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1 Introduction

This paper studies if and how behaviors in the domains of risk and time may be

similar and related. This similarity is evident in the mutually mirroring math-

ematical models used for the analysis of behavior under risk and over time.

The workhorse model of intertemporal choice, exponential discounting, evalu-

ates the utility of a consumption stream by additively aggregating the utility

of each consumption outcome, after exponentially weighting (or discounting)

it by the associated time-delay. The canonical model for choice under risk,

expected utility, similarly calculates the utility of a lottery by aggregating the

utility of each possible outcome after weighting it by its respective probabil-

ity. Further, these normative mathematical models contain similar descriptive

inadequacies:

• Preferences are disproportionately sensitive to certainty (certainty e�ect)

in the risk domain and to the present (present bias/ immediacy e�ect)

in the time domain.

• Proportional changes in probabilities (common ratio e�ect) or the in-

troduction of equal time delays (common di�erence e�ect) a�ect the

preferences between two alternatives disproportionately.1

Moreover, Keren and Roelofsma (1995) and Weber and Chapman (2005) pro-

vide experimental evidence that introducing explicit risk to immediate rewards

almost eliminates present bias, while introducing delay to sure outcomes al-

most eliminates the certainty e�ect. These parallels are well accepted in the

literature (Green and Myerson, 2004; Chapman and Weber, 2006, to name a

few) and there is an implicit understanding that the existence of such mirror-

ing behaviors is not a mere coincidence, but points to a common fundamental

property of decision making that manifests itself across domains of behavior

(Prelec and Loewenstein, 1991; Baucells and Heukamp, 2012). There are a few

behavioral channels that have been proposed as explanations for why prefer-

ence in one domain, may a�ect preference in the other. For example, a delayed

1Often times certainty e�ect and present bias are taken as special cases of common ratio
e�ect and common di�erence e�ect, respectively.
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reward or consumption could be inherently risky, as there might be events be-

tween the current date and the promised date, which interfere in the process of

acquiring the reward (Halevy, 2008). This would explain one direction of the

similarity: why risk preferences could in�uence intertemporal choice patterns.

Rachlin et al. (1986; 2000) suggested how the opposite direction of in�uence

could also hold true: if the utility of probabilistic rewards were calculated us-

ing mean waiting time before a successful draw of the corresponding reward,

then time preferences could be used to derive preferences over the probabilistic

rewards. The current paper formalizes these intuitions and provides a two-way

characterization of how prominent behavioral traits from the domains of risk

and time could be related.

We prove our results in two commonly used decision domains: one where

the decision maker (DM) is choosing between temporal rewards (X×R+) with

the set of time periods being the set of all non-negative numbers and the con-

sumption set is X ⊆ R+, and another where the DM is choosing from the space

of consumption streams (XN, where N are non-negative integers). In the �rst

domain, we provide a complete relationship between risk and time preferences

using two intuitive notions of time-behavior, Temporal Reversals (TR) and

Present Biased Temporal Reversals (PBTR), which can be intrinsically linked

to hyperbolic discounting and quasi-hyperbolic discounting respectively. We

show in Theorem 1 that (i) a decision maker exhibits Strict Common Ra-

tio E�ect (SCRE) if and only if his choices satisfy Temporal Reversals (TR),

(ii) he exhibits Strict Certainty E�ect (SCE) if and only if his choices satisfy

Present Biased Temporal Reversals (PBTR), and (iii) he is an expected utility

maximizer if and only if he is temporally unbiased (an exponential discounter).

For consumption streams (XN) de�ned on discrete time, it was previously

established in Halevy (2008) and Saito (2011) that Strict Common Ratio Ef-

fect (SCRE) was su�cient for Strong Diminishing Impatience (SDI, a property

of hyperbolic discounting) and Strict Certainty E�ect (SCE) was su�cient

for Diminishing Impatience (DI, a property of quasi-hyperbolic discounting)

to hold. The property of Diminishing Impatience implies that the ratio of

discount weights between two consecutive periods is highest at period zero,
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Temporal Rewards (X × R+)
Interlink b/t temporal

Consump. Streams (XN)
notions across domains

SCRE
Theorem 1⇐=====⇒ TR TR

Proposition 3⇐=======⇒SDI SDI
Remark 3⇐====== SCRE
Theorem 2
======⇒ WCRE

SCE
Theorem 1⇐=====⇒ PBTR PBTR

Proposition 3⇐=======⇒DIDI DIDI
Remark 3⇐====== SCE
Theorem 2
======⇒ WCE

* Abbreviations used: SCRE=Strict Common Ratio E�ect, WCRE=Weak Common Ratio

E�ect, TR = Temporal Reversals, PBTR = Present Biased Temporal Reversal, SDI =

Strong Diminishing Impatience, DIDI = Delay Independent Diminishing Impatience.

Table 1: Summary of our results.

that is,
D(0)

D(1)
>

D(t)

D(t+ 1)
for the discounted utility

∑
tD(t)u(ct) of a stream

(c0, c1...). Our main result in the discrete domain is to show that the notion

of Diminishing Impatience (DI) does not imply Weak Certainty E�ect (WCE)

(and hence also does not imply the strict version of Certainty E�ect), unless,

it is adequately extended to hold for all possible delays between streams under

consideration. One of our main results shows that,
D(0)

D(k)
>

D(t)

D(t+ k)
∀k ≥ 1,

which we call Delay Independent Diminishing Impatience (DIDI), is the ad-

equate strengthening to derive WCE. We also show that DIDI is a property

of commonly used prize-time separable parametric functional forms employed

to model present bias. Additionally, a stronger condition, Strong Diminish-

ing Impatience (SDI) implies Weak Common Ratio E�ect (WCRE, and also

implies Strict Common Ratio E�ect for almost all probabilities).2

Further, the temporal behaviors considered in the two domains (for e.g,

PBTR from X × R+ and DIDI from XN), are also interlinked, as shown in

Proposition 3. Table 1 succinctly summarizes our results.

The next section provides a brief acknowledgment to the prior literature on

risk-time equivalence relations. Sections 3 and 4 provide the relevant de�ni-

tions from risk and temporal domains of behavior respectively. In Section 5, we

state and prove our main results in Theorems 1 and 2. The counter-example

that shows the incompleteness of characterization results in the previous lit-

2This almost-ness is explained in Corollary 1.
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erature (described in Table 2) is included in Appendix A.

2 Background

The idea that Diminishing Impatience (quasi-hyperbolic discounting, present

bias) may be related to the certainty of the present and the risk associated

with future rewards, was formalized by Halevy (2008). In this model, every

consumption path c = (c0, c1, c2, . . .) is subject to a constant hazard rate of

termination (r), with only the �rst period of consumption (at t = 0) being

certain. The DM chooses as if he has the following �nal utility function on

consumption paths: he calculates present discounted utility for every possi-

ble length of the path (all periods before termination of consumption). The

distribution over present discounted utilities is then evaluated using Rank De-

pendent Utility (RDU)3 with probability weighting function g (·). The DM's

preferences over consumption streams is represented by the following function:

U (c, r) =
∞∑
t=0

g
(
(1− r)t

)
δtu (ct) (2.1)

where δ is a constant pure time preference parameter and u (·) is her felicity

function. The DM's impatience at time t is the ratio of her discount functions

at periods t and t + 1. Halevy (2008) de�nes Diminishing Impatience (DI)

as the property of �impatience being maximized at t = 0�. In Table 2 we

summarize how the current paper links to Halevy (2008) and Saito (2011).

3 Risky Behavior

In this section, we consider a risk preference %r on the set of binary lotteries,

de�ned as follows:

∆ =
{

(x, p; 0, 1− p)
∣∣ x ∈ X and p ∈ [0, 1]

}
,

3For more details of RDU, see Remark 1.
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Results linking risk and time in the Halevy (2008) set-up
Halevy

DI Step 1⇐==⇒
Functional Step 2: Segal (1987)⇐===========⇒

Lemma 4.1

Increasing Step 3⇐==⇒ CE
(2008) inequality* elasticity of g(·)

(i) Unsubstantiates Segal (1987)'s Lemma 4.1 used in Step 2.

Saito (ii) Proposes:

(2011)
DI

Step 1⇐====⇒
as before

Functional Without⇐========⇒
using Steps 2-3

CE
inequality*

Shows DI ;CE & DI ; Functional inequality* (Appendix A)

This Shows Halevy (2008), Saito (2011) results are uni-directional CE =⇒ DI.

paper Establishes new two-way results (Theorems 1-2) summarized in Table 1.

*A property of g (·) that is a special case of Kahneman and Tversky (1979, pg.282)

subproportionality.

Table 2: Connecting the current paper to previous work.

where X is a non-degenerate closed interval in R+ including 0. We denote

the symmetric part and the asymmetric part by ∼r and �r, respectively. We

denote a typical element (x, p; 0, 1− p) of ∆ simply by (x, p). We often write

(x, p) ≺r (y, q) when (y, q) �r (x, p).

We formally de�ne the common ratio e�ect and the certainty e�ect, which

are typical behaviors in the Allais paradox, using the preference %r.

The common ratio e�ect is characterized as follows: Suppose the subject

chooses between a safer option which gives a smaller reward x with a higher

probability η, and a riskier option which gives a larger gain y with a lower

probability ηµ, where µ < 1. As η falls, the subject switches his choice from

the safe option to the risky option. Formally, the common ratio e�ect is de�ned

as follows:

De�nition 1. %r is said to exhibit

(i) Strict Common Ratio E�ect (SCRE)4 if, for any x, y ∈ X and µ, η̃ ∈
(0, 1],

(x, η̃) ∼r (y, η̃µ) =⇒ (x, η) ≺r (y, ηµ) for all η ∈ (0, η̃). (3.1)
4Under the standard assumptions of monotonicity and continuity axioms, for any x, y ∈

X and η̃ ∈ [0, 1], there exists µ such that (x, η̃) ∼r (y, η̃µ). So the condition cannot be
satis�ed in a trivial way.
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(ii) Weak Common Ratio E�ect (WCRE) if the conclusion in (3.1) holds

with weak preferences and there exist some x, y and µ, η̃, η such that the

conclusion in (3.1) holds (with strict preferences).

The general de�nition provided by Machina (1982, page 305) also becomes

equivalent to the above de�nition within the set of simple binary lotteries. The

condition characterizing the Certainty E�ect is a special case of the common

ratio e�ect, when η̃ = 1:

De�nition 2. %r is said to exhibit

(i) Strict Certainty E�ect (SCE) if, for any x, y ∈ X and µ ∈ [0, 1),

(x, 1) ∼r (y, µ) =⇒ (x, η) ≺r (y, ηµ) for all η ∈ (0, 1). (3.2)

(ii) Weak Certainty E�ect (WCE) if the conclusion of (3.2) holds with weak

preferences and there exist some x, y and µ, η such that the conclusion

of (3.2) holds (with strict preferences).

By de�nition, if a DM exhibits Common Ratio E�ect, then he exhibits the

Certainty E�ect. Finally, in the set ∆ of binary lotteries, the Independence

Axiom reduces to the following:

De�nition 3. %r is said to satisfy the Independence Axiom if, for any x, y ∈ X
and µ, η, η′ ∈ [0, 1],

(x, η) %r (y, ηµ)⇔ (x, η′) %r (y, η′µ).

Remark 1. Assume the DM's preferences over binary lotteries are represented

by Rank Dependent Utility (RDU), that is U (x, p) = u (x) g (p) where u (·) is
a real-valued increasing function on X and g : [0, 1] → [0, 1] is a probability

weighting function and for any α ∈ R+ there exist x, y ∈ X such that α =

u(y)/u(x). The DM exhibits

(i) SCRE if and only if for all p, q ∈ (0, 1) and ` ∈ (0, 1]

g (`)

g (p`)
>

g (q`)

g (pq`)
. (3.3)
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(ii) WCRE if and only if (3.3) holds with weak inequality and there exist

p, q, ` for which (3.3) holds (with strict inequality).

(iii) SCE if and only if p, q ∈ (0, 1)

g (pq) > g (p) g (q) . (3.4)

(iv) WCE if and only if (3.4) holds with weak inequality and there exist p, q

for which (3.4) holds (with strict inequality).

Proof. We show statement (i). Rest follow similarly.

By assumption, there exist x, y ∈ X such that g(η̃)
g(η̃µ)

= u(y)
u(x)

. SCRE implies,

∀η ∈ (0, η̃) :
[u(y)

u(x)
>

g(η)

g(ηµ)

]
& ∀η ∈ (η̃, 1] :

[u(y)

u(x)
<

g(η)

g(ηµ)

]
. (3.5)

(3.5) is equivalent to

∀η ∈ (0, η̃) :
[ g(η̃)

g(η̃µ)
>

g(η)

g(ηµ)

]
& ∀η ∈ (η̃, 1] :

[ g(η̃)

g(η̃µ)
<

g(η)

g(ηµ)

]
. (3.6)

Hence, (3.3) implies (3.6). (3.6) implies (3.3) because for any η < η̃, we

can let q = η/η̃ < 1, ` = η̃, and p = µ; for any η > η̃, we can let q = η̃/η < 1,

` = η, and p = µ.

4 Intertemporal Behavior

In this section, we de�ne preferences that subsume the classes of exponential,

hyperbolic and quasi-hyperbolic discounting. We denote the set of time pe-

riods by T . In the following, we consider two cases. First, when preferences

are de�ned over temporal rewards (X × T when T = R+), and then over

consumption streams (XT when T = N).
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4.1 Temporal rewards in continuous time

For each d ∈ T , we denote the set of temporal rewards, paid after time d, by

X(d) = {
[
x, t]

∣∣ x ∈ X and t ∈ T such that t ≥ d}. The DM's time-indexed

preferences are given by {%d}d∈T , where %d is a binary relation on X(d) for

each decision time d ∈ T .5

Hyperbolic discounting describes the following pattern of dynamic choice:

the subject chooses a later-larger reward over a earlier-smaller reward, but he

reverses his choice as both reward dates approach the decision date.6 Temporal

Reversal formalizes this behavioral pattern as follows:7

De�nition 4. {%d}d∈T is said to exhibit:

(i) Temporal Reversal (TR) if, for any x, y ∈ X and d̃, t, s ∈ T such that

d̃ ≤ t ≤ s,

[x, t] ∼d̃ [y, s] =⇒

{
[x, t] ≺d [y, s] for all d such that d < d̃,

[x, t] �d [y, s] for all d such that t > d > d̃.

(ii) Present Biased Temporal Reversal (PBTR) if, for any x, y ∈ X and

t, s ∈ T such that t ≤ s,

[x, t] ∼t [y, s] =⇒ [x, t] ≺d [y, s] for all d < t.

(iii) Temporally Unbiased (TU) if, for any x, y ∈ X and d, d′, s, t ∈ R+,

[x, t] %d [y, s]⇔ [x, t] %d′ [y, s].

5For each d ∈ T , we denote the symmetric part and the asymmetric part of %d by ∼d
and �d, respectively.

6In the following three de�nitions of time preferences, we focus on positive payo�s for
simplicity. For the case of negative payo�s, present bias appears as procrastination and
is de�ned in the same way by switching strict preference from � to ≺, and vice versa.
O'Donoghue and Rabin (1999) o�ers examples of procrastination and Halevy (2008, page
1157) discusses how to incorporate into the current framework using the re�ection e�ect.

7Note that the characterization of hyperbolic discounting in Proposition 1 of Dasgupta
and Maskin (2005, page 1293) is exactly the same as above.
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PBTR is a special case of TR when d̃ = t. By de�nition, if a DM exhibits

TR, then he exhibits PBTR behavior, but the converse is not true. Temporal

reversals, or lack thereof, are de�ned here in terms of dynamic decision mak-

ing, thus assuming time invariance (Halevy, 2015). TU preferences are time

consistent and correspond to exponential discounting.

4.2 Consumption streams in discrete time

We now consider consumption streams in discrete time (i.e., T = N). In this

case, temporal behavior is usually characterized by properties of the discount-

function, and under time invariance it depends only on the distance between

the evaluation time and consumption time. Let D(·) be the DM's discount-

function, so the utility of consuming x after τ periods is D(τ)u(x), where u

is a real valued function on X. D exhibits hyperbolic discounting (HD) if

D(τ) = 1/(1 + ρτ) for some ρ > 0; is quasi-hyperbolic discounting (QHD) if

D(0) = 1 and D(τ) = βδτ for some δ ∈ (0, 1] and β < 1 for all τ ≥ 1.

The DM's (one period) impatience at t is D (t) /D (t+ 1). DM's (k period)

impatience at t isD (t) /D (t+ k). In Table 3 we de�ne the notions of temporal

behavior for streams (XN).
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De�nition

Diminishing D(0)

D(1)
>

D(t)

D(t+ 1)
∀t ∈ N+

Impatience (DI)

Delay Independent D(0)

D(k)
>

D(t)

D(t+ k)
∀k, t ∈ N+

Diminishing Impatience (DIDI)

Strongly Diminishing D(t)

D(t+ 1)
>

D(t′)

D(t′ + 1)
∀t, t′ ∈ N with t < t′

Impatience (SDI)

Delay Independent Strongly D(t)

D(t+ k)
>

D(t′)

D(t′ + k)
∀t, t′ ∈ N, k ∈ N+ with t < t′

Diminishing Impatience (DISDI)

Table 3: Notions of temporal behavior for consumption streams (XN).

Proposition 1.

(i) DIDI implies DI (but DI does not imply DIDI).

(ii) SDI and DISDI are equivalent.

Proof. (i) DI is the special case of DIDI where delay k = 1. An implication of

the counter-example provided in Appendix A is that DI does not imply DIDI.

(ii) DISDI trivially implies SDI. Assume SDI and to show DISDI, �x k, t′, t

such that t′ > t to show that D(t)
D(t+k)

> D(t′)
D(t′+k)

. Notice that

D(t)

D(t+ k)
=

D(t)

D(t+ 1)

D(t+ 1)

D(t+ 2)
· · · D(t+ k − 1)

D(t+ k)︸ ︷︷ ︸
k−terms

=
k−1∏
d=0

D(t+ d)

D(t+ d+ 1)
,

D(t′)

D(t′ + k)
=

D(t′)

D(t′ + 1)

D(t′ + 1)

D(t′ + 2)
· · · D(t′ + k − 1)

D(t′ + k)︸ ︷︷ ︸
k−terms

=
k−1∏
d=0

D(t′ + d)

D(t′ + d+ 1)
.

Since t′ > t, by SDI, we have for each d ∈ {0, . . . , k− 1}, D(t+d)
D(t+d+1)

> D(t′+d)
D(t′+d+1)

.

Hence, D(t)
D(t+k)

> D(t′)
D(t′+k)

.

DI and SDI have been proposed by Halevy (2008). DIDI and DISDI are new

properties motivated by the hyperbolic-discounting and the quasi-hyperbolic

discounting models, and they focus on the failure of stationarity independently
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of the delay under consideration.8 DIDI requires impatience to diminish for

all possible delays (k ≥ 1), hence is a strengthening of DI. Proposition 2 shows

that the standard behavioral models satisfy DIDI and DISDI.

Proposition 2.

(i) QHD satis�es DIDI but not DISDI.

(ii) HD satis�es DISDI (and hence SDI and DIDI).

Proof. (i) For t′ > t > 0

D(0)

D(k)
=

1

βδk
>

1

δk
=

D(t)

D(t+ k)
=

D(t′)

D(t′ + k)

(ii) For arbitrary k, and t′ > t ≥ 0,

D(t)

D(t+ k)
= 1 +

ρk

1 + ρt
> 1 +

ρk

1 + ρt′
=

D(t′)

D(t′ + k)

Finally, we elaborate on the relationship between the de�nitions for tem-

poral rewards in continuous time (De�nition 4) and the de�nitions for discrete

time consumption streams (De�nitions in Table 3). To achieve this we con-

sider the intersection of their domains, which is temporal rewards in discrete

time.

Proposition 3. Suppose that T = N and there exist D : T → [0, 1] and

u : X → R+ such that for each d ∈ T , %d is represented by Ud([x, t]) =

D(t−d)u(x) and for any α ∈ R+ there exist x, y ∈ X such that α = u(x)/u(y).

Then, the following results hold:

(i) D exhibits SDI (and hence DISDI) if and only if {%d}d∈T exhibits TR.

(ii) D exhibits DIDI if and only if {%d}d∈T exhibits PBTR.

8Halevy (2015) provides a formal de�nition and recent experimental evidence for station-
arity in a dynamic setting.
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Proof. For this proof, we will use that SDI and DISDI are equivalent. To show

(i), suppose that {%d} exhibit TR and show that D exhibits DISDI, i.e, for

an arbitrary non negative integer τ ′ < τ we will show that

D(τ ′)

D(τ ′ + k)
<

D(τ)

D(τ + k)
.

Choose x, y ∈ X such that D(τ ′)/D(τ ′ + k) = u(y)/u(x). Hence, [x, τ ] ∼τ−τ ′
[y, τ+k]. Then by TR we have [x, τ ] ≺0 [y, τ+k]. This means thatD(τ ′)u(x) >

D(τ ′+k)u(y). It follows that,
D(τ)

D(τ + k)
=
u(y)

u(x)
<

D(τ ′)

D(τ ′ + k)
. Since the choice

of τ is arbitrary, this means that D exhibits SDI.

Converse direction: Suppose that there exist x, y ∈ X and d̃, t, s ∈ T such

that [x, t] ∼d̃ [y, s] and d̃ ≤ t ≤ s. Choose d, d′ ∈ T such that d < d̃ and d′ > d̃

to show [x, t] ≺d [y, s] and [x, t] �d′ [y, s].

Since [x, t] ∼d̃ [y, s], by de�nition, D(t− d̃)u(x) = D(s− d̃)u(y), so that

D(t− d̃)

D(s− d̃)
=
u(y)

u(x)
. (4.1)

Since d < d̃ < d′, it follows from DISDI that

D(t− d)

D(s− d)
<
D(t− d̃)

D(s− d̃)
<
D(t− d′)
D(s− d′)

.

By (4.1), we getD(t−d)u(x) < D(s−d)u(y) andD(t−d′)u(x) > D(s−d′)u(y).

Hence, [x, t] ≺d [y, s] and [x, t] �d′ [y, s].

To show (ii) take τ ′ = 0 in the forward direction to get DIDI from PBTR.

Use t = d̃ and consider d < d̃ for the converse .
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5 Results

5.1 Results for temporal rewards in continuous time

In this subsection, we assume T = R+. We assume that the DM's temporal and

risk preferences are connected in the following way: the individual discounts

future rewards because he is uncertain whether he can consume it. We model

this uncertainty through a stopping process that determines the last period

until which rewards are available. Let p(t) be the probability that the DM

may collect a reward at time t. At time d, such that 0 ≤ d ≤ t, the DM

updates the probability that a reward is available at time t according to Bayes

rule: p(t|d) = p(t)/p(d). Therefore, at time d he prefers receiving the temporal

reward [x, t], to another reward [y, s] if and only if his risk preferences rank the

binary lottery (x, p(t|d)) (which gives x with the probability p(t|d) ) over the

lottery (y, p(s|d)). Thus, the DM's time preferences {%d}d∈T for each decision

time d ∈ T and risk preferences %r are related as follows:

Assumption 1: For all d ∈ T and [x, t], [y, s] ∈ X(d),

[x, t] %d [y, s]⇔
(
x, p(t|d)

)
%r
(
y, p(s|d)

)
. (5.1)

We additionally assume a regularity condition on future uncertainty, which

states that immediate rewards are certain, but as the promised date for future

rewards becomes increasingly distant, the probability of receiving the reward

continuously decreases to zero:

Assumption 2: p(0) = 1, p(∞) = 0, and p (·) is strictly decreasing and

continuous.

Theorem 1. Suppose that Assumptions 1 and 2 hold.

(i) %r exhibits SCRE i� {%d}d∈T exhibits TR.

(ii) %r exhibits SCE i� {%d}d∈T exhibits PBTR.

(iii) %r satis�es the Independence Axiom i� {%d}d∈T is TU.
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Proof. To prove (i), suppose that %r exhibits SCRE. Choose any x, y ∈ X

and d̃, t, s ∈ T such that [x, t] ∼d̃ [y, s] and d̃ ≤ t ≤ s. Then by de�nition,

(x, p(t|d̃)) ∼r (y, p(s|d̃)) = (y, p(s|t)p(t|d̃)). Fix d < d̃ to show [x, t] ≺d [y, s].

Since p is strictly decreasing, p(d) > p(d̃), so that p(t|d) < p(t|d̃). So SCRE

implies that (x, p(t|d)) ≺r (y, p(s|t)p(t|d)) = (y, p(s|d)). Then by de�nition,

[x, t] ≺d [y, s].

To show the converse, suppose that {%d} exhibits TR. Choose any x, y ∈ X
and µ, η̃ ∈ [0, 1] such that (x, η̃) ∼r (y, η̃µ). Fix η ∈ (0, η̃) to show (x, η) ≺r

(y, ηµ). Since p is a strictly decreasing bijection to [0, 1], there exist t and d̃

such that t ≥ d̃ > 0 and p(t) = η and p(d̃) = η/η̃. Then, p(t|d̃) = η̃. Also, there

exists s such that s ≥ t and p(s) = µη. Then, p(s|t) = µ. Hence, (x, p(t|d̃)) ∼r

(y, p(s|t)p(t|d̃)) = (y, p(s|d̃)), so that [x, t] ∼d̃ [y, s], by de�nition. Therefore,

by TR, [x, t] ≺0 [y, s]. So the de�nition shows that (x, η) = (x, p(t)) ≺r

(y, p(s)) = (y, ηµ).

The proof for part (ii) is very similar to part (i) and is hence omitted.

To show (iii). Suppose that %r satis�es the Independence Axiom. Choose any

x, y ∈ X and t, s, d, d′ ∈ T such that [x, t] %d [y, s] to show [x, t] %d′ [y, s].

Since [x, t] %d [y, s], by de�nition (x, p(t|d)) %r (y, p(s|d)). Consider the case in

which d > d′. By the Independence Axiom, (x, p(t|d′)) = (x, p(t|d)p(d|d′)) %r

(y, p(s|d)p(d|d′)) = (y, p(s|d′)). By the de�nition, [x, t] %d′ [y, s]. The proof

for the other case in which d′ > d is similar.9

To show the converse, suppose that {%d} is TU. Choose any x, y ∈ X and

µ, η, η′ ∈ [0, 1] such that (x, η) %r (y, ηµ) to show (x, η′) %r (y, η′µ). Consider

the case where η′ > η. Since p is strictly decreasing and bijection to [0, 1], there

exist t, s, d ∈ T such that s ≥ t, p(t) = η, p(s) = ηµ, and p(d) = η/η′. Then,

p(t|d) = η′ and p(s|d) = η′µ. Since {%d} is TU, (x, η) %r (y, ηµ) ↔ [x, t] %0

[y, s] ↔ [x, t] %d [y, s] ↔ (x, p(t|d)) %r (y, p(s|d)) ↔ (x, η′) %r (y, η′µ). The

proof for the other case in which η′ < η is similar.10

9Since (x, p(t|d)) = (x, p(t|d′)p(d′|d)) %r (y, p(s|d′)p(d′|d)) = (y, p(s|d)). Since
(x, p(t|d)) %r (y, p(s|d)), by the Independence Axiom, (x, p(t|d′)) %r (y, p(s|d′)). Hence,
[x, t] %d′ [y, s].

10Since p is strictly decreasing and bijection to [0, 1], there exist t, s, d ∈ T such that s ≥ t,
p(t) = η′, p(s) = η′µ, and p(d) = η′/η. Then, p(t|d) = η and p(s|d) = ηµ. Since {%d}
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Part (iii) of the theorem has an important implication: the approach of as-

suming a non-constant or uncertain hazard function combined with standard

expected utility, used to explain non-stationary choices in psychology and bi-

ology (Kagel et al. (1986), Green and Myerson (2004),Sozou (1998)), cannot

explain time inconsistency. This is similar to the �ndings discussed in Halevy

(2004; 2015).

The proof of Theorem 1 relies on the structural similarity between risky

and intertemporal choices: a decrease in the risk is equivalent to the time

of the reward and the decision time getting closer. Such a similarity had

been also suggested by Prelec and Loewenstein (1991), although they did not

provide a formal argument. The Probability Time Tradeo� axiom proposed by

Baucells and Heukamp (2012) and used in Chakraborty (2016) to axiomatize

preferences on a richer domain of intertemporal lotteries has a similar �avor.

5.2 Results for consumption streams in discrete time

Given the representation (2.1), the composite discount function at period t is:

D (t) = δtg
(
(1− r)t

)
. (5.2)

Remark 2. Consider a DM represented by (2.1) with continuous g (·).

(i) DI holds if and only if for every r ∈ (0, 1) and t ∈ N+:

g
(
(1− r)t+1) > g ((1− r)) g

(
(1− r)t

)
. (5.3)

(ii) DIDI holds if and only if for every r ∈ (0, 1) and t, k ∈ N+:

g
(

(1− r)t+k
)
> g

(
(1− r)k

)
g
(
(1− r)t

)
. (5.4)

is TU, (x, η) %r (y, ηµ) ↔ (x, p(t|d)) %r (y, p(s|d)) ↔ [x, t] %d [y, s] ↔ [x, t] %0 [y, s] ↔
(x, p(t)) %r (y, p(s))↔ (x, η′) %r (y, η′µ).
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(iii) SDI holds if and only if for every r ∈ (0, 1) and t, t′ ∈ N such that t < t′:

g
(
(1− r)t

)
g
(
(1− r)t+1) > g

(
(1− r)t

′
)

g
(

(1− r)t′+1
) . (5.5)

(iv) DISDI holds if and only if for every r ∈ (0, 1), t, t′ ∈ N, k ∈ N+ such that

t < t′:

g
(
(1− r)t

)
g
(

(1− r)t+k
) > g

(
(1− r)t

′
)

g
(

(1− r)t′+k
) . (5.6)

The proofs follow immediately from the de�nitions. Next, we summarize

the implications of risk attitude on the intertemporal preferences in (2.1).

Remark 3. Consider a DM represented by (2.1) with continuous g (·)

(i) SCE (3.4) implies DIDI (i.e., (5.4))

(ii) SCRE (3.3) implies SDI (i.e., (5.5)) (and, hence, DISDI (i.e., (5.6))).

The �rst claim holds by letting p = (1 − r)k and q = (1 − r)t; the second
claim holds by letting p = 1− r, q = (1− r)t′−t, and ` = (1− r)t.

For the relation in the direction from time to risk, DI as de�ned above does

not imply Weak Certainty E�ect for general weighting functions. The certainty

e�ect implies a bias towards certainty irrespective of how risky the alternative

is, the dual to which would be a bias towards the present (t = 0) irrespective of

the delay between the two prospects being compared. In evaluating the reason

for the severed connection between time and risk preferences, we note that the

de�nition of diminishing impatience used in the literature focuses on a delay

of a single period, thus only comparing D (t) to D(t + 1) as t increases from

0. This one-period de�nition fails to generalize to longer delays, as shown in

our counter-example in Appendix A, and thus fails to account for present bias

behaviorally. Theorem 2 below shows that DIDI is su�cient for WCE, and

SDI is su�cient for WCRE.

Theorem 2. Consider a DM represented by (2.1) with continuous g (·).
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(i) SDI implies WCRE.

(ii) DIDI implies WCE.

Proof. We �rst show claim (i). Assume SDI. By Remarks 1 and 2, it su�ces

to show that (5.5) in Remark 2 implies that (3.3) in Remark 1 holds with

weak inequality and there exist p, q, ` for which (3.3) holds. Let p = 1 − r,

q = (1− r)t′−t, and ` = (1− r)t. Then (3.3) holds.

Now we will show that for any p, q ∈ (0, 1) and ` ∈ (0, 1], (3.3) in Remark

1 holds with weak inequality. Since SDI and DISDI are equivalent, in the

following, we assume DISDI. Consider a sequence {mi

ni
}∞i=1 of rational numbers

that converges to ln p
ln q`

, where mi, ni are positive integers. Similarly, consider

a sequence {ai
bi
}∞i=1 of positive rational numbers that converges to

ln `
ln q`

, where

ai, bi are positive integers. Note that ln `
ln q`

< 1, so we can choose {ai
bi
}∞i=1

such that ai < bi. Now, given this sequences, de�ne a sequence {ri}, such
that q` = rnibi

i , that is ri = (q`)
1

nibi < 1. Note that as ai
bi

converges to ln `
ln q`

,

raini
i = (q`)

ai
bi converges to (q`)

ln `
ln q` = `. Similarly, as mi

ni
converges to ln p

ln q`
,

rmibi
i = (q`)

mi
ni converges to (q`)

ln p
ln q` = p.

Now using DISDI, ∀i :

g (raini
i )

g
(
raini+mibi
i

) >
g
(
rnibi
i

)
g
(
rnibi+mibi
i

)
Using the continuity of g, as i→∞, WCRE follows:

g (`)

g (p`)
≥ g (q`)

g (pq`)

Next, we will show (ii). Assume DIDI. By Remarks 1 and 2, it su�ces to

show that (5.6) in Remark 2 implies that (3.4) in Remark 1 holds with weak

inequality and there exist p, q for which (3.4) holds. Let p = (1 − r)k and

q = (1− r)t. Then (3.4) holds.

Part (ii) is a special case of (i), where ` = 1, ai = 0, bi = 0, and DIDI

replaces DISDI.
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In the above theorem, we have WCRE and WCE as behavioral implica-

tions, but not the versions with strict inequalities (SCRE and SCE). This

gap is inevitable given the di�erence between the connectedness in the do-

main of risk preferences (i.e, the probabilities are numbers in [0, 1]) and the

non-connectedness of the domain of time preferences (i.e., the dates are non-

negative integers).11 The last step of the proof is to approximate a real number

by the limit of rational numbers. When we take the limit, the related strict in-

equality inherited from behavior in the time domain becomes a weak inequality.

We show in Corollary 1, that SDI implies SCRE for almost all probabilities;

DI implies SCE for almost all probabilities.

Corollary 1. Consider a DM represented by (2.1) with continuous g (·).

(i) There exists a dense subset ∆1 of (0, 1)2 × (0, 1] such that SDI implies

for any (p, q, `) ∈ ∆1

g (`)

g (p`)
>

g (q`)

g (pq`)
.

(ii) There exists a dense subset ∆2 of (0, 1)2 such that DIDI implies for any

(p, q) ∈ ∆2

g(pq) > g(p)g(q).

Proof. For (i), de�ne ∆1 = {(rk, rs, rt)|r ∈ (0, 1), k, s ∈ N+, t ∈ N}. Notice

that (rmibi
i , r

(bi−ai)ni

i , raini
i ) in the proof of Theorem 2 is a sequence in ∆1 that

converges to (p, q, `) ∈ (0, 1)2 × (0, 1]. Part (ii) is proved similarly.

11The proof of Theorem 1 in continuous time makes it clear that the complete relation,
especially the relation from time preferences to risk preferences relies on the continuous time
structure.
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A Diminishing Impatience does not imply Weak

Certainty E�ect

The following counter-example proves that DI does not imply Weak Certainty

E�ect (and hence by Theorem 2 also does not imply DIDI). If (5.3) implied

(3.4), then (5.3) would also imply that ∀r ∈ (0, 1) and ∀m,n ∈ N

g(rm+n) ≥ g(rm)g(rn) (A.1)

We will rewrite these expressions in an additive form by de�ning f(x) =

−log(g(e−x))⇐⇒ g(x) = e−f(−logx). Then f : (0,∞)→ (0,∞) is di�erentiable

and increasing, just like the function g. The inequalities under consideration

are now:

∀t ∈ N and ∀r ∈ (0, 1), g(rt+1) > g(r)g(rt)

⇐⇒ e−f(−log(r
t+1)) > e−f(−log(r

t))e−f(−log(r))

⇐⇒ f(−(t+ 1)log(r)) < f(−tlog (r)) + f(−log(r))

Now, de�ning x := −log (r) ∈ (0,∞) for r ∈ (0, 1).

f((t+ 1)x) < f(tx) + f(x) (A.2)

Further, the boundary conditions g(0) = 0 and g(1) = 1 translate to

f(0) = 0 and f(∞) =∞.12

Similarly, (A.1) converts to

f(mx+ nx) ≤ f(mx) + f(nx) ∀x ∈ (0,∞) and ∀m,n ∈ N (A.3)

Summing it up, (5.3) implies (A.1), if and only if (A.2) implies (A.3). The

next step is to propose a function f which would satisfy (A.2) on all points of

12Using the extended real line (R ∪∞)
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its domain, but, for some x ∈ R and some m,n ∈ N,

f(mx+ nx) > f(mx) + f(nx) (A.4)

Instead of providing the function f , we propose it's derivative h, so f

can be calculated as f(x) =
´ x
0
h(x)dx.13 Let, k = 20

1+sin(π/2−.0001) and δ =

50kπ cos(π/2− .0001) ≈ .157.

Let,

h(x) =



11 + (1− x)δ For x < 1

1 + k
2

+ k
2

sin 100π(1 + π/2−.0001
100π

− x) For 1 ≤ x ≤ 1.005 + π/2−.0001
100π

1 For 1.005 + π/2−.0001
100π

< x < 2− .005

4 + 3 sin 100π(x− 2) For 2− .005 ≤ x ≤ 2 + .005

7 For 2 + .005 < x < 2.5− .005

4 + 3 sin 100π(2.5− x) For 2.5− .005 ≤ x ≤ 2.5 + .005

1 For 2.5 + .005 < x < 3− .005

4 + 3 sin 100π(x− 3) For 3− .005 ≤ x ≤ 3 + .005

7 For 3 + .005 < x < 5− .005

4 + 3 sin 100π(5− x) For 5− .005 ≤ x ≤ 5 + .005

1 For x > 5 + .005

f is increasing, twice di�erentiable and f(∞) = ∞. h(x) is plotted in Figure

A.1.

We next show that (A.2) holds.

Lemma 1. ∀t∈ N, ∀x ∈ R,
´ x
0
h(x)dx >

´ (t+1)x

tx
h(x)dx.

Proof. The most intuitive way to check the claim would be to notice that

the sinusoids introduced hardly perturb the area under the curve. Figure

A.2 illustrates the point in a more clear fashion by considering the function

13Recall that f (0) = 0.
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Figure A.1: The function h.

h for a small part of the real line. For all practical purposes, one could go

about checking the inequalities by replacing the sinusoid (in black) in Figure 1

by a corresponding discontinuous function(h̄(x) = 7 for x ≤ 2.5, h̄(x) = 1 for

x > 2.5 as drawn in red). The area between the two curves in [2.495, 2.5] is only

(.005∗3− 3
100π

) ≈ .005. Therefore, as long as the inequalities hold with a large

enough margin, this intuitive method of approximating sinusoids with �at lines

works �ne. The area between the two curves in [2.5, 2.505] is also (.005 ∗ 3−
3

100π
). Thus, the two approximations in [2.495, 2.505] are equal and opposite in

direction, and the areas under the red and black curves in this region are equal.

During our analysis, in some cases there will be multiple approximations in

opposite directions which would partially or completely cancel each other out.

Figure A.2: Function h approximated in a sinusoidal region
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Utilizing this intuition more rigorously, one can create upper bounds and lower

bounds on
´ (t+1)x

tx
h(x)dx and

´ x
0
h(x)dx respectively to complete the proof.

For 0 < x ≤ 1,
´ x
0
h(x)dx >

´ (t+1)x

tx
h(x)dx is obvious, as [0, x] contains the

highest values obtained by h(x) on the real line.

For, 1 < x ≤ 5
3
,
´ x
0
h(x)dx =

´ 1

0
h(x)dx+

´ x
1
h(x)dx > 1

2
(11+11+δ)+(x−1) =

10 + δ
2

+ x.14 The inequality holds because h(x) ≥ 1 with strict inequality for

1 ≤ x < 1.005 + π/2−.0001
100π

, and hence
´ x
1
h(x)dx > x − 1. In the interval

[tx, (t + 1)x], h(x) ≤ 7 and after mutual canceling out there are no more

than 3 sinusoidal perturbations which could increase the area under the curve.

Hence,
´ (t+1)x

tx
h(x)dx < 7x + 3(.015 − 3

100π
) = 6x + x + 3(.015 − 3

100π
) ≤

6(5
3
) + x+ 3(.015− 3

100π
) = 10 + x+ 3(.015− 3

100π
).

For 5
3
≤ x ≤ 2,

´ x
0
h(x)dx > 10 + δ

2
+ x as before. On the other hand, us-

ing the same line of logic as before,
´ 2x
x
g(x)dx < 1.x + 6[(4 − 3) + (2.5 −

2)] + 3.(.015 − 3
100π

) = 9 + x + 3.(.015 − 3
100π

). Similarly,
´ 3x
2x
h(x)dx ≤

1.x+ 6[5− 2.5
3
] + 3.(.015− 3

100π
) = 10 + x+ 3.(.015− 3

100π
).

Similarly for larger values of x, it can be shown that
´ x
0
h(x)dx >

´ (t+1)x

tx
h(x)dx.

(follows trivially for x ≥ 5.)

Now complete the counter-example:

ˆ 2

0

h(x)dx < 12+
δ

2
+{.01∗10+(.015− 3

100π
)} < 14−2(.015− 3

100π
) =

ˆ 5

3

h(x)dx

The �rst inequality follows from setting an upper bound on the sinusoidal

perturbation introduced around 1.15 Therefore, f(5) > f(2) + f(3), which

provides us with the counter-example to equation (A.3) and hence, to equation

(A.1). In other words, as (A.2) does not imply (A.3), (5.3) does not imply

(A.1), and hence, (5.3) does not imply (3.4).

That is, even if for all t ∈ N and for all r ∈ (0, 1) : g((1 − r)t+1) > g((1 −
r)t)g((1− r)) it does not imply that ∀p, q ∈ (0, 1): g(pq) > g(p)g(q) .

14δ = 50kπ cos(π/2− .0001) = .157 (approximately)
15This particular sinusoid dies down after 1.005 + π/2−.0001

100π < 1.01 and never rises above
the h(x) = 1 line by more than 6 units.
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