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Abstract

This paper develops an experimental methodology that allows the identi�cation

of decision-making processes in interactive settings using tracking of non-choice

data. This non-intrusive and indirect approach provides essential information for

the characterization of beliefs. The analysis reveals signi�cant heterogeneity, which

is reduced to two broad types, di�erentiated by the importance of pecuniary re-

wards in agents' payo� function. Most subjects maximize monetary rewards by

best responding to beliefs shaped by recent history. Others are able to identify

pro�t-maximizing actions but choose to systematically deviate from them. The

interaction among di�erent types is key to understanding aggregate outcomes.
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1 Introduction

There is growing acceptance among researchers that the decision-making pro-

cesses that agents employ in interactive settings are heterogeneous and often

diverge from the principles of standard textbook game theory. Empirical iden-

ti�cation of the decision processes adopted by players requires the examination

of observed choices in conjunction with richer data that convey information

about the way these choices are made.

We develop a simple framework to study, within an experimental setting,

the interactions among agents utilizing heterogeneous decision procedures. To

identify interactive decision-making processes one needs to posit an environ-

ment in which agents' beliefs about other agents' actions a�ect their pecuniary

payo�s. The environment must be such that these beliefs are elicited in a non-

intrusive and credible way. The setting must also feature a role for agents to

learn about the environment and about the motives and procedures of other

agents. An environment with such attributes and that exhibits multiple equi-

libria, would be naturally suited to provide new insights into coordination

problems. Finally, �ne-tuning the pecuniary incentives toward coordination

would enable the researcher to assess the intensity of alternative behavioral

motives.

This paper proposes an environment that satis�es the key requirements out-

lined above. We study a joint investment problem in which private investments

are made by individual group members, without communication, to generate

income that is equally shared. In this problem, an agent's beliefs about the in-

vestment of others play a key role in determining her own investment because

of the presence of complementarity among individual investments. Finding

the optimal investment is facilitated by the usage of a calculator whose in-
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puts, which are recorded by the experimenter, provide valuable and reliable

information about each subject's thought process and her conjectures regard-

ing other players' investments. We do not elicit beliefs explicitly but we do

collect data on the inputs subjects enter in the payo� calculator. These in-

clude conjectures about other group members' investments. In Section 5 we

describe these data extensively. While this type of analysis is not regularly

used by behavioral economists, online retailers, like Amazon, and advertising

platforms, such as Facebook or Google, routinely track both the choices (e.g.

purchases, likes, shares) and the search and browsing history of their users

before quoting a price or presenting an advert.

We consider a model with a continuous strategy space. However, the joint

investment problem may exhibit two equilibria, one at each endpoint of the

strategy space. This allows one to examine coordination and equilibrium se-

lection. Moreover, manipulating a single parameter within our setting alters

the potential gains from coordination, making it possible for the researcher to

quantify the monetary cost of pursuing non-pecuniary incentives.

For low levels of complementarity, the unique Nash equilibrium (assuming

agents are sel�sh) is a zero-investment equilibrium. When complementarity is

su�ciently high, a second full-investment equilibrium emerges, transforming

the selection of equilibrium into a coordination problem.

Our experimental design varies the degree of complementarity and includes,

as a special case, the well-studied linear public good game. When we introduce

complementarity, subjects visibly respond to it. With strong complementarity,

subjects are able to move closer to the high-investment level. When comple-

mentarity is sizable but insu�cient to support a second sel�sh-equilibrium,

subjects persistently invest above zero and we observe little or no convergence

towards the unique equilibrium.
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Combining choice and non-choice data allows us to examine several aspects

of the interactive decision-making of subjects. Are conjectures in�uenced by

past experience? Do subjects use the calculator more or less intensively de-

pending on the complexity of the environment? Do subjects adjust their be-

havior over time and do they use history-dependent best-response strategies?

How do they experiment with hypothetical investments and are they able to

�nd the pro�t-maximizing strategy, given their conjectures? Can we classify

subjects according to the processes they adopt to make choices? And how

does heterogeneity matter for response times?

To answer these questions, we rely on a wealth of non-choice data, including

accurate information about calculations made by each subject before submit-

ting a choice and how long it takes one to submit a choice. We document a

variety of facts about the way subjects form conjectures about other players'

investments, whether subjects are able to identify pro�t-maximizing responses

to their conjectures, and how these calculations relate to their choices.

Analysis of both choice and non-choice data suggests that one can reduce

the rich heterogeneity in observed investments to two modus operandi, which

we associate with two di�erent types of agents. We denote these two types

as, respectively, Homo pecuniarius and Homo behavioralis. Homo pecuniar-

ius maximizes money-pro�ts by best responding to his or her beliefs, which

are shaped by recent history. Homo behavioralis, on the other hand, is able

to identify the pro�t-maximizing choice but chooses to systematically deviate

from it. We do not �nd strong evidence of confusion: Homo behavioralis sub-

jects appear willing to sacri�ce some pecuniary rewards to pursue other goals.

When complementarity is low, some agents may have altruistic motives and

they invest above their monetary best response. When complementarity is

high, altruistic behavior is indistinguishable from pro�t maximization, but a
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new competitive motive surfaces: by lowering their investment below the pe-

cuniary best response, some subjects are able to make relatively higher pro�ts

than other participants.1 We quantify the magnitude of these behavioral mo-

tives and show that, while relatively modest, they may lead to signi�cant and

systematic deviations from the pecuniary best response.

These two types of agents coexist and are able to best respond to each

other in equilibrium. Their dynamic interactions shape aggregate outcomes

and provide a way to interpret the choices we observe under alternative degrees

of complementarity.

The experimental methodology we propose, together with the exogenous

variation in the degree of complementarity, provides a transparent way to

study heterogeneity in response times and its relationship to altruism or other

potential motives. We show that the time it takes subjects to make a decision

depends on the complexity of the environment, on their type (as described

above) and on the intensity of complementarity. This implies that analyzing

response times while not allowing for su�cient variation in the environment

may provide only a partial view on the heterogeneity of the decision-making

process.

Although we are primarily interested in the interactive decision making pro-

cess of (possibly heterogeneous) agents, our work touches on three other areas

of research. First, our analysis of rich data describing the agents' decision-

making activities is naturally related to a small but fast-growing literature

using non-choice data to investigate the way individuals process available in-

formation to reach decisions. Furthermore, our experimental setting posits a

risky investment problem which includes as a special case the linear voluntary

1In the low-complementarity treatment, competition is indistinguishable from pro�t-
maximizing behavior.
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contribution mechanism (LVCM) studied in the extensive literature on public

good games. Finally, the presence of multiple equilibria in some of our ex-

perimental parameterizations introduces coordination issues that are typically

examined in work on equilibrium selection using order-statistic and stag-hunt

games. We discuss how our work relates to these important areas of research

in Section 7.

The paper is organized as follows. Section 2 presents an overview of the

model and sel�sh-equilibrium predictions. The experimental design and lab-

oratory procedures are described in Section 3. In Section 4 we report re-

sults from aggregate data and show how investment behavior varies depend-

ing on the degree of complementarity in the environment. Section 5 explores

individual-speci�c behaviors. The combined use of choice and non-choice data

is instrumental in explaining deviations from the pro�t-maximizing strategies

and to classify subjects into types. In this section, we also estimate the magni-

tude of altruistic and competitive motives. In Section 6 we provide an extensive

analysis of response times, processing speed and intensity of calculator usage

by di�erent subjects. Section 8 summarizes results and concludes.

2 The Joint Investment Problem

Consider a set of n individuals indexed by i ∈ {1, ..., n}, each endowed with

ω > 0, who must decide whether�and how much�to invest in a joint account

that transforms private investments into income that is equally shared among

all group members. Let gi denote individual i's investment. The remainder of

the endowment (ω − gi) is consumed privately by player i. Individual invest-

ments are aggregated through a constant elasticity of substitution production

function that exhibits constant returns to scale. Player i's preferences are
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additively separable between the private and joint accounts:

πi = ω − gi + β

(
n∑
i=1

gρi

)1/ρ

, (2.1)

where ρ ≤ 1 denotes the degree of complementarity and β > 0 is a constant.

This joint investment problem encompasses as a special case (when ρ = 1) the

standard Linear Voluntary Contribution Mechanism (LVCM). The individual

return from investing depends on the investments of all n players and on the

degree of complementarity in production.2

Equilibrium

The best response (BR) of agent i, denoted as g∗i (g−i) is

g∗i (g−i) =

kMρ(g−i) if kMρ(g−i) ≤ ω

ω otherwise.

(2.2)

The BR is a linear function of the generalized ρ-mean of his or her conjec-

ture about the investments of other group members,3 denoted by the vector

g−i ∈ <n−1
+ . Here, k ≡

(
n−1

β
ρ
ρ−1−1

) 1
ρ

is a constant that depends on the model's

parameters.4 If k > 0, the investments are complementary; moreover, as the

degree of complementarity diminishes (ρ increases), k decreases as well. In the

limit, when ρ approaches 1, k goes to zero and the BR of player i is to invest

2The marginal per capita return (MPCR) on investments is equal to β (
∑n
i=1 g

ρ
i )

1−ρ
ρ gρ−1i .

This reduces to the customary β in the linear case. In standard LVCM experiments it is
usually assumed that 1

n < β < 1.

3The generalized ρ-mean of g−i is Mρ(g−i) ≡
(∑n−1

i=1 gρ−i
n−1

)1/ρ

. The arithmetic mean is a

special case of the generalized mean when ρ = 1. The arithmetic and the generalized means
are identical when all investments are equal, that is when g−i = g1n−1.

4Details on the derivation of the BR can be found in Appendix A.
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zero in the joint account regardless of other players' contributions. Because

agent i's BR depends on the generalized mean of g−i, it depends also on the

dispersion of other players' investments: for a given arithmetic mean, player

i's optimal investment decreases as the dispersion of other players' investments

increases. Put simply, there is an additional bene�t from coordination. Figure

2.1 summarizes the BR g∗i (g−i) for di�erent values of the complementarity

parameter ρ (each used in the experiments that follow).

Imposing the symmetry condition gi+
∑

j 6=i gj = ngi in Equation (2.2) and

solving for gi, we characterize the symmetric equilibria:

geqi =

0 if k < 1

{0, ω} if k > 1.

(2.3)

Thus, for given β and n and with su�ciently high complementarity,5 there

exist two equilibria.6 It is worth noting that when there are two equilibria,

only the full-investment equilibrium is stable.

5Alternatively, k T 1 if and only if ρ S ln(n)
ln(n/β) .

6It is straightforward to verify that only symmetric equilibria in pure strategies exist:
suppose that there exists a non-symmetric equilibrium g∗ and denote by g∗min = min {g∗} <
max {g∗} = g∗max . For the case of k ≤ 1, let (n) = {i : gi > gj∀j ∈ N}, then if g∗−(n) denotes

the vector of investment values di�erent from g∗(n), it follows that kMρ

(
g∗−(n)

)
< g∗max,

which is a contradiction. Similarly, if k ≥ 1, and (m) = {i : gi < gj∀j ∈ N} it follows that
kMρ

(
g∗−(m)

)
> g∗min, which is a contradiction. Also, there are no symmetric Nash equilibria

in mixed strategies. The proof can be found in Appendix A.1. Finally, when k = 1, any
symmetric strategy pro�le is a Nash equilibrium.
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Figure 2.1. Best-response functions. In this �gure the x-axis shows the generalized mean of others'
investments; the y-axis displays player i's investments. The �gure shows the BR as a function of others'
investments, g∗i (g−i). The solid lines represent g∗i (g−i) of player i.

3 Experimental Design

The baseline parameters are chosen so that the linear treatment (ρ = 1) is eas-

ily comparable to similarly parameterized LVCM experiments.7 Speci�cally,

the group size is n = 4, initial token endowment of ω = 20 and β = 0.4. The

latter is a commonly assumed value of the MPCR in the linear case. In the

nonlinear case, however, the MPCR also depends on the curvature parameter

ρ and on investments of other players.

Given the above parameters, the threshold value of ρ that generates an

additional full-investment equilibrium is approximately 0.602. Our treatments

consist of variations in the degree of complementarity, ρ. Table 3.1 presents

7See, among others, Fehr and Gächter (2000), Kosfeld et al. (2009), and Fischbacher and
Gächter (2010).
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an overview of the experimental design. Treatments are classi�ed as LC (low-

complementarity) if ρ equals to 0.65 or 0.70, which are above the threshold and

support a unique equilibrium of 0 investment. If ρ equals 0.54 or 0.58, which

are below the threshold and support the additional full-investment equilibrium,

the treatments are classi�ed as HC (high-complementarity).

Table 3.1
Experimental Treatments

Treatment
ρ

Number of Equilibrium
Group Sessions Investment
LVCM 1 2 {0}

LC
0.70 2 {0}
0.65 2 {0}

HC
0.58 2 {0,20}
0.54 3 {0,20}

3.1 Experimental Procedures

In each experimental session, we recruited 16 subjects with no prior experience

in any treatment of our experiment. Subjects were recruited from the broad

undergraduate population of the University of British Columbia using the

online recruitment system ORSEE (Greiner, 2015). The subject pool includes

students with many di�erent majors.

Each session was developed in the following way: upon arriving at the

lab, subjects received a set of instructions (see Appendix J). After reading

the instructions, subjects were required to answer a set of incentivized control

questions.8 The experiment started after all participants answered all control

8The questions' goal was to facilitate subjects' learning of the main features of the frame-
work. Relevant features included (a) decreasing marginal productivity in the group account
given a �xed level of others' investments, (b) e�ciency gains due to coordination, and (c)
absence of a dominant strategy (for treatments in which ρ < 1). Subjects were credited
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questions correctly. At the beginning of each round of the experiment, subjects

were matched with three other participants. They then played the static game

described in Section 2. This process was repeated 20 times.9

All sessions were computerized using the software z-Tree (Fischbacher,

2007). Given the di�culty of computing potential earnings using the nonlinear

payo� function, we provided subjects with a computer interface which elimi-

nated the need to make calculations. Through this interface subjects were able

to enter as many hypothetical choices and conjectures of other group members'

investments as they wanted, visualizing the potential payo� associated with

each combination.10 In each round, subjects had 95 seconds to submit their

chosen investment. At the end of each round, they were informed about their

own earnings and the investment choices of other group members.11 At the

end of the experiment, subjects were paid the payo� they obtained in a single

randomly selected round.

The sessions were conducted at the Experimental Lab of the Vancouver

School of Economics (ELVSE) at the University of British Columbia, in Jan-

uary 2015 and March 2017. The experiments lasted 90 minutes. Subjects were

paid in Canadian dollars (CAD). On average, participants earned $30.60.12

$0.20, $0.15 or $0.10 for each question answered correctly in the �rst, second and third
attempt, respectively. There were 19 control questions, which can be found in Appendix I.

9To avoid reputation e�ects we used an extreme version of the stranger matching pro-
tocol. The group composition was predetermined and unknown to the participants. We
pre-selected the groups so that the subjects were matched with a given participant in only
four rounds. Each time a subject was matched with a participant he or she had encountered
before, all other group members were di�erent. This meant that any given grouping of four
players never occurred more than once.

10Figure H.1 in Appendix H displays a screenshot of the main interface.
11Figure H.2 in Appendix H shows the screenshot of the feedback given to subjects at

the end of each round. Subjects were shown their overall income, as well as the breakdown
between their private account income and group account income. Since group income is the
same for each group member, subjects could easily infer the earnings of each of the other
group members by looking at their investments, reported on the same screen.

12This amount includes a $5 show-up fee and the cash received for the control questions.
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4 Average Investment by Treatment

This section examines how changes in the degree of complementarity are re-

�ected in the level and evolution of aggregate investment. Manipulating the

degree of complementarity induces stark changes in subjects' behavior.13

Each solid line in Figure 4.1 represents the evolution of the average invest-

ment over the 20 rounds of each speci�c treatment. Figure 4.1 clearly shows

that average investment increases with complementarity. With the excep-

tion of the LVCM treatment (ρ = 1), in which average investment converges

towards the zero-investment sel�sh-equilibrium, there is no evidence of con-

vergence to sel�sh-equilibrium for the LC (low complementarity) treatments.

Analogously, there is no evidence of convergence to the full-investment equi-

librium in the HC (high complementarity) treatments.

The di�erence in investments across treatments is substantial, even in the

�rst round when subjects have yet to receive any feedback from other play-

ers. This may be attributed to the training subjects receive before deciding

on investments: their understanding of the rules of the game is re�ected in

their initial beliefs about others' investments, and these beliefs appear to be

treatment-speci�c. To verify the role of training we compare the initial con-

jectures concerning others' investments across di�erent treatments. Table 4.1

shows the average of the generalized mean of the conjectures in each treat-

ment. As discussed in the Introduction and will be analyzed extensively in

Section 5, we did not elicit beliefs. Instead, we collected data on the inputs

subjects entered in the payo� calculator. We use conjectures about other

The exchange rate used in each treatment was adjusted so that expected payo�s in Pareto
e�cient allocation were similar across treatments. The exchange rate (tokens per CAD) was
set to: 1 for ρ = 1, 2 for ρ = 0.65 and ρ = 0.70, 2.5 for ρ = 0.58, and 3 for ρ = 0.54.

13We concentrate here on average investment. Dispersion in investments is analyzed in
Appendix B.
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Figure 4.1. Average investment over time.

group members' investments to describe beliefs about others. As can be seen

from the second column of Table 4.1, there is no di�erences across treatments

in conjectures made during the practice period before the experiment started,

as subjects are still learning about the payo� space. However, starting from

round 1 (column 3) we observe signi�cant di�erences across treatments. When

a subject chooses to best respond to beliefs, his or her investments decrease

as the degree of complementarity diminishes (that is, as ρ increases).

5 How Do Players Choose Their Investments?

So far the analysis has highlighted two main �ndings: (a) the linear en-

vironment exhibits diminishing investments, approaching the unique zero-

investment sel�sh-equilibrium; and (b) in the LC or HC treatments, there
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Table 4.1
Average Conjecture About Others' Investments

Treatment Practice Round 1 Round 2 Round 5 Round ≥ 10

LVCM 9.2 6.6 5.2 3.7 3.0

(5.5) (5.3) (5.6) (5.8) (5.8)

ρ = 0.70
9.0 8.5 6.9 4.4 5.0

(6.3) (5.2) (5.2) (5.7) (5.9)

ρ = 0.65
9.4 10.0 10.1 6.9 6.8

(5) (4.9) (4.4) (4.7) (5.3)

ρ = 0.58
9.2 10.6 9.8 11.9 11.7

(4.6) (4.4) (4.1) (4.6) (4.1)

ρ = 0.54
8.9 11.0 12.6 14.8 14.9

(4.6) (4.6) (5) (5.3) (5.4)

No. of conjectures 5,213 357 249 204 961

Note: Each cell reports the average value for the generalized mean of the conjectures
of others' investments (standard deviations are reported in parentheses).

appears to be no visible convergence to equilibrium over 20 rounds, as some

subjects persistently deviate from their money-maximizing strategies. We �nd

recurrent over-investment in LC treatments and under-investment in HC treat-

ments.

In what follows we use a combination of choice and non-choice data to

document several important aspects of the choice process. In particular, we

examine the scope of history dependence in subjects' decision making and

document how investments of partners in previous rounds shape the subject's

current choice. This history dependence allows us to de�ne a notion of best

response (BR) to past investments and assess to what extent subjects' choices

can be rationalized as pro�t-maximizing behavior.
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5.1 Grouping Subjects into Types

There exist large di�erences in the behavior of subjects within each treatment.

Some invest consistently more than others; many change their choices repeat-

edly, while others do not. Also, as we document in Section 6 below, and in

Appendix E, there is substantial heterogeneity in the intensity of calculator

usage by di�erent subjects. This suggests that not all agents conduct them-

selves in the same way when it comes to choosing an investment in particular

or making decisions more generally. To facilitate the analysis, we classify sub-

jects into two broad groups, or types, based on the discrepancy between the

payo� associated with the history-dependent BR and the payo� from the ac-

tual investment. A larger discrepancy indicates larger foregone earnings. We

then examine whether there are di�erences in the calculator usage of di�erent

subject types.

Appendix C provides evidence for history dependence of subjects' beliefs

about others' investments. This is an essential preliminary step that provides

support for the usage of history-dependent BR as our benchmark. In assess-

ing the length of the subjects' memory span we try to account for variation in

conjectures as a function of lagged investments by others. We �nd that using

memory of length 2 accounts for approximately 47% of the variation in con-

jectures and that further lags are insigni�cant in accounting for conjectures.14

14To con�rm the results of the regression analysis included in Appendix C, we consider all
conjectures from round 2 onwards and �nd that roughly 16% coincide exactly with previous
round investments by other group members. In 30% of the cases, the conjecture matches
exactly with one of the 10 possible combinations that can be formed from the group members'
investments in the prior round. Finally, in 36% of the cases, the conjecture matches exactly
one of the 56 possible combinations that can be formed from group members' investments in
the two previous rounds. These relative frequencies are extremely high when compared to
the three most recurring individual conjectures, namely (10, 10, 10), (0, 0, 0) and (20, 20, 20),
which were considered in only 3%, 4%, and 5% of the cases, respectively. Agents clearly
appear to make conjectures based on past experiences.
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Rationalization of choices and the measurement deviations. How

should one use information about investments in the previous two rounds to

de�ne a BR? Restricting subjects to respond to the speci�c investments ob-

served in a given round seems unreasonable because subjects are well aware

that they will not be matched with the same set of individuals in subsequent

rounds. Instead, we ask if a subject's investment can be rationalized based

on recent history. We posit that subjects may respond to any possible com-

bination that can be obtained by combining group members' investments in

rounds t − 1 and t − 2. Then, for each subject/round and for every combi-

nation of the partners' investments, we compute the di�erence between the

pro�t associated with the BR (πBRi,t ) and the pro�t associated with the actual

choice (πACTi,t ). We keep only the lowest such di�erence per subject/round and

denote it by Min Lossi,t = min
{
πBRi,t − πACTi,t

}
.15 Next, we de�ne the propor-

tional loss as
Min Lossi,t

πBRi,t
. This is a money-metric index that measures how close

actual investments are to the money-maximizing investments, conditional on

conjectures. If the lowest proportional loss is zero, then the choice can be

rationalized through the lens of pecuniary-pro�t-seeking behavior. The �nal

step is to compute the average proportional loss of each subject.

For each treatment group � LVCM (ρ = 1), LC (ρ ∈ {0.65, 0.70}), HC

(ρ ∈ {0.54, 0.58}) � we classify subjects into two subgroups by applying the

clustering method developed by Ward (1963). The goal of the method is to

minimize the within-cluster variance. Subjects are denoted as Type 1 if they

belong to the cluster with lower individual proportional loss, otherwise they

are denoted as Type 2. Table 5.1 displays the distribution of types by the

15We sort the πBRi,t values from highest to lowest. We then remove the two lowest and
highest values. We do this to avoid bias due to outlying investments, whether unusually
high or unusually low.
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intensity of complementarity.16 It is worth stressing again that this grouping

criterion requires the joint use of choice and non-choice data.

Table 5.1
Distribution of Types

Type
Treatment Group

Total
LVCM LC HC

1 17 39 54 114
2 15 25 24 60

Total 32 64 78 174

5.2 Patterns of Individual Investments

Valuable information about individual decision making can be elicited from

the evolution of individual investments. Crucially, one can measure how close

investments are to the notion of history-dependent pecuniary BR, as de�ned in

Section 5.1. In HC treatments, despite much heterogeneity, a remarkable 42%

of all investments are consistent with BR behavior. Even when a deviation

exists, it is often small. Most deviations are due to under-investments: in HC

treatments subjects under-invest in 44% of the cases and over-invest in only

14% of cases.

In contrast, in LC treatments only 12% of investments are consistent with

BR and, when deviations occur, they mostly result in over-investments. In

70% of all cases subjects over-invest, while under-investments occur in only

18% of cases.

In Appendix D we present plots of the complete sequence of investments

made by each subject. Investments are juxtaposed to the rationalizable set

(gray)�an area consisting of the set of BRs computed using the steps described

16For the case of HC treatments we had to exclude two subjects for which their individual
proportional loss was signi�cantly higher than the average of subjects classi�ed as Type 2.
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in Section 5.1. This allows one to visualize whether a subject's investment can

be rationalized by pecuniary-pro�t-maximizing motives, and to appreciate how

investments drift into and out of the BR range. In these same �gures, we

superimpose a dashed red line representing the myopic BR; that is, the best

response function to the investments by members of the group to which the

subject belonged in the previous round. This provides a direct counterpart to

assess the path dependence of actual investments.

5.3 Linking Types to Behavioral Categories

What drives Type 2 subjects to deviate from pro�t-maximizing strategies?

One possibility is that over-investment in LC treatments re�ects motives that

are beyond simple pro�t-seeking. For example, when optimal investments

become smaller, some agents may �nd joy in the act of contributing to a group

account. Such joy of giving would be harder to identify when complementarity

is high and pro�t-seeking behavior dictates high investments.

On the other hand, under-investment in HC treatments is consistent with

competitive motives, as suggested by Fershtman et al. (2012); when other sub-

jects invest relatively high amounts, marginally reducing one's own investment

may guarantee the highest payo� in the group. This motive would be indis-

tinguishable from pecuniary-pro�t-maximizing when complementarity is low,

as both usually lead to lower investments relative to other group members.

It is conceivable that subjects�even pro�t-seeking ones�may deviate from

the pro�t-maximizing strategy because they do not understand the rules of the

game. Given their conjectures, they may fail to calculate the pro�t-maximizing

choices. To discriminate between confusion and alternative behavioral motives

we examine what we call �payo�-relevant� use of the calculator. That is, we
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identify whether subjects are able to compute the BR to their conjectures

using the calculator and whether they systematically play a BR strategy after

they identify it.

We adopt two measures of payo�-relevant use of the calculator: (a) the

di�erence between hypothetical investments and the BR to conjectures about

other players' choices, de�ned as ĝi− g∗i (ĝ−i). We denote this di�erence as the

Calculated Deviation from BR;17 (b) the di�erence between actual investments

and the BR to conjectures, de�ned as gi − g∗i (ĝ−i). We call this the Actual

Deviation from BR.

5.3.1 Homo pecuniarius versus Homo behavioralis

It is informative to examine how the payo�-relevant measures Calculated De-

viation from BR and Actual Deviation from BR are distributed among par-

ticipants. When a subject identi�es the pecuniary-pro�t-maximizing strategy

using the calculator, the discrepancy between her own hypothetical investment

and the BR to her conjectures (Calculated Deviation from BR) is close to zero.

Similarly, a value of Actual Deviation from BR close to zero indicates that a

participant has actually pursued the pecuniary-pro�t-maximizing strategy for

a given conjecture. Figure 5.1 displays a scatter plot of the average value of

Calculated Deviation from BR and Actual Deviation from BR for each subject.

17We consider all conjectures and hypothetical investments starting from the practice
session. For cases in which an individual entered multiple hypothetical investments for the
same conjecture, we set a rule to match a hypothetical investment with a conjecture: namely,
we select the current or past hypothetical investment that maximizes the monetary payo�
given the conjecture. We consider past hypothetical investments (in addition to current
ones) because we �nd evidence of subjects selecting a given conjecture and then adjusting
their hypothetical investments over several rounds. Finally, to simplify the analysis we
group conjectures within di�erent bins based on their generalized ρ-mean. The bins, B, are
de�ned as follows: if Mρ ≤ 0.5 then Mρ ∈ {B = 1}; if Mρ ≥ 19.5 then Mρ ∈ {B = 21}; if
j − 1.5 < Mρ ≤ j − 0.5 then Mρ ∈ {B = j} for j = 2, . . . , 20. When ρ = 0.54 (ρ = 0.58) we
group in the same bin all conjectures for which Mρ ≥ 10 (Mρ ≥ 15).
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Black circles and gray squares refer to Type 1 and Type 2 subjects, respec-

tively. The plot con�rms that, except in the LVCM treatment, both types are

usually capable of �nding the pro�t-maximizing investment using the calcula-

tor (Calculated Deviation from BR is never very far from zero). This means

that confusion cannot account for most of the observed choices.18

To further examine this issue we calculate, for each treatment and type,

a weighted average of both Calculated Deviation from BR and Actual Devia-

tion from BR.19 The ratio of the former to the latter captures the proportion

of the total deviation due to confusion. For the LVCM, confusion accounts

for 54% of the actual deviation for Type 2 subjects (relative to Type 1 sub-

jects). In contrast, for LC and HC confusion is much lower, at 19% and 14%,

respectively. Considering actual choices (Actual Deviation from BR), signi�-

cant di�erences become apparent: Type 1 subjects (Homo pecuniarius) clearly

pursue the pecuniary-pro�t-maximizing strategy, whereas Type 2 individuals

(Homo behavioralis) often choose to deviate from it. Type 2 subjects exhibit

altruistic behavior in LC treatments, while in HC environments they appear

to pursue a competitive motive.20

Crucially, variation in the degree of complementarity and the magnitude

of optimal investments, may play a role for the occurrence of non-pecuniary

motives. When BR choices are very low (LC treatments) some agents may

enhance their payo� through altruistic over-investments. Such joy of giving

could be tainted, or less salient, in an environment where a high payo� is

18This is also con�rmed when looking at the performance on the control questions. There
is a negligible di�erence between the payo�s each type obtained from answering the control
questions correctly. Type 1 subjects earned $3.73, whereas Type 2 received $3.63.

19Weights are with respect to the number of rounds the calculator was activated.
20Because we use a between-subject design, we make no claim as to the identity of types

across treatments. That is, an agent may appear as Homo pecuniarius in LC treatments
(since competitive behavior coincides with pro�t maximizing) while under-contributing in
HC treatments�like a Homo behavioralis. The opposite pattern may emerge as well.
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Figure 5.1. Calculated Deviation from BR versus Actual Deviation from BR. The black circles display
the average Calculated Deviation from BR and Actual Deviation from BR for each Type 1 subject. The
gray squares display the average Calculated Deviation from BR and Actual Deviation from BR for each
Type 2 subject. The triangle on the right panel represents one of the subjects that we excluded on the
clustering procedure (the second one did not activate the calculator).

associated with a high investment. When the optimal investment is high,

a competitive motive may become more appealing as agents recognize that

small reductions in investment are both costly to other players and useful

to boosting relative performance within a group. This competitive motive is

indistinguishable from pecuniary-pro�t-maximizing in LC environments.

Behavioral motives may operate side by side with pro�t-seeking behavior

as agents consider all these aspects in their decision making. This observation

motivates the analysis in the next section.

5.4 Non-Pecuniary Motives

Given that deviations from pro�t-maximizing strategies cannot be simply at-

tributed to confusion, Homo behavioralis subjects appear to pursue a combi-

nation of monetary and non-monetary rewards. In what follows we attempt

to quantify the magnitude of non-pecuniary motives by estimating how much

money these subjects are willing to forego in the process of making gifts (in

LC treatments) or to obtain a relatively higher payo� within their group (in
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HC treatments).

5.4.1 Gauging the Extent of Non-Pecuniary Motives

Individual's payo� function can be written as Ui = π(gi, g−i, ρ) + γ, where

the augend describes the monetary payo� and γ captures the joy-of-giving (or

warm-glow) motive (Andreoni et al., 2008) that balances the forgone pecuniary

payo�. We use observed choices by Homo behavioralis to estimate γ for each

treatment. By de�nition, γ is the di�erence between the pecuniary-pro�t-

maximizing investment and the pecuniary pro�ts from the actual investment

of Homo behavioralis subjects.

π(g∗i (ḡ), ḡ, ρ)− π(ḡType2, ḡ, ρ) = γ, (5.1)

where ḡ is the average investment observed among all players and ḡType2 is the

observed average investment of Homo behavioralis subjects.21 Equation (5.1)

describes the choice of a Homo behavioralis subject: when other subjects invest

ḡ, she prefers to invest ḡType2 tokens rather than g∗i (ḡ). We assume that the

warm-glow compensates the subject for the pecuniary loss. Table 5.2 reports

the estimated average magnitude of γ within each treatment; the estimates

are roughly similar when comparing across treatments (between 2 and 1.35

tokens). The forgone monetary payo�s only accounts for between 2% and 5%

of the maximum monetary payo�s given other players' average investment.

21We assume that g−i = ḡ. To account for possible early learning of the game and the
environment, we concentrate on the last 10 rounds.
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Table 5.2
Joy of Giving Estimates

ρ ḡ g∗i (ḡ) ḡType2 γ

1 0.7 0 1.4 0.84

0.70 3.8 0.9 6.3 1.35

0.65 7.2 3.6 9.7 0.87

Note: The �rst column displays the degree of complementarity, ḡ is the overall average
investment, g∗i (ḡ) is the BR given the average investment, ḡType2 is the average investment
of Homo behavioralis (Type 2) subjects, and γ captures the joy of giving. We only consider
the last 10 rounds.

Given our joint investment technology, the cost of a constant deviation

from the money-maximizing strategy changes with the degree of complemen-

tarity. As ρ decreases, the monetary payo� function becomes �atter and any

marginal change in strategy has a smaller e�ect on the �nal reward. This

implies that rationalizing similar deviations from pro�t-maximizing behavior

requires a higher joy of giving value (γ) as ρ increases. This observation helps

explain the investments of Homo behavioralis (Type 2) subjects when ρ = 0.65

as opposed to when ρ = 0.70. This comparative static is further explored in

Appendix G.

Using similar reasoning, one can quantify the intensity of competitive mo-

tives in HC treatments; that is, the pecuniary payo� a subject is willing to

sacri�ce in exchange for a higher income rank within a group. We de�ne the

individual utility function as Ui = π(gi, g−i, ρ) + κ, where κ measures the joy

of winning. Table 5.3 reports estimates for κ. The competitive motive is es-

timated to be higher for ρ = 0.54 than for ρ = 0.58. This is consistent with

two observations: (a) Homo behavioralis deviations are marginally larger in

ρ = 0.54, and (b) for any given κ, the cost of deviating is non-trivially higher

when complementarity is stronger. In the next subsection we discuss the latter

point in some detail.
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Table 5.3
Competitive-Motive Estimates

ρ ḡ g∗i (ḡ) ḡType2 κ

0.58 13.9 18.6 8.1 1.27

0.54 15.7 20 11.6 2.14

Note: The �rst column displays the degree of complementarity, ḡ is the overall average
investment, g∗i (ḡ) is the BR given the average investment, ḡType2 is the average investment
of Homo behavioralis (Type 2) subjects, and κ captures the competitive motives. We only
consider the last 10 rounds.

In Appendix F we examine the distribution of estimated γ and κ for Homo

behavioralis (Type 2) subjects. We consistently �nd that for more than 80%

of Homo behavioralis subjects the non-pecuniary motive is at most 2 tokens,

which is fairly low given the monetary stakes in the game as this only accounts

for between 2% and 3% of the maximum monetary payo�s given other players'

average investment.

5.4.2 Conditional Cooperation

It is conceivable that one goal for some Homo behavioralis subjects is to match

other group members' investments, behavior similar to conditional cooperators

(Fischbacher et al., 2001; Fischbacher and Gächter, 2010). The standard pro-

cedure to detect conditional cooperation is to elicit subjects' beliefs about oth-

ers' investments. Our experimental setting delivers valuable non-choice data

(conjectures about others' investments) to identify this behavior. In Table 5.4

we report results from a regression in which the dependent variable is the in-

vestment made by each subject and the right-hand-side variable is the average

conjecture about others' investments. For the linear case (LVCM) these results

suggest that subjects are willing to match up to 50 percent of what they expect

to be the average investment of others. Moreover, and quite remarkably, for

the case of LC, subjects are willing to invest an amount that is close to what
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they predict to be the average investment of others.22 But perhaps the most

interesting results are those in the case of HC: in these treatments the average

(and expected) investments are also higher, as cooperation motives should be

reinforced by the monetary reward subjects obtain when they coordinate on

high investment levels. However, while we �nd a positive association between

investments and conjectures, we also �nd that investments match only about

60% of the average conjecture. It is apparent that conditional cooperation

cannot fully account for the choices made by Homo behavioralis subjects in

HC settings, suggesting that these individuals are likely to have alternative

non-pecuniary motives, as competitiveness.

Table 5.4
Response of Subjects' Investments to Conjectures about Others' Investments

Variable Coe�cient Number of observations

ĝ−i
0.566 94
(0.087)

DLC × ĝ−i
0.462 232
(0.115)

DHC × ĝ−i
0.056 155
(0.151)

Hypothesis F p > F

H0 : δ̂LC = 0 16.24 0.0001

H0 : δ̂HC = 0 0.14 0.7117

H0 : δ̂HC = δ̂LC 7.88 0.0068

Note: Results for the regression: gi,t = βĝ−i,t +
∑
δk (Dk × ĝ−i,t), where gi,t is the

investment of a Type 2 subject i in round t, ĝ−i,t the arithmetic mean of conjectures of
Type 2 subject i in round t, Dk is a dummy variable for each complementarity degree
(k ∈ {LC,HC}), when the baseline is the LVCM treatment.This means that the total
e�ect on LC is 1.028 and the total e�ect on HC is 0.622. The standard errors (reported
in parentheses) are clustered at the individual level. At the bottom part of the table
we test for equality of the coe�cients.

22We cannot reject the hypothesis that in LC treatment Type 2 subjects make investments
that match exactly their average conjecture (A t-test of H0 : β̂+ δ̂βLC = 1 results in F=0.14
and p > F = 0.709).
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6 Evidence from Response Times

Using non-choice data we obtain precise measures of subjects' response times

and intensity of calculator usage. This information is a valuable way to peek

at the mechanics of individual decision making. Analyzing decision times in

public good games has become increasingly popular since Rand et al. (2012)

reported that in a one-shot LVCM experiment shorter response times are pos-

itively correlated with higher contributions. This �nding was interpreted as

evidence that humans are instinctively generous. However, this interpretation

has been challenged by, among others, Recalde et al. (2018), who point out

that in the LVCM the only possible deviation is to over-contribute, making

it hard to distinguish between subjects who instinctively over-contribute and

those who rush and make genuine mistakes.23

6.1 Response Times in the First Round

First, we replicate the analysis of Rand et al. (2012). For comparability, we

consider only the �rst-round investments in the LVCM treatment. The results

con�rm the �ndings of Rand et al. (2012): subjects who invest zero wait 34

seconds, on average, before logging their choice. In contrast, it takes an average

of just 25 seconds to select a positive investment. Our experimental design

allows us to go beyond the one-shot game and the case of no complementarity.

The analysis of sequential rounds makes it feasible to assess how response

times change with both size and direction of investments' deviations from

23Recalde et al. (2018) design a voluntary investment experiment in which the dominant
strategy is in the interior of the strategy space, and they replicate the �nding of Rand et al.
(2012) when the equilibrium investment is below the midpoint of the choice space. However,
when the equilibrium is located above the midpoint, they �nd a negative correlation between
response time and investments.
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pecuniary BRs. We combine non-choice data and response-time information

to illustrate how some of the conclusions about instinctive generosity drawn

by Rand et al. (2012) are inconsistent with our �ndings. More generally we

argue that valuable information can be elicited from di�erences in the length

of time it takes subjects to enter their investments and from the intensity of

their calculator usage over that interval.

6.2 Di�erences across Treatments and Types

By analyzing the patterns of response time over several periods it is clear that

subjects respond faster on average as rounds elapse (Figure 6.1). This is not

surprising given that participants become more familiar with the game as time

progresses.
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Figure 6.1. Average response time over time. This
�gure shows the evolution of the average response in
each treatment.

This increase in speed is closely related to usage of the calculator,24 which

24For this reason, in the last part of this section we combine these two measures to compute
the average processing speed for each treatment.
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declines as rounds progress. This can be seen in the left panel of Figure 6.2.

The right panel of Figure 6.2 shows the �ve-round moving average of the

number of new conjectures as a share of the overall number of conjectures

considered in all previous rounds. A steep drop in the percentage of new

conjectures is visible after the �rst few rounds: this is consistent with the

hypothesis that most subjects form conjectures early in the experiment and

that they stop updating such conjectures fairly early.
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(a) Use of the calculator
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(b) New conjectures

Figure 6.2. Use of the calculator over time. The left panel reports the proportion of subjects who activated
the calculator by treatment. The right panel displays the �ve-round moving average of the number of new
conjectures as a percentage of overall conjectures. Notice that for period 4 we include data from the practice
round, for which the percentage of new conjectures is 100%.

As shown in Figure 6.3 and Table 6.1, we observe considerable di�erences

in the average response time across treatments. Subjects in LVCM treatments

take signi�cantly less time than in the LC treatments (t-test: p-value=0.000),

suggesting that more complex environments, like LC, elicit more pondering

of potential choices. The HC response times lie between those of the the

two other treatments, suggesting that high complementarity settings are less

challenging than low complementarity ones.
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We also examine our non-choice data through the lens of the typology

described in Section 5.3.1. This unveils interesting discrepancies in both the

quantity and quality of time usage between types. In the LVCM and HC

treatments Homo pecuniarius (Type 1) subjects seem to respond faster (t-test:

LVCM, p-value=0.0643 and t-test: HC, p-value=0.1195). Di�erences are, at

most, marginally signi�cant and we take them with some caution. Nonethe-

less, the disparity in estimated time use clearly indicates that in one set of

treatments (LVCM) the marginally faster subjects are those who invest little

or nothing, while in another set (HC) the quicker subjects are those who get

closer to full-investment. Hence, both response time and the direction of devi-

ations from pecuniary BR seem to depend on the speci�c environment. More

importantly, we �nd little or no evidence that speedy choices systematically

and signi�cantly imply over-investment.

In contrast, in LC treatments Homo pecuniarius subjects take more time

before submitting their choices, possibly because calculating the optimal level

of (pecuniary) investment with precision is harder when complementarity is

low.25 However, di�erences in raw time usage across types in the LC case are

poorly identi�ed (t-test: LC, p-value=0.4251). For this reason we resort to

additional measurements to examine the hypothesis that Type 1 agents may

try harder to �gure out pecuniary best responses; as we show below, agents

who play close to pecuniary BR in the LC treatments not only take longer to

log a choice but also use the calculator more intensively and consider a higher

number of potential combinations.26

25Rubinstein (2007) obtains similar results. He �nds that it takes more time to make
decisions that require cognitive reasoning than to make instinctive choices.

26The response times of Type 1 and Type 2 subjects in the LC treatments are consistent
with the typology described in Rubinstein (2016). He divides subjects into two types ac-
cording to their response time, arguing that subjects who make quick decisions are more
instinctive while those who are slower often make strategic considerations.
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Figure 6.3. Response-time frequencies. Each
solid line represents the cumulative distribution
function for Type 1 subjects for each of the treat-
ments. Each dashed line represents the cumula-
tive distribution function for Type 2 subjects for
each of the treatments. The y-axis is displayed
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6.3 Processing Speed

Given the evidence presented so far on raw time use data, it is crucial to

distinguish between subjects who spend much of their time idly staring at

the screen and those who do try to get the most out of the calculator. To

identify this di�erence we compute the average amount of time subjects spend

entering any given combination in the calculator. This is done by dividing

the total time spent on the calculator by the number of combinations that

are considered during that time interval.27 The resulting statistic is a proxy

for the speed at which information is processed. The bottom panel of Table

6.1 shows that, across all treatments, Homo pecuniarius subjects process more

combinations per unit of time than Homo behavioralis subjects (the di�erence

is not signi�cant for LVCM, but p-values of t-test are 0.026 and <0.0001 for

LC and HC, respectively).

27This statistic can only be computed for those who actually use the calculator.

30



Moreover, regardless of their type, all subjects process combinations sig-

ni�cantly faster in the LC treatment (t-test: LVCM vs LC, p-value=0.008;

t-test: LC vs HC p-value=0.029). This provides further evidence in support of

the hypothesis that in more complex environments, like the LC ones, subjects

tend to exert more e�ort when choosing an investment. This is especially true

for Homo pecuniarius subjects, who not only devote more time to the choice

problem but appear to be signi�cantly more e�cient in their time usage.

Table 6.1
Response Times, by Type and Treatment

Type 1 Type 2 Overall

Avg.
(SD) obs.

Avg.
(SD) obs.

Avg.
(SD) obs.

seconds seconds seconds

LVCM 11.4 15.1 340 13.6 14.4 300 12.5 14.8 640

LC 27.8 25.5 780 26.6 27.0 500 27.3 26.1 1280

HC 14.7 19.7 1080 16.3 17.4 520 15.2 19.0 1600

Processing Speed, by Type and Treatment
(Response Time Divided by Number of Combinations Entered in the Calculator)

Type 1 Type 2 Overall

Avg. (SD) obs. Avg. (SD) obs. Avg. (SD) obs.
seconds seconds seconds

LVCM 18.2 (17.8) 79.0 19.6 (14.7) 98.0 19.0 (16.1) 177

LC 14.3 (15.3) 430.0 17.1 (16.9) 254.0 15.4 (15.9) 684

HC 14.9 (14.5) 328.0 22.0 (15.2) 170.0 17.3 (15.1) 498

7 Discussion of Related Literature

It is often challenging to interpret decision-making through the examination

of choice data alone. For this reason, several studies have started collecting

non-choice data to shed light on the decision process of players. Throughout
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each session, we give participants access to a payo� calculator. By using the

calculator subjects can see the monetary payo� associated with as many hy-

pothetical investments as they wish, including di�erent hypothetical values of

their own choice. We record every trial that subjects enter in the calculator

during both the practice period and the experiment. These non-choice data

are di�erent from information collected using �mouse lab� (see, among others,

Camerer et al., 1993; Costa-Gomes et al., 2001; Johnson et al., 2002; Costa-

Gomes and Crawford, 2006; and Brocas et al., 2014), �eyetracking� (see, among

others, Knoep�e et al., 2009; Wang et al., 2010; Reutskaja et al., 2011; and

Arieli et al., 2011), analysis of response times (see Spiliopoulos and Ortmann,

2017 for a literature review), rational inattention analysis (see, among others,

Caplin and Dean, 2015; and Dean and Neligh, 2017), or fMRI techniques (see

Bhatt and Camerer, 2005; Smith et al., 2014). When employing these tech-

niques participants are aware that experimenters are gathering data and this

may in�uence their choices. Finding the optimal strategy in our investment

problem makes the use of the calculator often necessary, as payo� functions

are nonlinear and individual gains are a�ected by the dispersion of players'

investments. For these reasons subjects depend on the calculator to evaluate

alternative strategies and to make informed choices. The input they enter into

the calculator delivers a valuable description of their beliefs about the invest-

ments of other agents. In this sense, our method provides a non-intrusive way

to collect high-quality non-choice data. A further advantage of this approach

is that data collection is simple and requires no special technology or equip-

ment; thus, it can be applied easily to the analysis of most individual or group

decision problems.

Crucially, agents are able to use the calculator as they wish. They can

change one or more conjectures about other agents' investments and/or adjust
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their own hypothetical investment in whichever order, by any amount and as

many times as they want. In this sense subjects are let free to explore the

payo� space in countless ways. Cherry et al. (2015) use a related method.

They implement an output-sharing game with negative externalities in which

they provide subjects a payo� calculator and analyze non-choice data. A key

di�erence is that, in their case, subjects must enter a conjecture before they

are allowed to see a table reporting the payo�s associated with a subset of

hypothetical choices, given the conjecture. This limits both the number of

payo�s that can be visualized for any set of conjectures and, more impor-

tantly, removes the possibility to quantify how a marginal change in subject's

hypothetical own investment, or in the conjecture about other agents, a�ects

the payo�. Our experimental design allows agents to exactly reproduce and

modify investments observed in previous rounds, or to consider signi�cantly

di�erent scenarios since they face no constraint in the number and type of

combinations they are allowed to evaluate. Furthermore, Cherry et al. (2015)

analyze only the last conjecture used before making a choice, while in our

analysis we consider all conjectures and hypothetical choices given that the

exploration of the payo� function can be gradual as subjects adjust both their

conjectures and hypothetical investments over time.

Second, our analysis concentrates on the joint investment problem of agents

facing non-linear returns. We model these returns as the product of comple-

mentary investments and consider treatments with di�erent levels of gains

from cooperation. A constrained version of our problem corresponds to the

LVCM. This game emphasizes the tension between private incentives and so-

cial e�ciency, examining how individual choices shape group outcomes. The

LVCM assumes a production technology of the public good which is linear and
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additively separable in agents' investments.28 Hence, this linear speci�cation

focuses on the choice problem of an agent whose optimal (pro�t-maximizing)

choice is independent of other agents' choices.29,30 Yet, complementarity is key

in many environments in which individual investments entail costly e�ort. For

example, a family may be viewed as a group in which individual e�orts are

strong complements in generating positive group outcomes. Similarly, modern

charities often rely on matching e�orts by di�erent stakeholders to raise funds

and reach a socially valuable objective. Crucially, in several joint endeavors

such as school funding activities, neighborhood improvement initiatives and

even scienti�c research projects, the return on a participant's e�ort depends

on the level of e�ort that all other participants choose to exert, and too much

heterogeneity in individual investments may be detrimental. Identifying how

subjects coordinate in such joint investment environments is essential to make

sense of empirical observations. In practice, a provision technology featuring

complementarity in individual investments captures two essential features of

joint investment problems. First, an increase in one's investment raises the

marginal return on others' investments and, second, the provision is more

e�cient when agents' investments are relatively homogeneous.31

28Under this key assumption, and assuming that the marginal per capita return (MPCR)
is lower than one, the dominant strategy for agents with self-regarding preferences is to
invest nothing at all (i.e., to free ride) rather than make a positive investment that results
in a private cost and a social bene�t.

29The experimental literature is much too vast and thoughtful to be covered fairly here.
An interested reader is referred to Ledyard, 1995 for an older but very helpful survey and
a more recent survey by Vesterlund (2016). The robust experimental �nding is that contri-
butions are signi�cantly higher than zero in early rounds but diminish over time. Positive
contributions have been interpreted (among other explanations) as re�ecting confusion, al-
truism, or willingness to cooperate if others do.

30Andreoni (1993) considers complementarity between the private and public good; Keser
(1996) studies utility that is non-linear in the private good; Harrison and Hirshleifer (1989);
Croson et al. (2005) study public good experiments based on the weakest-link mechanism
of Hirshleifer (1983).

31Steiger and Zultan (2014) compare the linear case and a case in which the marginal
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Lastly, this paper focuses on the experimental literature that studies coordi-

nation failures in games with strategic complementarities in players' decisions.

The classic example is the two-by-two stag hunt game in which there are two

Nash equilibria in pure strategies, one payo� dominant and the other risk dom-

inant (see Cooper et al., 1992). In this type of coordination game, the Pareto

superior (payo�-dominant) outcome is not always chosen; the equilibrium se-

lection depends on the basin of attraction and the optimization premium (see

Battalio et al., 2001; Van Huyck, 2008). The current study introduces coor-

dination considerations in a public good game. Our experimental result of

no convergence to the unique Nash equilibrium in the case of weak comple-

mentarity is in sharp contrast to experimental results in binary-action games

and suggests that a richer strategy space may induce interesting behavioral

dynamics.

When the degree of complementarity supports two equilibria, our game su-

per�cially resembles order-statistic games (see Devetag and Ortmann (2007)

for a survey of experimental results). The n players in these games select in-

teger number between 1 to k, and their payo� is decreasing in the distance

between their chosen number and some order statistic. Order statistic games

have multiple Pareto-ranked equilibria, and have been studied experimentally

in the context of coordination. For example, in the extreme weakest-link game

the agent's payo� depends on the minimum of all the chosen numbers. Van

Huyck et al. (1990) show that subjects fail to coordinate on the e�cient out-

come when groups are large. However, there are important di�erences between

return from the public good increases as the number of contributors increases (through
increasing returns to scale). Subjects have a binary choice: either to contribute or not. In
the increasing returns to scale treatment, there are two equilibria: zero-investment and full-
investment. The authors implement a partner-matching protocol and �nd that only groups
that cooperate in early rounds are able to converge to the full-investment equilibrium.
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order-statistic games and our joint investment framework. First, order-statistic

games do not enable free-riding. Second, in our framework, the earnings from

the joint account depend on the investments and on the investments' dis-

persion, whereas order-statistics games do not account for heterogeneity in

players' choices. In terms of equilibrium selection: in order-statistic games,

coordination is challenging because there exist k − 1 equilibria that are rela-

tively fragile, whereas in our environment, only the Pareto-e�cient equilibrium

is stable.

8 Conclusion

In this paper we examine and compare the dynamic decision processes of indi-

viduals who participate in a joint investment problem. We carry out our anal-

ysis in an environment featuring complementarity between private investments

into a common account. The environment can exhibit multiple equilibria.

Our experimental setting is such that agents' beliefs about other agents'

actions a�ect their pecuniary payo�s. The setting allows us to gather rich

information about the way agents learn about the environment and about the

motives and procedures of other agents. We do not elicit beliefs explicitly but,

rather, collect data on the inputs subjects enter in the payo� calculator. These

include conjectures about other group members' investments.

Consistent with theoretical predictions we �nd a positive relationship be-

tween aggregate investments and the degree of complementarity. In HC envi-

ronments subjects learn to coordinate, moving towards the socially preferable

equilibrium, but do not reach the Pareto e�cient outcome. Similarly, when

complementarity is very low, investments decrease but do not reach the unique

zero-investment equilibrium. Subjects also seem to respond to complementar-
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ity when its intensity is sizable but not su�ciently high to introduce a second

full-investment equilibrium; in this case, they persistently over-invest and show

little or no tendency towards the unique zero investment.

The use of detailed non-choice data, together with the manipulation of the

intensity of complementarity, allows us to identify the empirical relevance of

non-pecuniary motives in the decision-making process. We �nd that deviations

from the pro�t-maximizing strategy cannot be attributed to confusion and that

di�erent types of non-pecuniary motives emerge when we change the intensity

of complementarity among individual investments.

Crucially, not all subjects are equally sensitive to non-pecuniary motives.

We �nd evidence that while some individuals (Homo Pecuniarius) can be

clearly described as pro�t seekers who are willing to make cognitive e�orts

to �nd pecuniary best response strategies, others (Homo Behavioralis) are

able to calculate the payo�-maximizing strategy but deliberately deviate from

it. The interaction of di�erent types of participants is key to understanding

how groups behave and why we observe di�erent aggregate patterns under

di�erent levels of complementarity. The fact that Homo Behavioralis subjects

are willing to sacri�ce some monetary rewards to deviate from pecuniary-best-

response strategies may lead to imperfect convergence to equilibrium, not only

because their strategic decisions but also because Homo Pecuniarius are aware

of their choices and best-respond to them. The presence of Homo Behavioralis

increases social welfare when complementarity is low, as it restrains group

investments from collapsing to zero, but it reduces welfare when complemen-

tarity is high and full investments would be optimal.
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A Derivation of the Best-Response Function

Player i's payo� is

πi = ω − gi + β

(
n∑
i=1

gρi

)1/ρ

,

where ρ ≤ 1 denotes the degree of complementarity, gi denotes individual i's

investment in the group account, ω is the endowment, and β is a constant.

The best response of player i is a unique solution, g∗i (g−i), to the �rst order

condition (FOC)

0 =
∂πi
∂gi

= β
(
gρi +

∑
gρ−i

) 1−ρ
ρ (

gρ−1
i

)
− 1

β
(
gρi +

∑
gρ−i

) 1−ρ
ρ

= g1−ρ
i

gρi +
∑

gρ−i = gρi β
ρ
ρ−1

gρi

(
β

ρ
ρ−1 − 1

)
= (n− 1)

∑
gρ−i

n− 1
.

In the last line we multiply and divide the right hand side by (n − 1) so the

best response of player i is de�ned as a function of Mρ =
(∑

gρ−i
n−1

.
)1/ρ

. Finally,

de�ning k ≡
(

n−1

β
ρ
ρ−1−1

) 1
ρ

yields:

g∗i (g−i) = k

(∑
gρ−i

n− 1

)1/ρ

.

The second order condition (SOC)
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∂2πi
∂g2

i

= (1− ρ)β
(
gρi +

∑
gρ−i

) 1−ρ
ρ
−1

g
2(ρ−1)
i + (ρ− 1)β

(
gρi +

∑
gρ−i

) 1−ρ
ρ
gρ−2
i

= (ρ− 1)β
(
gρi +

∑
gρ−i

) 1−ρ
ρ
gρ−2
i

(
1− gρi

gρi +
∑
gρ−i

)
< 0,

implies concavity of πi.

A.1 Absence of symmetric Nash equilibrium in mixed

strategies

A symmetric NE in mixed strategies is a joint distribution µn−1 over g−i such

that i is indi�erent between all gi ∈ supp (µ). In other words, for any two

strategies, g′i and g
′′
i , in the support of µ, it must be that:

ω−g
′
i+β

∫
supp(µn−1)

(
g
′ρ
i +

∑
gρ−i
)1/ρ

dµn−1 (g−i) = ω−g
′′
i +β

∫
supp(µn−1)

(
g
′′ρ
i +

∑
gρ−i
)1/ρ

dµn−1 (g−i)

We will show that g∗i - the BR of player i to µn−1 is a singleton, and therefore

there is no symmetric NE in mixed strategies. The �rst order condition is:

∂πi
(
gi, µ

n−1 (g−i)
)

∂gi
= −1 + β

∫
supp(µn−1)

g′′i
(
gρi +

∑
gρ−i
) 1−ρ

ρ
gρ−1
i dµn−1 (g−i) = 0

The second derivative of player's i payo� is:

44



∂2πi
(
gi, µ

n−1 (g−i)
)

∂g2i
=

= β

∫
supp(µn−1)

((
1− ρ
ρ

)(
gρi +

∑
gρ−i
) 1
ρ
−2

ρgρ−1
i gρ−1

i +
(
gρi +

∑
gρ−i
) 1−ρ

ρ
(ρ− 1) gρ−2

i

)
dµn−1 (g−i)

= β

∫
supp(µn−1)

(1− ρ)
gρi(

gρi +
∑
gρ−i
) (gρi +

∑
gρ−i
) 1
ρ
−1

gρ−2
i +

(
gρi +

∑
gρ−i
) 1
ρ
−1

(ρ− 1) gρ−2
i

 dµn−1 (g−i)

= β

∫
supp(µn−1)

(1− ρ)
(
gρi +

∑
gρ−i
) 1
ρ
−1

gρ−2
i

 gρi(
gρi +

∑
gρ−i
) − 1

 dµn−1 (g−i) < 0.

That is, πi (gi, µ
n−1 (g−i)) is globally strictly concave and g∗i is a singleton. It

follows that there is no symmetric NE in mixed strategies.
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B Coordination and Complementarity

B.1 Distribution of investments

Figure B.1 displays the cumulative distribution of investments by treatment

(i.e., by complementarity). The plots con�rm the �nding of Section 4: the

median investment in LVCM is zero even in the early rounds; in the case of

the HC treatments, there is not much di�erence between the distributions

under ρ = 0.58 and ρ = 0.54. investments concentrate at the extremes as

sessions progress towards the end.

By contrast, when ρ is set to 0.65 or to 0.70, the mass distribution is more

heavily concentrated in the interior of the strategy space. Subjects choose to

invest nontrivial amounts even after 10 rounds. For example, in rounds 11 to

20, more than half of all investments are larger than 5 tokens. Investments are

range-bound and show little tendency towards convergence.
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Figure B.1. Cumulative distribution functions. The
dashed lines display the cumulative distribution func-
tion for the individual investments from rounds 1 to
10. The solid lines show the cumulative distribution
function for the individual investments from rounds 11
to 20

.
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A key feature of the production technology is that individuals not only

bene�t from others' investments but also enjoy incremental gains as coordi-

nation improves. The cost of less-than-perfect coordination depends on the

degree of complementarity; in the linear case there is no additional loss due to

lack of coordination. As complementarity increases, the impact of dispersion

grows and it becomes more costly to forego coordination; on the other hand,

when complementarity is high, a potential obstacle to coordination is the mul-

tiplicity of equilibria. Next subsection contrasts the cost of incoordination in

environments with a single equilibrium and multiple equilibria.

B.2 Dispersion Loss Index

We measure coordination in each treatment by capturing the loss due to dis-

persion. We de�ne the dispersion loss index (DLI) for group k in round t

as

DLIk,t =
1
4

∑4
i=1 gi,t −

(
1
4

∑4
i=1 g

ρ
i,t

)1/ρ

10−
(

20
21/ρ

) .

The numerator of the DLIk,t identi�es the dispersion loss, as it measures the

di�erence between actual group account output and hypothetical output under

perfect coordination. The denominator is just a normalization factor making

the index comparable across treatments. When the investments of the four

group members are identical (zero dispersion) the arithmetic mean and the

generalized mean are identical for any ρ, and DLIk,t = 0; when dispersion is

highest, DLIk,t = 1.32 This index may be sensitive to outliers because there

are only four groups in each session. To account for this sensitivity, in each

32This is achieved at the vector of investments (0, 0, 20, 20) in which the discrepancy
between the arithmetic and the generalized mean is maximized.
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round/session we take the 16 actual investments and average over all possible

combinations of investments that can be made by groups of four players; for

any such combination we compute DLIk,t and, �nally, we record the median

DLIk,t for that round.
33

Figure B.2 reports median DLI by treatment, averaged over �ve-round

intervals,34 and its 95% con�dence interval.35 This analysis illustrates that in

HC treatments, despite the multiplicity of equilibria, dispersion decreases over

time. This is re�ected in signi�cantly lower DLI, after multiple rounds, than

in LC treatments and lends support to the evidence in Figure B.1. Subjects

in HC treatments manage to better coordinate their actions.
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Figure B.2. Dispersion loss index (DLI). This �gure
reports the median DLI for HC, and LC treatments,
averaged over �ve-round intervals. The dotted lines
display the 95% con�dence interval.

33The total number of possible combinations is 16!
12!×4! = 1, 820.

34We pool together LC treatments (ρ = 0.70 and ρ = 0.65) and HC ones (ρ = 0.58 and
ρ = 0.54).

35Con�dence intervals are calculated using a binomial-based method. We also compute
con�dence intervals by randomly selecting 500 samples with replacement of the 1,820 com-
binations in each round/session. We obtain very similar results.

48



C History-dependent Conjectures

This Appendix provides evidence of history dependence of subjects' beliefs about oth-

ers. We assess the length of the subjects' memory span by regressing the conjectures

about others' investments on the actual investments by group partners in the previous

�ve rounds. Table C.1 reports the results, showing that subjects' conjectures respond

signi�cantly to investments made by other members in the previous two rounds.

Table C.1
Response of Subjects' Conjectures to Others' Investments(

1
n−1

∑
gρ−i

)1/ρ
1

n−1
∑
g−i

F (g−i,t−1) 0.541∗∗∗ 0.557∗∗∗

(0.05) (0.06)

F (g−i,t−2) 0.209∗∗∗ 0.211∗∗∗

(0.07) (0.07)

F (g−i,t−3) 0.035 0.023

(0.04) (0.04)

F (g−i,t−4) -0.008 -0.009

(0.05) (0.05)

F (g−i,t−5) 0.072∗ 0.067

(0.04) (0.04)

Constant 1.414∗∗∗ 1.358∗∗∗

(0.45) (0.44)

Observations 1,603 1,605

Note: We estimate the following least-squares speci�cation: F ( ˆgi,t) = C+
∑5
L=1 ALF

(
g−i,t−L

)
+

ui,t, where ĝi is a vector of player i's conjectures about other group members' investments, g−i,t−L
contains the vector of investments made by other members in round t − L, C is a common
constant, and ui,t is an idiosyncratic error. We let the function F (· ) be either the arithmetic or
the generalized mean of degree ρ. The standard errors (reported in parentheses) are clustered by
individuals and obtained by bootstrap estimations with 1,000 replications. *p < 0.1, **p < 0.05,
***p < 0.01. As a robustness check, we also estimate this speci�cation including dummy variables
to control for di�erent treatments. Results are very similar.
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D Best-Response Range and Investments
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Figure D.1. Session 1 (LVCM)
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Figure D.2. Session 2 (LVCM)
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Figure D.3. Session 3 (ρ = 0.70)
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Figure D.4. Session 4 (ρ = 0.70)
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Figure D.5. Session 5 (ρ = 0.65)
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Figure D.6. Session 6 (ρ = 0.65)
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Figure D.7. Session 7 (ρ = 0.58)
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Figure D.8. Session 8 (ρ = 0.58)
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Figure D.9. Session 9 (ρ = 0.54)
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Figure D.10. Session 10 (ρ = 0.54)
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Figure D.11. Session 11 (ρ = 0.54)
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E Mechanical Use of the Calculator

In what follows we report additional information about the way subjects use

the calculator. In Table E.1 we show the summary statistics of the mechani-

cal use of the calculator for di�erent types and treatments. We examine the

following variables: (a) CalcRound, number of rounds the calculator was used

by a subject, (b) Hyp, number of own hypothetical investments entered in

the calculator, (c) Conj, number of conjectures about other players' invest-

ments that were entered into the calculator, and (d) Hyp per Conj, number of

own hypothetical investments entered, given a conjecture about other players'

investments.

Number of rounds. Table E.1 con�rms that the LVCM is arguably the

easiest environment for Type 1 subjects: they end up using the calculator very

little (in only 4.6 rounds).36 In contrast, Type 2 agents use the calculator in

the LVCM as much as in other LC treatments. This suggests that Type 1

may use the calculator to identify the BR and then mechanically play it to

maximize pecuniary rewards.

The degree of complementarity noticeably a�ects calculator usage: subjects

in LC treatments use the calculator in twice as many rounds as subjects in

HC sessions. This supports the view that subjects �nd it easier to calculate

BR strategies in HC treatments.37 For example, when ρ = 0.54, the BR is

to invest the whole endowment in the group account if other group members

invest at least half of their endowment; this means that, after a few rounds,

agents may e�ectively adopt something close to a high-investment strategy,

which requires no further re�nement through the use of the calculator. In LC

36Three Type 1 participants did not even activate the calculator after the practice round.
37Six subjects in the HC treatment did not use the calculator after the practice period.
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treatments, instead, choosing a strategy that maximizes payo� requires more

�ne tuning. For example, when ρ = 0.70, a subject would optimally choose

to invest one quarter of the average investment made by others to maximize

his or her payo�, assuming all other players invest the same amount. Hence,

it may be harder to identify a BR strategy in LC treatments.

Conjectures and hypothetical choices. Looking at conjectures, and at

the number of own hypothetical choices per conjecture, there is no signi�cant

di�erence across types in LVCM and LC. Subjects in LC and HC treatments

enter more hypothetical choices than in LVCM. A Type 1 subject enters on av-

erage slightly more hypothetical investments per conjecture than does a Type

2 subject in the LC and the HC sessions. One may expect this behavior from

an individual who is very concerned about maximizing her money earnings.

Table E.1
Di�erences in Mechanical Use of the Calculator, by Subject Type Within

Complementarity Level
LVCM LC HC

Type 1 Type 2
t-test

Type 1 Type 2
t-test

Type 1 Type 2
t-test

(p-value) (p-value) (p-value

CalcRound
4.6 6.5

0.3
11.0 10.2

0.5
6.1 6.3

0.7
(1.1) (1.5) (0.9) (0.9) (0.6) (1.3)

Hyp
17.2 22.1

0.2
30.1 31.2

0.8
29.4 14.9

0
(2.4) (3.4) (2.1) (2.9) (2.4) (1.4)

Conj
14.1 14.0

1.0
15.0 16.4

0.1
10.9 9.1

0
(1.0) (1.2) (0.6) (0.7) (0.4) (0.7)

Hyp Per Conj
3.7 4.3

0.3
7.2 6.6

0.24
8.2 5.1

0
(0.4) (0.5) (0.5) (0.6) (0.7) (0.6)

Observations 17 15 39 25 54 24

Note: Each cell reports the average value for the respective category (standard errors are reported in parentheses).
The t-tests of the means are reported in the third column of each treatment. CalcRound, number of rounds in
which subjects used the calculator; Hyp, number of hypothetical own investments; Conj, number of conjectures
about others; Hyp per Conj, number of own hypothetical investments entered, given a conjecture about other
players' investments. We include the practice rounds.
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F Distribution of the minimum loss index

In this Appendix we examine the distribution of estimated γ and κ for f Homo

behavioralis (Type 2) subjects subjects. To do this, we use the Min Loss

criterion de�ned in Section 5.1. Figure F.1 displays the cumulative distribution

of the individualMin Loss values for rounds 11 to 20 in the LC, LVCM, and HC

treatments. We consistently �nd that for more than 80% of Homo behavioralis

subjects the non-pecuniary motive is at most 2 tokens, which is fairly low given

the monetary stakes in the game as this only accounts for between 2% and 3%

of the maximum monetary payo�s given other players' average investment.
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Figure F.1. Cumulative distribution of the individual minimum loss. Each line of the left panel displays
the cumulative distribution of the per-round Min Loss of Homo behavioralis (Type 2) subjects for the LC
and LVCM treatments, whereas each line of the right panel displays cumulative distribution of the per-round
Min Loss of Type 2 subjects for the HC treatments. We consider the minimum loss per subjects for rounds
11 to 20.
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G The Costs of Deviating from Pecuniary Best-

Response

Given our joint investment technology, the cost of a constant deviation from

the money-maximizing strategy changes with ρ. As ρ decreases, the monetary

payo� function becomes �atter and any marginal change in strategy has a

smaller e�ect on the �nal reward. This implies that rationalizing similar de-

viations from pro�t-maximizing behavior requires a higher joy of giving value

(γ) as ρ increases. This observation helps explain the investments of Homo

behavioralis (Type 2) subjects when ρ = 0.65 as opposed to when ρ = 0.70.

To illustrate this point we assume that subject i chooses an investment that

equals the average investment of Homo behavioralis subjects when ρ = 0.65.38

Then we calculate the di�erence between the money earnings that subject

i would make following this strategy and that obtained when best respond-

ing (monetarily) to group members' investments.39 This di�erence measures

the monetary cost of deviating from the pro�t-maximizing strategy, which is

plotted in the left panel of Figure G.1. The x-axis displays the investments

of others (ḡ−i), and the y-axis reports the cost for each treatment. When

ḡ−i = 0, the cost is the same irrespective of complementarity; as the invest-

ment by other players grows, over-contributing becomes generally less costly.

Comparing between treatments in panel (a), as complementarity increases, the

cost of over-investing is reduced. This implies that in treatments with higher

complementarity it is less expensive to behave altruistically, which accounts

for the di�erent behavior of players in the ρ = 0.65 and ρ = 0.70 treatments.

For the LVCM the cost is constant and it is higher than in LC treatments. In

38Type 2 subjects invest an average of 9.2 tokens when ρ = 0.65 (last 10 rounds).
39To facilitate the analysis we assume that other members' investments are equal.
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other words, an identical value of the joy-of-giving motive is translated into a

higher over-investment as complementarity increases (from LVCM to ρ = 0.7

to ρ = 0.65).

The right panel of Figure G.1 displays the cost of deviating in HC treat-

ments. Here we assume that player i makes an investment that equals the

average investment of Type 2 subjects in HC treatments, which is 13.3 tokens.

In HC the cost function does not monotonically decrease in other players'

investments, and losses start mounting if one does not best respond to high

investments by others. In these cases, if ρ decreases (that is, complementarity

increases), the competitive motive κ must become stronger to justify similar

deviations below pecuniary BR.
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Figure G.1. Cost of deviating from the money-pro�t-maximizing strategy. Each line of the left panel
displays the cost of deviating from the pro�t-maximizing strategy (in tokens) for the LC and LVCM treat-
ments when subject i invests 9.3 tokens (the observed average investment of Type 2 when ρ = 0.65). Each
line of the right panel displays the cost of deviating from the pro�t-maximizing strategy (in tokens) for the
HC treatments when subject i invests 13.3 tokens (the observed average investment of Type 2 in HC). The
cost is equal to: π(ρ, g∗i , ḡ−i)− π(ρ, gi, ḡ−i).
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H Computer Interface

Figure H.1. Main computer interface

Figure H.2. Feedback

61



I Control Questions

Figure I.1. Control question 1/7

Figure I.2. Control question 2/7
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Figure I.3. Control question 3/7

Figure I.4. Control question 4/7
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Figure I.5. Control question 5/7

Figure I.6. Control question 6/7
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Figure I.7. Control question 7/7
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J Instructions

The instructions distributed to subjects in all the treatments are reproduced on the

following pages. All subjects received the same set of instructions except that those

in the LVCM treatment received the following explanation about how the income

from the group account was calculated:

The total group income depends on the investments of all group mem-

bers, and it is shared equally among all group members. This means that

each group member receives one quarter (1/4) of the total group income.

Some important points to keep in mind:

a. The more you and others invest in the group account, the higher the

total group income.

b. The group income is obtained by multiplying the sum of the invest-

ments of all group members by 1.6 (remember that the resulting group

income is shared equally among group members).

Also, the exchange rate was adjusted so that the average expected payo� was the

same across all treatments.
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Instructions 

You are taking part in an economic experiment in which you will be able to earn money. Your earnings 

depend on your decisions and on the decisions of the other participants with whom you will interact.  It 

is therefore important to read these instructions with attention. You are not allowed to communicate 

with the other participants during the experiment.  

All the transactions during the experiment and your entire earnings will be calculated in terms of tokens. 

At the end of the experiment, the total amount of tokens you have earned during this session will be 

converted to CAD and paid to you in cash according to the following rules:  

1. The game will be played for 20 rounds. At the end of the experiment, the computer will randomly 

select one of your decision rounds for payment. That is, there is an equal chance that any decision you 

make during the experiment will be the decision that counts for payment.  

2. The amount of tokens you get in the randomly selected round will be converted into CAD at the rate: 

2 tokens = $1. 

3. You will get $0.20 for every control question you answer correctly in the first attempt; $0.15 for every 

question you answer correctly in the second attempt; and $0.10 for every question you answer correctly 

in the third attempt. 

4. In addition, you will get a show-up fee of $5. 

Introduction  

This experiment is divided into different rounds. There will be 20 rounds in total. In each round you will 

obtain some income in tokens. The more tokens you get, the more money you will be paid at the end of 

the experiment. 

During all 20 rounds the participants are divided into groups of four. Therefore, you will be in a group 

with 3 other participants. The composition of the groups will change every round.  You will meet each 

of the participants only four times, in randomly chosen rounds. However, each time you are matched 

with a participant that you encountered before, the other group members will be different. This means 

that the group composition will never be identical in any two rounds. Moreover, you will never be 

informed of the identity of the other group members.  

Description of the rounds  

At the beginning of the rounds each participant in your group receives 20 tokens. We will refer to these 

tokens as the initial endowment. Your only decision will be on how to use your initial endowment. You 

will have to choose how many tokens you want to invest in a group account and how many of them 
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you'll want keep for yourself in a private account. You can invest any amount of your initial endowment 

in the group account. 

The decision on how many tokens to invest is up to you. Each other group member will also make such a 

decision. All decisions are made simultaneously. That is, nobody will be informed about the decision of 

the other group members before everyone made his or her decision.  

End of the rounds 

At the end of each round (after all choices are submitted), you will see:  (i) your investment choice, (ii) 

the investment choices of the other members in your group, and (iii) your income. Then, next round 

starts automatically and you will receive a new endowment of 20 tokens.  

Income calculation 

Each round, your total earnings will be calculated by adding up the income from your private account 

and the income from the group account: 

1. Income from your private account. You will earn 1 token for every token you keep in you private 

account. If for example, you keep 10 tokens in your private account your income will be 10 tokens. 

2. Income from the group account. The total group income depends on the investments of all group 

members, and it is shared equally among all of them. That is, each group member receives one quarter 

(1/4) of the total group income. 

Some important points to keep in mind: 

a. The more you and others invest, the higher the total group income.  

b. Taking as given the investments of all other group members, consider two levels for your 

investment in the group account (say, low investment and high investment). Next, increase both 

the low investment and the high investment by 1 token. The total group income will increase in 

both cases. However, the increase is smaller in the case of the higher investment level. 

c. When you increase your investment in the group account, the total income will not increase at a 

constant rate. The rate depends on the value of all participants’ investments in the group 

account. 

d. For the same average investment in the group account, the total group income would be higher 

if there is not much difference between the investments chosen by each one of the group 

members.  

e. If all other members in your group invest zero, the total group income will be determined by 

multiplying your investment in the group account by 1.6; the resulting amount is the group 

income and it will be shared equally among all group members.  
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Using the calculator to compute your income 

To calculate your potential income you will have access to a calculator (look at the picture below). 

To activate the calculator, you will be asked to fill in a hypothetical value for your own investment and 

for the other group members’ investment; then, you will be able to visualize your income for such 

hypothetical investment choices. You can consider as many hypothetical investment combinations as 

you want. 

Before the experiment starts you'll understand how to use the calculator; you will be able to practice 

with it; and finally, you will have to answer some control questions. For every correct answer you will 

get $0.20, $0.15, $0.10 if you give the correct answer in the first, second and third attempt, respectively.  

Remember that your actual investment decision has to be entered on the right hand side of the 

screen. Every round you will have 95 seconds to do that. 

 

Screen-shot of the experiment interface 

 


