.4998
(0.0854) (0.3122) (0.0400) (0.0661) (0.0665) (0.0625) (0.0629) (0.0651)

Mildly unstable (θRN = 2.4) 1.0035 2.4121 0.9991 1.9049 1.8027 1.7042 1.6037 1.5034
(0.0886) (0.3486) (0.0465) (0.0708) (0.0701) (0.0689) (0.0706) (0.0736)

Very unstable (θRN = 4) 0.9993 3.9918 1.0025 1.9046 1.8018 1.7035 1.6018 1.5006
(0.0431) (0.2131) (0.0498) (0.0913) (0.0882) (0.0851) (0.0836) (0.0877)

Conditional estimator

Very stable (θRN = 1) 1.0030 1.0081 1.0008 1.9009 1.8019 1.7015 1.6012 1.5003
(0.0659) (0.2054) (0.0355) (0.0662) (0.0665) (0.0642) (0.0600) (0.0582)

Mildly stable (θRN = 2) 0.9995 1.9992 1.0026 1.9009 1.7995 1.7016 1.5994 1.4996
(0.0850) (0.3109) (0.0397) (0.0662) (0.0665) (0.0625) (0.0627) (0.0650)

Mildly unstable (θRN = 2.4) 0.9308 2.1205 1.0292 1.9027 1.7950 1.6911 1.5851 1.4751
(0.0467) (0.1810) (0.0341) (0.0670) (0.0649) (0.0637) (0.0632) (0.0635)

Very unstable (θRN = 4) – – – – – – – –
(–) (–) (–) (–) (–) (–) (–) (–)

Notes: Averages and standard errors (in brackets) computed over 500 Monte Carlo samples. The K = 100 NPL algorithm is deemed having converged
if max

{∣∣∣θ̂100 − θ̂99∣∣∣} < 10−5. The conditional estimator is defined as the K = 100 NPL algorithm estimates provided that ρ̂NPL < 1 with P̂NPL

computed using the spectral solver.
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the converged NPL algorithm estimates in the “very stable” data generating process. To the
best of our knowledge, this case had not been previously considered in the literature. The
inclusion of this data generating process in our simulation study serves two purposes. First,
it provides a setting where estimates obtained from the converged NPL algorithm do have
nice properties. Second, by comparing the results from the “very stable” and the “mildly sta-
ble” cases, it is obvious that the properties of the converged NPL algorithm estimator vary
within the category of stable data generating processes, with more stable equilibria being
more suitable for this estimator. While this insight is quite intuitive, the current simulation
exercise seems to be the first one to make this point.

Interestingly, except in the “very stable” case, one typically improves upon the properties
of the NPL algorithm estimator by considering any sequence of estimates, regardless whether
it converged, instead of focusing on converged ones. We are not aware of existing work in
the literature that has made this comparison. This feature of the NPL algorithm is related
to the convergence selection exposed in Proposition 3.

For most cases, the spectral approach estimator has nice properties as one expects from
the frequency at which this approach delivers the NPL estimator. In particular, it has much
better properties than the NPL algorithm estimator when the equilibrium generating the
data is not stable. This observation is coherent with the fact that the NPL estimator should
be consistent even if stability of the sample NPL mapping fails at the NPL estimates.

The convergence selection bias from Proposition 3 is also clearly apparent in the results
from the conditional estimator. Table 3 has already showed that fewer sequences of the NPL
algorithm actually converge as data generating processes become less stable. Tables 4 and
5 further suggest that the few selected samples used to construct the conditional estimator
in unstable cases lead to biased estimates. In other words, samples generating converging
sequences for the NPL algorithm in unstable data generating processes can be quite different
from the samples in which the NPL algorithm fails to converge.

6.2.3 Distribution of estimates

In order to appreciate the properties of the K = 100 NPL algorithm estimator and the NPL
estimator obtained via the spectral solver, we now compare the full distributions of estimates
obtained from the 500 Monte Carlo samples. Since the strategic interaction parameter θRN

is the most problematic one according to the results presented in Tables 4 and 5, we focus
our attention on this parameter.13

We first consider Figure 3, which compares the histograms of θ̂RN−θ0
RN obtained from the

converged K = 100 NPL algorithm estimates with the spectral solver’s estimates. Sizeable
differences appear between the distributions of the two estimators as the data generating
process becomes less stable. In fact, while the distributions are practically identical for the

13Similar distributions for all other parameters are available from the authors upon request.
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“very stable” case, the distribution of the converged NPL algorithm estimates does not even
exist in the “very unstable” case with M = 5000 since none of the sequences converged.
Furthermore, sample size does affect the level of similitude between distributions. While
the distributions are still quite similar in the “mildly stable” data generating process with
M = 5000, they are already quite different with M = 400.

The distribution of the spectral approach estimator is roughly normal (perhaps a bit
skewed in smaller samples) and centered close to the true value of the parameter. This
observation is coherent with the properties of the NPL estimator repeated in Proposition
1. However, the distributions of the converged NPL algorithm estimates tend to be shifted
away from the true value in more unstable cases and look like truncated normals. Such
a truncation is consistent with Proposition 3. The direction of the truncation is also as
expected. Converging sequences of the NPL algorithm tend to be associated with smaller
values of the estimated strategic interaction parameter. A similar finding was noted by
Mogensen (2015). This pattern is not surprising given the spectral radii reported in Figure
1. It also offers an obvious explanation for the direction of the bias associated with the
NPL algorithm estimator restricted to converging sequences and the conditional estimator:
since converging sequences typically lead to smaller values of estimated strategic interaction
parameters, the convergence selection implies an attenuation bias.

Histograms in Figure 4 split the distributions of spectral solver estimates according to
the values of ρ̂NPL. It emphasizes that the NPL estimator exists regardless the stability
of the sample NPL fixed point defining the NPL estimator. As expected from Figure 3,
ρ̂NPL ≥ 1 becomes more frequent as the data generating process is less stable. Once again,
there are noticeable truncations in the distributions conditional on ρ̂NPL < 1, as predicted by
Proposition 3.

7 Concluding remarks

There are multiple reasons why structural econometricians want to impose the equilibrium
restrictions of their models when estimating structural parameters: efficiency, reduction of
finite sample bias, and using estimates of choice probabilities – and of other endogeneous
objects – that are perfectly comparable with those obtained in counterfactual experiments.
Imposing these equilibrium restrictions requires researchers to go beyond simple two-step
estimators.

In the estimation of dynamic discrete games, the existing algorithms that impose the
model equilibrium restrictions – NFXP, NPL, MPEC, and their variations – have different
merits and limitations. As a quasi-Newton algorithm, MPEC guarantees local convergence
to the consistent estimator, but it requires the repeated computation of high-dimensional
Jacobian matrices at each iteration of the algorithm. In contrast, the NPL algorithm does

35



not involve the computation of these Jacobian matrices. However, since the NPL algorithm
uses fixed point iterations, it requires some stability conditions to converge. Simulation
evidence has shown that convergence may fail even if the stability conditions are satisfied at
the population level. One solution to by-pass these convergence issues would be to propose
a Newton-Kantorovich version of the NPL algorithm. Such an algorithm would satisfy local
convergence, but it would involve – as the MPEC algorithm – the repeated computation of
high-dimensional Jacobian matrices.

This paper has two main contributions. First, we investigate the reasons and the im-
plications of the lack of convergence of the NPL algorithm. We show that the randomness
in the sample NPL mapping – used to update the CCPs – is the culprit. While typically
ignored in existing asymptotic studies of the properties of the NPL algorithm, the role of
this sample randomness is made obvious when considering that the NPL algorithm is, in
practice, iterated in fixed samples. Randomness of the NPL mapping is more likely to hinder
convergence if the data generating process is stable, but close to being unstable, especially
in samples of modest sizes.

We show that any data generating process – any population – always has a strictly
positive probability to generate samples where the algorithm does not converge, as well
as samples where the algorithm does converge. We show that the samples for which the
algorithm converges are different in a particular and substantial way. This difference generates
a convergence selection bias in this type of estimation algorithms. We characterize the nature
of this bias and show in Monte Carlo experiments that it can be substantial. This selection
bias is more serious when the data generating process is either “mildly stable” or “mildly
unstable”. Furthermore, it has a particularly important impact on the structural parameters
that capture strategic interactions or competition effects: the estimates of these parameters
are biased towards zero. Intuitively, the algorithm converges only for samples consistent with
weaker strategic interactions, and this introduces an attenuation bias in the estimation of
these strategic parameters.

Second, we propose and implement a spectral algorithm to obtain the NPL estimator.
This algorithm has advantages relative to the NPL and the MPEC algorithms. Compared
to NPL, the spectral algorithm satisfies local convergence to the consistent estimator. And
in contrast to the MPEC algorithm, it does not require the calculation of high-dimensional
Jacobian matrices. Furthermore, the dimensionality of the spectral approach’s optimization
problem is smaller than the MPEC method – which searches over the joint spaces of CCPs,
Lagrange multipliers and structural parameters.
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Appendix A Proofs

A.1 Proof of Lemma 1

By definition of the NPL mapping:

√
M
(
φ̂ (P)− φ0 (P)

)
= −
√
M
(
Ψ
(
θ̂ (P) ,P

)
−Ψ

(
θ0 (P) ,P

))
(23)

and is therefore, given P, a continuous nonlinear transformation of a maximum likelihood
estimator. A standard delta method argument gives the multivariate normal distribution of
Z (P) stated in Lemma 1.

A.2 Proof of Proposition 1

Consider a first-order expansion of φ̂
(
P̂NPL

)
around P0:

φ̂
(
P̂NPL

)
= φ̂

(
P0
)

+ Oφ̂(P0)

(
P̂NPL −P0

)
+Op

(∥∥∥P̂NPL −P0
∥∥∥2
)
. (24)

Suppose that Oφ0
(P0) is invertible. Rearranging (24) and noting that φ̂

(
P̂NPL

)
= φ0 (P0) = 0

as well as
{
Oφ̂(P0) − Oφ0

(P0)

}(
P̂NPL −P0

)
≤ Op

(∥∥∥P̂NPL −P0
∥∥∥2
)

give:

P̂NPL −P0 = −
[
Oφ0

(P0)

]−1
{
φ̂
(
P0
)
− φ0

(
P0
)}

+Op

(∥∥∥P̂NPL −P0
∥∥∥2
)

(25)

as stated in Proposition 1 (after multiplying by
√
M).

Consider the following Taylor expansion of OθQ̂(θ̂NPL,P̂NPL) = 0 around θ0 and P0:

0 =OθQ̂(θ0,P0) + O2
θθQ̂(θ0,P0)

(
θ̂NPL − θ0

)
+ O2

θPQ̂(θ0,P0)

(
P̂NPL −P0

)
+Op

(∥∥∥P̂NPL −P0
∥∥∥2
)
.

(26)

Notice that O2
θθQ̂(θ0,P0)−O2

θθQ
0

(θ0,P0)
= Op

(
M−1/2

)
and that O2

θPQ̂(θ0,P0)−O2
θPQ

0

(θ0,P0)
=

Op

(
M−1/2

)
. Furthermore, one can write:

OθQ̂(θ0,P0) =
∑
x,y

P (y|x)

P 0 (y|x)

∂Ψ (y|x,θ,P)

∂θ

∣∣∣∣
(θ0,P0)

= OθΨ
′
(θ0,P0)D

0
P (27)

OθQ
0

(θ0,P0) =
∑
x,y

P 0 (y|x)

P 0 (y|x)

∂Ψ (y|x,θ,P)

∂θ

∣∣∣∣
(θ0,P0)

= OθΨ
′
(θ0,P0)D

0P0 = 0. (28)

Therefore, (26) becomes:
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0 =OθΨ
′
(θ0,P0)D

0
(
P−P0

)
+ O2

θθQ
0

(θ0,P0)

(
θ̂NPL − θ0

)
+ O2

θPQ
0

(θ0,P0)

(
P̂NPL −P0

)
+Op

(∥∥∥P̂NPL −P0
∥∥∥2
)
.

(29)

Solving for θ̂NPL − θ0, provided that O2
θθQ

0

(θ0,P0)
is invertible, one gets:

θ̂NPL − θ0 =−
[
O2
θθQ

0

(θ0,P0)

]−1 {
O2
θPQ

0

(θ0,P0)

(
P̂NPL −P0

)
+ OθΨ

′
(θ0,P0)D

0
(
P−P0

)}
+Op

(∥∥∥P̂NPL −P0
∥∥∥2
)

(30)

as stated in Lemma 1 (after multiplying by
√
M).

A.3 Proof of Lemma 2

We first show that:

θ̂k − θ̂∗ = −
[
O2
θθQ̂(θ̂∗,P̂∗)

]−1

O2
θPQ̂(θ̂∗,P̂∗)

(
P̂k−1 − P̂∗

)
+O

(∥∥∥P̂k−1 − P̂∗

∥∥∥2
)

(31)

and

P̂k − P̂∗ = Oϕ̂(P̂∗)

(
P̂k−1 − P̂∗

)
+O

(∥∥∥P̂k−1 − P̂∗

∥∥∥2
)
. (32)

The k-th step of the NPL algorithm satisfies:

OθQ̂(θ̂k,P̂k−1) = 0 (33)

and

P̂k = Ψ
(
θ̂k, P̂k−1

)
. (34)

Consider a Taylor expansion of (33) around
(
θ̂∗, P̂∗

)
. Noting that OθQ̂(θ̂∗,P̂∗) = 0:

0 = O2
θθQ̂(θ̂∗,P̂∗)

(
θ̂k − θ̂∗

)
+ O2

θPQ̂(θ̂∗,P̂∗)

(
P̂k−1 − P̂∗

)
+O

(∥∥∥P̂k−1 − P̂∗

∥∥∥2
)
. (35)

Solving for θ̂k − θ̂∗ and assuming that O2
θθQ̂(θ̂∗,P̂∗) is invertible, one gets (31).
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Consider now a Taylor expansion of (34) around
(
θ̂∗, P̂∗

)
. Noting that P̂∗ = Ψ

(
θ̂∗, P̂∗

)
:

P̂k − P̂∗ = OθΨ(θ̂∗,P̂∗)

(
θ̂k − θ̂∗

)
+ OPΨ(θ̂∗,P̂∗)

(
P̂k−1 − P̂∗

)
+O

(∥∥∥P̂k−1 − P̂∗

∥∥∥2
)
. (36)

By plugging (31) in (36):

P̂k − P̂∗ =

{
OPΨ(θ̂∗,P̂∗) − OθΨ(θ̂∗,P̂∗)

[
O2
θθQ̂(θ̂∗,P̂∗)

]−1

O2
θPQ̂(θ̂∗,P̂∗)

}(
P̂k−1 − P̂∗

)
+O

(∥∥∥P̂k−1 − P̂∗

∥∥∥2
)
.

(37)

Showing that Oϕ̂(P̂∗) = OPΨ(θ̂∗,P̂∗) − OθΨ(θ̂∗,P̂∗)

[
O2
θθQ̂(θ̂∗,P̂∗)

]−1

O2
θPQ̂(θ̂∗,P̂∗) would

deliver the desired expression in (32). Note that:

Oϕ̂(P) = OPΨ(θ̂(P),P) + OθΨ(θ̂(P),P)Oθ̂(P) (38)

where Oθ̂(P), which is the Jacobian of θ̂(P) evaluated at P, is implicitly defined by the
Jacobian OθQ̂(θ̂(P),P) = 0. Taking the derivative with respect to P, one gets:

O2
θPQ̂(θ̂(P),P) + O2

θθQ̂(θ̂(P),P)Oθ̂(P) = 0 (39)

which, after rearranging gives Oθ̂(P) = −
[
O2
θθQ̂(θ̂(P),P)

]−1

O2
θPQ̂(θ̂(P),P). Substituting in

(38) and evaluating at the NPL fixed point gives the expression of Oϕ̂(P̂∗). Given the
expression in (32), a recursive substitution gives:

P̂K − P̂∗ =
[
Oϕ̂(P̂∗)

]K (
P̂0 − P̂∗

)
+Op

(
max

k∈{0,1,2,...,K−1}

[
Oϕ̂(P̂∗)

]k ∥∥∥P̂K−1−k − P̂∗

∥∥∥2
)

(40)

Suppose that ρ
(
Oϕ̂(P̂∗)

)
< 1. Then, limK→∞

∥∥∥P̂K − P̂∗

∥∥∥ = 0 provided that P̂0 ∈ N
(
P̂∗

)
.

A.4 Proof of Lemma 3

Some notation must be introduced. Let OPρ
0
(P0) be the derivative of ρ

(
Oϕ0

(P)

)
with respect

to P evaluated at P0. Furthermore, let Oρ0
(P0) be the derivative of ρ

(
Oϕ0

(P)

)
with respect

to the elements of Oϕ0
(P) evaluated at P0. Since ρ

(
Oϕ0

(P)

)
is a composition, we can write

OPρ
0
(P0) = Oρ0

(P0) ◦ O2ϕ0
(P0) where O2ϕ0

(P0) is the matrix of the second-order derivatives of
ϕ0 (P) with respect to P, evaluated at P0. For a given P and some arbitrary function θ (P),
we can write the derivative of Ψ (θ (P) ,P) with respect to P evaluated at (θ (P) ,P) as:
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OΨ(θ(P),P) = OPΨ(θ(P),P) + OθΨ(θ(P),P)Oθ(P). (41)

Using this notation, Oϕ̂(P) = OΨ(θ̂(P),P) and Oϕ0
(P) = OΨ(θ0(P),P). Finally, let O

2
jΨ(θ0(P0),P0)

be the derivative of OΨ(θ(P),P) with respect to the j-th element of the J-dimensional vector
θ evaluated at

(
θ0 (P0) ,P0

)
.

The random variable
√
M (ρ̂NPL − ρ0) is equivalent to:

√
M
(
ρ̂NPL − ρ0

)
=
√
M
(
ρ̂NPL − ρ

(
Oϕ̂(P0)

))
+
√
M
(
ρ
(
Oϕ̂(P0)

)
− ρ0

)
. (42)

First, consider
√
M
(
ρ̂NPL − ρ

(
Oϕ̂(P0)

))
. A standard delta method argument implies that:

√
M
(
ρ̂NPL − ρ

(
Oϕ̂(P0)

))
= OPρ

0
(P0)

′√
M
(
P̂NPL −P0

)
+Op

(√
M
∥∥∥P̂NPL −P0

∥∥∥2
)
. (43)

Using Proposition 1, we have that:

√
M
(
ρ̂NPL − ρ

(
Oϕ̂(P0)

)) d→ −OPρ
0
(P0)

′ [
Oφ0

(P0)

]−1
Z
(
P0
)
. (44)

Second, consider
√
M
(
ρ
(
Oϕ̂(P0)

)
− ρ0

)
. By a standard delta method argument:

√
M
(
ρ
(
Oϕ̂(P0)

)
− ρ0

)
=vec

[
Oρ0

(P0)

]′
vec
[√

M
(
Oϕ̂(P0) − Oϕ0

(P0)

)]
+Op

(√
M
∥∥∥Oϕ̂(P0) − Oϕ0

(P0)

∥∥∥2
)
.

(45)

Assuming that OΨ(θ(P),P) is continuous in θ (P), once again using the delta method leads to:

√
M
(
Oϕ̂(P) − Oϕ0

(P)

)
=

J∑
j=1

O2
jΨ(θ0(P),P)

√
M
(
θ̂j (P)− θ0

j (P)
)

+Op

(√
M
∥∥∥(θ̂ (P)− θ0 (P)

)∥∥∥2
)
.

(46)

Then, considering P = P0:

√
M
(
Oϕ̂(P0) − Oϕ0

(P0)

)
d→

J∑
j=1

O2
jΨ(θ0(P0),P0)Lj

(
P0
)
. (47)

Let G0 ≡ −OPρ
0
(P0)

′ [Oφ0
(P0)

]−1 and:

J0 ≡ vec
[
Oρ0

(P0)

]′ [
vec
[
O2

1Ψ(θ0(P0),P0)

]
, . . . , vec

[
O2

JΨ(θ0(P0),P0)

]]
. (48)
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By combining equations (42), (44) and (47), we obtain:

√
M
(
ρ̂NPL − ρ0

) d→ G0Z
(
P0
)

+ J0L
(
P0
)

(49)

as required. Since L (P0) and Z (P0) are normally distributed and centered at vectors of 0’s,
we conclude that

√
M (ρ̂NPL − ρ0) follows a normal distribution centered at 0.

A.5 Proof of Proposition 2

Under the conditions of Proposition 2, we have that for K > K̄:

√
M
(
θ̂K − θ0

)
=
√
M
(
θ̂NPL − θ0

)
+ 1 {ρ̂NPL ≥ 1}

√
M
(
θ̂∗ − θ̂NPL

)
. (50)

Therefore, as M →∞:

√
M
(
θ̂K − θ0

)
d→


√
M
(
θ̂NPL − θ0

)
if ρ̂NPL < 1

√
M
(
θ̂NPL − θ0

)
+ W∗ if ρ̂NPL ≥ 1

(51)

Finally, the result follows by applying Lemma 3.

A.6 Proof of Proposition 3

Under the conditions stated in Proposition 3, we have that any well-defined NPL algorithm
estimator satisfies θ̂K = θ̃NPL and

√
M
(
θ̂K − θ0

)
=
√
M
(
θ̃NPL − θ0

)
. By definition:

√
M
(
θ̃NPL − θ0

)
=


√
M
(
θ̂NPL − θ0

)
if
√
M (ρ̂NPL − ρ0) <

√
M (1− ρ0)

is not well defined if
√
M (ρ̂NPL − ρ0) ≥

√
M (1− ρ0)

(52)

which corresponds to a truncated distribution. As M →∞, the asymptotic distributions of√
M
(
θ̂NPL − θ0

)
and
√
M (ρ̂NPL − ρ0) are given in Proposition 1 and in Lemma 3.
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