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Abstract

We study issue-by-issue voting and robust mechanism design in multidimensional

frameworks where privately informed agents have preferences induced by general norms.

We uncover the deep connections between dominant strategy incentive compatibility

(DIC) on the one hand, and several geometric/functional analytic concepts on the other.

Our main results are: 1) Marginal medians are DIC if and only if they are calculated

with respect to coordinates defined by a basis such that the norm is orthant-monotonic

in the associated coordinate system. 2) Equivalently, marginal medians are DIC if and

only if they are computed with respect to a basis such that, for any vector in the basis,

any linear combination of the other vectors is Birkhoff-James orthogonal to it. 3) We

show how semi-inner products and normality provide an analytic method that can be

used to find all DIC marginal medians. 4) As an application, we derive all DIC marginal

medians for lp spaces of any finite dimension, and show that they do not depend on p

(unless p = 2).

1 Introduction

We analyze a canonical social choice/mechanism design problem where several privately

informed agents take a multidimensional, collective decision. The main results identify the

particular issues that can be put to vote in order to obtain robust mechanisms when issue-

by-issue voting by (possibly qualified) majority is used to determined the outcome of the
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collective choice. Issue-by-issue voting by majority yields as outcome the issue-by-issue (or

marginal, or coordinate-wise) median. Due to the multidimensionality of the decision space,

the dimensions on which voting takes place are not uniquely defined. In other words, the

issues that are put on the ballot are endogenous, and each feasible set of issues yields a

potentially different multidimensional median.

Consider, for example, a legislature that has to decide how much money to allocate to

several programs in a given fiscal year. One budgeting procedure, called “bottom-up”, is

to vote on each program separately in which case the total budget will be the sum of the

individual budgets. An alternative, called “top-down”, is to vote on the total budget first,

and then vote on how to divide the total budget among the individual items.

These two voting-based budgeting procedures yield different outcomes and their relative

merit in curbing the budget deficit has been debated among political scientists ever since

the U.S. Congress switched from bottom-up to top-down following the 1974 Congressional

Budget and Impoundment Control Act.

Of course, there are potentially many other different budgeting procedures with different

welfare properties. In order to find the one that is “optimal”according to some criterion

(e.g., budget size, or utilitarian welfare), one first has to characterize the set of voting-based

budgeting procedures that have good incentive properties.

The goal of this paper is to do just that for an important class of mechanism design

problems where there are no monetary transfers among voters, and where the utility of each

agent is determined by the distance between a privately known, individual peak (or ideal

point) and the taken decision. This distance is derived from a norm on the decision space

that is assumed here to be a vector space. The norm can vary across agents, may itself be

private information, and it need not be generated by an inner product. In particular, it

need not be the Euclidean norm.

Our first main result shows that, with preferences induced by norms, marginal medians

are dominant-strategy incentive compatible (DIC henceforth) if and only if they are calcu-

lated with respect to coordinates determined by an algebraic basis such that the norm is

orthant-monotonic in the associated coordinate system. Norm monotonicity compares all

possible pairs of vectors that are ordered with respect to a lattice structure defined on the

underlying space, and requires that the norm of a vector with larger coordinates (in absolute

values) is larger. Orthant-monotonicity applies the same condition, but requires it to hold

only for pairs of comparable vectors in the same orthant. By selecting a coordinate system

that aligns the norm structure to the lattice structure, this result allows us to translate to a

multidimensional space the one-dimensional insight that a deviation from truthful reporting

should move the median peak farther away from one own’s true peak.

For any two-dimensional normed space, we prove the existence of at least two distinct
DIC marginal medians. This is done by invoking an elegant result that goes back to Her-

mann Auerbach:1 any convex body that is point-symmetric around a center has at least
1The result is attributed to Auerbach by Stefan Banach. But Auerbach was killed by the Nazis, and his
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two pairs of conjugate diameters. Moreover, the directions of a pair of conjugate diameters

define Birkhoff-James (BJ)-mutually orthogonal pairs of vectors, and a marginal median

calculated with respect to such directions is DIC.

Roughly speaking, BJ-orthogonality translates to any convex set that is point-symmetric

around a center (and hence can serve as a unit ball of some norm) the insight that a circle’s

radius is orthogonal to the tangent through the point where the radius hits the circle’s

boundary. BJ-orthogonality can be applied to any normed vector space, and it reduces to

the usual orthogonality relation in Hilbert spaces, i.e., two vectors are then BJ-orthogonal

when their inner-product equals zero.

The main “defects” of the general BJ-orthogonality relation, are a lack of symmetry

and a lack of additivity. As a consequence, with more than two dimensions, mutual BJ-

orthogonality of the vectors in the selected coordinate system is not suffi cient in order to

induce a DIC marginal median.

Our next main result shows that, for normed spaces of any dimension, marginal medians

are DIC if and only if they are computed with respect to a basis such that, for any vector in

the basis, any linear combination of the other vectors is BJ-orthogonal to it. To understand

the intuition behind this result, consider a three-dimensional normed space, and choose a set

of three mutually orthogonal issues (this always exists by Auerbach’s construction, which

can be performed for any dimension). Assume that a decision has already been taken on

two issues (by consecutive majority votes, say): the obtained decision can be any arbitrary

vector in the respective two-dimensional subspace. DIC requires the already taken decision

to be BJ-orthogonal to the remaining third issue. While this property is automatically

satisfied by an orthogonal basis in spaces endowed with an inner product, it needs to be

additionally imposed in general normed spaces.

As we argue below, a purely geometric approach cannot yield all BJ-mutually orthogo-

nal vectors (and hence, a priori, not all bases with the above described additivity property).

Thus such an approach is not very helpful in mechanism design exercises where a compre-

hensive class of incentive-compatible mechanisms needs to be identified before maximizing

some goal over it.

Our third main result shows how an alternative, analytic approach based on semi-inner

products (SIP) can be used to overcome this diffi culty. An SIP is a special bivariate form

that can be defined for any pair of vectors in any normed space: it resembles an inner

product (and is thus related to orthogonality), but is neither symmetric, nor additive.

Importantly for our purposes, a norm-consistent SIP has an analytic formulation in terms

of the underlying norm functional and its directional derivatives. This analytic approach

can, in principle, be used to obtain all DIC marginal median mechanisms as the set of

solutions to a system of non-linear equations.

As a main application of the SIP approach, we characterize for any finite dimension

dissertation was burnt. Hence there is no trace of the original proof.
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d ≥ 2 and for any p ≥ 1 the set of coordinate systems yielding DIC marginal medians in

the standard lp(d) space. We also show that, surprisingly, these systems do not depend at

all on p (unless p = 2, the only inner-product space in this class).2 Thus, the characterized

marginal medians remain DIC even for situations where the norm is allowed to vary across

agents within the lp class, and is their private information.

For example, for d = 2 and any p ≥ 1, p 6= 2, there are exactly two distinct DIC
marginal median mechanisms for a lp(d) space:3 they correspond to marginal medians taken

with respect to the standard Cartesian coordinates, or with respect to a 45-degree rotation

of these coordinates.4 Combining this observation with a result of Peters, van der Stel,

and Storcken [1993] implies that these are the only DIC, anonymous and Pareto optimal

mechanisms in those settings.

Analogous robust results can be obtained for other classes of norms by identifying —via

the SIP approach —the set of left-additive bases formed by mutually orthogonal vectors that

are shared by all norms in the class. As a further illustration, we consider a setting where

agents use individually weighted Euclidean norms that are their private information. All

these norms are generated by inner-products, and they do not allow for cross-interactions

among issues. Then, under a genericity condition on the set of possible weights, there

is exactly one DIC marginal median mechanism on this class: the standard Cartesian

coordinates are the unique jointly orthogonal ones for all the norms in this class. Introducing

even the slightest degree of interaction among the issues — by allowing utility functions

derived from other, more general, inner-product norms —yields an impossibility result.

1.1 Connections to the Literature and Techniques

Technically, every algebraic basis for a space of decision vectors defines a set of issues (or

coordinates) along which issue-by-issue voting by majority yields a combined decision. Since

the median is not a linear function of its inputs, the coordinate-wise median varies with the

underlying system of coordinates (see Haldane [1948]).

The issue-by-issue median is the prime example for a “structure-induced equilibrium”in

the spirit of Shepsle [1979].5 Besides its ubiquity in practice, this type of voting mechanism

(together with its generalization to the so-called “generalized medians” that allow for the

presence of additional “phantom”voters with fixed, known peaks) exhaust the set of DIC

mechanisms in various settings where the preference domain is suffi ciently rich. The first

fundamental result in this vein was obtained by Moulin [1980] for the one-dimensional

2The case p < 1 does not yield a normed space, and it is not considered here.
3Recall that Auerbach’s theorem yields at least two DIC mechanisms.
4 It is interesting to note that the welfare analysis in Gershkov, Moldovanu and Shi [2019] for the Euclidean

case focused precisely on these coordinates.
5Shepsle proposed the structure-induced equilibrium as a response to the lack of equilibria in multidi-

mensional models where voting is not formally constrained by institutional arrangements. See also Feld and

Grofman [1988] and Kramer [1972], [1973].
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case.6 Common examples of generalized medians are obtained by issue-by-issue voting with

a qualified majority, and the voting thresholds may differ across dimensions (e.g., a bill

where one aspect requires a constitutional amendment and hence a higher majority). Our

analysis easily generalizes to such mechanisms as well.

With a few notable exceptions, the literature on incentive compatible multidimensional

voting and its applications to Political Science and Economics has focused on quadratic loss

functions. When applied to normed vector spaces, this assumption yields utilities derived

from variations on the Euclidean norm (see, for example, the text book by Austen-Smith

and Banks [2005]).7 The reason behind this choice is technical: it allows the use of familiar

mathematical methods from Euclidean geometry and/or familiar mean-variance statistical

methods associated to the quadratic formulation.

Quadratic loss functions derived from an Euclidean norm are not always suitable for

multidimensional applications. Consider, for example, the choice of a budget on two items.

Then, under Euclidean distance, the two items are equally weighted, equal deviations from a

preferred budget on each item are perceived in the same way, and equal deviations upwards

and downwards from the wished spending on one item are also perceived in the same way.

Moreover, since utility is separable in the two dimensions, there is no cross-interaction

among spending deviations on the two items. While it is possible to extend some of the

results based on Euclidean norm to the more general class of quadratic preferences generated

by inner-products, and to hereby address some of these concerns,8 there is an obvious

need to understand more general models where preferences do not display such a high

degree of spatial symmetry.9 Moreover, as we show in this paper, inner-product norms

constitute, technically, a special, atypical case because the symmetry and additivity of their

orthogonality relation. In particular, inner-product norms do not reveal the fundamental

difference between the geometries of two-dimensional and higher-dimensional spaces, and

its implications for mechanism design.

Even for purely location problems (of a facility, say) the relevant distance function need

not be Euclidean: think about the proverbial cab driver in Manhattan who needs to use the

“taxicab”norm, driving along the right angles imposed by the array-like city street map.

Indeed, distance in US cities is often colloquially measured in “blocks”. Such a distance

function is not generated by an inner-product norm.

For the Euclidean norm, Kim and Roush [1984] and Peters, van der Stel, and Storcken

6See Gershkov, Moldovanu and Shi [2017] and Kleiner and Moldovanu [2017] for implementation of

generalized medians by sequentially binary procedures with varying majority requirements. Phantoms are

then not required.
7The same holds for many other related literatures (e.g., on signaling and cheap talk), and for empirical

methodologies (see for example, Clinton, Jackman and Rivers [2004]).
8For example, one can consider weighted, quadratic loss functions.
9See Eguia [2013] for a critical discussion of these issues, and for references to papers that empirically

test this and alternative distance functions.
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[1992] connected the DIC property of marginal medians to orthogonal coordinate systems.10

We do indeed show here that orthant-monotonicity of the standard Euclidean norm is equiv-

alent to the requirement that the underlying coordinate system is defined by an orthogonal

basis.

Barbera, Gul and Stacchetti [1993] (BGS henceforth) assumed that the decision set is

a product of lines. They fixed a system of directions, but did not focus on norm-based

preferences. Instead, they studied a richer class of preferences called multidimensional

single-peaked (m.s.p.) and showed that, on the class of m.s.p. preferences, a mechanism is

DIC if and only if it is a generalized marginal median.11 BGS also showed that their class

is maximal in the sense that, if an agent has a preference outside it, there exists a marginal

median that is not DIC. In an earlier paper, Border and Jordan [1983] considered a different

rich domain of preferences which they called star-shaped and separable, and obtained similar

results and generalized Moulin’s one-dimensional finding.12

We show here that a norm-based preference is m.s.p. in the BGS sense if and only if

the underlying norm is orthant monotonic, and that it is star-shaped and separable in the

Border-Jordan sense if and only if it is monotonic.13 While our analysis strongly focuses

on the dependence on the chosen coordinate system —since norm monotonicity properties

crucially depend on the underlying coordinate system —this dependence does not play a

role neither in the BGS’nor in Border and Jordan’s analysis. We explain in Section 3.2

this discrepancy in terms of the different domains and focuses of the respective studies.

An elegant result due to Peters, van der Stel, and Storcken [1993] shows that marginal

medians constitute DIC mechanisms for a general norm on the plane (i.e., when there are

two dimensions) if and only if majority voting takes place along two directions that are

BJ-mutually orthogonal (see Birkhoff [1935], and James [1947]).14 As we have already

mentioned above, we show here this result holds in this form only for two-dimensional

normed spaces.

The existence of BJ-mutually orthogonal vectors (which is necessary but not suffi cient

for DIC) involves a fixed-point argument, and is therefore not obvious unless the space

is Hilbert, where the orthogonality relation is symmetric. For two-dimensional spaces

equipped with a strictly convex norm, Peters, van der Stel, and Storcken [1993] constructed

a BJ-mutually orthogonal pair of vectors, and therefore proved the existence of at least one

DIC marginal median mechanism. In more than two dimensions, an algebraic basis consist-

10van der Stel [2000] extends these insights to non-anonymous mechanisms.
11Assuming a rich set of preferences, Nehring and Puppe [2007] studied generalized medians on very

general abstract domains called “median spaces”. These do not necessarily have a vector space structure.
12Zhou [1991], and Barbera and Jackson [1994] characterize DIC mechanisms on the larger class of con-

tinuous, strictly quasi-concave utility functions with a unique maximizer. The range of such a mechanism

must be one-dimensional.
13This also shows that the BGS and Border-Jordan domains are different, contrary to some claims in the

literature.
14See Alonso [?] and Martini [2001] for excellent surveys of this, and other related topics.
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ing of BJ-mutually orthogonal vectors such that each vector in the basis is orthogonal to any

linear combination of the others is called an Auerbach basis. Auerbach’s construction does

generalize to any number of dimensions, and the two constructed bases always possess this

additivity on the right property.15 ,16 What is missing for DIC in more than two dimensions

is an additivity on the left property.17

Gershkov, Moldovanu and Shi [2019] maximize utilitarian welfare over the class of mar-

ginal median mechanisms in Hilbert spaces.18 Technically, they maximize over the contin-

uum, multiplicative group of linear isometries (rotations). In inner-product spaces, a linear

isometry also preserves angles and hence orthogonality.19 Thus, applying an isometry to

an arbitrary pair of orthogonal issues yields another such pair: because medians are not

linear functions, and hence not necessarily isometry-equivariant, this operation may yield a

distinct marginal median.20 Moreover, applying all isometries to any given orthogonal pair

exhausts (modulo translations) the set of all relevant orthogonal pairs, and hence the set of

all DIC marginal medians (see Kim and Roush [1984] and Peters, van der Stel, and Storcken

[1992] for characterizations of DIC mechanisms in terms of orthogonality and isometries for

the Euclidean norm).

In non-Hilbert normed spaces, it is not the case that applying all possible isometries to

a given pair of BJ-mutually orthogonal directions yields all other possible such pairs. For

example, there is no isometry that maps one Auerbach basis into another if the two bases

stem from the Auerbach construction mentioned above.21

This failure led us to consider an analytical approach, based on semi-inner products,

in order to find all sets of coordinates yielding DIC marginal medians. SIP’s have been

introduced by Lumer [1961]. In an important paper, Giles [1967] has shown that, for

the class of smooth (i.e., Gateaux-differentiable) norms, BJ-orthogonality coincides with

normality which means that the SIP equals zero. Moreover, a norm-consistent SIP is then

unique.

The remainder of the paper is organized as follows: Section 2 presents the social choice

model and marginal median mechanisms. Section 3 introduces monotonicity properties of

norms and connects DIC to orthant monotonicity. We also relate our insights to those

obtained by BGS and Border and Jordan. Section 4 connects orthant-monotonicity (and

hence DIC mechanisms) to bases consisting of BJ-mutually orthogonal vectors that satisfy

15Additivity on the right of the BJ-orthogonality relation is automatically satisfied if the norm is smooth.

This is a consequence of the semi inner-product representation and normality. See Section 5 for details.
16Peters et al’s two-dimensional construction yields indeed one of the Auerbach bases. These authors

generally invoke strict convexity of the norm, but this is not necessary at this step.
17 If BJ-orthogonality is symmetric or additive and if the dimension is at least three, then the space must

be Hilbert (see James [1947], and Marino and Pietramala [1987]).
18For two dimensions, this coincides with the class of anonymous, Pareto-optimal and DIC mechanisms.

With more dimensions, marginal medians need not be Pareto optimal.
19The famous Mazur-Ulam [1932] theorem asserts that any surjective isometry must be linear.
20Medians are translation-equivariant, so it is enough to consider isometries that fix at the origin.
21 In this sense, Euclid’s fourth postulate does not hold in normed spaces that are not Hilbert.
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a left-additivity condition. Section 5 shows how to analytically use semi-inner products

in order to find all DIC marginal medians. Section 6 illustrates the various concepts and

findings for lp norms and for inner-product norms, including several robust mechanism

design results. Section 7 concludes.

2 The Social Choice Model

An odd number of agents n collectively choose a decision v ∈ V , where V is a d-dimensional
Minkowski (i.e., over the reals) vector space. Since any d-dimensional normed space over

the reals is isomorphic to the space Rd, we shall assume here w.l.o.g. that V = Rd, and
endow this space with different norms.22

Throughout of the paper, the bold font is used to denote vectors in Rd. We use i =

1, ..., n to label voters, and j or k = 1, ..., d to label coordinates.

We denote by {x1, ...,xd} a generic algebraic basis for Rd, where x1, ...,xd are linearly
independent, and by {e1, ..., ed} the standard Cartesian basis where for vector ej only the
j-th coordinate is different from zero, and equals one:

ej = (0, 0, ..., 1︸ ︷︷ ︸
j

, 0, ..., 0)

Each agent’s ideal position is given by a “peak” ti ∈ Rd, i = 1, 2, ..., n. The peak ti is

agent i’s private information. The utility of agent i with peak ti from decision v is given

by

−‖ti − v‖

where ‖·‖ is a norm on Rd. Recall that a norm ‖·‖ is a real-valued function on Rd that
satisfies:

1. ‖x‖ ≥ 0;

2. ‖x‖ = 0⇔ x = 0;

3. ‖ax‖ = |a| ‖x‖ , ∀x ∈ Rd, a ∈ R;

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ , ∀x,y ∈ Rd.

Since our analysis and results are purely ordinal, they immediately apply to all utility

functions of the form

−∆ (‖ti − v‖)

where ∆ is a strictly monotonic function: all these cardinal utilities represent the same

ordinal preferences as the basic norm ‖·‖.
We do not assume that the norm inducing the above utility functions is generated by

an inner-product, i.e., the vector space need not be a Hilbert space.
22The isomorphism does depend on the assumed basis —we shall make this explicit below.
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2.1 Marginal Medians

For the following properties we assume that mechanisms only depend on reported peaks,

which holds by definition for the (generalized) marginal medians we consider.

Definition 1 1. A direct revelation mechanism is a function ψ : (Rd)n → Rd.

2. A direct revelation mechanism ψ (ti, t−i) is dominant-strategy incentive compatible

(DIC) if for any voter i and for any realizations ti and t−i, it holds that

‖ti − ψ (ti, t−i)‖ ≤
∥∥ti − ψ (t̂i, t−i)∥∥ , ∀t̂i

3. A direct revelation mechanism is anonymous if ψ (t1, .., tn) = ψ (σ(t1, .., tn)) for all

t1, ..., tn ∈ Rd, and for all permutations σ.

In words, DIC says that any individual manipulation forces the social choice to move

weakly away from the true peak, as measured by the distance function used by the manipu-

lating agent. The DIC constraint for agent i only uses the norm considered by agent i, and

hence we can easily generalize the above definition to situations where agents use different

norms.

Let {x1, ...,xd} be an algebraic basis for Rd. Then each y ∈ Rd can be represented as

y =

d∑
j=1

αj(y)xj ,

where αj(y), j = 1, ..., d, is the j-th coordinate of y with respect to this basis.

Definition 2 The marginal median mechanism (MMM) with respect to basis {x1, ...,xd} is
defined as

ψ (t1, .., tn) =

d∑
j=1

med(αj(t1), ..., α
j(tn))xj

where med(αj(t1), ..., α
j(tn)) is the median of the j-th coordinates of the agents’peaks.

All our results below can be extended to generalized medians that are obtained by setting

a fixed number of “phantom”peaks at some commonly known locations, and then taking

the marginal median among the reported peaks of the real agents and the commonly known

phantom peaks. Generalized marginal medians are anonymous, but need not be Pareto

optimal for three or more dimensions.23

23The standard marginal median (corresponding to voting by simple majority in each dimension) is Pareto

optimal for d = 2.
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3 Incentive Compatibility and Monotonic Norms

In this section, we first define norm monotonicity and orthant monotonicity with respect to

a given algebraic basis in Rd. We then show that a marginal median mechanism computed

with respect to a given basis is DIC if and only if the norm is orthant monotonic with

respect to that same basis. Finally, we discuss how this result is related to the insights in

BGS and Border and Jordan [1983].

3.1 Orthant Monotonicity and DIC Marginal Medians

Fix an algebraic basis in Rd consisting of d linearly independent vectors {x1, ...,xd}. Recall
that we can represent each x ∈ Rd as

x =
d∑
j=1

αj(x)xj ,

where αj(x) is the j-th coordinate of x according to this basis. To simplify notation when

confusion cannot arise, we write

(x1, x2, ..., xd) =
(
α1(x), α2(x), ..., αd(x)

)
and identify x with the vector of coordinates (x1, x2, ..., xd).

It is important to note that the monotonicity properties described below depend on the

underlying coordinate system.

Definition 3 A norm ‖·‖ on Rd is monotonic (Bauer, Stoer and Witzgall [1961]) if

‖(x1, ..., xd)‖ ≤ ‖(y1, ..., yd)‖

whenever

|xj | ≤ |yj | for all j = 1, ..., d.

A norm ‖·‖ on Rd is orthant-monotonic (Gries [1967]) if

‖(x1, ..., xd)‖ ≤ ‖(y1, ..., yd)‖

whenever

xjyj ≥ 0 and |xj | ≤ |yj | for all j = 1, ..., d.

It is clear from the above definition that monotonicity implies orthant-monotonicity.24

The following lemma provides useful characterizations, repeatedly used below:25

24A monotonic norm can also be seen as a lattice norm since it is consistent with the standard partial

order on Rd. Thus, a normed space endowed with a monotonic norm becomes a Riesz space.
25See Johnson and Nylen [1991] or Horn and Johnson [2013], p. 340, for these, and for other monotonicity

properties of norms.
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Lemma 1 1. A norm is monotonic if and only if it is absolute:

‖(x1, ..., xd)‖ = ‖( |x1| , ..., |xd|)‖

for all x ∈ Rd.

2. A norm is orthant-monotonic if and only if it satisfies

‖(x1, ..., xj−1, 0, ..., xd)‖ ≤ ‖(x1, ..., xj−1, xj , ..., xd)‖

for all x ∈ Rd and all j.

Suppose for visualization that d = 2, and consider the unit disc of a smooth norm. If the

norm is orthant-monotonic with respect to a basis
{
x1,x2

}
, then the tangents at the points

where the disc intersects the coordinate defined by x1 must be parallel to the coordinate

defined by x2, and vice versa.

Example 1 Fix basis {x1,x2, ...,xd}. For x = (x1, ..., xd) and p ≥ 1, define

‖x‖p =

 d∑
j=1

|xj |p
1/p .

This is the class of lp(d) norms with respect to the given basis. All these norms are absolute,

hence monotonic and hence orthant-monotonic. The same holds for the limit norm

‖x‖∞ = max
j
|xj | .

Example 2 Let d = 2, and fix the Cartesian basis.

1. Consider the norm with unit ball defined as the hexagon with vertices at ±(1, 1),±(1, 0)

and ±(0, 1). This norm is orthant-monotonic but not monotonic. For example,

‖(1,−1)‖ > 1 = ‖(1, 1)‖ ,

which contradicts the fact that a monotonic norm can only depend on absolute values

(Lemma 1-1).

2. Consider the norm with unit ball defined as the parallelogram with vertices at ±(2, 2)

and ±(1,−1). This norm is not orthant-monotonic. For example,

‖(2, 0)‖ > 1 = ‖(2, 2)‖ , (1)
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which contradicts the characterization in Lemma 1-2.

Figure 1: A non-orthant-monotonic norm

To see the implications of non-orthant monotonicity on marginal medians, consider

the Cartesian coordinates and consider three agents with peaks at (0, 0), (2, 2) and

(2,−2), respectively. If all agents report truthfully, the marginal median is (2, 0). If

the agent with peak at (0, 0) deviates and reports instead (2, 2), the marginal median

becomes (2, 2). By inequality (1), this deviation is profitable for this agent. In contrast,

marginal mechanisms are DIC if computed with respect to the coordinates defined by

the basis {(−1, 1), (1, 1)} or by the basis {(1, 3), (1, 1/3)}.26

We can now state our first main result:

Theorem 1 A marginal median mechanism is DIC if and only if it is computed with re-

spect to a basis {x1,x2, ...,xd} such that the norm is orthant-monotonic in the associated

coordinate system.

Proof. (If direction). Fix a basis with the required property, {x1, ...,xd}. We show that
the MMM with respect to this basis is DIC. For any vector x, let

∑d
j=1 α

j(x)xj be its

representation in the fixed basis. Let t1 be agent 1’s true peak, and consider a deviation to

t̃1. Assume that the other agents i = 2, ..., n make arbitrary reports t2, ..., tn.

Let m = m(t1, ..., tn) and m̃ = m(t̃1, ..., tn) be the marginal medians when agent 1

reports truthfully and when he deviates to t̃1, respectively. The argument for any other

agent is analogous. We need to show that

‖t1−m‖ ≤ ‖t1−m̃‖ ,

or equivalently that∥∥∥∥∥∥
d∑
j=1

(αj(t1)− αj(m))xj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

d∑
j=1

(αj(t1)− αj(m̃))xj

∥∥∥∥∥∥ . (2)

26We show below that there are always at least two bases with this property.
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By the properties of the one-dimensional median we obtain that, for any j = 1, 2, ..., d,

either αj(t1) ≤ αj(m) ≤ αj(m̃) or αj(m̃) ≤ αj(m) ≤ αj(t1). (3)

This immediately implies that, for all j = 1, 2, ..., d,(
αj (t1)− αj(m)

) (
αj (t1)− αj(m̃)

)
≥ 0, (4)

and that ∣∣αj(t1)− αj(m)
∣∣ ≤ ∣∣αj(t1)− αj(m̃)

∣∣ . (5)

Therefore, (2) follows immediately by applying orthant monotonicity to the two vectors

d∑
j=1

(αj(t1)− αj(m))xj and
d∑
j=1

(αj(t1)− αj(m̃))xj .

(Only if direction). The proof is a generalization of the insight in Example 2. Assume

that the MMM is computed with respect to a basis {x1, ...,xd} whose coordinate system
does not yield an orthant-monotonic representation of the norm. By Lemma 1 there exists

k, a vector x =
∑
j 6=k

αj(x)xj 6= 0 and a scalar β such that

‖x‖ =
∥∥∥α1(x), ..., αk−1(x), 0, ..., αd(x)

∥∥∥ > ∥∥∥α1(x), ..., αk−1(x), β, ..., αd(x)
∥∥∥ =

∥∥∥x+ βxk
∥∥∥

Consider now the following profile of preferences:

ti = x− βxk, i = 1, ...,
n− 1

2

ti = x+ βxk, i =
n+ 1

2
, ..., n− 1

ti = 0, i = n

If every agent reports truthfully, we obtain that

m(t1, ..., tn) = x.

Consider now a deviation of agent n to t̃n = x+ βxk which yields

m(t1, ...,̃tn) = x+ βxk.

Since by assumption ‖x‖ >
∥∥x+ βxk

∥∥ , this deviation is profitable for agent n who has a
true peak at the origin. This is a contradiction to the assumption that the marginal median

with respect to this basis is DIC for agent n.

The above proof shows that the suffi ciency of orthant monotonicity for incentive com-

patibility is intimately linked to the main properties of the one-dimensional median. In one

dimension, a deviation has either no effect on the median, or moves it away from the agent’s

peak: the old median under truth telling lies between the agent’s peak and the new median

13



after the deviation (formally (3)). By applying this observation, dimension by dimension, to

a d-dimensional marginal median, we conclude that the two difference vectors, one between

the ideal point and the old d-dimensional median and the other between the ideal point

and the new median, lie in the same orthant (formally (4)). Moreover, the latter has larger

coordinates than the former (formally (5)). Therefore, by orthant monotonicity, the agent’s

ideal point is nearer to the old median than to the new median27.

Remark 1 We can replace the norm ‖·‖ by individual-specific norms {‖·‖i}, and the suffi -
ciency proof (if direction), still goes through. This implies that an MMM remains DIC when

agents’preferences are generated by possibly different norms that are all orthant monotonic

with respect to a given basis. We provide later alternative characterizations of incentive com-

patibility via Birkhoff-James orthogonality (Section 4) and via semi-inner products (Section

5). Like the suffi ciency part of Theorem 1, these alternative suffi cient conditions for DIC

(e.g., Theorems 3 and 7) do not require that all agents share the same norm. This observa-
tion can be used to construct robust mechanisms for situations where the preference-inducing

norms differ from agent to agent, and are their private information.

3.2 Relations to BGS and to Border and Jordan [1983]

BGS studied a class of preferences called multidimensional single-peaked (m.s.p.). BGS

showed that, on that class of m.s.p. preferences (that are not necessarily induced by a

norm), a mechanism is DIC if and only if it is a generalized marginal median. They also

showed that the m.s.p. class is maximal in the sense that, if an agent has a preference

outside it, there exists a marginal median which is not DIC.

Border and Jordan [1983] characterized DIC mechanisms on a different domain of prefer-

ences that they called star-shaped and separable. A norm-based preference is always (weakly)

star-shaped in the sense of Border and Jordan: this follows by the convexity of the norm

functional (i.e., by the triangle inequality).28 Here are the respective definitions:29

Definition 4 1. A preference relation with ideal point x is m.s.p. if for every y and for

every z on a shortest l1 path from x to y, z is (weakly) preferred to y.30

2. A preference induced by a norm ‖·‖ is separable if, for all j = 1, ..., d and for all

x−j , y−j , xj , and x′j,

‖(xj , x−j)‖ ≥
∥∥(x′j , x−j)

∥∥⇔ ‖(xj , y−j)‖ ≥ ∥∥(x′j , y−j)
∥∥ .

27Since the one-dimensional generalized medians (with possible phantoms) share the above property with

the standard one-dimensional median, the above results easily extends to generalized marginal median

mechanisms.
28Strictly convex norms —see the definition in Section 6 —are (strongly) star-shaped.
29We equivalently re-formulate the BGS one to best highlight the connection with our normed spaces.
30This definition implicitly assumes a fixed, given basis for calculating the l1 norm, e.g., the standard

Euclidean one.
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Figure 2: Point z is on a shortest l1 path from x to y

Proposition 1 Fix a coordinate system determined by a basis {x1, ...,xd}, and define the
l1 norm with respect to these coordinates:

‖x‖1 =

d∑
j=1

∣∣xj∣∣ for any x =

d∑
j=1

xjx
j .

1. The preference relation induced by a norm ‖·‖ is m.s.p. if and only if the norm is

orthant-monotonic with respect to the chosen system of coordinates.

2. The preference relation induced by a norm ‖·‖ is separable if and only if the norm is

monotonic with respect to the chosen system of coordinates.

Proof. 1. Since the ‖·‖-based preference of an agent with peak at x is a translation of the
preference of an agent with peak at 0, we can w.l.o.g. assume below that peaks are at 0.

Assume first that ‖·‖ is orthant-monotonic with respect to the fixed coordinates. Con-
sider any y and any z on a shortest l1 path from 0 to y. Then y and z must be in the same

orthant (see also picture above) and |zj | ≤ |yj | for all j = 1, ..., d.31 Hence, ‖z‖ ≤ ‖y‖ by
orthant-monotonicity, and z is preferred to y by an agent with peak at 0, yielding m.s.p.

Conversely, assume that the ‖·‖-based preference is m.s.p. Consider y and z such that
zjyj ≥ 0 and |zj | ≤ |yj | for all j = 1, ..., d. Then it is easy to see that z must lie on a shortest

l1 path from 0 to y, and hence it must be preferred to y. Since the preference is derived

from the norm ‖·‖ , we must have ‖z‖ ≤ ‖y‖ and thus the norm is orthant-monotonic.

2. Assume first that the norm ‖·‖ is monotonic, and assume that ‖(xj , x−j)‖ ≥∥∥∥(x′j , x−j)
∥∥∥. We have to show ‖(xj , y−j)‖ ≥

∥∥∥(x′j , y−j)
∥∥∥ for all y−j . By Lemma 1, a

31Note that orthants are also defined by the chosen coordinate system.
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monotonic norm is absolute. This implies:

‖(|x1| , ..., |xj | , ..., |xd|)‖ = ‖(x1, ..., xj , ..., xd)‖
≥

∥∥(x1, ..., x
′
j , ..., xd)

∥∥
=

∥∥(|x1| , ...,
∣∣x′j∣∣ , ..., |xd|)∥∥

Monotonicity implies then that |xj | ≥
∣∣∣x′j∣∣∣ . Hence, again by monotonicity, we obtain

‖(y1, ..., xj , ..., yd)‖ = ‖(|y1| , ..., |xj | , ..., |yd|)‖
≥

∥∥(|y1| , ...,
∣∣x′j∣∣ , ..., |yd|)∥∥

=
∥∥(y1, ..., x

′
j , ..., yd)

∥∥
as desired.

For the converse, assume that the preference induced by the norm ‖·‖ is separable. By
Lemma 1, it is enough to show that the norm is absolute: for all x = (x1, ..., xd),

‖(x1, ..., xd)‖ = ‖(|x1| , ..., |xd|)‖ .

If for all j, xj ≥ 0 or if for all j, xj ≤ 0, the implication is clear by the homogeneity

of the norm. Assume then that xj ≥ 0 for all j ∈ S, and xj < 0 for all j ∈ SC , and

that both S and SC are not empty. Let k ∈ SC be minimal, and consider the vector

(x1, ..., xk, |xk+1| , ..., |xd|). Since k is minimal in SC , we have

‖(x1, ..., xk, |xk+1| , ..., |xd|)‖ = ‖(|x1| , ...,− |xk| , |xk+1| , ..., |xd|)‖ .

We want to show that

‖(|x1| , ...,− |xk| , |xk+1| , ..., |xd|)‖ = ‖(|x1| , ..., |xk| , |xk+1| , ..., |xd|)‖ .

Assume by contradiction that this is not the case, and let

‖(|x1| , ...,− |xk| , |xk+1| , ..., |xd|)‖ < ‖(|x1| , ..., |xk| , |xk+1| , ..., |xd|)‖ . (6)

The other case is completely analogous. By separability we obtain that

‖(− |x1| , ...,− |xk| ,− |xk+1| , ...,− |xd|)‖ < ‖(− |x1| , ..., |xk| ,− |xk+1| , ...,− |xd|)‖ .

Multiplying the vectors by −1 and using homogeneity of the norm, we obtain

‖(|x1| , ..., |xk| , |xk+1| , ..., |xd|)‖ < ‖(|x1| , ...,− |xk| , |xk+1| , ..., |xd|)‖ .

which is a contradiction to (6). Hence, we must have

‖(x1, ..., xk, |xk+1| , ..., |xd|)‖ = ‖(|x1| , ..., |xk| , |xk+1| , ..., |xd|)‖ .

Continuing in the same way for all remaining j ∈ SC yields the desired result.
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Remark 2 We stress the dependence on the chosen coordinate system, but this feature is
discussed neither by BGS, nor by Border and Jordan, who implicitly fix a coordinate system.

This also fixes the set of l1 shortest paths BGS consider in the definition of m.s.p.: such

paths are then solely composed of segments that are parallel to their fixed coordinates. Both

BGS and Border and Jordan consider a rich (even maximal in the BGS analysis) class

of preferences and all DIC mechanisms they find are separable in the sense that they can

be decomposed into d one-dimensional DIC mechanisms (again, with respect to their fixed

coordinate system). Non-separable mechanisms fail DIC because of some preference in their

respective rich domains. This also allows BGS, and Border and Jordan to prove converse

statements about (separable) generalized medians being the only DIC mechanisms.

What we do here is different: we fix one particular preference relation generated by

a norm (or, for some results below, a relatively “small” set of preferences, such as the

preferences generated by all lp norms) and look instead for all possible coordinate systems —
each one defines then its own l1 shortest paths and its own orthants —that yield DIC marginal

medians for this particular preference. Thus, in each particular instance, we analyze a small

set of preferences, and we uncover a larger set of DIC mechanisms. It is not the case that
all these mechanisms are separable with respect to a fixed set of coordinates!

4 Incentive Compatibility and Orthogonality

In mechanism design exercises one usually seeks an optimal mechanism in a certain class.

Thus, one first needs to characterize the relevant incentive compatible mechanisms. How

can we construct all systems of issues that induce DIC issue-by-issue voting? In other words,

given a norm, what are the coordinates that render this norm orthant-monotonic? We first

discuss a geometric approach towards answering this question, and in the next Section we

complement the answer via an analytic device.

Let us start with an example showing that the Euclidean norm on the plane has an

orthant-monotonic representation if and only if it is computed according to a coordinate

system defined by an orthogonal basis. This relates to the well-known observation that,
under the Euclidean norm, marginal medians on the plane are DIC if and only if they

are computed with respect to an orthogonal set of coordinates (see Kim and Roush [1984]

and Peters et al [1992]). This result about the Euclidean norm holds for any number of

dimensions.

Example 3 (Orthogonality) Let {e1, e2} be the standard Cartesian basis for R2, and con-
sider the Euclidean l2(2) norm with respect to this basis. Consider another algebraic basis{
f1, f2

}
that can be written as f1 = a1e

1 + a2e
2 and f2 = b1e

1 + b2e
2, where the matrix

A =

(
a1 a2

b1 b2

)
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is non-singular. Then, any vector x can be represented as:

x = x1f
1 + x2f

2

= x1(a1e
1 + a2e

2) + x2(b1e
1 + b2e

2)

= (x1a1 + x2b1)e
1 + (x1a2 + x2b2)e

2.

Recall that (x1, x2) denote the coordinates of x according to basis {f1, f2}. By Lemma 1, the
l2(2) norm (defined with respect to Cartesian coordinates) is orthant monotonic in the new

coordinate system defined by {f1, f2} if and only if

||(x1, x2)|| ≥ max {||(0, x2)|| , ||(x1, 0)||} .

By the formula of the l2(2) norm with respect to the standard Cartesian basis {e1, e2}, we
obtain that

||(x1, x2)|| =
√

(x1a1 + x2b1)2 + (x1a2 + x2b2)2,

||(0, x2)|| =
√

(x2b1)2 + (x2b2)2,

||(x1, 0)|| =
√

(x1a1)2 + (x1a2)2.

Thus, orthant-monotonicity in the coordinate system defined by {f1, f2} holds if and only
if, for any x1 and x2 we have:

(x1a1 + x2b1)
2 + (x1a2 + x2b2)

2 ≥ max
{

(x2b1)
2 + (x2b2)

2, (x1a1)
2 + (x1a2)

2
}

This is equivalent to:

x21(a
2
1 + a22) + 2x1x2(a1b1 + a2b2) ≥ 0 and x22(b

2
1 + b22) + 2x1x2(a1b1 + a2b2) ≥ 0.

The above inequalities hold for all x1 and x2 if and only if a1b1 + a2b2 = 0. In other words,

the l2(2) norm (with respect to the Cartesian basis) is orthant monotonic with respect to

another basis {f1, f2} if and only if the inner-product of f1 and f2 is zero, that is, f1 and
f2 are orthogonal. Every such system yields an orthant-monotonic representation of the

l2(2) norm, and thus each marginal median computed with respect to any orthogonal basis

is DIC. Since the median is not a linear function (while orthogonal basis transformations

are linear), this operation potentially yields new DIC mechanisms.

4.1 The Birkhoff-James Orthogonality Relation

The standard definition of orthogonality used above (via a zero inner-product) can only

be applied to Hilbert spaces where the norm is generated by an inner product, e.g., the

Euclidean norm. In order to characterize the system of coordinates that yield DIC mar-

ginal medians in arbitrary normed spaces, we need a more general notion of orthogonality,

introduced by Birkhoff [1935] and later masterfully analyzed by James [1947].32

32There are many definitions of orthogonality. But only the BJ notion is relevant for incentive compati-

bility.
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A vector x is said to be Birkhoff-James (BJ) orthogonal to another vector y if x has the

smallest norm among all vectors on the line through x that is parallel to y. Equivalently,

the line through x that is parallel to y is tangent to the “ball”with radius ‖x‖ .

Figure 3: x is BJ-orthogonal to y

Definition 5 (Birkhoff-James orthogonality, Birkhoff [1935], James [1947]):

1. A vector x is orthogonal to another vector y, denoted x a y, if ‖x+ λy‖ ≥ ‖x‖ for
all real λ; y is orthogonal to x, denoted y a x, if ‖y + λx‖ ≥ ‖y‖ for all real λ.

2. We call x and y BJ-mutually orthogonal if x a y and y a x.

3. A vector x is BJ-orthogonal to a subspace M , denoted x aM, if x a y for all y ∈M .
A subspace M is BJ-orthogonal to a vector x, denoted M a x, if y a x for all y ∈M .

The BJ-orthogonality relation is generally not symmetric: x can be orthogonal to y but
not vice-versa. The BJ-orthogonality relation is generally not additive, neither on the left,
nor on the right: y a x and z a x need not imply (y + z) a x, and also x a y and x a z
need not imply x a (y + z). BJ-orthogonality reduces to the standard (symmetric and

additive) definition if the space is Hilbert: two vectors are orthogonal if and only if their

inner-product is zero.

The next concept corrects for symmetry and for additivity on the right. Given an alge-

braic basis {x1,x2, ...,xd }, denote byX−i the subspace spanned by the vectors {x1, ...,xi−1,
xi+1, ...,xd}.

Definition 6 An Auerbach basis is an algebraic basis {x1,x2, ...,xd} such that, for each
j = 1, ..., d, xj a X−j. Such a basis is orthonormal if

∣∣∣∣xj∣∣∣∣ = 1, j = 1, 2, ..., d.

Theorem 2 In any normed space there exist at least two distinct Auerbach bases (see
Day [1947], Taylor [1947]). There is no isometry that transforms one of these bases into
another, unless the space is Hilbert (see Plichko [1991]).
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To illustrate the beautiful existence argument, consider a two-dimensional normed space

and its unit ball. Let Q be the quadrilateral with largest area inscribed in the unit ball.

It exists by compactness. Then its main diagonals are conjugate diameters (see Heil and

Krautwald [1969]). In particular, the diagonals are in the directions of two BJ-mutually

orthogonal vectors. Analogously, let Q′ be the quadrilateral with smallest area such that

the four sides are all tangents to the unit ball. Again, it exists by compactness. Then the

two lines such that each connects two tangency points across each other are also conjugate

diameters in the directions of BJ-mutually orthogonal vectors. The two constructions always

yield different pairs, unless the space is Hilbert (then there are an infinite number of different

pairs).

Figure 4: Inscribed parallelogram Q and circumscribing parallelogram Q′

4.2 Orthant-Monotonicity and Orthogonality

The search for DIC mechanisms in higher-dimensional spaces does not reduce to the search

for Auerbach bases, and an additional property becomes crucial: in order to induce a DIC

marginal median, for any j, any vector in X−j must be orthogonal to xj . Because of the

lack of symmetry and additivity, this property does not automatically follows from the

properties of mutually orthogonal vectors unless the space is Hilbert, where orthogonality

is always symmetric and additive on both sides.

Theorem 3 Fix an algebraic basis {x1, ...,xd}. The norm ||·|| is orthant-monotonic with
respect to the associated coordinate system if and only if

X−j a xj for all j = 1, ..., d. (∗)

Hence, a marginal median mechanism is DIC if and only if it is computed with respect to a

basis {x1,x2, ...,xd} that satisfies property (∗) above.

Proof. The proof follows by the elegant geometric characterization of orthant-monotonic
norms in Gries [1967] and Funderlic [1979]. Although those authors did not observe the
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relation to the BJ-orthogonality notion, their results are related to it.33 We adapt here

their method of proof, while translating it in terms of BJ-orthogonality.

Suppose first that the norm is orthant monotonic. If z ∈ X−j , then z and z + βxj lie

in the same orthant for any β, since zk(zk + βxjk) = z2k ≥ 0 for all k = 1, ..., d. Moreover,

|zk| ≤
∣∣∣zk + βxjk

∣∣∣ for all k. It follows from orthant monotonicity that

‖z‖ ≤
∥∥z+ βxj

∥∥ , for all β,

which means that z a xj .
Suppose now that X−j a xj for all j. Let y and z be in the same orthant such that

|zj | ≤ |yj | for all j = 1, ..., d. We need to show that

‖(z1, z2, ..., zd)‖ ≤ ‖(y1, y2, ..., yd)‖ .

Let v0 = z, vd = y and

vk = (y1, y2, ..., yk, zk+1, ..., zd)
T , k = 1, 2, ..., d− 1.

For the norm to be orthant monotonic, it is thus suffi cient to show that∥∥∥vk−1∥∥∥ ≤ ∥∥∥vk∥∥∥ , k = 1, 2, ..., d.

By the construction of vk and because y and z are in the same orthant with |zj | ≤ |yj | for
all j, there exists λ ∈ [0, 1] such that

vk−1 = vk − λykxk = λ
(
vk − ykxk

)
+ (1− λ)vk.

By assumption and by the construction of vk, vk − ykxk ∈ X−k, and is thus orthogonal to
xk. Hence, we obtain∥∥∥vk − ykxk∥∥∥ ≤ ∥∥∥(vk − ykxk)+ ykx

k
∥∥∥ =

∥∥∥vk∥∥∥ .
It follows that ∣∣∣∣∣∣vk−1∣∣∣∣∣∣ =

∣∣∣∣∣∣λ(vk − ykxk)+ (1− λ)vk
∣∣∣∣∣∣

≤ λ
∣∣∣∣∣∣vk − ykxk∣∣∣∣∣∣+ (1− λ)

∣∣∣∣∣∣vk∣∣∣∣∣∣
≤

∣∣∣∣∣∣vk∣∣∣∣∣∣ .
This completes the proof.

A necessary condition for property (∗) is that the vectors x1, ...,xd in the basis
{
x1, ...,xd

}
be mutually BJ-orthogonal34. When d = 2, property (∗) is equivalent to mutual orthogo-
nality of x1 and x2. Therefore, a two-dimensional marginal median computed with respect
33Tanaka and Saito [2014] establish similar relations, but are not aware of the earlier papers by Gries and

Funderlic.
34One cannot require property (∗) to generally hold for any basis without excluding all cases of interest

here. Marino and Pietramala [1987] proved the following: Let V be smooth, reflexive and strictly convex

with dimension d > 2, and assume that, for any triple (x,y, z) , of mutually orthogonal vectors it holds that

(x+ y) a z. Then V is a Hilbert space.
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to the basis {x1,x2} is DIC if and only if x1 and x2 are BJ-mutually orthogonal —this is
shown in Peters et al [1993].

Example 4 Let {e1, e2} be the standard basis vectors in R2. Then the lp(2) norm according

to this basis is monotonic. Now consider another basis {f1, f2} with f1 = (1, 1) and f2 =

(−1, 1). We prove in Section 6 below that for any lp(2) norm, e1 and e2 are BJ-mutually

orthogonal, and that f1 and f2 are also BJ-mutually orthogonal. For any x we can write

x = af1 + bf2 = a(e1 + e2) + b(e2 − e1) = (a− b)e1 + (a+ b)e2.

Hence, for the coordinates according to the basis {f1, f2}, the norm’s formula is

||x|| = ||af1 + bf2|| = (|a− b|p + |a+ b|p)1/p.

For orthant monotonicity we need

||af1 + bf2|| ≥ max {||af1 + 0f2|| , ||0f1 + bf2||} ,

which is equivalent to

(|a− b|p + |a+ b|p)1/p ≥ max
{

(2 |a|p)1/p, (2 |b|p)1/p
}
.

Thus, it is enough to show that

|a− b|p + |a+ b|p ≥ max {2 |a|p , 2 |b|p} ,

which holds by convexity. Hence, a marginal median with respect to the basis {f1, f2} is
DIC.

Consider next a third basis {g1,g2} where g1 = (1, 0) and g2 = (1, 1). We show below

that g1 and g2 are not BJ-orthogonal. For any x we can write

x = ag1 + bg2 = (a+ b)e1 + be2.

Hence

||x|| =
∣∣∣∣ag1 + bg2

∣∣∣∣ = (|a+ b|p + |b|p)1/p.

Orthant monotonicity requires that∣∣∣∣ag1 + bg2
∣∣∣∣ ≥ ∣∣∣∣0g1 + bg2

∣∣∣∣
⇔ (|a− b|p + |b|p)1/p ≥ (2 |b|p)1/p

⇔ |a− b|p ≥ |b|p .

The last inequality is false in general. Therefore, a marginal median with respect to {g1,g2} need
not be DIC.
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5 How to Find All DIC Marginal Medians?

Theorem 3 reduces the quest for all DIC marginal medians to the quest for all bases consist-

ing of BJ-mutually orthogonal vectors that satisfy property (∗). We first recapitulate how
this is done for the Euclidean norm. We next explain why this geometric procedure does

not work for general normed spaces that are not Hilbert. Finally, we introduce an analytic

approach based on semi-inner products, and show how it can be used to find all bases with

property (∗).

5.1 Isometries and Orthogonality

Finding orthogonal bases for the standard Euclidean norm is straightforward:

1. Identify one orthogonal basis according to the Euclidean inner product.

2. Identify orientation preserving linear isometries (i.e., rotations) that are known to

preserve orthogonality. These isometries yield additional orthogonal bases.

3. Any oriented orthogonal basis can be obtained (modulo translation) from any other

via a suitable rotation.

Unfortunately, the property needed at step 3 does not hold in general normed spaces,
i.e., Euclid’s fourth postulate about the equivalence of right angles need not hold here. In

addition, it is not even clear whether the set of maps that preserve BJ-orthogonality (step

2) is related to the set of linear isometries35. Moreover, starkly contrasting inner product

spaces, where the group of isometries is always a continuum, general normed spaced may

admit only a finite number of these36.

The above insights imply the following: assuming that we found one BJ-mutually or-

thogonal pair, we can then identify additional BJ-mutually orthogonal pairs via isometries,

but possibly only a finite number of them at a time.37 Moreover, from Theorem 2 we know

that there may exist distinct pairs of mutually orthogonal vectors such that there is no

isometry that transforms one pair into another.

5.2 Semi-Inner Products and Normality

Given the above diffi culties with a purely geometric approach, we need an analytic way to

capture BJ-orthogonality. For each two vectors x,y ∈ Rd define two real-valued functions
35Koldobsky, [1993] proved the following : Let V be a real normed space and let T : V → V be a linear

operator preserving BJ-orthogonality, i.e., x a y ⇒ T (x) a T (y). Then T = λU where λ ∈ R and where U
is an isometry.
36For example, Garcia-Roig [1997]) considered two-dimensional real normed spaces and showed that the

group of isometries is finite if and only if the norm ||·|| is not generated by an inner product.
37As we show below for the lp case, isometries need not yield any additional DIC mechanisms because

medians are equivariant with respect to all of them. This never happens in Hilbert spaces.

23



on the real line

fyx (λ) = ||x+ λy||,
fxy (λ) = ||y + λx||.

By the convexity of norms, these functions are convex. The sub-differential ∂f of a convex

function f at λ is the (compact and convex) set of supporting hyperplanes at λ.38 It contains

a unique element, the derivative, whenever the function is differentiable.

By definition, x a y if ‖x+ λy‖ ≥ ‖x‖ = ‖x+ 0y‖ for all real λ. In other words, if
x a y, then λ = 0 must be a minimum point of fyx . Analogously, y a x if ‖y + λx‖ ≥ ‖y‖
for all real λ which implies that λ = 0 must be a minimum point of the function fxy . A real

λ is a minimum of a convex function f if and only if 0 ∈ ∂f(λ). These considerations yield:

Lemma 2 Two vectors x,y are BJ-mutually orthogonal if and only if

0 ∈ ∂fyx (0) ∩ ∂fxy (0).

We now couple the above observations with the following concept:

Definition 7 A semi-inner product (SIP) is a real-valued function [·, ·] defined on V ×
V with the following properties:

1. [x+ z,y] = [x,y] + [z,y], ∀x,y, z ∈ V ;

2. [λx,y] = λ[x,y], ∀x,y ∈ V, ∀λ ∈ R;

3. [x,λy] = λ[x,y], ∀x,y ∈ V, ∀λ ∈ R;

4. [x,x] ≥ 0, ∀x ∈ V, and [x,x] = 0⇒ x = 0;

5. |[x,y]|2 ≤ [x,x][y,y], ∀x,y ∈ V .

An SIP is consistent with the norm of V if [x, x] = ||x||2.
A Minkowski space may be simultaneously endowed with many different SIPs. The main

differences to an inner-product is that the SIP need not be additive in the second variable,

nor commutative.

Definition 8 (Normality) Let [·, ·] be an SIP defined on V . Then x is normal to y if

[y,x] = 0 and y is normal to x if [x,y] = 0.39

38The simplest example is the absolute value function on the real line: the sub-differential at zero is the

entire interval [−1, 1], while at all other points it coincides with the derivative, which is either 1 or −1.
39The order of the vectors in the above definition is important because the SIP is not commutative.
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Theorem 4 (Giles, [1967]) Assume that the norm ‖·‖ is smooth, i.e., for all x,y ∈ Rd,
limλ→0 (||x+ λy|| − ||x||) /λ exists.40 Then there exists a unique SIP, [·, ·], that is consistent
with the norm ‖·‖. Moreover, for any x,y 6= 0,

dfyx (λ)

dλ
|λ=0 =

[y,x]

||x|| ,

and therefore

x a y⇔ [y,x] = 0.

Remark 3 If the space is smooth and if {x1,x2, ...,xd} are BJ-mutually orthogonal (or
Giles-normal in the sense of the SIP), then we have xj a X−j for all j = 1, ..., d. This

property holds because of the left-additivity of the SIP (and hence of normality) in the first

input, and because of the equivalence between normality and orthogonality in such spaces

(x a y ⇔ [y,x] = 0). Thus, under smoothness, the additional requirement of an Auerbach

basis (see Definition 6) is trivially satisfied, but property (∗) may not be.

We conclude this section with the explicit construction of a SIP that is consistent with

a given norm. Fix a basis {x1, ...,xd} in Rd and let

N (x) = ‖x‖

denote the norm functional. Giles [1967] constructed a consistent SIP as follows:

[y,x] =

d∑
j=1

d∑
k=1

1

2

(
∂2

∂xj∂xk
N2 (x)

)
xjyk. (7)

We now derive an alternative representation that is more amenable for our analysis below.

Since N (x) is homogeneous of degree 1, we have

N (x) =
d∑
j=1

Nxj (x)xj and
d∑
j=1

Nxjxk (x)xj = 0 for all k. (8)

Note that
1

2

∂2

∂xj∂xk
N2 (x) = Nxj (x)Nxk (x) +Nxjxk (x)N (x) .

Together with (8), this yields

d∑
j=1

1

2

(
∂2

∂xj∂xk
N2 (x)

)
xj = N (x)Nxk (x) .

Therefore, we can re-formulate Giles’s construction of the consistent SIP as

[y,x] =

d∑
j=1

d∑
k=1

1

2

(
∂2

∂xj∂xk
N2 (x)

)
xjyk = N (x)

d∑
k=1

Nxk (x) yk. (9)

40This property is also called Gateaux differentiability. Norm smoothness requires that, for any vector x

on the unit ball there is a unique tangent to the ball at x.For example, the l1(2) norm is not smooth at the

"corner" x = (0, 1) and at its signed permutations.
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6 Illustrations

In this section we offer several illustrations and applications of the above concepts and

insights.

6.1 The two-dimensional case

The two-dimensional case has been previously studied by Peters, van der Stel, and Storcken

[1993]. As we observed above, a norm is then orthant monotonic with respect to a given

basis if and only if this basis consists of a pair of BJ-mutually orthogonal vectors.

Definition 9 A norm ||·|| is strictly convex if ||λx+ (1− λ)y|| < 1 for all x,y with ||x|| =
||y|| = 1 and for all λ ∈ (0, 1).

Theorem 5 (Peters, van der Stel, and Storcken [1993]) Assume that the norm on R2 is
strictly convex, and let the number of agents be odd. A direct revelation mechanism is

anonymous, Pareto-optimal and DIC if and only if it is a marginal median with respect to

coordinates defined by a basis formed by two BJ mutually orthogonal vectors.41

The following result combines the above insight with ours, and yields an operational

method to compute all DIC, anonymous and Pareto optimal mechanisms on the plane:

Corollary 1 Let R2 be endowed with a smooth and strictly convex norm N (·). A direct

revelation mechanism is anonymous, Pareto-optimal and DIC if and only if it is a marginal

median with respect to an Auerbach basis {x,y}, x = (x1, x2) and y = (y1, y2), that satisfies

the following system of four equations in four unknowns:

∂N(x)

∂x1
y1 +

∂N(x)

∂x2
y2 = 0; (10)

∂N(y)

∂y1
x1 +

∂N(y)

∂y2
x2 = 0; (11)

N(x) = 1; (12)

N(y) = 1. (13)

This system has at least two pairs of distinct solutions.

Proof. Since medians are translation equivariant, it is enough by Theorems 3 and 4 to
characterize BJ-mutually orthogonal pairs x and y with ‖x‖ = ‖y‖ = 1. These are equations

(12) and (13). It follows from (9) that mutually normal vectors must satisfy the system:

[y,x] = N(x)

(
∂N(x)

∂x1
y1 +

∂N(x)

∂x2
y2

)
= 0,

[x,y] = N(y)

(
∂N(y)

∂y1
x1 +

∂N(y)

∂y2
x2

)
= 0,

41A direct revelation mechanism ψ is Pareto optimal if ψ (t1, .., tn) ∈ conv(t1, .., tn) for all t1, ..., tn ∈ Rd,
where conv(t1, ..., tn) is the convex hull of (t1, .., tn).
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which reduce to equations (10) and (11) since x,y 6= 0. To conclude, finding all solution to

equations (10)-(13) yields all pairs of directions (or the issues) for which marginal medians

are DIC. There are at least two distinct solutions by Theorem 2.

6.2 The lp(d) spaces

We now consider the widely used class of lp(d) norms, and we characterize all DIC mar-
ginal medians.42 The respective norm formulae with respect to the standard Cartesian

coordinates are

N (x) = ‖x‖p =

 d∑
j=1

|xj |p
1/p .

6.2.1 The Isometries of lp spaces

The Hilbert space l2(d) admits a continuum of different orthogonal bases and, modulo

translations, each one can be obtained from another by applying a suitable isometry that

preserves orientation (i.e., rotations). For any other lp(d) space, p 6= 2, the set of linear

isometries is finite:

Theorem 6 (Li and Son [1994]) For any lp(d), p ≥ 1, p 6= 2, the set of linear isome-

tries is independent of p, and is represented by the set of signed permutation matrices, i.e.

permutation matrices where some of the 1 entries are replaced by −1 entries.

For example, for any lp(2), p ≥ 1, p 6= 2, the set of linear isometries that preserve

orientation (and have therefore determinant +1) is represented by the four matrices:(
1 0

0 1

)
,

(
−1 0

0 −1

)
,

(
0 1

−1 0

)
,

(
0 −1

1 0

)
.

This set of matrices represent the easily visualized set of rotations with angles {0, π/2, π, 3π/2}
that leave invariant the l1 unit ball in the plane and, as the Theorem shows, also all other

lp unit balls.

42See Eguia[2011] for an axiomatic characterization of preferences derived form this class of norms.
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Figure 5: The lp unit balls

Medians are equivariant with respect to signed permutations with determinant +1, and

hence, after finding a BJ-mutually orthogonal pair, applying isometries does not reveal here
new DIC mechanisms (in stark contrast to the Euclidean case). Moreover, we also know

from the Theorem 2 that there is no isometry transforming the BJ-mutually orthogonal

pair identified via maximal inscribed quadrilateral into the other, identified by minimum

circumscribing quadrilateral. Therefore, we apply below the SIP method.

6.2.2 The Semi-Inner Product

The construction of a norm-consistent SIP for the lp(d) norm is as follows. Suppose xj 6= 0

for all j, and thus d |xj | /dxj = xj/ |xj |. If xj = 0, its impact on [y,x]p vanishes in any

case. Note that

∂N (x)

∂xj
=

∂

∂xj

 d∑
j=1

|xj |p
1/p =

1

p

 d∑
j=1

|xj |p
1/p−1 p |xj |p−1 xj

|xj |
=
|xj |p−2 xj
||x||p−1p

It follows from (9) that the SIP is given by

[y,x]p = N (x)

d∑
j=1

Nxj (x) yj =

d∑
j=1

|xj |p−2 xjyj
||x||p−2p

. (14)

For p 6= 1 the lp(d) norm is smooth, and hence this is the unique norm-consistent SIP

in those cases.43

6.2.3 The set of DIC marginal medians

We next characterize all Auerbach bases with property (∗),44 and hence all DIC marginal
medians. We assume below that p > 1 because the “taxicab”(or “Manhattan”) norm where

p = 1 is not smooth (and hence the norm-consistent SIP is not unique). By using properties

that must be shared by all consistent SIP’s, and the fact that the isometries of the spaces

l1 and lp, p 6= 2, coincide (see Theorem 6), this case can be treated separately to yield the

same general result. The case p = 2, the standard Euclidean norm, is the unique one that

is generated by an inner-product space. It is well known that it admits a continuum of

orthogonal bases.

Theorem 7 Fix d ≥ 2 and assume that p > 1 and p 6= 2. For any lp(d) space, a marginal

median is DIC if and only if it is computed with respect to coordinates defined by a following

modification of the standard Cartesian basis E = {e1, ..., ed}:
43Our formula coincides of course with the standard inner product formula for p = 2 where [y,x]2 =∑d
j=1 xjyj .
44By the smoothness of the norm, the right-additivity property is automatically satisfied here for p > 1.
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1. Choose a subset of vectors E′ ⊆ E with an even (possibly zero) number of elements,

and partition it into distinct pairs
{
ej , ek

}
.

2. Replace each pair
{
ej , ek

}
in E′ by the pair

{
ej + ek, ej − ek

}
.

3. Construct a new basis from these new pairs, together with the remaining unit vectors

in E/E′.

Proof. Note first that the construction always yields d linearly independent vectors. Using
the SIP, Kinnunen [1984] proved the following: for any vector x ∈ lp, there exists a hyper-
plane H such that H a x if and only if x belongs to the union of the one-dimensional

subspaces spanned ej , ej + ek, ej − ek, j, k = 1, ..., d, j 6= k. Kinnunen’s result implies

that each vector xj in a basis with property (∗) must be one of the vectors in the state-
ment, because, by property (∗), the hyperplane spanned by the other vectors in the basis
is necessarily orthogonal to it.45 Kinnunen’s result does not, however, determine the full

composition of (Auerbach) bases with property (∗), and we do this below.
Let {x1,x2, ...,xd} denote a basis as constructed in the statement. We first show that this

basis satisfies property (∗). There are three cases to consider for vector x ∈ {x1,x2, ...,xd}:

1. x ∈ E\E′. Then x = ej for some j. Let y be a vector in the span of the other d− 1

vectors in the basis. Then we can write y =
∑

k 6=j α
kek for certain coeffi cients

{
αk
}
.

We obtain from (14) that

[y,x]p =
d∑

k=1

|xk|p−2 xkyk
||x||p−2p

= 0,

because xk = ejk = 1 for k = j, and xk = ejk = 0 for k 6= j, and because yj = 0.

2. x = ej + ek. Let y be a vector in the span of the other d − 1 vectors in the basis.

Then y =
∑

` 6=j,k α
`e` + β(ej − ek) for certain coeffi cients

{
α`
}
and β. We obtain:

[y,x]p =

∑
6̀=j,k

α`e` + β(ej − ek), ej + ek


p

=
∑
` 6=j,k

α`
[
e`, ej + ek

]
p

+
[
ej − ek, ej + ek

]
p

=
∑
` 6=j,k

α`
[
e`, ej + ek

]
p

+
[
ej , ej + ek

]
p
−
[
ek, ej + ek

]
p

= 0

where the second and third equalities follow from the left-additivity of SIP in its first

input, and the last equality follows because[
e`, ej + ek

]
p

= 0 for ` 6= j, k, and
[
ej , ej + ek

]
p

=
[
ek, ej + ek

]
p
.

45See also Baronti and Papini [1988] and Lavric [1997] for related results.
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3. x = ej − ek. This case is analogous to case 2 above.

For the converse, we show that an (Auerbach) basis with property (∗) must have the
form given in the statement of the Theorem. As implied by the result of Kinnunen [1984],

each vector xj in an Auerbach basis with property (∗) must be in the forms of ej , ek − e`

or em + e`. Note that, by the left-additivity property of the SIP,[
ej − ek, ej

]
p

=
1

||ej − ek||p−2p

6= 0 and
[
ej + ek, ej

]
p

=
1

||ej + ek||p−2p

6= 0.

Hence, if ej belongs to an Auerbach basis, vectors of the form, ek − e`, ek + e`, e` − ek,
can belong to the basis only if k, ` 6= j.

If all vectors in the basis have their k-th coordinates equal to zero, then they cannot

span the entire d dimensional vector space. Assume then that some vector of the form

ek + ej belongs to the basis. We need to show that ek − ej also belongs to it (the proof of
the opposite case is analogous). Assume by contradiction that ek − ej does not belong to
the basis. Since ek cannot belong to it by the preceding argument, the only other possible

vectors in the basis that have a non-zero k-th coordinate are of the form ek + e` or ek − e`

for ` 6= j. But these vectors are not orthogonal to ek + ej because, for all ` 6= j,[
ek + ej , ek + e`

]
p

=
[
ek, ek + e`

]
p

+
[
ej , ek + e`

]
p

=
1

||ek + e`||p−2p

6= 0,

[
ek + ej , ek − e`

]
p

=
[
ek, ek − e`

]
p

+
[
ej , ek − e`

]
p

=
1

||ek − e`||p−2p

6= 0.

Therefore, ek + ej and ek + e` or ek − e` for ` 6= j cannot simultaneously be part of an

Auerbach basis. This completes the argument.

It is clear from Theorem 7 that the set of Auerbach bases with property (∗), and thus
the set of DIC marginal median mechanisms, is independent of p. Theorem 7 tells us

exactly how to find these DIC mechanisms for any lp space. For example, for d = 5, the

matrix of coordinates of the (column) vectors belonging to an Auerbach basis with property

(∗) has either one of the forms below, or their signed permutations:
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 ,


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 1 −1

 ,


1 0 0 0 0

0 1 1 0 0

0 1 −1 0 0

0 0 0 1 1

0 0 0 1 −1

 .

The case of d = 5

As an application, let us use the above result to identify all DIC, anonymous and
Pareto-optimal mechanisms for the lp(2) spaces. The above Theorem shows that, modulo

signed permutations, for all these spaces (with the exception of p = 2) there are exactly
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two pairs of directions on which marginal medians can be taken while preserving DIC:
{e1, e2} and {e1 + e2, e1 − e2}.46 In particular, no matter what lp(2) norm an agent uses,

reporting truthfully is DIC if a marginal median mechanism with respect to either one of

these two bases is used. It is also clear that the two bases yield two distinct marginal median

mechanisms: there is no isometry (i.e., there is no signed permutation) that transforms

{e1, e2} into {e1 + e2, e1 − e2}. The converse follows by Corollary 1.
A comparison of the two mechanisms from an utilitarian perspective (for the case p = 2)

is conducted in Gershhkov, Moldovanu and Shi [2019]. There, we also establish the relations

between theses two mechanisms and the bottom-up vs. top-down budgeting procedures used

by legislatures (see for example Ferejohn and Krehbiel [1987], Groves [1994], and Poterba

and von Hagen [1999])47.

6.3 Inner-Product Spaces

We briefly illustrate here how our general approach also illuminates the often studied class

of quadratic preferences: all such preferences correspond to norm-based preferences, where

the norm is generated by an inner-product.

Assume first that agent i has an utility function derived from a weighted Euclidean

norm with weights βi ≡ (βi1, βi2, ..., βid) 6= 0 where βij ≥ 0 for all i, j. That is, agent i with

ideal point ti = (ti1, ti2, ..., tid) has a utility from decision v = (v1, ..., vd) given by

−
d∑
j=1

βij (vj − tij)2 ,

Both ti and βi are agent i’s private information. Let

Ai =


βi1 0 · · · 0

0 βi2 · · · 0

0 0
. . . 0

0 0 · · · βid

 ,

and define an inner-product and its associated norm by:

〈(x1, ..., xd), (y1, ..., yd)〉 ≡ (x1, ..., xd)Ai(y1, ..., yd)
T ,

||(x1, ..., xd)|| ≡
√

(x1, ..., xd)Ai(x1, ..., xd)T =

√√√√ d∑
j=1

βijx
2
j .

Each such inner-product is symmetric, and its orthogonality relation is also symmetric.

The unit ball is an ellipse with axes parallel to the standard Cartesian coordinates, described

46These are, precisely, the conjugate diameters identified by Auerbach’s theorem (Theorem 2) for these

norms.
47 It is interesting to note that Groves also considered non-Euclidean preferences, but focused then on

non-strategic voting.

31



by
d∑
j=1

βijx
2
j = 1,

We obtain the following “robust”mechanism design result:

Theorem 8 Assume that there are at least d agents and that the set of possible weights
determining their weighted Euclidean preferences contains d linearly independent vectors

β1, ...,βd. Then, up to translations, the unique DIC marginal median is the one computed

with respect to the standard Cartesian coordinates.

Proof. Consider a realization where there are d agents such that each agent i has a utility
function derived from a weighted Euclidean norms with weight vector βi. A DIC marginal

median for such agents must be computed with respect to coordinates that are orthogonal

under all norms generated by these various weights. Let us then look for a basis of the

underlying vector space consisting of d vectors that are orthogonal from the joint point of

view of all the d agents i = 1, ..., d. Property (∗) is satisfied here automatically since all
norms are generated by inner-products.

Consider then d vectors, x1,x2, ...,xd, with xk = (xk1, x
k
2, ..., x

k
d), k = 1, ..., d, all different

from zero. Then any two vectors xk,x` such that xk a x` must satisfy the following system
of equations48:

d∑
j=1

βijx
k
jx

`
j = 0, for all i = 1, ..., d

Since β1, ...,βd are linearly independent, we must have, for all j, k, ` ∈ {1, ..., d}, k 6= `,

xkjx
`
j = 0.

This implies that, for each coordinate j, there is at most one k such that xkj 6= 0. As a

result, there are at most d non-zero numbers in the set
{
xkj

}
j,k=1,...,d

. But since x1,x2, ...,xd

are all non-zero vectors, there is exactly one non-zero entry for each vector xk. In other

words, the set {x1,x2, ...,xd} consists of vectors in the direction of the standard Cartesian
coordinates, and their signed permutations. The result follows because marginal medians

are equivariant with respect to signed permutations of the coordinates.

Border and Jordan [1983] studied DIC mechanisms on the entire class of quadratic

separable preferences - these coincide with our weighted Euclidean norms described above.
Combined with Moulin’s characterization for one-dimensional domain, their Theorem 1

shows that any unanimous, anonymous and DIC mechanism must be a generalized median.

As we showed above, these (generalized) medians must be computed with respect to the

standard Cartesian coordinates.
48This is, of course, a special case of the SIP approach described above.
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Let us now consider what happens when we allow agents to have arbitrary (possibly

different) utilities derived from inner-product norms. We recover then the impossibility

result Theorem 3 of Border and Jordan [1983].

Theorem 9 Assume that there are at least d + 1 agents and that agents have individ-

ual preferences derived from arbitrary inner-product norms. Then there is no unanimous,

anonymous and DIC mechanisms.

Proof. Suppose there are d agents whose preference relations are generated from different

weighted Euclidean norms. It follows from our result above, and from Theorem 1 in Border

and Jordan [1983] that any unanimous, anonymous mechanism that is DIC for these d

agents must be a generalized marginal median mechanism with respect to the standard

Cartesian basis. Consider then a d+ 1 agent whose preference relation is generated from a

norm such that its associated unit ellipse is tilted with respect to the standard Cartesian

coordinates. Then the Cartesian coordinates are not orthogonal according to this norm.
To see this, assume that this third norm is generated by the following inner product

〈(x1, ..., xd), (y1, ..., yd)〉 ≡ (x1, ..., xd)Ai(y1, ..., yd)
T

where Ai is given by

Ai =


1 b · · · 0

b 1 · · · 0

0 0
. . . 0

0 0 · · · 1

 .

Since the unit ellipse defined by the norm is assumed to be tilted with respect to the

Cartesian coordinates, we must have b 6= 0. Consider then the vectors

e1 = (1, 0, ..., 0) and e2 = (0, 1, ..., 0).

We obtain

[e1, e2] = [e2, e1] = (1, 0, ..., 0)Ai(0, 1, ..., 0)T = b 6= 0

and hence e1 and e2 are not orthogonal here. A marginal median with respect to the

standard Cartesian coordinates is thus not DIC for such an agent, and the impossibility

result follows.

7 Concluding Remarks

We have studied issue-by-issue voting by majority in a multidimensional collective decision

situation, and we have identified all special systems of coordinates (the "issues") that render

marginal median mechanisms incentive compatible. Our analysis has combined a variety of

methods and concepts from geometry/functional analysis, a large part of which are novel to
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the Economics literature. For fixed, small classes of norm-induced preferences we were able

to construct incentive compatible mechanisms that cannot be otherwise identified when the

class of feasible preferences is rich. Finally, by going well beyond the Euclidean distance

function, our analysis opens a broader scope for applications of spatial voting analysis.
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