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Abstract

Auction data often fail to record all bids or all relevant factors that shift bidder

values. In this paper, we study the identification of auction models with unobserved

heterogeneity (UH) using multiple order statistics of bids. Classical measurement

error approaches require multiple independent measurements. Order statistics, by

definition, are dependent, rendering classical approaches inapplicable. First, we

show that models with nonseparable finite UH is identifiable using three consecutive

order statistics or two consecutive ones with an instrument. Second, two arbitrary

order statistics identify the models if UH provides support variations. Third, models

with separable continuous UH are identifiable using two consecutive order statistics

under a weak restrictive stochastic dominance condition. Lastly, we apply our meth-

ods to U.S. Forest Service timber auctions and find evidence of UH.
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1 Introduction

Recent years have seen a growth of the literature combing auction theory with economet-

ric analysis to understand auctions markets and inform policy. While the key elements in

auction theory normally match well the practice, it is less so when there is auction-level

heterogeneity. Not only auctions differ in observable characteristics, there are factors

affecting bidder values that are common knowledge among bidders but unobserved by

the analyst. Ignoring such factors, known as unobserved heterogeneity(UH), leads to

erroneous estimates and wrong policy conclusions. See, e.g., the recent survey by Haile

and Kitamura (2018).

The earliest approach to allow for UH in auctions exploits an auxiliary variable that

is monotone in UH. See, e.g., Campo, Perrigne, and Vuong (2003) and Haile, Hong,

and Shum (2003). Two streams of measurement error approaches exploit multiplicity of

bids in each auction to deal with discrete and continuous UH, respectively. Both treams

require that the observed bids are independent conditioning on UH. Such independence,

however, may not hold due to auction format or data truncation. Often, we may observe

multiple order statistics of all the bids rather than all or multiple independent bids.

Naturally, these order statistics are dependent, rendering the classical measurement error

approaches inapplicable. For instance, Kim and Lee (2014) observe the second to the

fourth highest bids in ascending used-car auctions. U.S. Forest Service timber auctions

only record at most the top 12 bids regardless the number of bidders. Freyberger and

Larsen (2017) observe the second and third order statistics of bids in eBay auctions for

used iPhones.

This paper provides a set of new results on identification of auction models with

UH using multiple order statistics of bids. We propose new identification strategies

that rely on commonly available consecutive order statistics or support variations. In

particular, we derive our identification results with the same number of bids as the
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common measurement error approaches.

Our first result shows that three consecutive order statistics of bids identify in-

dependent private value (IPV) auction models with nonseparable finite UH. In usual

misclassification models, independence among multiple measurements implies that the

joint distribution has a multiplicatively separable structure. This structure leads to

an eigendecomposition argument that identifies the type-specific distributions. Despite

their dependence, we show that three consecutive order statistics have a multiplicative

separable joint distribution in a portion of the support. This structure leads to a multi-

step eigendecomposition argument that identifies the type-specific distributions. Similar

identification argument can be extended to the scenario of only two consecutive order

statistics with a binary instrumental variable.

Our second result shows that the auction models with finite UH can be identified

using any two order statistics of bids with strict support variations. This result extends

Hu and Sasaki (2017), which identify the model with nonseparable finite UH exploiting

monotonicity of support boundaries in UH with two independent measurements. It is

also related to D’Haultfœuille and Février (2015) which identify nonseparable measure-

ment error models using support variations and three measurements. While they exploit

the joint distribution of the measurements being multiplicatively separable, we can not

do the same with order statistics.

Support variations lead to density discontinuities at the upper boundaries of com-

ponent distributions. These discontinuity points divide bid support into intervals, and

order statistics from lower type distributions have positive densities only in lower inter-

vals. Identification then follows from an induction argument. First, the highest type

solely determines the conditional distribution of the lower order statistic conditioning

on the larger one being in the most upper interval. As a result, we can back out the

distribution of the highest type. Second, we can subtract the contribution of the highest

type from the same conditional distribution in the second most upper interval to obtain
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the contribution of the second highest type and then identify its distribution. Iterating

this argument identifies all component distributions. Lastly, we extend these results for

first price auctions to allow for multiple sources of UH: unobserved competition and

unobserved auction type. Identification requires an ordering condition which can be

satisfied with first oder stochastic dominance ordering type-specific value distribution.

Our last result concerns identification of auctions with continuous UH. Following the

existing literature, we assume UH is additively separable in bidder value, which consti-

tutes an error-in-variable model. While identification with multiple independent mea-

surements is well-known for this model (Li and Vuong (1998), Li, Perrigne, and Vuong

(2000), and Krasnokutskaya (2011)), the same problem with multiple order statistics is

unsolved (Athey and Haile (2002)). Specifically, the dependence among order statistics

precludes applications of the classical approach, which relies on both the “within” inde-

pendence between value and UH, and the “between” independence of values. However,

the latter no longer applies to order statistics.

Instead, we propose a new identification strategy that relies only on the “within”

independence. Moreover, it exploits properties of consecutive order statistics. In par-

ticular, we show that any two consecutive order statistics are sufficient to identify the

model in two steps. First, we show that the top two order statistics are sufficient for

identification. The “within” independence identifies the ratio of the characteristic func-

tions of top two order statistics. This ratio determines the parent distribution under

a weak assumption. This result extends to the case with a maximum order statistic

and any other order statistic. Second, any two consecutive order statistics identify the

distributions of a maximum order statistics and a minimum order statistic, which again

achieves identification following similar arguments in the first step.
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Literature Review

For discrete UH with nonseparable structure by nature, the existing literature uses the

eigen-decomposition approach, as in Hu, McAdams, and Shum (2013). They achieve

identification using bid information of at least three bidders per auction following the

results of Hu (2008). Recently, Hu and Sasaki (2017) show that two independent proxies

of the latent factor are sufficient to identify nonseparable measurement error model if

the support boundaries are increasing with respect to UH, which can also be applied to

auction models. For continuous UH, the existing literature uses the deconvolution ap-

proach, as in Li and Vuong (1998), Li, Perrigne, and Vuong (2000), and Krasnokutskaya

(2011), among others. They require two random bids in each auction and restrict that

the UH has a separable structure on bidders’ values.

There have been increasing interest in using order statistics for identification in the

auction literature. Many markets can be treated as auctions where only the transaction

price is observed. Athey and Haile (2002) show that the auction model with symmetric

independent private values (IPV) is identified with the transaction price and the number

of bidders. This exploits a one-to-one mapping between a parent distribution and the

distribution of an order statistic. Guerre and Luo (2018) show that the auction model

with symmetric IPV and unknown competition is identified using the transaction price

only. They exploit discontinuities in the density function of the winning bid due to

changing competition.

Some data contain multiple order statistics of bids. Song (2004) considers eBay

auctions where the number of bidders is random and unobservable. He shows that any

two order statistics identifies the symmetric IPV model. Freyberger and Larsen (2017)

study eBay auctions for used iPhones with auction-specific unobserved heterogeneity

and an unknown number of bidders. They circumvents the issue of correlated order

statistics using observed reserve prices, rendering the identification problem classical.

Kim and Lee (2014) apply the identification results of Song (2004) to wholesale used-car
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auctions in Korea. Due to the ascending auction format, they observe the second, third

and fourth highest bids but not the first highest bids.

Related to our first result, Mbakop (2017) takes a different approach that tries to

restore the conditional independence structure needed in the usual approaches. In par-

ticular, he exploits the Markov property of order statistics and shows that the bidder’s

UH-specific distribution and the distribution of UH is point identified from either (any)

five or three order statistics along with an instrument using the joint distribution of

three order statistics conditional on the two middle order statistics. In contrast, we

take advantage of the separability structure provided by consecutive order statistics and

achieve identification using three consecutive order statistics. Moreover, our results also

extends to (any) four order statistics.

This paper is organized as follows. In Section 2 we describe the auction models.

Section 3 and 4 presents identification results of nonseparable finite UH and separable

continuous UH, respectively. Section 5 presents an application of the identification result

into USFS timber auctions. Section 6 concludes.

2 IPV Auction Models with UH

In this section, we introduce standard IPV auction with UH. Suppose n ≥ 2 symmetric

bidders participate in an auction with zero reserve price. Bidders are risk neutral.

Conditioning on an auction-level UH k, where k can be discrete finite or continuous,

bidders’ valuations are i.i.d. draws from the same distribution Φk(v) with support [v, vk].

All bidders simultaneously submit bids. We denote the optimal bid distribution for the

auction state k as F k(x), and the optimal bid x is with support [x, xk].
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2.1 The first-price auction model

In a first-price auction, the bidder with the highest bid wins and pays the price he/she

submitted. In a state-k auction, a bidder with a valuation v chooses his bid b to maximize

its expected payoff, represented in the following.

max
b

(v − b) · Φk
(
s−1
k (b)

)n−1
,

where s−1
k (·) is the inverse of his/her optimal bidding strategy in state-k auctions, and

Φk(s−1
k (b))I−1 is the chance of winning.

Guerre, Perrigne, and Vuong (2000) study the identification of the type-specific value

distribution Φk(·) when the competition level n and the type-specific bid distribution

F k(·) is observed. In particular, the identification comes from the type-specific one-to-

one mapping between the unknown value and the observed type-specific bid distribution

function:

s−1
k (b) = b+

1

n− 1

Gk(b)

gk(b)
, (1)

where b is any arbitrary bid in its support, and Gk(·) and gk(·) are the type-specific bid

distribution and density functions, respectively.

2.2 The second-price auction model

In a second-price auction, the bidder with the highest bid wins and pays the second high-

est price submitted. In the private value framework, second-price auctions are equivalent

to ascending auctions. Optimal bidding behaviors in these auctions are straightforward:

a weakly dominant strategy is to stay in the bidding until the standing bid reaches your

value. In other words, once the next-to-last bidder drops out, the bidder with the highest

value wins at a price equal to the second-highest value. Therefore, the highest bid is

never observed. Moreover, the observed bids are the rth order statistics from an auction
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of number of bidders n from the value distributions Φk(·), where r ≤ n− 1.

If the number of bidders n and the distribution for the winning bid, which is the

distribution of the n−1th order statistics out of a n ordered sample denoted as F kn−1:n(·),

is known, the unknown type-specific bid function F k(·) can be identified because there

is a one-to-one mapping between the distribution of the (n − 1)th order statistics and

the underlying distribution itself. That is,

F kn−1:n(x) = n(n− 1)

∫ Fk(x)

0
tn−2(1− t)dt.1

Once we recover the type-specific bid distribution from the distribution of the type-

specific order statistics, we identify the type-specific value distribution as

Φk(x) = F k(x). (2)

In summary, we can identify the type-specific value distributions Φk(·) from the

type-specific bid distributions F k(·) for the first price auction using equation (1) and for

the second price auction using equation (2). Consequently, we focus on identification

of the type-specific bid distribution F k(·) from the joint distribution of order statistics

of the bids. We then can follow the above argument to recover the type-specific value

distribution.

1In general, the distribution function of the rth order statistic Xr:n is

Fr:n(x) =
n!

(n− r)!(r − 1)!

∫ F (x)

0

tr−1(1− t)n−rdt,

which is strictly increasing in F (x) and thus invertable. Therefore, the distribution of any order statistic
identifies the parent distribution F (x). This property has been used in several papers including Athey
and Haile (2002) and Song (2004).
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3 Identification with Nonseparable UH

In this section, we consider the generic identification of nonseparable UH in auction

models. First, we derive some properties of order statistics which is essential for our

identification. Then we provide sufficient conditions to identify the type-specific bid

distributions using three consecutive order statistics. We then extend the identifica-

tion result to the case with two consecutive order statistics and an instrument variable.

Second, we provide identification using only two consecutive order statistics with a first

order stochastic dominance condition (FOSD). This result can be extended to the scenar-

ios of multi-dimensional UH such as allowing for the number of bidders to be unknown

for first price auction.

We first introduce some notation. There are K unobserved value types, assumed to

be finite and discrete, which maps to K unobserved bid distributions. We assume that

the cardinality of the UH K is known.2 The probability of type k is pk, so
∑

k pk = 1.

Let X1:n ≤ X2:n ≤, ...,≤ Xn:n represent the n order statistics out of an n ordered sample,

and x1 ,..., xn represent their realizations, respectively. We use fr,s,j:n(·) to denote the

joint pdf of the three order statistics Xr:n, Xs:n, Xj:n, we use fr|s:n(·, ·) to denote the

conditional pdf of order statistics Xr:n|Xs:n, and we use fr:n(·) to denote the marginal

distribution of order statistics Xr:n. The cdfs F (·) are defined analogously.

3.1 Preliminaries

We now derive two useful properties of order statistics that we exploits in our identi-

fication arguments. We first illustrate that the joint distribution of consecutive order

statistics persists the multiplicatively separable structure in a restricted region by the

definition of order statistics. We then illustrate how the conditional distribution of or-

der statistics determines the distribution of another order statistic, which leads to the

2When K is unknown, some rank condition would be sufficient to identify the cardinality of the
unobserved types K as in An (2017)
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identification of the parent distribution. We omit UH in this subsection.

Separability by consecutiveness

Suppose we observe two order statistics out of an n ordered sample, Xr:n, Xs:n, where

r < s. To understand the separability generated by two consecutive order statistics, we

visualize the event (xr < Xr:n ≤ xr+δr, xs < Xs:n ≤ xs+δs) with xr+δr ≤ xs in Figure 1.

When δr and δs are both small, the likelihood of this event is approximately proportional

to the multiplication of the following three components: (1) the probability that r − 1

draws are smaller than xr, F (xr)
r−1; (2) the probability that 1 draw is in (xr, xr + δr),

f(xr)δr; (3) the probability that n− s draws are larger than xs, [1− F (xs)]
n−s; (4) the

probability that 1 draw is in (xs, xs + δs), f(xs)δs; (5) the probability that s − r − 1

draws are in between xr + δr and xs, [F (xs)− F (xr)]
s−r−1. Thus, the likelihood of this

event can be represented in a multiplicatively separable structure in xr and xs if and

only if s− r − 1 = 0, i.e., the two order statistics are consecutive.

Figure 1: Joint Distribution of Two Consecutive Order Statistics

r − 1
]

1
]

s− r − 1
]

1
]

n− s

xr xr+δr xs xs+δs−∞ +∞

Similar logic can be applied to the joint distribution of three order statistics. Sup-

pose we observe three consecutive order statistics, Xr−2:n, Xr−1:n, Xr:n. The well-known

Markovian property of order statistics implies that

fr−2,r−1,r:n(xr−2, xr−1, xr) = fr−1:n(xr−1)fr−2|r−1:n(xr−2|xr−1)fr|r−1:n(xr|xr−1). (3)

The two conditional density functions of two consecutive order statistics fr−2|r−1:n(xr−2|xr−1)

and fr|r−1:n(xr|xr−1) are multiplicatively separable because their joint density functions

are multiplicatively separable. Furthermore, we can represent the above joint distribu-
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tion as the following multiplicatively separable structure:

fr−2,r−1,r:n(xr−2, xr−1, xr)

=
n!

(r − 3)!(n− r)!
[F (xr−2)]r−3f(xr−2)f(xr−1)[1− F (xr)]

n−rf(xr)I(xr−2 ≤ xr−1 ≤ xr)

=
n!

(r − 2)!(n− r + 1)!
fr−2:r−2(xr−2)f(xr−1)f1:n−r+1(xr)I(xr−2 ≤ xr−1 ≤ xr), (4)

where I(·) is the indicator function. Intuitively, we can visualize the event (xr−2 <

Xr−2:n ≤ xr−2 + δr−2, xr−1 < Xr−1:n ≤ xr−1 + δr−1, xr < Xr:n ≤ xr + δr) in Fig-

ure 2. The likelihood of this event is proportional to the multiplication of the fol-

lowing three components: (1) the probability that one draw is in (xr−1, xr−1 + δr−1),

f(xr−1)δr−1; (2) the probability that the maximum of r − 2 draws are in (xr−2, xr−2 +

δr−2), fr−2:r−2(xr−2)δr−2; (3) the probability that the minimum of n− r + 1 draws are

in (xr, xr + δr), f1:n−r+1(xr)δr.

Figure 2: Joint Distribution of Three Consecutive Order Statistics

r − 3
]

1
]

1
]

1
]

n− r

xr−2 xr−1 xr−∞ +∞

Even though order statistics are correlated by their nature, the joint distribution of

three consecutive order statistics can be separated as the products of three marginal

distributions fr−2:r−2(xr−2), f(xr−1), and f1:n−r+1(xr) in the area of xr−2 ≤ xx−1 ≤

xr. Note that this separability does not indicate that the three order statistics are

independent. The separability only holds in the region xr−2 ≤ xx−1 ≤ xr, but not for

the full support [x, x̄]× [x, x̄]× [x, x̄]. The joint probability distribution is zero outside

the region xr−2 ≤ xx−1 ≤ xr. This is due to the definition of the order statistics, i.e.,

Xr−2:n ≤ Xx−1:n ≤ Xr:n.
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Conditional Distribution of Order Statistics

Consider again any two order statistics Xr:n and Xs:n, where r < s. The conditional

density of Xr:n given that Xs:n = xs can be written as

fr|s:n(xr|xs) =
fr,s:n(xr, xs)

fs:n(xs)
,

Figure 1 visualizes the event (xr < Xr:n ≤ xr + δr, xs < Xs:n ≤ xs + δs) and the

event (xs < Xs:n ≤ xs + δs). While the likelihood of the former is proportional to

f(xr)f(xs)·F (xr)
r−1 ·[1−F (xs)]

n−s ·[F (xs)−F (xr)]
s−r−1 as shown above, the likelihood

of the latter is proportional to the multiplication of: (1) the probability that s−1 draws

are smaller than xs, F (xs)
s−1; (2) the probability that 1 draw is in (xs, xs+δs), f(xs)δs;

(3) the probability that n− s draws are larger than xs, [1− F (xs)]
n−s.

Therefore, the ratio that defines the conditional density is proportional to f(xr)
F (xs)

·

[F (xr)
F (xs)

]r−1 · [F (xs)−F (xr)
F (xs)

]s−r−1. In fact, it is the same as the distribution of the rth order

statistic in a sample of size s − 1 from a distribution that is the parent distribution

truncated at xs. Note that the truncation is no longer effective if xs = x. As a result,

the conditional distribution is the same as the distribution of the rth order statistic in

a sample of size s− 1 from the parent distribution F (·).

3.2 Identification using three consecutive order statistics

This subsection uses the separability properties of consecutive order statistics in a certain

region to provide sufficient condition to identify auction models with nonseparable UH

with a known competition level. The identification proceeds in several steps. First,

we apply a discretization to the bid support which accounts for the ordering of the

observed order statistics so that the separable structure persists. Second, an eigenvalue

decomposition argument identifies a key matrix that governs the finite mixture structure

in our order statistic setting. Third, we apply this matrix to identify the component
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distributions in the lower portion of the support and then in the upper part.

The unconditional joint distribution of any three consecutive order statistics, which

can be estimated from the data directly, by total probability can be represented as

fr−2,r−1,r:n(xr−2, xr−1, xr)

=
∑
k

pkf
k
r−2,r−1,r:n(xr−2,xr−1, xr)

=
n! · I(xr−2 ≤ xr−1 ≤ xr)

(r − 2)! · (n− r + 1)!
·
∑
k

pkf
k
r−2:r−2(xr−2)fk(xr−1)fk1:n−r+1(xr). (5)

This joint distribution of the consecutive order statistics has a semi-separable structure,

in the sense that we can separate the observed joint density function into three den-

sity functions, which is similar to that in the finite mixture literature, but it has an

extra restriction by the nature of order statistics I(xr−2 ≤ xr−1 ≤ xr), which cannot

be separated. This semi-separable structure precludes us from following exactly the

identification procedure in the existing literature to identify the type-specific bid dis-

tribution. However, the restriction by the indicator function can be safely ignored if

we divide the original support by two cutoff points x < c1 < c2 < x̄ to separate the

support into three parts, referred to as “low”, “middle”, and “high” and denoted as

l ≡ [x, c1],m ≡ [c1, c2], and h ≡ [c2, x̄], respectively. The separable structure of the

joint distribution fr−2,r−1,r:n(xr−2, xr−1, xr) reappears if we always restrict xr−2 ∈ l,

xr−1 ∈ m, and xr ∈ h. Specifically, if xr−2 ∈ l, xr−1 ∈ m, and xr ∈ h, the joint

distribution can be expressed as

fr−2,r−1,r:n(xr−2, xr−1, xr)=
n!

(r−2)!(n−r+1)!
·
∑
k

pkf
k
r−2:r−2(xr−2)fk(xr−1)fk1:n−r+1(xr), (6)

which has a familiar structure of finite mixture models but each component has different

meanings.

Following the existing literature, we first select K exclusive intervals from the “low”
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support l and the “high” support h, denoted as li and hi, i = 1, ...,K, respectively. We

also select 2 exclusive intervals from the “middle” support m, denoted as mi, i = 1, 2.

Note that these intervals do not have to be fully exhaustive, and they can be simply

points. Figure 3 provides a visualization of the support.

Figure 3: Support Visualization

l1 l2 lK m1 m2 h1 h2 hK

xr−2 ∈ l xr−1 ∈ m xr ∈ h
x c1 c2 x

We then rewrite the above joint distribution with respect to the selection of the

support:

Pr(Xr−2:n ∈ li, Xr−1:n ∈ mi′ , Xr:n ∈ hj)

=
n!

(r − 2)!(n− r + 1)!

∑
k

∫
xr∈hj

∫
xr−1∈mi′

∫
xr−2∈li

pk

fkr−2:r−2(xr−2)fk(xr−1)fk1:n−r+1(xr)dxr−2dxr−1dxr

=
n!

(r − 2)!(n− r + 1)!

∑
k

∫
xr−2∈li

fkr−2:r−2(xr−2)dxr−2 pk

∫
xr−1∈mi′

fk(xr−1)dxr−1∫
xr∈hj

fk1:n−r+1(xr)dxr. (7)

Similar to the identification in finite mixture and measurement error literature, the

identification uses matrix algebra, so we first define the following matrix notation.

J l,mi′ ,h ≡ {Pr(Xr−2:n ∈ li, Xr−1:n ∈ mi′ , Xr:n ∈ hj)}i,j

L ≡ {
∫
xr−2∈li

fkr−2:r−2(xr−2)dxr−2}i,k,

Dmi′ ≡ diag{
∫
xr−1∈B2

i′

fk(xr−1)dxr−1}k

Dp ≡ diag{pk}k

H ≡ {
∫
xr∈hi

fk1:n−r+1(xr)dxr}i,k,
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where J l,mi′ ,h denotes the joint probability matrix with the i, jth element being the

probability of the event {Xr−2:n ∈ li, Xr−1:n ∈ mi′ , Xr:n ∈ hj}; L is is the probability

matrix for top order statistics Xr−2:r−2 with the i, kth element being the probability

of the event {Xk
r−2:r−2 ∈ li}, where i, k = 1, ...,K; Dmi′ is the diagonal matrix with

the kth diagonal element being the probability of the event {Xk ∈ mi′};Dp is the

diagonal type weight matrix with the kth diagonal element being the weight of type k;

H is the probability matrix for the bottom statistics X1:n−r+1 with the i, kth element

being the probability of the event {Xk
1:n−r+2 ∈ hi}. With the matrix notation, we have

the following matrix representation connecting the observed joint probability with the

unknown matrix constructed using type-specific probability:

J l,mi′ ,h =
n!

(r − 2)!(n− r + 1)!
LDmi′DpH

T , i′ = 1, 2. (8)

Following the existing literature, identification of models with UH using the mixture

features usually requires some rank condition, which is stated in the follows.

Assumption 1. (Full Rank) There exists a mapping from xr−2 and xr into K inter-

vals of the support [x, x̄] so that the probability matrix in the “low” support L and the

probability matrices in the “high” support H are full rank.

Note that empirically the above matrix is testable since the joint probability matrix

can be estimated directly from the data. This full rank condition can be guaranteed that

the type-specific bid distributions are linearly independent. The full rank assumption

leads to the following main equation for identification:

J l,m1,hJ
−1
l,m2,h

= LDm1/m2
L−1, (9)

where Dm1/m2
is a diagonal matrix with the kth diagonal element as the ratio of the

probability that type k occurs in two middle intervals m1 and m2, i.e.,

∫
x∈m1

fk(x)dx∫
x∈m2

fk(x)dx
.

15



Equation (9) indicates that the observed matrix on the left-hand side and the unknown

matrices on the right-hand side are similar. Specifically, the probability matrix involved

the “low” support L and the probability ratio matrix involved the “‘middle” support

Dm1/m2
can be identified as the eigenvector and eigenvalue matrices of the observed

joint probability matrix. Unique decomposition requires a condition that the diagonal

elements differ from each other, as in the following assumption.

Assumption 2. (Distinctive Eigenvalues) There exist a mapping from xr−1 to two

intervals of the “middle” support m so that the ratio of the probability that the type-

specific underlying random variable falls into the two intervals differ for any two types.

That is,

∫
x∈m1

fk(x)dx∫
x∈m2

fk(x)dx
6=
∫
x∈m1

fk
′
(x)dx∫

x∈m2
fk′(x)dx

, ∀ k 6= k′. (10)

This assumption is empirically testable since we can estimate the eigenvalues directly

from the decomposition and can be achieved by choosing the cutoff point of the sup-

port. With the assumptions of full rank and distinctive eigenvalues, we can identify the

probability matrix involved the “low” support L, whose kth column is the probability

that the order statistics Xk
r−2:r−2 falling in the K intervals {l1, ...., lK} up to relabeling

and scales. Note that the probability matrix involved the “low” support (L) is identified

as the eigenvector matrix through an eigenvalue and eigenvector decomposition. As a

result, L is identified up to scales and relabeling.

Identification up to scale is a prevalent feature of identification using the mixture

feature. Pinning down the scale requires a normalization condition. In the existing liter-

ature of independent measurements, a normalization condition could be that the column

sum equals 1 because it represents a total probability. This normalization condition is

not applicable here because the column sum is not a total probability anymore after we
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divide the whole support into three portions. We will keep this identification up to scale

for now and provide restrictions to pin down the scales later.

With this identified probability matrix involved the “low” support, we can further

identify the density for the order statistics Xk
r−2:r−2 for any value in this interval. Then

we can use the connection between the density of an order statistics and the density

of the original distribution to recover the type-specific density distribution for the “low

support. In particular, to identify the density for the order statistics Xk
r−2:r−2, we again

use the joint distribution. Note that, the matrix representation in equation (8) also

holds for a particular value of xr−2 = x ∈ l. Thus, we have

Jx,m1,h =
n!

(r − 2)!(n− r + 1)!
LxDm1DpH

T , (11)

where Jx,m1,h and Lx are the counterparts of matrix J l,m1,h and L with replacing

the interval to a particular value of xr−2 = x ∈ l, respectively, so that Lx represents

density. Note that both equation (8) and the above equation have common components

Dm1DpH
T , which is invertible. Consequently, we can identify the type-specific density

for order statistics Xk
r−2:r−2 in the “low” support, i.e., fkr−2:r−2(x), ∀x ∈ l, as in the

following closed-form expression:

Lx = Jx,m1,hJ
−1
l,m1,h

L. (12)

Note that the density vector Lx is identified up to the same scales and ordering of the

probability matrix L.

Now we proceed to identify the type-specific density using the identified type-specific

distribution of the order statistics fkr−2:r−2(x) in the “low” support through the following

closed-form expression.

fk(x) =
1

r − 2

[ ∫ x

x
fkr−2:r−2(v)dv

] 1
r−2
−1
fkr−2:r−2(x), ∀x ∈ l. (13)
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Again the type-specific density is identified up to scales since the type-specific density of

order statistics Xk
r−2:r−2 is identified up to scale. Note that the two scales might differ.

We summarize the above results in the following Lemma and leave the proof details in

the Appendix.

Lemma 1 (low support). If Assumptions (1) and (2) are satisfied, the type-specific

density in the “low” support, i.e., fk(x), ∀x ∈ l, is identified up to scales.

In what follows, we identify the type-specific density function fk(x) in the “high”

support. Specifically, we first identify the probability matrix H involved the “high”

support up to scales using the joint distribution in equation (8):

HT =

[
n!

(r − 2)!(n− r + 1)!
LDm1Dp

]−1

J l,m1,h. (14)

Since L is identified up to scales due to the decomposition, and both Dm1 and Dp are

diagonal matrices, H can be identified up to scales, but the scales are different from the

scales in L.

We then can follow the same identification argument in lemma 1 to identify the

type-specific probability density for order statistics fk1:n−r+1(x) by replacing the bins in

h by a particular value x ∈ h and use invertibility of the matrices to cancel out common

components. We then use the connection of the type-specific density for order statistics

and the type-specific density function to recover the type-specific density. In particular,

fk(x) =
1

n− r + 1

[ ∫ x̄

x
fk1:n−r+1(v)dv

] 1
n−r+1

−1
fk1:n−r+1(x), ∀x ∈ h (15)

Note that fk1:n−r+1(x) is identified up to scales, so the type-specific density fk(x)∀x ∈ h

is also identified up to scales. We summarize this identification result in the following

Lemma.

Lemma 2 (high support). If Assumptions (1) and (2) are satisfied, the type-specific
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density in the “high” support, i.e., fk(x), ∀x ∈ h, is identified up to scales.

With the type-specific density function being identified for the “low” and “high”

support, we now move to identify the density in the “middle” suport. The identification

again is similar as in lemma 2. We again rely on the joint distribution relation similar

in in equation (8), leading to the following matrix representation:

J l,x,h =
n!

(r − 2)!(n− r + 1)!
LDxDpH

T , (16)

where J l,x,h and Dx are the counterparts of matrix J l,m1,h and D with replacing the

interval to a particular value of xr−1 = x ∈ m, respectively. Note that L and H are both

identified up to scales and Dp is a diagonal matrix. As a result, Dx can be identified

up to scales, with the kth diagonal element being the type-specific density fk(x) where

x ∈ m.

Lemma 3 (middle support). If Assumptions (1) and (2) are satisfied, the type-specific

density in the “middle” support, i.e., fk(x),∀x ∈ m, is identified up to scale.

Note that we identify the type-specific density fk(x) for the “lower”, “middle”, and

“high” portion up to different scales, which requires three conditions to pin down the

scales exactly. First, the three density functions identified separately should be the

same at the cutoff points c1 and c2 for the two densities overlapping in the cutoff points.

Moreover, the fact that the cumulative sum across all three intervals should equal to 1,

which provides the third restrictions on the scales. Once the scales being pinned down,

we can identify the type-specific weight pk. To sum up, we can identify the type-specific

bid distribution using only three consecutive order statistics of the bids. With the type-

specific bid distribution being identified, we then can identify the type-specific value

function in both first price or second price IPV auctions when the number of potential

bidders is known. We summarize all results in the following theorem.
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Theorem 1. If the competition n is known and Assumptions (1) and (2) are satisfied in

IPV auctions, the type weight pk, the type-specific bid distribution fk(x) for x ∈ [x, x̄k],

and the type-specific value distribution Φk(v) for v ∈ [v, v̄k] are identified for all k using

three consecutive order statistics.

Identification using two consecutive order statistics with an instrument

In some scenarios, we might only observe only two consecutive order statistics, such as

the top 2 bids, in which case the above identification results cannot be applied. In this

scenario, an extra instrument for the UH would work as well as the third order statistics

and enables identification of the type-specific bid distributions in a similar manner using

the joint distribution of the two consecutive order statistics and the instrument. An

instrument is a variable that is independent with the order statistics conditional on the

type. Furthermore, the requirement for the instrument is mild, in the sense that as long

as there is variation in the instrument, such as binary, the identification argument below

can go through.3

Suppose we observe two consecutive order statistics of the n ordered sampleXr−1:n, Xr:n

and an instrument Z, where Z ∈ {0, 1}. The joint distribution of these three variables

are

fr−1,r:n,Z(xr−1, xr, z) =
∑
k

pk
n!I(xr−1 ≤ xr)

(r − 1)!(n− r + 1)!
fkr−1:r−1(xr−1)fk1:n−r+1(xr) Pr(z|k)

fr−1,r:n,Z(xr−1, xr) =
∑
k

pk
n!I(xr−1 ≤ xr)

(r − 1)!(n− r + 1)!
fkr−1:r−1(xr−1)fk1:n−r+1(xr). (17)

Similarly, we divide the space into two exclusive intervals and further discretize both

intervals into K exclusive intervals. Fix z = 0, we can rewrite the above equations con-

necting the unknown type distribution with the observed joint probability into a matrix

representation. We also can rewrite the joint distribution of the two order statistics in

3This is similar to the Hu (2017) 2.1 measurement model.
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a similar matrix manner. We thus can follow the previous identification argument to

identify the type-specific distributions.

3.3 Identification using two order statistics with support variations

In auctions with UH, sometime the UH not only are drawn from different distributions,

but also shifts the support of bids, which provides useful variations for identification.

The variation in supports essentially reduce the mixture components in some regions of

their supports. This subsection shows that with support variations, two arbitrary order

statistics, instead of three consecutive ones, are sufficient to identify the unobserved

distribution. Specifically, suppose we observe two order statistics Xr:n and Xs:n of bids,

where r < s, for a n ordered sample. Note that fr,s:n(xr, xs) =
∑

k pkf
k
r,s:n(xr, xs) and

fs:n(xs) =
∑

k pkf
k
s:n(xs).

We first formally introduce the support variations in the following assumption.

Assumption 3. (Support variations) x1 < x2 <, . . . , < xK .

To illustrate the role of the support variations play in the identification, we display

the support of the joint PDF for the order statistics {Xs:n, Xr:n} in Figure 4. We

assume that K = 3 for illustration purpose. First, the support is below the 45 degree

line because Xs:n ≥ Xr:n by definition. Second, there is a jump in density at every upper

bound of type xk because the density for lower types vanishes. Specifically, the light red

areas between x2 and x3 involves only the highest type k = 3, i.e., the mixture feature

degenerates; the middle area involves only the top two types, k = 2, 3, i.e., the mixture

only have two components instead of three; only the dark red area between x and x1

involves all three types.

We show the identification of type-specific distribution using this support variation

sequentially. First, we identify the distribution of the highest type using the fact that

the observed distribution in the area of xK−1 and xK provides information only about
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Figure 4: Support of the Joint PDF for (Xs:n, Xr:n)

Xs:n

Xr:n

x x1 x2 x3

(x3, x3)

type K. Then we recover type k’s distribution by excluding the identified higher type

k + 1, ...K from the observed distribution in the area of [xk−1, xk], which only involves

distributions of type k = 1, ...,K. We summarize the whole identification in the following

two Lemmas.

Lemma 4. If Assumption 3 is satisfied, the bid distribution of the highest type FK(·)

and weight pK are identified.

Consider xs:n = xs ∈ (xK−1, xK ], the conditional density function of xr given xs is

fr|s:n(xr|xs) =
fr,s:n(xr, xs)

fs:n(xs)

=

∑
k pkf

k
r,s:n(xr, xs)∑

k pkf
k
s:n(xs)

=
pKf

K
r,s:n(xr, xs)

pKfKs:n(xs)

= fKr|s:n(xr|xs)

=
(s− 1)!

(r − 1)!(s− r − 1)!

fK(xr)

FK(xs)
[
FK(xr)

FK(xs)
]r−1[1− FK(xr)

FK(xs)
]s−r−1. (18)
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The third equality holds because the area of (xK−1, xK ] only concerns type K. This

conditional density is the density function of rth order statistics from a sample of size s−1

from a distribution FK(·) truncated on the right at xs.
4 Let xs = xK . The truncation

is no longer effective. We then further simplify the conditional density function as

fKr|s:n(xr|xs = xK) =
(s− 1)!

(r − 1)!(s− r − 1)!
fK(xr)F

K(xr)
r−1[1− FK(xr)]

s−r−1 ≡ fKr:s−1(xr),(19)

where fKr:s−1(·) is the density function for rth order statistics from a sample of size s− 1

with a distribution FK(·). This implies that FKr:s−1(·) is identified. Thus, FK(·) is

identified following footnote 1.

Moreover, the weight for type K can be identified through a marginal distribution

in the area of any xs ∈ (xK−1, xK ]. That is,

pK = fs:n(xs)/f
K
s:n(xs). (20)

With the distribution of the highest type being identified, we next identify the distribu-

tion of the remainning types using iteration induction, stated in the following Lemma.

Lemma 5. If F k(·) and pk are identified for all k = ǩ + 1, . . . ,K, F ǩ(·) and pǩ are

identified.

We again use the joint distribution and consider xs:n = xs ∈ (xǩ−1, xǩ]. Note that

this areas only involves higher types k = ǩ, . . . ,K. In this specific area, we can represent

4Song (2004) identifies a model for eBay auctions using a different property that fs|r:n(·) is the same
as the density of (s− r)th order statistics from a sample of size (n− r) from F (x) truncated on the left
at xr. However, his considers homogeneous auctions where only the number of bidders varies. Moreover,
his focus was the identification of the value distribution.
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the joint distribution of the two order statistics and the marginal distribution as

fr,s:n(xr, xs) =
∑
k

pkf
k
r,s:n(xr, xs) =

K∑
k=ǩ

pkf
k
r,s:n(xr, xs)

fs:n(xs) =
∑
k

pkf
k
s:n(xs) =

K∑
k=ǩ

pkf
k
s:n(xs).

Since the distribution and weight of the higher types are identified, we can identify the

distribution of type ǩ through excluding the identified components from the observed

counterparts.

pǩf
ǩ
r,s:n(xr, xs) = fr,s:n(xr, xs)−

K∑
ǩ+1

pkf
k
r,s:n(xr, xs) (21)

pǩf
ǩ
s:n(xs) = fs:n(xs)−

K∑
ǩ+1

pkf
k
s:n(xs). (22)

Consequently, following the identification argument in Lemma 4, we can identify the

conditional density function of xr given xs of type ǩ through the following equations

f ǩr|s:n(xr|xs) =
f ǩr,s:n(xr,xs)

f ǩs:n(xs)
=

pǩf
ǩ
r,s:n(xr,xs)

pǩf
ǩ
s:n(xs)

. (23)

Similar to above, we obtain

f ǩr|s:n(xr|xs = xǩ) = f ǩr:s−1(xr),

which identifies F ǩr:s−1(·) and thus F ǩ(·). Moreover, pǩ = pǩf
ǩ
s:n(xs)/f

ǩ
s:n(xs). In sum-

mary, the distribution function and weight for type ǩ can be identified.

Lemmas 4 and 5 imply that the distributions F k(·) and weight pk are nonparamet-

rically identified. In auction models, we can identify the type-specific bid distributions

using the support variation. Consequently, we can identify the type-specific value dis-
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tributions in IPV auctions.

Theorem 2. If the competition n is known and Assumptions 3 is satisfied, the weight of

type pk, the type-specific bid distribution F k(x), and the type-specific value distribution

Φk(v) in IPV auctions are identified for all k using any two order statistics.

Identification with multidimensional UH in first price auction

We extended the above identification argument to first price auctions with two sources

of UH: unobserved auction type k and unobserved competition n. We assume that the

number of bidders n is exogenous and the maximal number of potential bidders N is

known. We first relabel the type as ω = (k, n). In a first-price auction, each type (k, n)

maps with a type-specific value distribution Φk(v) and corresponds to a bid distribution

F k,n(x)that has support [x, x(k,n)]. We now study how to identify the value distributions

Φk(·) and the distribution of each type p(k,n).

Similar to the previous section, in first price auctions, a sufficient condition for the

support variation (Assumption 3) is that the type-specific value distribution has a first-

order stochastic dominance relation (FOSD).

Assumption 4. (FOSD) Φ1(v) ≤ Φ2(v) ≤ . . . ≤ ΦK(v) for all v, with strict inequality

at some v for each pair of the value distributions.

The FOSD condition not only generate support variation for the unobserved type

k with a given n, it also provides support variation for the competition n with a given

k. Given that Assumption 4 is satisfied, Guerre, Perrigne, and Vuong (2009) and Hu,

McAdams, and Shum (2013) discuss how the upper boundary varies with respect to n

and k, respectively.

Lemma 6. For a given k (n), the upper boundary x(k,n) is strictly increasing with respect

to n (k) if Assumption 4 is satisfied.
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Lemma 6 shows that there is a jump at each upper boundary xω. Without loss of

generality, let 0 < ω1 < ω2 < . . . < ω2K . These points divide the support of x(w) into

K × (N − 2) intervals. The top portion (xω2K−1 , xω2K ] corresponds to highest UH and

the biggest number of bidders ω = (K,N). Following the same lines in Section 3.3,

we can identify the weight and bid distribution associated with the highest types, i.e.,

p(K,N) and FK,N (·), respectively. Consequently, we can identify the value distribution

associated with the highest type, ΦK(·). Moreover, we can use ΦK(·) to identify the

upper boundary x(K,n) and the corresponding bid distribution function F(K,n)(·) for all

n < N .

We then proceed to identify the type-specific bid distribution F k,n(·), weight p(k,n),

and type-specific value distribution Φk(·), for all k < K and all n, using iteration induc-

tion. Specifically, we show that p(ǩ,n), F
ǩ,n(·), and Φǩ(·) are identified if p(k,n), F

k,n(·),

and Φk(·) are identified for all k = ǩ + 1, . . . ,K. Excluding x(k,n) for all k > ǩ and all

n, we find the maximum of the other jump points. Lemma 6 implies that this point

corresponds to (k, n) = (ǩ, N). Again, we follow Guerre, Perrigne, and Vuong (2000)

to identify the associated type-specific value distribution Φǩ(·). We then use the identi-

fied type value distribution Φǩ(·) to identify the related bid distribution function with

different competition levels F ǩ,n(·), for all competition n.

Theorem 3. If Assumption 4 is satisfied, the weight pk,n, the bid distribution F k,n(·),

and the value distribution Φk(·) are identified for first price IPV auctions with unobserved

type k and unknown competition n using any two order statistics.

4 Identification with Separable UH

This section considers the generic identification of separable UH in auction models. Fol-

lowing the existing literature, we assume that the auction-level UH enters in individual

bidders’ value in an additively separable fashion. Specifically, we consider auctions where
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individual bidder’s value comes from two parts:

Vi = V ∗ + ui, (24)

where V ∗ is the auction-level UH and ui are the idiosyncratic part. See, e.g., Li, Perrigne,

and Vuong (2000).5 The distribution of UH and the private part are denoted as ΦV ∗(·)

with support [v, v̄] and Φu(·) with support [u, ū], respectively. We first impose the

mutually independent assumption as in the existing literature.

Assumption 5. (Independence) The common value V ∗ and the idiosyncratic value

shocks ui are mutually independent. Moreover, ui are i.i.d. conditional on the auc-

tion heterogeneity V ∗.

With the independence condition, we can further represent the observed bid Xi in the

same additively structure in the following, as shown in Haile, Hong, and Shum (2003).

Xi = X∗ + εi, (25)

where X∗ and εi map to the value V ∗ and ui, and their distributions denoted as FX∗(·)

with support [x, x̄] and Fε(·) with support [ε, ε̄], respectively. Moreover X∗ = V ∗.

We now provide sufficient conditions to identify both distribution functions FX∗(·)

and Fε(·) using the joint distribution of the top two order statistics of the bids when

the competition n is known, i.e., Xn:n and Xn−1:n. We then extend the identification

argument to the scenario of any two consecutive order statistics. Note that the usual

approach that exploits the joint characteristic function (Li, Perrigne, and Vuong (2000)),

no longer applies because order statistics are dependent by definition and thus the joint

characteristic function is no longer multiplicatively separable in individual ones. Despite

this, Athey and Haile (2002) conjecture that there is enough structure to identify the

5In the case of multiplicative separability, Vi = V ∗ui, where V ∗, ui > 0. We can apply logarithm on
both side to obtain an additive separable form log Vi = log V ∗ + log ui.
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model from two order statistics. However, there has been no such result in the literature.6

One natural approach is to take the difference between two order statistics and study

identification of the parent distribution from the distribution of this spacing. However,

this approach does not necessarily work. For instance, Athey and Haile (2002) point

out a counterexample in Rossberg (1972): if X1, X2 are i.i.d. random variables with

F (x) = 1 − e−x[1 + π−2(1 − cos 2πx)] on support R+, the spacing X2:2 − X1:2 has a

standard exponential distribution.

Our identification procedure also relies on characteristics function of the order statis-

tics but exploit the “within” instead of the “between” independence. In particular, al-

though εn−1:n and εn:n are dependent, we can exploit the fact that X∗ ⊥ εn−1:n and

X∗ ⊥ εn:n. We now introduce some notation. We use ψX(t) to denote characteristic

function for a random variable X. For ease of notation, let εň:ň ≡ max{ε1, . . . , εň},

where ň = n, n − 1, . . . , 1, which is the top order statistics of i.i.d. random draws

from a parental distribution Fε(·); Let ψň(t) denote εň:ň’s characteristics function, so

ψň(t) =
∫ +∞
−∞ exp[i(ty)] · [ňF ň−1

ε (y)fε(y)]dy.7

We first identify the ratio of the characteristics function of the top order statistics

from a n − 1 and n ordered sample using the characteristics function of the observed

order statistics, i.e., ψn−1(·)/ψn(·).

Lemma 7. If Assumption 5 is satisfied, the ratio of the characteristics function of the

top order statistics from a n and n− 1 ordered sample, i.e., ψn−1(t)/ψn(t), is identified.

Proof. Under Assumption 5, UH and the order statistics of the idiosyncratic parts are

6Freyberger and Larsen (2017) have a similar problem with eBay auctions but they circumvent the
issue of correlated order statistics using observed reserve prices, rendering the identification problem
classical.

7Note that ψ1(t) = ψε(t).
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also mutually independent. That is,

ψXn:n(t) = ψX∗(t) · ψεn:n(t) = ψX∗(t) · ψn(t), (26)

ψXn−1:n(t) = ψX∗(t) · ψεn−1:n(t) = ψX∗(t) ·
(
nψn−1(t)− (n− 1)ψn(t)

)
. (27)

Cancelling out the characteristics function of the common UH leads to the following

equation

nψn−1(t)− (n− 1)ψn(t)

ψn(t)
=
ψXn−1:n(t)

ψXn:n(t)
.

Consequently, we can identify the ratio of the characteristics function of the two top

order statistics as

ψn−1(t)

ψn(t)
=

1

n

ψXn−1:n(t)

ψXn:n(t)
+
n− 1

n
. (28)

Now we proceed to identify the distribution Fε(·) using the identified ratio of the

characteristics functions of the two top order statistics ψn−1(t)/ψn(t). Note that both

support for X∗ and ε is unknown, i.e., [x, x̄] and [ε, ε̄] are yet to identify together with

their corresponding distributions. Consequently, it is observational equivalent if we add

a constant to X∗ and subtract the same amount from εi. We make the following location

normalization for ease of exposition.8

Assumption 6. (Normalization) ε = 0.

We first define identification formally in this context.

Definition 1. (Identification) The distribution of the idiosyncratic part Fε(·) is identi-

fied if any two distribution functions F (·) and G(·) are the same once they satisfy the

8The existing literature with independent measurements assumes that it is mean zero. See, e.g., Li,
Perrigne, and Vuong (2000). Our normalization is without loss of generality.
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following two conditions:

1. their supports are of the form [0, ε̃]9;

2. they have the same ratio of the characteristic functions of the two top order statis-

tics, i.e., ψn−1(t)
ψn(t) =

ψ′n−1(t)

ψ′n(t) , where ψn−1(t)
ψn(t) and

ψ′n−1(t)

ψ′n(t) are associated with F (·) and

G(·), respectively.

Note that ψn−1(t)/ψn(t) = ψ′n−1(t)/ψ′n(t) is equivalent to ψn(t)ψ′n−1(t) = ψn−1(t)ψ′n(t).

Consequently, the identification problem is equivalent to the following problem.

Problem 1. Xi’s and Yi’s are i.i.d. random variables with distribution function F (·)

on support [0, ε̄F ] and G(·) on support [0, ε̄G], respectively. Let Z1 = Xn:n + Yn−1:n−1

and Z2 = Xn−1:n−1 + Yn:n.10 Identification in our context is equivalent to the situation

that Z1 and Z2 have the same distribution implies that F (·) = G(·) and ε̄G = ε̄F .

We now proceed to prove that Z1 and Z2 have the same distribution implies that

ε̄G = ε̄F and F (·) = G(·), so that our original auction structure is identified. Specifically,

by the convolutions of probability, Z1 has a density function

h1(z) =

∫ +∞

−∞
[nFn−1(z − y)f(z − y) · (n− 1)Gn−2(y)g(y)]dy

=

∫ z

0
[nFn−1(z − y)f(z − y) · (n− 1)Gn−2(y)g(y)]dy, if 0 ≤ z ≤ ε

where ε̄ = min{ε̄F , ε̄G}, and nFn−1(·)f(·) and (n − 1)Gn−2(·)g(·) represent the density

functions of Xn:n and Yn−1:n−1, respectively.

9Their supports are unknown to the analyst and might be different.
10Note that Z1 and Z2’s have support [0, ε̄F + ε̄G] and their characteristics functions can be represented

as ψn(t)ψ′n−1(t) and ψn−1(t)ψ′n(t), respectively, because X’s and Y ’s are independent.
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Similarly, Z2 has a density function

h2(z) =

∫ +∞

−∞
[(n− 1)Fn−2(z − y)f(z − y) · nGn−1(y)g(y)]dy

=

∫ z

0
[(n− 1)Fn−2(z − y)f(z − y) · nGn−1(y)g(y)]dy, if 0 ≤ z ≤ ε.

Lemma 8. For any z ∈ [0, ε], if F (t) = G(t) for all t ≤ z, h1(z) = h2(z).

To show that the distribution Fε(·) is identified, we rely on an Restricted Stochastic

Dominance ordering (RSD) assumption introduced in Luo (2018). That is, fε(·) belongs

to the set of density functions in which any two functions can be ranked using RSD

ordering (Assumption 7).11

Assumption 7. (RSD) g(·) dominates f(·) in the restricted sense if there exists an

y > 0 such that: (a) f(ε) ≥ g(ε) for all ε ≤ y, and (b) ∃y∗ ≤ y, f(y∗) > g(y∗).

Lemma 9. Under Assumption 7, h1(·) = h2(·) implies that F (·) = G(·) and ε̄G = ε̄F .

Lemma 9 implies that Fε(·) is identified once the ratio ψn−1(·)/ψn(·) is identified.

Consequently, the distribution of X∗, FX∗(·) is identified. With the identified distribu-

tion FX∗(·) and Fε(·), following the arguments in Section 2, we can identify the distri-

butions of UH and private value.12

Identification with any two consecutive order statistics

We further extend the above argument to the scenario of any two consecutive order

statistics, Xr−1:n and Xr:n. Denote the distribution of X as F̃ (·).
11It is worthnoting that the counterexample of Rossberg (1972) satisfies this condition and thus our

characteristic function approach identifies the parent distribution. In fact, f(x) − e−x = e−xπ−2[1 −
cos 2πx − 2π sin 2πx], which approaches 0 when x ↓ 0. Moreover, the slope of the difference is negative
at x = 0. Therefore, there exists an x† such that f(x) < e−x,∀x ∈ (0, x†).

12Lemma 8 and Lemma 9 extend to the case with a maximum order statistic Xm:m and any other
order statistic Xr:n, where m > r or m = r < n.
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First, note that for any (n, r), we can observe the conditional density functions of

one order statistic given a consecutive one and they satisfy the following conditions:

f̃r−1|r:n(xr−1|xr = x) = f̃r−1:r−1(xr−1),

f̃r|r−1:n(xr|xr−1 = x) = f̃1:n−r+1(xr),

which identify f̃r−1:r−1(·) and f̃1:n−r+1(·), respectively.

Second, following Lemma 7, the corresponding characteristic function are ψ̃r−1:r−1(t) =

ψX∗(t)ψr−1:r−1(t) and ψ̃1:n−r+1(t) = ψX∗(t)ψ1:n−r+1(t), respectively. ψr−1:r−1(·) and

ψ1:n−r+1(·) represent the characteristic functions of two order statistics εr−1:r−1 and

ε1:n−r+1, respectively. Therefore, we can identify the ratio

ψr−1:r−1(t)

ψ1:n−r+1(t)
=
ψ̃r−1:r−1(t)

ψ̃1:n−r+1(t)
. (29)

Similar to above, the identification problem can be restated as

Problem 2. Xi’s and Yi’s are i.i.d. random variables with distribution function F (·)

on support [0, ε̄F ] and G(·) on support [0, ε̄G], respectively. Let Z1 = Xr−1:r−1 +Y1:n−r+1

and Z2 = X1:n−r+1 +Yr−1:r−1. Identification in our context is equivalent to the situation

that Z1 and Z2 have the same distribution implies that F (·) = G(·) and ε̄G = ε̄F .

The density functions of the minimum X1:n−r+1 and the maximum Xr−1:r−1 are

f1:n−r+1(x) = (n− r + 1)[1− F (x)]n−rf(x),

fr−1:r−1(x) = (r − 1)F r−2(x)f(x),
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respectively. Therefore, the density functions of Z1 and Z2 are

h1(z) =

∫ +∞

−∞
[(r − 1)F r−2(z − y)f(z − y) · (n− r + 1)[1−G(y)]n−rg(y)dy,

h2(z) =

∫ +∞

−∞
[(r − 1)Gr−2(y)g(y) · (n− r + 1)[1− F (z − y)]n−rf(z − y)dy,

respectively. This implies that

(h1(z)− h2(z))/[(r − 1)(n− r + 1)]

=

∫ +∞

−∞
f(z − y)g(y)

{
F r−2(z − y)[1−G(y)]n−r −Gr−2(y)[1− F (z − y)]n−r

}
dy,

which is increasing with respect to f and F when the quantity in the curly brackets is

positive. The rest follows similar arguments as Lemma 8 and Lemma 9.

Theorem 4. If Assumptions 5 - 7 are satisfied and the competition is known, the dis-

tribution of the auction-level UH and the idiosyncratic part ΦV ∗(·) and Φu(·) in IPV

auctions are identified using two consecutive order statistics of the bids.

5 Empirical Application: USFS timber second-price auctions

In this section, we apply our identification results to an empirical analysis of the United

States Forest Service (USFS) timber auctions. Other studies of these auctions include

Baldwin, Marshall, and Richard (1997), Haile (2001), and Haile and Tamer (2003).

Related to our setting, Aradillas-López, Gandhi, and Quint (2013) consider a more

general model and apply a bound approach to the English auctions, which is the first to

study these auctions allowing for correlated values. This paper focuses on independent

private values with UH and achieves point identification and estimation.
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5.1 Institution Background and Data

Timber is one of the most important outputs from National Forests managed by USFS.

Auctions are used to allocate the right to harvest from tracts. These tracts are highly

heterogeneous. USFS publishes a cruise report that provides information about the

tract being auctioned in narrative form. It includes one or more maps showing features

of the tract, a discussion of all harvesting cost expected (such as transportation), and

conditions of sales (such as planned cutting methods, protective measures for controlling

erosion, and contract provisions) et al.

The government uses three methods of sale: English auction, sealed-bid first price

auction, and noncompetitive method. We will focus on Enligh auctions, which are

conducted in two rounds: a sealed bid auction is followed by oral bidding unless only

one sealed bid was received.

Data Sample

In particular, we analyze the ascending English auction data from 1982 to 1990, which

are constructed from the data available on Professor Philip A. Haile’s website.13 Fol-

lowing the seminal paper Haile, Hong, and Shum (2003), we consider only scaled sales

in Forest Service Regions 1 and 5 to minimize the significance of subcontracting/resale

and thus common value. Moreover, we drop salvage sales and sales that are set aside

for small businesses. In summary, we focus on auctions that are most likely to satisfy

the independent private value assumption. In total, we have 1207 ascending English

auctions.

Table 1 provides some summary statistics on auction-specific covariates: winning

bid, size of tract (in acres), estimated volume of timber (in MBF), appraisal value

(per MBF), estimated selling value (per MBF), estimated harvesting cost (per MBF),

estimated manufacturing cost (per MBF), and species concentration index (HHI). We

13http://www.econ.yale.edu/ pah29/timber/timber.htm
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construct these covariates following Liu and Luo (2017). All dollar values are nominal

and all volume values are in thousand board feet (MBF) of timber.

Table 1: Summary Statistics

Variable Mean Std. Dev. Min Max

winning bid 758182.6 1943825 3615.36 6.15e+07
acres 1079.69 1176.91 14.00 6400.00
vol sum 6181.44 4870.72 128.00 22100.00
AppValue avg 34.04 32.51 0.50 192.62
SellValue avg 347.47 58.97 172.29 523.51
LogCost avg 132.52 28.06 50.84 276.69
MfgCost avg 163.96 22.88 87.90 233.54
HHI 0.56 0.25 0.11 1.00

Before applying our methodology, we implement the Haile, Hong, and Shum (2003)

method to homogenize the bids. Table 2 displays the regression results. Regressions

(1)-(3) use all bids but different control variables. All estimated coefficients have the

expected signs. Regression (3) includes all control variables as well as year dummies.

As argued above, it is more suitable to model top bids as order statistics. See also

Aradillas-López, Gandhi, and Quint (2013). Moreover, multiple top bids (and their

“homogenized” counterparts) from the same auction are correlated by definition, leading

to biases in the estimated coefficients. Therefore, we use only the winning bid to control

for auction-specific covariates. Regression (4) is the same as (3) but using only winning

bids. All estimated coefficients have the expected signs. Moreover, the regression with

only winning bids shows a much better fit than the other ones. Lastly, we calculate

homogenized bids as the exponential of the differences between the logarithm of the

original total bids and the demeaned fitted values of Regression (4). In the following

analysis, we only use the top three “homogenized” bids.
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Table 2: Regression Results

(1) (2) (3) (4)
VARIABLES OLS Fixed Effects Fixed Effects Fixed Effects

log acres 0.0115 0.00715 -0.00400
(0.0110) (0.0110) (0.0220)

log vol sum 1.060*** 1.035*** 1.032*** 1.090***
(0.0111) (0.0148) (0.0150) (0.0229)

log AppValue avg 0.613*** 0.388*** 0.376*** 0.167***
(0.0139) (0.0213) (0.0213) (0.0328)

log SellValue avg 1.412*** 1.516*** 1.791***
(0.0930) (0.0978) (0.136)

log LogCost avg -0.666*** -0.743*** -0.787***
(0.0532) (0.0540) (0.0822)

log MfgCost avg -0.0534 -0.254** -0.189
(0.107) (0.112) (0.152)

log HHI -0.0264 -0.00470 0.00336
(0.0221) (0.0224) (0.0379)

Constant 1.447*** -2.719*** -1.885*** -1.891***
(0.0960) (0.521) (0.528) (0.727)

Observations 6,121 6,121 6,121 1,207
R-squared 0.785 0.801 0.804 0.857
Group FE YES YES YES
Year FE YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

5.2 Empirical Results

To make sure the bids are informative for the value, we exclude the bids that are very

closed to the estimated prices by USFS. Furthermore, the highest bid and the second

highest bids are quite close to each other, both revealing information on the second

highest value among all the bidders. Thus, we use the transaction price as the 2nd

highest value among all the bidders and exclude the 2nd highest bid from the data to

avoid redundant information for the 2nd highest values. We then use the 3rd and 4rd

bids as the proxies to the 3rd and 4th highest values among all the bidders. Note that
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from the identification, we need to have at least three informative bids, which means at

least four bids from the data. We have 496 auctions.

We use beta distributions to approximate the underlying type-specific component

distributions and estimate the type-specific beta coefficients and the corresponding type

probability using a maximum likelihood estimator.14We estimate the underlying com-

ponent distribution and the type probability for the number of types being three, i.e.,

‘low’, ‘middle’, and ‘high’. The probability for the three types is 0.24, 0.37, and 0.39,

respectively. Each type accounts for a nontrivial portion of the sample, confirming the

importance of allowing for UH in our analysis. We present the estimated type-specific

pdf and cdf for values in figure 5 for the case allowing for UH and the case without UH.

As noted in Krasnokutskaya (2011), ignoring UH leads to a biased estimate of the value

distribution with an overestimated dispersion.

Figure 5: Estimation of PDF and CDF: no UH vs UH
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14We have also conducted Monte Carlo experiment with a semi-parametric estimator using sieve
approximation. The estimator performs quite well with a moderate number of sample size. The results
are available upon request.
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Bidder Surplus and Expected Revenue

With the estimates of value distributions, we compute the bidder ex ante expected

surplus and auctioneer’s expected revenue to provide a comparison between the cases of

no UH and UH and present the results in figure 6. The solid (dashed) lines represent

the results with (without) UH. Black (purple) lines represent the results without (with)

the reserve price. The black lines in the left-hand figure suggests that we overestimate

bidder expected surplus if UH is ignored. Note that in auctions with less disperse

values, a likely winner who has a high value expects the other bidders to have similar

high values with a higher probability. Therefore, bidders tend to be more aggressive.

When attributing wrongly the variation in UH to bidders’ values, we overestimate bidder

heterogeneity and underestimate bidders’ aggressiveness. As a result, we overestimate

bidder expected surplus. The black lines in the right-hand figure suggests that ignoring

UH leads to underestimation of expected revenue when the number of bidders is small

and overestimation otherwise. Consider the number of bidders n = 2. The bidder’s

surplus is around $ 70,708 and $ 50,957 for model estimates without and with UH,

respectively; the seller’s revenue is around $ 211,717 and $ 238,590 for model estimates

without and with UH, respectively.

Next, we examine the effects of an optimal reserve price on bidder surplus and seller

revenue. Reserve price is the minimum amount that the seller will accept as the winning

bid. In a second-price auction, a reserve price does not change bidders’ optimal bidding

behaviors. Note that the black line and the purple line converge when the number

of bidders increase. In other words, an optimal reserve price makes less difference in

larger auctions. Nevertheless, most auctions have very few bidders and thus the choice

of a reserve price is empirically relevant. Consider again the number of bidders n =

2. Using the estimated model with UH, the optimal reserve prices are $ 321,100, $

239,400, and $ 155,100, respectively, which corresponds to a probability of no bidding

of 0.36, 0.13, and 0.24, respectively. The mode of the type-specific value distribution is
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Figure 6: Bidder surplus and expected revenue
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$ 394,396, $ 304,871, and $ 187,971, respectively. The optimal reserve prices lead to an

ex-ante expected bidder surplus of $ 40,187 and seller revenue of $ 248,025. Using the

estimated model without UH, the optimal reserve price is $ 219,800, which corresponds

to a probability of no bidding of 0.35. The mode of the value distribution is $ 236,786.

This optimal price leads to an ex-ante expected bidder surplus of $ 52,498 and seller

revenue of $ 227,113. Therefore, ignoring UH leads to substantial bias in the optimal

reserve price policy and welfare estimates.

6 Conclusion

Auction data often fail to record all bids or all relevant auction-specific characteristics

that shift bidder values. Instead, they contain only order statistics of bids and suffer

from unobserved heterogeneity. In this paper, we present a set of new identification

results for auction models with UH using order statistics. In particular, we show that,

despite being dependent, the same number of order statistics as that of the independent

measurements are sufficient to achieve similar identification results for both discrete and
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continuous UH. Our results rely on consecutive order statistics or support variations.

Note that consecutiveness plays a key role in the identification of nonseparable finite

unobserved heterogeneity without support variations. A possible extension to the iden-

tification results is to explore the markov property of order statistics and investigate the

possible identification results using any four order statistics. The identification strategy

is similar to some recent results on identification of dynamic models with unobserved

state variables (Hu and Shum (2012) and Luo, Xiao, and Xiao (2018)). Specifically,

first, the joint distribution of four order statistics can be represented as a multiplica-

tively separable mixture structure by the Markov property, with which an eigenvalue

decomposition argument identifies a key matrix that governs the finite mixture struc-

ture. Second, we apply the matrix identified in the first step to identify the component

distributions in the lower portion of the support and then in the upper portion using joint

distribution of only three order statistics. Moreover, the same identification argument

applies to the scenario of nonseparable continuous unobserved heterogeneity.
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7 Appendix

7.1 Proof of Theorem 1

This subsection provides derivation of all the necessary conditions for Theorem 1.

Proof of Lemma 1: identification in the “low” support The full rank assumption leads to

the following main equation for identification:

J l,m1,hJ
−1
l,m2,h

= LDm1/m2
L−1,

where Dm1/m2
is a diagonal matrix with the kth diagonal element as the ratio of the

probability that type k occurs in two middle intervalsm1 andm2, i.e.,

∫
x∈m1

fk(x)dx∫
x∈m2

fk(x)dx
. With

the assumption of distinctive eigenvalues, we can identify the probability matrix involved

the “low” support L as the eigenvector matrix through an eigenvalue and eigenvector

decomposition.

Note that the components identified from the eigenvalue-eigenvector decomposition

are not the probability matrix L itself, but the matrix L with each column multiplied

by an unknown constant. That is, denote the eigenvector matrix obtained from the

decomposition L̃, we have L = L̃λl, where λl ≡ diag[λ1
l , ..., λ

K
l ] is the scale matrix.

Basing on the matrix L̃ from the decomposition, we can compute the corresponding

density matrix through equation (12)

L̃x ≡ Jx,m1,hJ
−1
l,m1,h

L̃

= Jx,m1,hJ
−1
l,m1,h

L̃λlλ
−1
l

= Jx,m1,hJ
−1
l,m1,h

Lλ−1
l

= Lxλ
−1
l

Thus, Lx = L̃xλl. (30)
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As a result, the type-specific density for order statistics Xk
r−2:r−2 in the “low” sup-

port is identified up to the same scale as the probability matrix L, i.e., fkr−2:r−2(x) =

λkl f̃
k
r−2:r−2(x), where f̃kr−2:r−2(x) is the kthe element in vector L̃x.

We then move forward to show that the type-specific density fk(x) is also identified

up to scales in the follows.

fkr−2:r−2(x) = (r − 2)[F k(x)]r−3fk(x)

↔
∫ x

x
fkr−2:r−2(v)dv = (r − 2)

∫ x

x
[F k(v)]r−2fk(v)dv

↔
∫ x

x
fkr−1:r−1(v)dv = [F k(x)]r−2

↔ F k(x) =
[ ∫ x

x
fkr−2:r−2(v)dv

] 1
r−2

Thus, we can derive the type-specific density for x ∈ l as in the follows.

fk(x) =
1

r − 2

[ ∫ x

x
fkr−2:r−2(v)dv

] 1
r−2
−1
fkr−2:r−2(x)

=
1

r − 2

[ ∫ x

x
λkl f̃

k
r−2:r−2(v)dv

] 1
r−2
−1
λkl f̃

k
r−2:r−2(x)

=
(
λkl

) 1
r−2 1

r − 2

[ ∫ x

x
f̃kr−2:r−2(v)dv

] 1
r−2
−1
f̃kr−2:r−2(v)

≡
(
λkl

) 1
r−2

f̃kl (x), (31)

where f̃kl (x) ≡ 1
r−2

[ ∫ x
x f̃

k
r−2:r−2(v)dv

] 1
r−2
−1
f̃kr−2:r−2(x) represents the type-specific den-

sity computed using the eigenvector matrix directly from the decomposition, which is

known. The type-specific density in the “low” support is identified up to scale of
(
λkl
) 1
r−2 .

Proof of Lemma 2: (identification in the “high” support) In what follows, we identify the

type-specific density function fk(x) in the “high” support.

First of all, we can identify the probability matrix H up to scale from the joint
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distribution equation (8) as the following closed-form expression:

HT =

[
n!

(r − 2)!(n− r + 1)!
LDm1Dp

]−1

J l,m1,h

= D−1
p D

−1
m1

[
n!

(r − 2)!(n− r + 1)!
L̃λl

]−1

J l,m1,h

= λ−1
l D

−1
p D

−1
m1

[
n!

(r − 2)!(n− r + 1)!
L̃

]−1

J l,m1,h

≡ λhH̃
T
, (32)

where λh ≡ λ−1
l D

−1
p D

−1
m1
≡ diag{λ1

h, ..., λ
K
h } is a diagonal matrix captures the unknown

scales, and H̃
T

represent the component that can be computed using result from the

decomposition. Since L is identified up to scales due to the decomposition, and both

Dm1 and Dp are diagonal matrices, H can be identified up to scales, but the scales are

different from the scales in L.

We then can follow the same logic to identify the type-specific density for the “high”

support.

HT
x = λ−1

h D
−1
p D

−1
m1

[
n!

(r − 2)!(n− r + 1)!
L̃x

]−1

J l,m1,h

≡ λhH̃
T
x , (33)

where HT
x and H̃

T
x are defined similar to HT and H̃

T
, respectively. This indicates

that the type-specific density in the “high” support can be identified up to scale, i.e.,

fk1:n−r+1(x) = λkhf̃
k
1:n−r+1(x), where f̃k1:n−r+1(x) is the kth component in the vector H̃

T
x ,

which can be computed using results from the decomposition.

We then use the connection of the type-specific density for order statistics and the

type-specific density function to recover the type-specific density. In particular, for any
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value in the “high” support, i.e., x ∈ h, by definition of the order statistics, we have

fk1:n−r+1(x) = (n− r + 1)[1− F k(x)]n−rfk(x)

↔
∫ x̄

x
fk1:n−r+1(x)dx = (n− r + 1)

∫ x̄

x
[1− F k(x)]n−rfk(x)dx

↔
∫ x̄

x
fk1:n−r+1(x)dx = [1− F k(x)]n−r+1

↔ F k(x) = 1−
[ ∫ x̄

x
fk1:n−r+1(x)dx

] 1
n−r+1

Thus, we can link the type-specific density to the type-specific density of the order

statistics in the follows, ∀x ∈ h:

fk(x) =
1

n− r + 1

[ ∫ x̄

x
fk1:n−r+1(v)dv

] 1
n−r+1

−1
fk1:n−r+1(x)

=
1

n− r + 1

[ ∫ x̄

x
λkhf̃

k
1:n−r+1(v)dv

] 1
n−r+1

−1
λkhf̃

k
1:n−r+1(x)

=
(
λkh

) 1
n−r+1

[ ∫ x̄

x
f̃k1:n−r+1(v)dv

] 1
n−r+1

−1
f̃k1:n−r+1(x)

≡
(
λkh

) 1
n−r+1

f̃
k
h(x), (34)

where f̃
k
h(x) ≡

[ ∫ x̄
x f̃

k
1:n−r+1(v)dv

] 1
n−r+1

−1
f̃k1:n−r+1(x), which can be computed directly.

The type-specific density in the “high” support is identified up to scale of
(
λkh
) 1
n−r+1 .

Proof of Lemma 3: identification in the “middle” support We again rely on the joint dis-

tribution relation similar in equation (8), leading to the following matrix representation:

J l,x,h =
n!

(r − 2)!(n− r + 1)!
LDxDpH

T , (35)

where J l,x,h and Dx are the counterparts of matrix J l,m1,h and D with replacing the

interval to a particular value of xr−1 = x ∈ m, respectively. Note that L and H are both

identified up to scales and Dp is a diagonal matrix. As a result, Dx can be identified
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up to scales, with the kth diagonal element being the type-specific density fk(x) where

x ∈ m. Specifically, we can represent the diagonal matrix

Dx =

[
n!

(r − 2)!(n− r + 1)!

]−1

L−1J l,x,h
[
HT

]−1
D−1
p

=

[
n!

(r − 2)!(n− r + 1)!

]−1 [
L̃λl

]−1
J l,x,h

[
λhH̃

T
x

]−1
D−1
p

= λ−1
l

[
n!

(r − 2)!(n− r + 1)!

]−1 [
L̃
]−1

J l,x,h

[
H̃

T
x

]−1
λ−1
h D

−1
p

≡ λ−1
l D̃xλ

−1
h D

−1
p

≡ λmD̃x, (36)

where D̃x ≡
[

n!
(r−2)!(n−r+1)!

]−1 [
L̃
]−1

J l,x,h

[
H̃

T
x

]−1
is an diagonal matrix, and λm ≡

λ−1
l λ

−1
h D

−1
p = λ−1

l

[
λ−1
l D

−1
p D

−1
m1

]−1
D−1
p = Dm1 is the scale matrix. As a result,

we can identify the type-specific density for the “middle” support up to scales, i.e.,

fk(x) = λkmf̃
k
m(x),∀x ∈ m, where f̃km(x) is the kthe diagonal element in the matrix D̃x,

which can be directly computed.

Proof of Theorem 1 To pin down the three scale parameters for each type, we first

summarize the identified type-specific density in the followings:

fk(x) =



(
λkl
) 1
r−2 f̃kl (x), if x ∈ l = [x, c1],

λkmf̃
k
m(x), if x ∈ m = [c1, c2],(

λkh
) 1
n−r+1 f̃

k
h(x), if x ∈ h = [c2, x̄],

Note that we identify the type-specific density fk(x) for the “lower”, “middle”, and

“high” portion up to different scales, which requires three conditions to pin down the

scales exactly. First, the three density functions identified separately should be the same
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at the cutoff points c1 and c2 for the two densities overlapping in the cutoff points.

(
λkl

) 1
r−2

f̃kl (c1) = λkmf̃
k
m(c1)

λkmf̃
k
m(c2) =

(
λkh

) 1
n−r+1

f̃
k
h(c2)

Moreover, the cumulative sum across all three intervals should equal to 1, which provides

the third restriction on the scales.

∫
x∈l

(
λkl

) 1
r−2

f̃kl (x)dx+

∫
x∈m

λkmf̃
k
m(x)dx+

∫
x∈h

(
λkh

) 1
n−r+1

f̃
k
h(x)dx = 1(

λkl

) 1
r−2

∫
x∈l

f̃kl (x)dx+ λkm

∫
x∈m

f̃km(x)dx+
(
λkh

) 1
n−r+1

∫
x∈h

f̃
k
h(x)dx = 1

The above three conditions lead to the following linear equation system, which only

involves the scales as unknowns.
f̃kl (c1) −f̃km(c1) 0

0 f̃km(c2) −f̃kh(c2)∫
x∈l f̃

k
l (x)dx

∫
x∈m f̃

k
m(x)dx

∫
x∈h f̃

k
h (x)dx



(
λkl
) 1
r−2

λkm(
λkh
) 1
n−r+1

 =


0

0

1

 .

Pining down the scales requires that the matrix

M ≡


f̃kl (c1) −f̃km(c1) 0

0 f̃km(c2) −f̃kh(c2)∫
x∈l f̃

k
l (x)dx

∫
x∈m f̃

k
m(x)dx

∫
x∈h f̃

k
h (x)dx


to be full rank. Note that the determinant of the matrix M can be represented in the

following:

det(M) = f̃kl (c1)f̃km(c2)

∫
x∈h

f̃kh (x)dx+ f̃kl (c1)f̃
k
h(c2)

∫
x∈m

f̃km(x)dx+

∫
x∈l

f̃kl (x)dxf̃km(c1)f̃
k
h(c2)
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since all components are positive, det(M) > 0. Thus, matrix M is full rank and the

scales can be pined down in the following closed-form expression:


(
λkl
) 1
r−2

λkm(
λkh
) 1
n−r+1

 = M−1


0

0

1

 .

Once the scales being pinned down, we can identify the type-specific weight pk.

Proof of Lemma 8

h1(z) = n(n− 1)

∫ z

0
[Gn−1(z − y)g(z − y)Gn−2(y)g(y)]dy

= −n(n− 1)

∫ 0

z
[Gn−1(x)g(x)Gn−2(z − x)g(z − x)]dx

= n(n− 1)

∫ z

0
[Gn−1(x)g(x)Gn−2(z − x)g(z − x)]dx

= h2(z),

where the second equality follows from a change of variable z − y = x.

Proof of Lemma 9 Proof by contradiction: Suppose that F (·) 6= G(·), we now show that

h1(z) 6= h2(z) for some z ∈ [0, ε]. Since F (·) 6= G(·), without loss of generality, there

exists an y† ∈ [0, ε) and ε > 0 such that y† + ε ∈ (0, ε), f(y) = g(y) for all y ≤ y† and

f(y) < g(y) for y ∈ (y†, y† + ε]. Thus, F (y) < G(y) for y ∈ (y†, y† + ε].

First, note that for any z ∈ [0, ε], F (z− 0) > G(0) = 0, F (z− z) = F (0) = 0 < G(z),

and F (z−y) is decreasing and G(y) is increasing in y. By the intermediate value theorem,

there exists z† ∈ (0, z) such that F (z − z†) = G(z†). Moreover, F (z − y)−G(y) > 0 for

all y ∈ [0, z†) and F (z − y)−G(y) ≤ 0 for all y ∈ [z†, z].
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Second, suppose z = y† + ε, we have

[h1(z)− h2(z)]/[n(n− 1)]

=

∫ z

0
{Fn−2(z − y)f(z − y)Gn−2(y)g(y) · [F (z − y)−G(y)]}dy

=

∫ z

z†

{Fn−2(z − y)f(z − y)Gn−2(y)g(y) · [F (z − y)−G(y)]}dy

+

∫ z†

0
{Fn−2(z − y)f(z − y)Gn−2(y)g(y) · [F (z − y)−G(y)]}dy

<0 +

∫ z†

0
{Gn−2(z − y)g(z − y)Gn−2(y)g(y) · [G(z − y)−G(y)]}dy

=0,

where the inequality follows from that F (z − y) − G(y) < 0 when y ∈ (z†, z), and that

f(z− y) ≤ g(z− y) and F (z− y) ≤ G(z− y) for all y ∈ [0, z†) ⊂ [0, z]. The last equality

follows from Lemma 8.
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