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1 Introduction

In Bayesian statistics, parameters are treated as random variables and all forms of uncer-

tainty are expressed in terms of probability. A nonparametric Bayesian model is a model

whose parameter space has in�nite dimensionality. For any given �nite data set, only a �nite

subset of the available parameters is invoked whereby its dimensionality is allowed to grow

with the sample size (Orbanz and Teh, 2010). Nonparametric (and semiparametric) models

allow us to avoid the arbitrary and possibly unveri�able assumptions inherent in paramet-

ric models. A recent detailed exposition of Bayesian nonparametric methods is provided in

Ghosal and van der Vaart (2017).

A critical issue for the practical use of nonparametric Bayesian models is the availability

of e¢ cient algorithms to implement posterior inference. The last several decades have wit-

nessed an explosive growth of numerical implementation methods in Bayesian analysis. The

cornerstone of such methods has been Markov Chain Monte Carlo (MCMC) and its vari-

ants. Nonetheless, the inherently serial nature of MCMC, whereby a new draw of the desired

parameter chain can only be taken conditional on completing the preceding draw, imposes

limitations on the implementational e¢ ciency and scalability of such methods. Yet, the

speed of microprocessor cores measured by their GHz frequency has been virtually stable

since the mid-2000s, following decades of rapid growth (Rupp, 2018). During the last ten

years or so, improvements in computing performance have not originated from processor

speed but rather from parallelization1.

In recent years there has been a surge of research activity devoted to developing alternative

implementation methods that target (massively) parallel computing environments. In this

paper we focus on one particular stream of research in this area: Sequential Monte Carlo

(SMC), also known as a particle �lter (Doucet et al., 2001). SMC uses a genetic mutation-

selection sampling approach with a set of particles representing the posterior distribution of

a stochastic process. SMC is highly parallelizable as the core computational load involving

1Recent trends include shared memory multi-core CPUs, GPUs, and distributed memory high-
performance clusters.
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the model likelihood is performed by individual particles independently of one another.

Due to their computational complexity, Bayesian nonparametric methods stand to bene�t

substantially from such approaches.

SMC algorithms were initially developed to solve �ltering problems that arise in nonlinear

state space models (Doucet et al., 2001). In economics, the SMC approach has become a

popular method of inference for dynamic systems that bene�t from real-time updating of

the posterior approximation via recursive importance sampling updates (Kim et al., 1998;

Fernández-Villaverde and Rubio-Ramírez, 2007; Creal, 2012; Lopes and Carvalho, 2013;

Herbst and Schorfheide, 2014; Blevins, 2016). Chopin (2002) adapted SMC to conduct

posterior inference for a static Euclidean parameter vector. This approach was further ex-

tended by Fearnhead (2004), Ulker et al. (2010), Carvalho et al. (2010), Bouchard-Côté et al.

(2017), and Gri¢ n (2017) to static nonparametric mixture models, which is also our model-

ing context. The extent to which SMC is parallelizable in a related parametric environment

and the corresponding computational gains are elaborated in Durham and Geweke (2014).

SMC is typically implemented in three phases: (i) particle reweighting (correction phase), (ii)

particle resampling (selection phase), and (iii) particle transition (mutation phase). We detail

each phase further below. In this paper, we propose to enhance the performance of SMC by

utilizing Hamiltonian transition dynamics in the particle mutation phase, in place of random

walk transitions used in SMC in the previous literature. We call the resulting procedure

Hamiltonian Sequential Monte Carlo (HSMC). Hamiltonian transition dynamics have been

shown to yield superior mixing and convergence properties relative to random walk transition

dynamics in the context of serial MCMC procedures (Neal, 2011). In particular, Hamiltonian

dynamics use information about the �rst derivative of the likelihood function and construct

a proposal draw using a sequence of steps, unlike random walk (RW) one-step proposals that

do not use derivative information. The rationale behind HSMC is to extend such gains to

the SMC environment. We apply both SMC and HSMC to a panel discrete choice model

with a nonparametric distribution of unobserved individual heterogeneity. We contrast both

methods in terms of convergence properties and show the favorable performance of HSMC.
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The remainder of this paper is organized as follows. In section 2 we provide the background

for MCMC methods and in section 3 a review of SMC. Hamiltonian transition dynamics are

detailed in section 4. We discuss Bayesian nonparametrics in section 5. Within the context

of a Bayesian nonparametric mixture model, we introduce HSMC combining SMC with

Hamiltonian dynamics in section 6. We then apply both SMC and HSMC to a nonparametric

discrete choice model in section 7, comparing the performance of both approaches. Section

8 concludes.

2 Markov Chain Monte Carlo

Consider a general class of models that is parametrized by a Euclidean vector � 2 � with

posterior density �(�) assumed known up to � and an integrating constant2. Formally, this

class of models can be characterized by a family P� of probability measures on a measurable
space (�;B) where B is the Borel ��algebra. The purpose of Markov Chain Monte Carlo
(MCMC) methods is to formulate a Markov chain on the parameter space � for which,

under certain conditions, �(�) 2 P� is the invariant (also called "equilibrium") distribution.
The Markov chain of draws of � can be used to construct simulation-based estimates of the

required integrals and functionals h(�) of � that are expressed as integrals. These functionals

include objects of interest for inference on � such as quantiles of �(�):

The Markov chain sampling mechanism speci�es a method for generating a sequence of

random variables f�rgRr=1; starting from an initial point �0; in the form of conditional distri-
butions for the draws �r+1j�r � Q(�r): Under relatively weak regularity conditions (Robert
and Casella, 2004), the average of the Markov chain converges to the expectation under the

stationary distribution:

lim
R!1

1

R

RX
r=1

h(�r) = E�[h(�)]:

AMarkov chain with this property is called ergodic. As a means of approximation the analyst

relies on large but �nite number of draws R 2 N which can be selected in applications based
2For the sake of simplicity in the notation of this section we suppress the dependence of the posterior on

data and other parameters not directly sampled.
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on various criteria.

The conditional distribution Q(�r) can be obtained from a given (economic) model and

its corresponding posterior. In many cases of interest, the model likelihood in �(�) has a

complicated form which precludes direct sampling from �(�): In such case, the Metropolis-

Hastings (M-H) principle is often utilized for drawing �r+1j�r from Q(�r); see Chib and

Greenberg (1995) for a detailed overview. Suppose we have a proposal-generating density

q(��r+1j�r) where ��r+1 is a proposed state given the current state �r of the Markov chain. The
M-H principle stipulates that ��r+1 be accepted as the next state �r+1 with the acceptance

probability

�(�r; �
�
r+1) = min

�
�(��r+1)q(�rj��r+1)
�(�r)q(�

�
r+1j�r)

; 1

�
; (1)

otherwise �r+1 = �r: Then the Markov chain satis�es the so-called detailed balance condition

�(�r)q(�
�
r+1j�r)�(�r; ��r+1) = �(��r+1)q(�rj��r+1)�(��r+1; �r)

which is su¢ cient for ergodicity. �(��r+1; �r) is the probability of the move �rj��r+1 if the dy-
namics of the proposal generating mechanism were to be reversed. The proposal-generating

density q(��r+1j�r) is often chosen to be sampled easily. The popular Gibbs sampler arises
as a special case when the M-H sampler is factored into conditional densities. The proposal

draws ��r+1j�r from q(��r+1j�r) in (1) are generated in one step.

3 Sequential Monte Carlo

A key challenge for MCMC methods, in particular in high-dimensional parameter spaces, is

to �nd a good proposal density for the acceptance probability (1). Sequential Monte Carlo,

also known as particle �lter, encompasses a set of simulation-based methods that address this

problem by constructing proposal densities sequentially with a number of desirable proper-

ties. SMC provides a convenient and computationally attractive numerical characterization

of the posterior distribution.

The essence of SMC, with so-called data-tempering used here, can be summarized as follows

(Herbst and Schorfheide, 2016). Let p(Y j�) denote the likelihood and p(�) the prior density.
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The notation Y1:N = (Y1; : : : ; YN) will be used as shorthand for vectors. Let �m; with

m = 1; : : : ; R�; be a sequence that slowly increases from zero to one. A sequence of posteriors

can be constructed by sequentially adding observations to the likelihood function,

�(D)m (�) =
p(Y1:b�mNcj�)p(�)R
p(Y1:b�mNcj�)p(�)d�

; �m " 1; m = 1; : : : ; R�; (2)

where bxc is the largest integer that is less than or equal to x: If �1 is close to zero then the
p(�) can provide an e¢ cient proposal density for �1: SMC seeks to e¢ ciently exploit �m(�)

as a suitable proposal density for �m+1(�): As a result, SMC algorithms generate weighted

draws from the sequence of posteriors f�m(�)g
R�
m=1 : The weighted draws are called particles.

Denote the overall number of particles by Rj: At any given stage m, the posterior �m(�)

is represented by a swarm of particles
�
�jm; w

j
m

	Rj
j=1

in the sense that for the Monte Carlo

average,

hm;Nj =
1

Rj

RjX
j=1

wjmh(�
j)

a:s:! E� [h(�m)] :

Given the set of particles at stage m � 1; SMC proceeds in three steps: (i) correction:

reweighting of the stage m � 1 particles to re�ect the posterior at stage m; (ii) selection:
resampling the particles with elimination of low-weight particles and multiplication of high-

weight particles; and (iii) mutation: propagating the particles forward using a Markov tran-

sition kernel. The details on each step are given further below in section 6.

4 Hamiltonian Dynamics

Hamiltonian (or Hybrid) Monte Carlo (HMC) is a class of MCMC methods featuring multi-

step distant proposals whose path follows the evolution of Hamiltonian dynamics. HMC has

its roots in the physics literature where it was introduced for simulating molecular dynamics

(Duane et al., 1987). It has since become popular in a number of application areas including

statistical physics (Gupta et al., 1988; Akhmatskaya et al., 2009), computational chemistry

(Tuckerman et al., 1993), and as a generic tool for Bayesian statistical inference (Neal, 1993,

2011; Ishwaran, 1999; Liu, 2004; Beskos et al., 2010). HMC is most applicable in situations

when a suitable importance sampler is not available or practical to implement and one
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would thus typically need to rely on random walk sampling. HMC has been shown to yield

samples far more e¢ cient than obtained by the random walk Metropolis-Hastings mechanism

(Rasmussen, 2003; Neal, 2011).

In contrast to the one-step proposals drawn in MCMC, Hamiltonian Monte Carlo (HMC)

uses a sequence of steps in constructing the proposal whereby the last step in the sequence

becomes the proposal draw. The proposal sequence is generated using di¤erence equations of

the law of motion yielding high acceptance probability even for proposals that are relatively

distant from the current draw in the parameter space. This facilitates e¢ cient exploration

of the parameter space with the resulting Markov chain.

Consider a vector of parameters of interest � 2 Rd distributed according to the posterior
density �(�). Let 
 2 Rd denote a vector of auxiliary parameters with 
 � N(0;M),

distributed Gaussian with mean vector 0 and covariance matrixM , independent of �. Denote

the joint density of (�; 
) by �(�; 
): Then the negative of the logarithm of the joint density

of (�; 
) is given by the Hamiltonian equation3

H(�; 
) = � ln �(�) + 1
2
ln
�
(2�)d jM j

�
+
1

2

0M�1
: (3)

Hamiltonian Monte Carlo (HMC) is formulated in the following three steps that we will

describe in detail further below:

1. Draw an initial auxiliary parameter vector 
0r � N(0;M);

2. Transition from (�r; 
r) to (�
L
r ; 


L
r ) = (��r+1; 


�
r+1) according to the Hamiltonian dy-

namics;

3. Accept (��r+1; 

�
r+1) with probability �(�r; 
r; �

�
r+1; 


�
r+1), otherwise keep (�r; 
r) as the

next MC draw.
3In the physics literature, � denotes the position (or state) variable and � ln�(�) describes its potential

energy, while 
 is the momentum variable with kinetic energy 
0M�1
=2, yielding the total energy H(�; 
)
of the system, up to a constant of proportionality. M is a constant, symmetric, positive-de�nite "mass"
matrix which is often set as a scalar multiple of the identity matrix.
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Step 1 provides a stochastic initialization of the system akin to a random walk (RW) draw.

This step is necessary in order to make the resulting Markov chain f(�r; 
r)g
R
r=1 irreducible

and aperiodic (Ishwaran, 1999). In contrast to RW, this so-called refreshment move is per-

formed on the auxiliary variable 
 as opposed to the original parameter of interest �; setting

�0r = �r: In terms of the HMC sampling algorithm, the initial refreshment draw of 

0
r forms a

Gibbs step on the parameter space of (�; 
) accepted with probability 1. Since it only applies

to 
; it will leave the target joint distribution of (�; 
) invariant and subsequent steps can

be performed conditional on 
0r (Neal, 2011).

Step 2 constructs a sequence f�kr ; 
krgLk=1 according to the Hamiltonian dynamics starting
from the current state (�0r; 


0
r) and setting the last member of the sequence as the HMC new

state proposal (��r+1; 

�
r+1) = (�Lr ; 


L
r ): The role of the Hamiltonian dynamics is to ensure

that the M-H acceptance probability (1) for (��r+1; 

�
r+1) is kept close to 1. As will become

clear shortly, this corresponds to maintaining the di¤erence �H(��r+1; 
�r+1)+H(�0r; 
0r) close
to zero throughout the sequence f�kr ; 
krgLk=1. This property of the transition from (�r; 
r)

to (��r+1; 

�
r+1) can be achieved by conceptualizing � and 
 as functions of continuous time t

and specifying their evolution using the Hamiltonian dynamics equations4

d�i
dt
=
@H(�; 
)

@
i
=
�
M�1


�
i
; (4)

d
i
dt
=�@H(�; 
)

@�i
= r�i ln �(�); (5)

for i = 1; : : : ; d; where r�i denotes the derivative of ln �(�) with respect to �i. For any

discrete time interval of duration s; (4)�(5) de�ne a mapping Ts from the state of the system

at time t to the state at time t + s: For practical applications of interest these di¤erential

equations (4)�(5) in general cannot be solved analytically and instead numerical methods

are required. The Stormer-Verlet (or leapfrog) numerical integrator (Leimkuhler and Reich,

2004) is one such popular method, discretizing the Hamiltonian dynamics as


(t+ "=2)= 
(t) + ("=2)r� ln �(�(t)); (6)

�(t+ ")= �(t) + "M�1
(t+ "=2); (7)


(t+ ")= 
(t+ "=2) + ("=2)r� ln �(�(t+ ")); (8)
4In the physics literature, the Hamiltonian dynamics describe the evolution of (�; 
) that keeps the total

energy H(�; 
) constant.
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for some small " 2 R: From this perspective, 
 plays the role of an auxiliary variable that

parametrizes (a functional of) �(�; �) providing it with an additional degree of �exibility
to maintain the acceptance probability close to one for every k. Even though ln �(�kr) can

deviate substantially from ln �(�0r); resulting in favorable mixing for �; the additional terms

in 
 in (3) compensate for this deviation maintaining the overall level of H(�kr ; 

k
r) close to

constant over k = 1; : : : ; L when used in accordance with (6)�(8), since @H(�;
)
@
i

and @H(�;
)
@�i

enter with the opposite signs in (4)�(5). In contrast, without the additional parametrization

with 
; if only ln �(�kr) were to be used in the proposal mechanism as is the case in RW style

samplers, the M-H acceptance probability would often drop to zero relatively quickly.

Step 3 applies a Metropolis correction to the proposal (��r+1; 

�
r+1): In continuous time, or for

"! 0, (4)�(5) would keep �H(��r+1; 
�r+1)+H(�r; 
r) = 0 exactly resulting in �(�r; ��r+1) = 1
but for discrete " > 0, in general, �H(��; 
�) + H(�; 
) 6= 0 necessitating the Metropolis

step. A key feature of HMC is that the generic M-H acceptance probability (1) can be

expressed in a simple tractable form using only the posterior density �(�) and the aux-

iliary parameter Gaussian density �(
; 0;M): The transition from (�0r; 

0
r) to (�

L
r ; 


L
r ) via

the proposal sequence f�kr ; 
krgLk=1 taken according to the discretized Hamiltonian dynamics
(6)�(8) is a deterministic proposal, placing a Dirac delta probability mass �(�kr ; 


k
r) = 1 on

each (�kr ; 

k
r) conditional on (�

0
r; 


0
r): The system (6)�(8) is time reversible and symmetric in

(�; 
), which implies that the forward and reverse transition probabilities q(�Lr ; 

L
r j�0r; 
0r) and

q(�0r; 

0
rj�Lr ; 
Lr ) are equal: this simpli�es the Metropolis-Hastings acceptance ratio in (1) to

the Metropolis form �(��r+1; 

�
r+1)=�(�

0
r; 


0
r): From the de�nition of the Hamiltonian H(�; 
)

in (3) as the negative of the log-joint densities, the joint density of (�; �) is given by

�(�; 
) = exp [�H(�; 
)] = �(�)
�
(2�)d jM j

��1=2
exp

�
�1
2

0M�1


�
: (9)

Hence, the Metropolis acceptance probability takes the form

�(�r; 
r; �
�
r+1; 


�
r+1)=min

�
�(��r+1; 


�
r+1)

�(�0r; 

0
r)

; 1

�
=min

�
exp

�
�H(��r+1; 
�r+1) +H(�0r; 
0r)

�
; 1
�
:

The expression for �(�r; 
r; �
�
r+1; 


�
r+1) shows, as noted above, that the HMC acceptance

probability is given in terms of the di¤erence of the Hamiltonian equations H(�0r; 

0
r) �
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H(��r+1; 

�
r+1): The closer can this di¤erence be kept to zero, the closer the acceptance prob-

ability approaches one. A key feature of the Hamiltonian dynamics (4)�(5) in Step 2 is that

they maintain H(�; 
) constant over the parameter space in continuous time conditional

on H(�0r; 

0
r) obtained in Step 1, while their discretization (6)�(8) closely approximates this

property for discrete time steps " > 0 with a global error of order "2 corrected by the

Metropolis update in Step 3 (Neal, 2011). The goal of the Hamiltonian proposal transition

dynamics is thus to maintain the proposal acceptance probability at or close to one even for

a relatively long proposal sequence.

The acceptance ratio can only be maintained at exactly one if the proposal trajectory evo-

lution were continuous. However, due its discretization into individual steps, the acceptance

probability in general deviates from one due to discretization errors. The length of the pro-

posal sequence can then be tuned using " > 0 and L to achieve a desired acceptance rate,

analogously to the RW environment. The Hamiltonian dynamics approximately keeps the

joint density �(�; 
) of � and 
 constant, permitting changes in the marginal density �(�):

Due to this feature, the proposal sequence does not move along a "straight" trajectory in the

parameter space � of �; but rather along a "curve". This ensures that the proposal sequence

does not travel "too far" into the tails and stays in regions with non-zero probability.

Each proposal sequence in HMC and its extensions starts with a "refreshment" of the kinetic

auxiliary variable 
 newly drawn from the Gaussian distribution N(0;M) where M is the

mass matrix. This draw determines the "direction" in which the proposal sequence will

propagate through the parameter space. The stochastic nature of 
 prevents the chain from

getting stuck at the original point or too close to it.

4.1 Constraints

Parameter space constraints can be incorporated into the HMC proposal mechanism via

"hard walls" representing a barrier against which the proposal sequence, simulating a particle

movement, bounces o¤ elastically. Constraints thus do not provide grounds for proposal

rejection, eliminating any associated redundancies. Heuristically, the constraint is checked
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at each step of the proposal sequence and if it is violated then the trajectory of the sequence

is re�ected o¤ the hard wall posed by the constraint. This facilitates e¢ cient exploration of

the parameter space even in parameter spaces that are constrained in a complex way.

5 Bayesian Nonparametric Mixture Modeling

Consider an exchangeable sequence Y � Y1:N of random variables de�ned over a measurable
space (�;D) where D is a �-�eld of subsets of �. Denote the joint density of Y implied by

an economic model by f(Y ; �) where � 2 � is a Euclidean parameter. Further denote by G0
the prior distribution of � over a measurable space (�;B) with B being a �-�eld of subsets
of �, where G0 admits a density g0:

In a parametric Bayesian model, the joint density of Y and � is de�ned as

p(Y ; �;G0) = f(Y ; �)g0; (10)

Conditioning on observed realizations y of Y turns f(Y ; �) into the likelihood function p(�jy)
and p(Y ; �;G0) into the posterior density �(�jG0; y).

In the class of nonparametric Bayesian mixture models5 considered here, the joint density

of Y and � is de�ned as a mixture

p(Y ; �;G) =

Z
f(Y ;�)dG(�);

where G is the mixing distribution over �. The distribution G is now random which leads to a

�exibility of the resulting mixture model. The model parameters � are no longer restricted to

follow any given pre-speci�ed distribution as was stipulated by the �xed G0 in the parametric

case. The parameter space now also includes the random in�nite-dimensional G with the

additional need for a prior distribution for G. The Dirichlet Process prior is a popular

alternative due to its numerous desirable properties; we proceed with its description in the

next section.
5A commonly used technical de�nition of nonparametric Bayesian models are probability models with

in�nitely many parameters (Bernardo and Smith, 1994).
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5.1 Dirichlet Process Prior

In a seminal paper, Fergusson (1973) introduced the Dirichlet process (DP) prior for random

measures whose support is large enough to span the space of probability distribution func-

tions and that leads to analytically manageable posterior distributions. Antoniak (1974)

further elaborated on using the DP as the prior for the mixing proportions of a simple

distribution.

A DP prior for G is determined by two parameters: a distribution G0 that de�nes the

"location" of the DP prior, and a positive scalar precision parameter �. The distribution

G0 may be viewed as a baseline prior that would be used in a typical parametric analysis.

The �exibility of the DP prior model environment stems from allowing G �the actual prior

on the model parameters �to stochastically deviate from G0. The precision parameter �

determines the concentration of the prior for G around the DP prior location G0 and thus

measures the strength of belief in G0. For large values of �, a sampled G is very likely to be

close to G0, and vice versa.

More speci�cally, letM(	) be a collection of all probability measures on 	 endowed with

the topology of weak convergence. The spaceM(M(	)) is then the collection of all prob-

ability measures (i.e. priors) on M(	) together with the topology of weak convergence

derived from M(	). Let G0 2 M(	) and let � be a positive real number. Following

Fergusson (1973), a Dirichlet Process on (	;B) with a base measure G0 and a concen-
tration parameter �, denoted by DP (G0; �) 2 M(M(	)), is a distribution of a random

probability measure G 2 M(	) over (	;B) such that, for any �nite measurable parti-
tion f	igJi=1 of the sample space �, the random vector (G(	1); :::; G(	J)) is distributed as

(G(	1); :::; G(	J)) � Dir(�G0(	1); :::; �G0(	J)) where Dir(�) denotes the Dirichlet distri-
bution. We write G � DP (G0; �) if G is distributed according to the Dirichlet process

DP (G0; �).
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5.2 Dirichlet Process Mixture Model

Bayesian nonparametric mixture models have been widely applied to solving problems such

as clustering, density estimation and topic modeling. These models make relatively very weak

assumptions about the underlying process that generated the observed data. When more

data are collected, the complexity of these models can change accordingly. In the Bayesian

mixture modeling framework it is possible to infer the number of components to model the

data and therefore it is unnecessary to explicitly restrict the number of components a-priori

(Görür and Rasmussen, 2010).

For a nonparametric continuous density estimation the discrete Dirichlet process is typically

convolved with a continuous kernel. There are many various ways of doing so. We follow

the approach laid out by Ghosal and van der Vaart (2017, section 5.1) based on previous

literature on Bayesian nonparametrics cited therein. For each � 2 � � Rd; let f(Y j�) be a
probability density function of Y , where Y is an observable random variable. The density

(10) where G is endowed with the Dirichlet process prior, is known as a Dirichlet process

mixture (DPM). Realizations of the DP are discrete with probability one and hence a DPM

can be viewed as a countably in�nite mixture (Ghosal and van der Vaart, 2017).

For a sample size N; let Yi with i = 1; : : : ; N be distributed according to the density kernel

pi;G =

Z
fi(Yij�)dG(�);

where G � DP (G0; �): The resulting model can be equivalently written in terms of N latent

variables �i as

Yij�i; G� fi(Yij�i);

�ijG�G;

G�DP (G0; �):

The model can also be represented in terms of allocation variables s1; :::; sN that link the

observations to the components of the mixture model:

Yijs�i ; G = k � fi(Yij��k), i = 1; : : : ; N;

12



where s�i and �
�
k are the distinct values of si and �k; respectively. MCMC posterior inference

for DPM models has been detailed in and number of studies, including Neal (2011) and

Ghosal and van der Vaart (2017).

6 Hamiltonian Sequential Monte Carlo

Here we �rst provide the details of an SMC algorithm suited for our context and then propose

its extension to form HSMC. SMC generally consists of three phases, as described above: (i)

correction, (ii) selection, and (iii) mutation. The state-of-the-art procedure for the correction

phase for a Bayesian static nonparametric model with a Dirichlet Process (DP) prior and a

non-conjugate likelihood is Algorithm 2 of Gri¢ n (2017), which we use for particle correction

in both SMC and HSMC:

Correction phase:
Let mi;k denote the number of s1:i associated with the mixture component k; let
m0 denote the prior value for mN;k for all k; and let Ki denote the number of
mixture components for s1:i: For i = 1; :::; N :

Step 1: For all particles j = 1; :::; Rj, perform steps 1a and 1b.
Step 1a: Sample �new � G0, and s�(j)i conditional on y1:i and s

�(j)
1:(i�1) from

q(k) /
(
m
(j)
k;i�1fi(yij�

�(j)
k ) if 1 � k � K(j)

i�1
m0fi(yij�new) if k = K(j)

i�1 + 1:

Step 1b: Calculate the unnormalized weight

�
(j)
i = m0fi(yij�new) +

K
(j)
i�1X
k=1

m
(j)
k;i�1fi(yij�

�(j)
k )

Step 2: Reweight the particles according to the weights

w
(j)
i =

�
(j)
iPNj

j=1 �
(j)
i

:

Although a number of alternative selection schemes have been proposed in the literature, we

utilize the popular Residual Resampling as described in Chopin (2004).

13



Selection phase:
Reproduce each particle intfRjw(j)i g times, where intfxg stands for the integer
part of x: Complete the particle vector by Rrj independent draws from Rrj = Rj �
intfRjw(j)i g draws from the multinomial distribution which reproduces the jth
particle with probability (Rjw

(j)
i � intfRjw(j)i g)=Rrj :

Mutation phase:
Propagate each parameter ��(j)k for j = 1; :::; Rj and k = K

(j)
i according to Hamil-

tonian transition dynamics as described in section 4.

In contrast, SMC uses the random walk transition kernel in the mutation phase. To the best

of our knowledge, HSMC has not been proposed in the previous literature.

7 The Nonparametric Mixed Logit Model

The mixed logit can approximate any random utility model (McFadden and Train, 2000)

and remains popular among practitioners for its analytical tractability. Mixed logit models

can be obtained under di¤erent behavioral speci�cations, and each derivation provides a

particular interpretation of the model fundamentals. Any behavioral speci�cation whose

choice probabilities take its particular form is called a mixed logit model (Train, 2009).

7.1 Model Environment

There are N individuals, i = 1; : : : ; N , choosing in each of T time periods, t = 1; : : : ; T , one

out of J alternatives, j = 1; : : : J: Let yit denote the choice of individual i at time t: The

latent utility of individual i at time t of choice j is given by

uitj = �
0
ixitj + "itj;

with latent iid residual "itj � F" where F" is the Extreme Value Type 1 distribution. The

�rst element of �i is normalized to zero for identi�cation purposes. Then, conditional on the

vector of covariates xit = (xit1; : : : ; xitJ)0 and the vector of parameters �i; the probability of

choosing yit at time t is given by

Lit(yitj�i;xit) =
exp(�0ixityit)PJ
j=1 exp(�

0
ixitj)

;
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and the probability of choosing the vector yi = (yi1; : : : ; yiT )0 is given by

K(yij�i;xi) =
TY
t=1

Lit(yitj�i;xit):

The mixed logit model speci�cation is obtained by expressing the choice probabilities in the

form

Pi(yijxi) =
Z
K(yij�i;xi)f(�i)d�i :

The mixed logit probability is a weighted average of the logit formula evaluated at di¤erent

values of �i, where the weights are given by the density f(�i).

Under the Bayesian nonparametric mixture model approach, we specify the model for the

distribution of �i as follows:

yij�i � K(yij�i;xit);

�ijG � G;

G � DP (G0; �):

with G0 a standard Normal distribution and � obtained implicitly by setting m0 = 1:

Fox et al. (2012) showed that the mixed logit model is nonparametrically identi�ed. Fox

and Gandhi (2016) analyze a nonparametric estimator for the case when the observable

random variables have a discrete support. Fox et al. (2016) propose a computationally

attractive projection-based estimator of the joint distribution of random coe¢ cients over a

�xed support grid in structural models including the mixed logit. The Bayesian framework

allows for continuous support of observable random variables and does not impose the �xed

support grid restriction on the parameter space.

In Bayesian multinomial choice modeling, MCMC has so far been the dominant approach to

inference (Kim et al., 2004; Burda et al., 2008; Keane and Wasi, 2013; Li and Ansari, 2014).

Although SMC has been utilized in analysis of generic Bayesian DPM models, we are not

aware of its application to Bayesian multinomial discrete choice model. In the sequel, we

will estimate the distribution of �i by both HSMC and SMC in a real-world application. We

will then evaluate and compare the convergence properties of both methods.
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7.2 Data

Our empirical analysis is based on the IRI Academic Dataset (Bronnenberg et al., 2008),

containing panel data of grocery stores purchases in two U.S. cities. We chose to focus on

the purchases of mayonnaise since this product category is composed of relatively few well

de�ned homogenous items. In our data set, two dominating brands cover 87% of the market:

Hellman�s (46%) and Kraft (41%). The remainder of the market is served by "private label"

(8%), Cains (3%), and "other" (2%).

We use the time period from June 2010 through December 2012, totalling 138 weeks. During

this time period, the data contains a stable choice set without introducing new or discon-

tinuing old products in the set of the choice alternatives. Each of the 2,684 households in

our sample was recorded as making mayonnaise purchases on average for 7.86 weeks. The

distribution of weeks observed in the sample for all households is shown in Figure 1.

Figure 1: Weeks Observed Making Mayonnaise Purchases

Similarly to Thomadsen (2016), we assume that consumers choose among a set of �top�al-

ternatives, or else choose an outside option if they choose a product in the category that does

not belong to a top alternative. The �top�alternatives are selected by ranking the alterna-
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tives by the number of purchases made by the panelists, include alternatives starting from

the most popular ones and going in decreasing order of popularity until the set of included

top alternatives covers all major ones. Thus, we consider the following six alternatives plus

an outside option, as given in Table 1.

Label Name Frequency % Cum. %
1 Hellmann�s Real Mayonnaise 7,041 24.42 24.42
2 Kraft Miracle Whip 6,189 19.88 44.30
3 Kraft Miracle Whip Low Fat 3,031 11.35 55.65
4 Hellmann�s Light Mayonnaise 1,752 5.26 60.91
5 Kraft Soybean Mayonnaise 1,015 4.43 65.34
6 Hellmann�s Soybean Mayonnaise 786 2.05 67.38
0 outside option 12,533 32.62 100.00

Table 1: Choice Set

The panel contains information about product attributes and consumer characteristics.

Given the high degree of product homogeneity within any given alternative category, in

addition to brand we only included price among the product attributes. The price disper-

sion for each product in the choice set is shown in Figure 2. The Label of the alternatives

corresponds to the product name code listed in Table 1. Although on a given choice occasion

price is only observed for the selected alternative, we infer the prices of the remaining alter-

natives of the choice set from observations of other customers who selected such alternatives

in any given store.

In order to keep dimensionality of the parameter vector low, we have selected income as a

key consumer characteristic. Table 2 speci�es the ordinal coding for the income ranges in

our dataset and Figure 3 shows a histogram of the income data codes in our sample. We

have dropped all households whose income data was missing.

The utility of the outside option has been normalized to zero for identi�cation purposes.

The model contains an individual-speci�c intercept for each of the choice alternatives, other

than the outside option. With three random parameters (intercept, price, income) per each

of the six choice alternatives, our model contains 18 parameters whose joint distribution we

seek to estimate nonparametrically.
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Figure 2: Choice Set Price Dispersion

Code Household Income per Year
1 $00,000 to $ 9,999
2 $10,000 to $11,999
3 $12,000 to $14,999
4 $15,000 to $19,999
5 $20,000 to $24,999
6 $25,000 to $34,999
7 $35,000 to $44,999
8 $45,000 to $54,999
9 $55,000 to $64,999
10 $65,000 to $74,999
11 $75,000 to $99,999

Table 2: Income Codes

7.3 Implementation

In the implementation, we have run both HSMC and SMC for one hour of wallclock time.

The implementation was run with a Coarray Fortran 2008 code using Intel 2016 compiler

on 4 nodes of a 40-core 2.4 GHz Linux cluster (Loken et al., 2010). We used 20 steps in
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Figure 3: Household Income Distribution

constructing the Hamiltonian proposal in HSMC and tuned the step size to achieve transition

acceptance rate of about 80%. Theoretical analysis of optimal step sizes and acceptance rates

for HMC is provided in Beskos et al. (2010). We introduced the data in ten batches of equal

size, one per 100 iterations. We tuned the SMC step size to achieve transition acceptance

rates of about 30% (Roberts et al., 1997). Due to the Hamiltonian transition dynamics,

HSMC takes somewhat longer than SMC to complete one full iteration but features superior

mixing properties. During the run, HSMC completed about 8,800 iterations while SMC

completed 10,650 iterations.

Our model is nonparametric and in this context each particle represents a mixture of para-

metric kernels, where the number of kernels is stochastic and �uctuates during the imple-

mentation run. HSMC sampled on average 21 kernels per each particle mixture while SMC

sampled on average 24 kernels. We used 3,200 particle mixtures and thus each procedure

utilized on average over 67,000 parameter vectors, each of which had 18 dimensions.
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7.4 Performance Comparison

For the assessment of the performance a posterior sampler, it is standard practice to rely

on convergence diagnostics obtained by examining the sampling output (Cowles and Carlin,

1996). A typical MCMC diagnostic starts several Markov chains at overdispersed initial

values, and monitors convergence by comparing between-chain and within-chain variances

for selected scalar quantities (Plummer et al., 2006). However, the bulk of such diagnostics

is not applicable to particle-based samplers, including SMC and HSMC, as a signi�cant

proportion of sample chain paths are discontinued during the implementation during the

resampling phase. In the absence of chains of parameter draws of full equal length the

chains cannot be compared in terms of their sampling behavior. Furthermore, very few

diagnostics have been designed to asses convergence outside of Euclidean spaces. Yet, in our

case we are interested in convergence of a nonparametric object, the distribution of �i:

7.4.1 PACE Diagnostic

For the purpose of comparing the convergence properties of HSMC and SMC we will use

the Partition-based approximation for convergence evaluation (PACE) diagnostic procedure

developed by VanDerwerken and Schmidler (2017) to address the limitations of other di-

agnostics discussed above. The PACE statistic involves initializing J sets of particles at

overdispersed locations in the state space. At a given iteration, the trajectories of all parti-

cle draws are pooled together. The distance between the sample distributions of each particle

set is quanti�ed by comparing the within-set and across-set probabilities over a partition of

the parameter space. When the particle sets are stationary, the proportion of within-set

draws belonging to a given partition element will be approximately equal across the particle

sets. Heuristically, when each particle set results in approximately the same posterior prob-

ability for a given partition element of the parameter space then the sets can be regarded as

having converged. In contrast, when di¤erent particle sets imply di¤erent posterior probabil-

ities for a given parameter space partition element then none of the sets can be guaranteed

to have converged.
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The PACE statistic is based on a comparison of approximate posterior probabilities over a

parameter space partition. The posterior probabilities can be quanti�ed using any number

of particles without requiring that the chains of individual particle draws be of full equal

length. The particles are thus free to be resampled in the SMC selection phase. Furthermore,

the parameter space can be either Euclidean or a function space which renders PACE suitable

for nonparametric estimation problems.

VanDerwerken and Schmidler (2017) proposed the PACE statistic using an adaptive pa-

rameter space partition whereby pooled sampler draws are suitably clustered in order to

construct the partition. We used a simpler version in which the partition is constructed over

a �xed equidistant grid over the parameter space in a non-adaptive manner. This saves on

computation time substantially and avoids introducing an ad-hoc clustering procedure which

may act di¤erently in HSMC and SMC obscuring the di¤erences stemming from these two

procedures alone. Correspondingly, we used a mean-absolute deviation (MAD) measure as

the PACE distance function.

In our application we estimate the density of �i; which is 18 dimensional. Obtaining PACE

in such relatively high-dimensional space turned out computationally prohibitive. For the

sake of feasibility, we have implemented PACE for the bivariate distributions of all pairwise

combinations of elements in �i which re�ect at least to some extent the information contained

in the joint distribution of �i beyond the univariate margins. We then calculated the average

PACE statistic as a function of Monte Carlo iterations. The results are presented in Figure 4.

Both methods seem to have converged well within the �rst half of the run. Throughout the

run PACE of HSMC has dominated SMC by a substantial margin, attesting to the superior

mixing properties of HSMC.

7.4.2 Estimated Distribution of Coe¢ cients

Here we also report the output on estimated distribution of the mixed multinomial logit co-

e¢ cients. Table 3 provides summary statistics, mean and standard deviation of a benchmark

parametric model Mlogit, SMC, and HSMC. The parametric model Mlogit was implemented
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Figure 4: PACE

by the command mlogit6 in R (Croissant and Réunion, 2012).

However, the summary statistics obscure important information about the shape of the

estimated densities of the coe¢ cients, which is undetectable in the parametric model. The

estimated coe¢ cient densities are presented in Figure 5. The probability mass of the HSMC

densities are generally somewhat farther away from zero (prior mean) than SMC densities,

suggesting that the former has explored the parameter space and updated the posterior

more e¤ectively than the latter. The overall pattern of the densities reveals that the income

coe¢ cients, �i;13 � �i;18, are much closer to zero than the intercept or price coe¢ cients.
Nonetheless, several income coe¢ cient densities feature a prominent left tail, suggesting a

negative income e¤ect. The intercept coe¢ cients, �i;1 � �i;6, tend to have more probability
mass distributed on the positive side of the real line, while the price coe¢ cients, �i;7� �i;12,
on the negative side. This pattern is in general agreement with the parametric benchmark

6mlogit does not take into account the time dimension. With our dataset, mlogit failed to converge
for alternative-speci�c price coe¢ cients and hence we were only able to obtain output for a common price
parameter across all choice alternatives.
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Mlogit SMC HSMC
Coe¢ cient Alternative Mean St.dev. Mean St.dev. Mean St.dev.

1 2.428 0.121 0.000 0.024 0.0275 0.046
2 2.817 0.109 0.005 0.026 0.0310 0.052

Intercept 3 1.201 0.142 -0.001 0.024 0.0107 0.036
4 0.985 0.162 -0.006 0.025 -0.0118 0.035
5 1.248 0.163 -0.005 0.025 0.0013 0.030
6 3.516 0.216 -0.004 0.024 -0.0053 0.030
1 -1.407 0.035 -0.011 0.028 -0.0288 0.048
2 -1.407 0.035 -0.014 0.035 -0.0394 0.066

Price 3 -1.407 0.035 -0.014 0.032 -0.0355 0.053
4 -1.407 0.035 -0.013 0.032 -0.0265 0.044
5 -1.407 0.035 -0.015 0.033 -0.0321 0.050
6 -1.407 0.035 -0.013 0.029 -0.0221 0.032
1 -0.029 0.011 -0.002 0.016 -0.0004 0.015
2 -0.088 0.011 -0.002 0.018 -0.0030 0.016

Income 3 0.015 0.025 -0.008 0.023 -0.0118 0.024
4 0.042 0.026 -0.011 0.024 -0.0127 0.024
5 -0.009 0.028 -0.010 0.027 -0.0128 0.023
6 -0.018 0.020 -0.010 0.025 -0.0064 0.020

Table 3: Summary of Estimated Coe¢ cients

Mlogit model estimates obtained in R.

8 Conclusions

In this paper, we have proposed Hamiltonian Sequential Monte Carlo (HSMC), which uses

Hamiltonian transition dynamics in particle mutation phase, in place of random walk tran-

sitions used in Sequential Monte Carlo (SMC), in the context of a Bayesian nonparametric

mixture model. HSMC combines the advantages of SMC in terms of convenience of ap-

proximation of complex posterior shapes and parallelizability with the bene�ts of superior

convergence properties stemming from Hamiltonian transition dynamics utilizing informa-

tion about the �rst derivative of the likelihood function. We have applied SMC and HSMC

to a panel discrete choice model with a nonparametric distribution of unobserved individual

heterogeneity, using the IRI panel data set. We have contrasted both methods in terms of

convergence properties and showed the favorable performance of HSMC.
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Figure 5: Estimated coe¢ cient densities: HSMC (solid line) and SMC (dashed line)
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