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Abstract

We study the identification of first-price auctions with nonseparable unobserved

heterogeneity. In particular, we extend Hu, McAdams, and Shum (2013) by relaxing

the first-order stochastic dominance condition. Instead, we assume restricted stochas-

tic dominance relations among the value quantile functions and show that the same

relations pass to the bid quantile functions. An ordered tree summarizes these relations

and provides a total ordering. Relying on the proposed restricted stochastic dominance

ordering, we extend a list of identification results in the empirical auction literature.
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1 Introduction

In this paper, we focus on the identification of first-price auctions with unobserved hetero-

geneity,1 which is prominent in many applications. There are two related methods for dealing

with unobserved heterogeneity in auctions. The first one is the deconvolution approach. See

Li and Vuong (1998), Li, Perrigne, and Vuong (2000) and Krasnokutskaya (2011), among

others. They require two bids in each auction and assume that unobserved heterogeneity

has a separable effect on bidders’ values. The second one is the misclassification approach

of Hu, McAdams, and Shum (2013). They consider discrete one-dimensional unobserved

heterogeneity and achieve identification with at least three bidders per auction relying on

the results of Hu (2008).

We generalize Hu, McAdams, and Shum (2013) by relaxing the first-order stochastic

dominance ordering on the value distributions that they assume. While this ordering arises

naturally (e.g., Aradillas-López, Gandhi, and Quint (2013)) and has been verified in some

applications (e.g., An, Hu, and Shum (2010)), our relaxation further expands the breadth

of applicability of their misclassification approach. In particular, we show that their ap-

proach applies as long as a regular full-rank condition and a restricted stochastic dominance

(hereafter RSD) ordering on the value distributions are satisfied. The RSD ordering is more

general than the first-order stochastic dominance ordering, and it allows all analytic functions

as well as some non-analytic functions.

One way to understand our RSD ordering is through introducing an ordered tree for a

set of distinct functions. This ordered tree simply describes how each function distinguishes

itself from the rest. It contains the points where two or more functions split and their

ranking in the neighborhood of these splitting points. This concept allows a novel way of

ordering functions. First, it is well-defined for any set of distinct functions under the RSD

condition. An ordered tree describes an ordering of the original functions, even in the absence

of stochastic dominance of any order. In other words, our ordering of functions relies on a

1We will use unobserved heterogeneity and state interchangeably.
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known functional that yields the ordering when applied to the set of value functions. On the

other hand, Hu, McAdams, and Shum (2013) rely on a monotonicity condition to order the

value distributions conditional on the state. This requires a known functional that is applied

to each value function and the resulting values are increasing in the state. Depending on the

kind of unobserved heterogeneity, the exact functional has to be determined case by case.

The advantage of the RSD ordering is threefold. First, it is easy to interpret. Similar

to the first-order stochastic dominance ordering, the RSD ordering is equivalent to expected

utility ordering (in a limited range) with an increasing utility function. Second, it allows

unambiguous ranking of distribution functions in a wider range of models. The first-order

stochastic dominance ordering focus on one-dimensional unobserved heterogeneity. How-

ever, many commonly used distributions, such as the beta distribution, the two-sided power

distribution and the normal distribution, have two or more parameters. Third, it leads to

more convenient comparative statics in auctions. The misclassification approach identifies

auctions with unobserved heterogeneity in two steps: first identify the component bid dis-

tributions and then identify the model primitives. Comparative statics are essential to link

the component bid distributions to the model primitives. Since the RSD ordering only re-

quires comparing functions in a limited range, comparative statics are clearer under normally

much weaker conditions. On the other hand, the first order stochastic dominance ordering

either excludes the model or requires more assumptions on the primitives. To fix ideas, we

demonstrate several applications.

First, we prove identification of first-price auction models with unobserved heterogeneity

when values are i.i.d. draws from Beta distributions. Note that this family of distributions

cannot be ranked by the first-order stochastic dominance relations. However, we find that

our RSD ordering is equivalent to a lexicographical ordering of the two shape parameters of

Beta distributions. This leads to full identification of models with Beta distributed values,

rather than identification up to permutation. Moreover, we obtain a new sufficient condition

for nonparametric identification of the same model with covariates.
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Second, we extend the identification results in Guerre, Perrigne, and Vuong (2009) by

introducing nonseparable unobserved heterogeneity as in Hu, McAdams, and Shum (2013).

We show a novel comparative statics that the same relation of RSD passes from the value

quantile functions to the bid quantile functions in first-price auctions. Therefore, the RSD

ordering and the ordered tree are both preserved by the mapping from value quantile function

to bid quantile function. Moreover, this property is invariant to the number of bidders as well

as their utility function. We rely on this result to match the two bid distributions resulting

from the same value distribution but different numbers of bidders. This allows us to identify

the model primitives relying on Guerre, Perrigne, and Vuong (2009).

Third, we show that the identification results of Gentry and Li (2014) extend to unob-

served heterogeneity under a smaller set of assumptions than what they make. They study

identification of the Affiliated-Signal model under risk neutrality. Point identification relies

on a continuous cost shifter, which reduces to a problem of finite mixture with covariates

and suffers from a “label switching” problem. Gentry and Li (2014) make two monotonicity

assumptions on the value distributions and entry thresholds to ensure first-order stochas-

tic dominance ordering of the component bid distributions. Relying on the proposed RSD

ordering, we show that their identification results still hold without the assumption on the

ordering of value distributions.

Fourth, we consider an example of multidimensional unobserved heterogeneity.2 Unob-

served heterogeneity arises for a wide range of reasons. Examples include unknown number

of bidders (An, Hu, and Shum (2010)), implicit reserve price or bidding cost (Hu, McAdams,

and Shum (2013)), unknown bidders’ types or bounded rationality (An (2016)) and multi-

ple equilibria (Xiao (2015)). While we can relabel the multidimensional states into a one-

dimensional one, there is no natural ordering of states, not to say to argue or prove that some

feature of the distribution of bids is higher in higher states. Therefore, our RSD ordering is

particularly relevant when unobserved heterogeneity is multidimensional. In particular, we

2Krasnokutskaya (2012) studies such a problem using the deconvolution approach.
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extend the identification results of An (2016) by allowing for unobserved asymmetry in both

bidders’ preferences and private values.

Related Literature

For dealing with unobserved heterogeneity, there are other important methods besides the

deconvolution method and the misclassification approach. See, e.g., Haile, Hong, and Shum

(2003) and Guerre, Perrigne, and Vuong (2009) for using the number of bidders, Roberts

(2013) for using observed reserve price and Armstrong (2013) for a partial identification

approach. In English auctions where only winning bids are observed, Quint (2015) exploits

exogenous participation and additively separability of unobserved heterogeneity to achieve

identification.

Since Samuelson, economists have been studying comparative statics predictions (Athey

(2002)). For instance, the theoretical auction literature has been interested in comparative

statics in the stochastic dominance sense. See, e.g., Krishna (2009). In this paper, we intro-

duce the concept of restricted stochastic dominance into auctions and study its properties.

To the best of our knowledge, this seems to be new to the literature.

To learn about bidders’ risk averseness, we consider the Guerre, Perrigne, and Vuong

(2009) approach. For estimation methods based on this approach, see Zincenko (2014) and

Kim (2015). For other approaches, see, e.g., Lu and Perrigne (2008) for exploiting the

exogenous change of auction format, Campo, Guerre, Perrigne, and Vuong (2011) for a

semiparametric method and Fang and Tang (2014) for using entry behaviors. Considering

risk aversion and unobserved heterogeneity simultaneously is nontrivial. On the one hand,

applying the misclassification approach requires a condition to order the resulting elements

after eigenvalue decomposition. The usual approach is to find a monotonicity condition

with respect to the state. Previous applications often had to make extra assumptions to

ensure monotonicity. See, e.g., Gentry and Li (2014). Under risk aversion, it becomes

more involved to find a feature of bid distribution that is monotone in the state. On the
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other hand, applying the results in Guerre, Perrigne, and Vuong (2009) requires finding

two bid distributions that are derived from the same value distribution but under different

competition levels. See Grundl and Zhu (2015) for some results on this. They rely on this

monotonicity condition to match the two bid distributions resulting from the same value

distribution but different numbers of bidders.

The rest of the paper is organized as follows. Section 2 describes the first-price auction

model with risk aversion. Section 3 introduces the concept of restricted stochastic dominance

and studies its properties in auctions. Moreover, we propose an ordering of a set of functions

by defining its ordered tree. Section 4 applies these intermediate results in identification

of the first-price auction model with discrete unobserved heterogeneity and risk neutrality.

Section 5 applies the RSD ordering to identification of auction models with Beta distributed

values, models with risk aversion, entry models and models with asymmetric bidders. Sec-

tion 6 contains an empirical application of our method to data from U.S. Forest Service

timber auctions. Section 7 concludes. Proofs omitted from the main text are collected in

Appendices.

2 The First-Price Auction Model

We first introduce the first-price auction model in which bidders are risk averse. I ≥ 2

symmetric bidders participate in a first-price auction with zero reserve price. They are

potentially risk averse. Let U(·) be their utility function with U(0) = 0, U ′(·) > 0 and

U ′′(·) < 0. Conditioning on an auction-specific state k ∈ K ≡ {1, . . . , K}, their valuations

are i.i.d. draws from the same distribution Fk(·) with support [v, vk]. Denote vk(·) ≡ F−1
k (·)

as the corresponding quantile function. For exposition purpose, we treat the graph of vk(·)

as directioned while letting (0, vk(0)) and (1, vk(1)) be our starting point and ending point,

respectively. For convenience, we focus on functions with the same starting point vk(0) = v.

Suppose vk(·) is continuously differentiable and their first-order derivatives are bounded away
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from both zero and infinity.

In a state-k auction, a bidder with a valuation v solves the following problem

max
b

Fk
(
s−1
k (b)

)I−1 · U(v − b),

where s−1
k (·) is the inverse of his/her optimal bidding strategy in state-k auctions, and

F (s−1
k (b))I−1 is the chance of winning, i.e., the probability of his/her bid being the highest.

Guerre, Perrigne, and Vuong (2009) study the identification of Fk(·) and U(·) when k, I and

the bid distribution Gk(·) are observed. To do so, they rewrite the equilibrium FOC in terms

of observed bid quantile function3

vk(α) = bk(α) + λ−1
( 1

I − 1
αb′k(α)

)
, (1)

where α ∈ [0, 1], λ(·) = U(·)/U ′(·), and vk(·) and bk(·) are the quantile functions of valuation

and bid, respectively. Moreover, the boundary condition is bk(0) = vk(0) = v.

Consider the case when the state k is known to the econometrician. If the bidders are risk

neutral (i.e., U(x) = x), Equation (1) shows the identification of vk(·) with the knowledge

of bk(·) because λ−1(x) = x. See Guerre, Perrigne, and Vuong (2000). On the other hand,

if the bidders are potentially risk averse, Guerre, Perrigne, and Vuong (2009) shows that

the model can always be rationalized by a first-price auction model where bidders have a

CRRA or CARA utility function. In view of this, they propose to exploit an exogenous

participation condition. Consider two sets of auctions, which are homogeneous (i.e., they

have the same value distribution vk(·)) except having different numbers of bidders. Without

loss of generality, assume that 2 ≤ I1 < I2. Their idea is to exploit the exogenous variation

3While s(·) defines the mapping from value to bid, b(·) represents the bidding strategy as a function of the
quantile of the value. The latter deals with different supports for comparative statics analysis. In some cases,
it allows ordering the bidding behaviors of different bidders or in different auctions under weaker conditions.
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of the number of bidders I and the compatibility condition:

bk,I1(α) + λ−1
( 1

I1 − 1
αb′k,I1(α)

)
= vk(α) = bk,I2(α) + λ−1

( 1

I2 − 1
αb′k,I2(α)

)
,

where bk,I is the bid quantile function in state-k auctions when the number of bidders is I.

This condition implies the identification of λ−1(·), which leads to the identification of vk(·).

Therefore, the model is identified with two sets of auctions under different competition levels.

If the state k is unknown to the econometrician, we call it unobserved heterogeneity.

It represents auction-specific characteristics observed by the bidders but unobserved by the

econometrician. Hu, McAdams, and Shum (2013) consider identification of the component

value distributions and the distribution of unobserved heterogeneity when bidders are risk

neutral. Consider observing the bids from a set of homogeneous auctions where bidders are

risk neutral. There are at least three bidders in each auction, say ı = i, j, `.

They first discretize the bids by defining a partition of R+ into K intervals, say D :

R+ → {1, . . . , K}. Denote Dı = D(Bı) be the indicator function of the interval to which

bidder ı’s bid Bı belongs to, where ı = i, j, `. To identify the auction model with unobserved

heterogeneity, they assume a monotonicity condition and a full-rank condition.

Assumption 1 (UH monotonicity condition). There exists a known functional M(·) such

that M(vk(·)) is strictly increasing in k.

The existence and exact form of M(·) has to be determined case by case. They provide a

list of examples where the maximum bid is increasing in the state. Other examples include

the minimum bid and the mean equilibrium bid.

Assumption 2 (UH full-rank condition). There exists a discretization of bids such that the

K ×K matrix LDi,Dj
= [Pr{Di = i′, Dj = j′}]i′,j′∈{1,2,...,K} has rank K.

Hu, McAdams, and Shum (2013) provide a sufficient condition for both the UH mono-

tonicity condition and the UH full-rank condition – the first-order stochastic dominance

condition. For comparison, we rewrite it in terms of quantile functions.
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Definition 1 (First-Order Stochastic Dominance). vk′(·) first-order stochastically dominates

vk(·) if: (a) vk(α) ≤ vk′(α),∀α ∈ [0, 1], and (b) ∃α∗ ∈ (0, 1] such that vk(α∗) < vk′(α∗). .

Assumption 3 (Totality). For any two different states k, k′ ∈ K, either vk′(·) first-order

stochastically dominates vk(·) or vk(·) first-order stochastically dominates vk′(·).

Their method has two steps: first, identify the distribution of unobserved heterogeneity

and the component bid distributions; second, apply Guerre, Perrigne, and Vuong (2000) to

identify the underlying value distributions. While the second step is standard, they focus on

the first one. Since bids are i.i.d. conditioning on the unobserved heterogeneity, the problem

in the first step constitutes a finite mixture model with repeated measurements. Applying

results from the measurement error literature (see Hu (2008)), they identify the component

bid distributions up to permutation. Assumption 3 ensures a unique mapping from the

anonymous distributions to the elements of K.

3 The Restricted Stochastic Dominance Ordering

This section presents several important intermediate results. First, we introduce the concept

of restricted stochastic dominance in auctions, which generalizes the first-order stochastic

dominance condition. Second, in first-price auctions, we show that the same relation of

RSD passes from the value quantile functions to the bid quantile functions. Relying on

these results, we propose an ordering of a set of value quantile functions and show that the

corresponding set of bid quantile functions have the same ordering.

3.1 Definitions

In the auction literature, there are numerous results on first-order stochastic dominance

passing from the value distribution functions to the bid distribution functions. See, e.g.,

Krishna (2009). However, in many cases, first-order stochastic dominance condition does

not allow ranking two distributions under consideration because it is not a total ordering.
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To relax this condition, we introduce the concept of restricted stochastic dominance,

which is particularly useful for situations where interests are focused on what happens be-

low/above a certain threshold. In first-price auctions, the bidder cares about his/her valua-

tion and bid only when he/she wins. Therefore, the bidder shall only consider the distribution

below his/her valuation.

Definition 2 (Restricted Stochastic Dominance). vk′(·) dominates vk(·) in the restricted

sense if there exists an x ∈ (0, 1] such that: (a) vk(α) ≤ vk′(α), ∀α ∈ [0, x], and (b) ∃α∗ ∈

(0, x] such that vk(α∗) < vk′(α∗). .

The concept of restricted stochastic dominance is introduced in Atkinson (1987) in the

context of poverty measurement. See also Davidson and Duclos (2000) and Davidson and

Duclos (2013). If one distribution first-order stochastic dominates another one, then the RSD

condition is satisfied by letting x = 1. Therefore, Assumption 4 is weaker than the first-

order stochastic dominance condition. While first-order stochastic dominance ordering is

equivalent to expected utility ordering with an increasing utility function, the RSD ordering

has a similar interpretation applying well-known results (e.g., Bawa (1975)). In particular, if

v2(·) dominates v1(·) up to x, we can find a z such that F2(·) dominates F1(·) up to z. Denote

Πk(v) =
∫ v
v
U(v − y)dFk(y). F2(·) dominates F1(·) up to z if and only if Π1(v) ≤ Π2(v) for

all v ∈ [0, z] and any differentiable and increasing function U(·) satisfying U(0) = 0. To

gain some intuition for this statement, consider ascending auctions where every bidder bids

his/her private value. Conditioning on the bidder’s private value v, his/her expected utility

is higher in state-2 ascending auctions than state-1 ones for all v ∈ [0, z].

Hereafter, we make a totality assumption.

Assumption 4 (Totality). For any two different states k, k′ ∈ K, either vk′(·) dominates

vk(·) in the restricted sense or vk(·) dominates vk′(·) in the restricted sense.

We can define a strict binary relationship between two functions at the infimum of the

points below which there exist RSD relationships.
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Figure 1: Constructing An Ordered Tree from A Set of Distinct Functions

α

v(α)

v3(·)

v2(·)
v1(·)

0 10.5

(a) Original Functions

v1(·)

v2(·)

v3(·)

0 0.5

(b) Ordered Tree

Definition 3 (Splitting Point). We call α† the splitting point of vk(·) and vk′(·) if α† ≡

inf{x ∈ [0, 1]|∀α ∈ [0, x], vk(α) ≤ vk′(α), and ∃α∗ ∈ (0, x], vk(α∗) < vk′(α∗)}.

We denote this relationship as vk(·) ≺
α†
vk′(·). It means that vk(·) and vk′(·) coincide below

α† and split apart right after α†. By definition, for any ε > 0, there exists x ∈ [α†, α† + ε)

such that ∀α ∈ [0, x], vk(α) ≤ vk′(α), and ∃α∗ ∈ (0, x], vk(α∗) < vk′(α∗). In fact, for any

α ∈ [0, x], vk(α) < vk′(α) implies α > α†. Otherwise, if α ≤ α† and vk(α) < vk′(α), by

continuity of vk(·) and vk′(·), we can find an x′ < α in the neighborhood of α such that

∀α ∈ [0, x′], v1(α) ≤ v2(α),&α′∗ ∈ (0, x′], vk(α
′
∗) < vk′(α

′
∗), a contradiction to the definition

of α†.

We remark that once two functions split at α†, we allow them to cross or touch again

above α†. Consider the example shown in Figure 1a, v1(·) and v2(·) split apart at α = 0,

while v2(·) and v3(·) split apart at α = 0.5. The graph of v1(·) crosses the graphs of v2(·) and

v3(·) on (0.5, 1). Another example is vk(α) = (2α)γk/2, where γk ∈ {1/2, 1, 2}. The three

functions split at 0 and cross again at 1/2.

Next, we prove that this binary relationship is transitive. This result will be useful when

we define the ordering of a set of value/bid quantile functions.
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Lemma 1 (Transitivity). If v1(·) ≺
α†
v2(·) and v2(·) ≺

α†
v3(·), then v1(·) ≺

α†
v3(·).

Since we have already assumed totality under Assumption 4, transitivity provides a total

ordering of the group of functions that split at the same point. Note that the set of splitting

points is totally ordered by the usual less than or greater than relations. Therefore, there

exist total orderings on the set {vk(·)}k=1,...,K , one of which we will define in Section 3.3.

In fact, Lemma 1 can be strengthened in the following way so that the RSD relationships

directly imply a total ordering, which we call the RSD ordering.4

Lemma 2 (Transitivity). If v1(·) ≺
α†
v2(·) and v2(·) ≺

α††
v3(·), then v1(·) ≺

min{α†,α††}
v3(·).

Intuitively, the bottom of the value distributions determines which dominates the others.

3.2 Restricted Stochastic Dominance in Auctions

To study RSD in the model we described in Section 2, we propose two alternative represen-

tations of the equilibrium FOC. Rearranging terms in Equation (1) gives

b′k(α) =
I − 1

α
λ(vk(α)− bk(α)). (2)

Therefore, bk(·) satisfies the initial value problem if and only if it satisfies the integral problem

bk(α) = v + (I − 1)

∫ α

0

λ(vk(x)− bk(x))

x
dx.

Now we show that the same relation of RSD passes from the value quantile functions to

the bid quantile functions. Consider an arbitrary x ∈ (0, 1].

Lemma 3. If v1(α) ≤ v2(α),∀α ∈ [0, x], then b1(α) ≤ b2(α), ∀α ∈ [0, x].

This result is most obvious for the case of risk neutrality because we have an explicit

4I thank a referee for this point.
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mapping from the value quantile function to the bid quantile function:

bk(α) = (I − 1)α1−I
∫ α

0

vk(x)xI−2dx.

The general case of risk aversion is less obvious due to a lack of explicit mapping. We include

its proof in the Appendix. Similarly, we can show that b1(α) ≥ b2(α),∀α ∈ [0, x] if v1(α) ≥

v2(α),∀α ∈ [0, x]. Therefore, if v1(α) = v2(α), ∀α ∈ [0, x], then b1(α) = b2(α),∀α ∈ [0, x].

Lemma 4. If v1(α) ≤ v2(α), ∀α ∈ [0, x] and v1(α∗) < v2(α∗), where α∗ ∈ (0, x], then

b1(α) < b2(α), ∀α ∈ [α∗, x].

Lemma 4 states a striking feature. Specifically, if v1(α) ≤ v2(α) on [0, x], not only the

strict ordering passes from the value quantile functions to the bid quantile functions at the

point of difference, it is maintained among the bid quantile functions till at least the cutoff

point of the weakly dominance relation. An immediate implication is that the maximum bid

bk(1) is increasing with respect to the state k when Assumption 3 is true. Moreover, if b2(·)

dominates b1(·) up to x, we can find a z such that G2(·) ≡ b−1
2 (·) dominates G1(·) ≡ b−1

1 (·)

up to z. Denote Πk(v) =
∫ v
v
U(v − b)dGk(b). We have Π1(v) ≤ Π2(v) for all v ∈ [0, z].

Intuitively, conditioning on the bidder’s private value v, his/her expected utility is higher in

state-2 first-price auctions than state-1 ones.

Together, Lemmas 3 and 4 imply that if {vk(·)}k=1,...,K satisfies Assumption 4, the induced

{bk(·)}k=1,...,K does as well. Therefore, there exist total orderings on the set {bk(·)}k=1,...,K ,

one of which is the RSD ordering.

Theorem 1. Under Assumption 4, the resulting RSD orderings are the same for {vk(·)}k=1,2,...,K

and {bk(·)}k=1,2,...,K in independent private value first-price auctions with risk averse bidders.

Moreover, this property is invariant to the number of bidders I or the utility function U(·).
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Discussion

Since the lower bound of the value distribution vk(0) is also totally ordered by the usual

less than or greater than relations, we can extend our discussion to allow vk(0)’s to differ

across states. Moreover, the lower bound of the bid distribution equals the lower bound of

the value distribution in symmetric first-price auctions. Therefore, the ordering of the lower

bound also passes from the value quantile functions to the bid quantile functions.

While we use the probability α = 0 as our starting/reference point, it can be useful to use

other starting/reference points in some applications. For instance, in asymmetric auctions,

bidders take valuation draws from potentially different distributions. Using the probability

α = 1 as our starting/reference point, we can find similar results on the ordering of the set of

valuation distributions and the set of bid distributions when bidders are risk neutral. In this

RSD ordering, the top of the value distributions determines which dominates the others.5

Moreover, simply for the purpose of ordering distributions, we can define an RSD relation

when the relevant inequality hold over some other restricted range of the probability α rather

than for an interval starting at 0, say [0, x]. The RSD ordering can also be defined after some

normalizations of the distributions, which include but are not limited to the usual “demean”

exercise. An example is the normal distribution N (µ, σ2), where µ is the mean/median

and σ is the standard deviation. We can order a group of normal distributions first by the

means/medians using the usual less than or greater than relations and second by the RSD

relations on the right-hand side of the mean/median, i.e., α ∈ [0.5, 1], which is equivalent to

a lexicographical ordering of the pairs (µk, σk). In this RSD ordering, the part of the value

distributions that is above and closest to the mean/median determines which distribution

dominates the others. Another example is the Gumbel distribution G(µ, β), whose mode is

µ and variance is π2β2/6. We can order a group of Gumbel distributions first by the modes

and second by the RSD relations on the right-hand side of the mode. In this RSD ordering,

the part of the value distributions that is above and closest to the mode determines which

5For completeness, we include these results in Appendix B.
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distribution dominates the others.

3.3 An Intuitive Representation of the RSD ordering

In this section, we propose an intuitive representation of the proposed RSD ordering. In

particular, we propose a simple way to summarize how each function in a set of functions

become distinguished from the rest. Relying on Lemmas 3 and 4, we know that this ordering

is preserved by the mapping from value quantile function to bid quantile function.

Consider vk(·), where k ∈ K ≡ {1, . . . , K}. We construct a “splitting path” Pk as follows:

(1) We find the smallest splitting point α1 where vk(·) splits from some vk′(·) in group

K. That is,

α1 = min
k′ 6=k,k′∈K

inf{x ∈ [0, 1]|∀α ∈ [0, x], vk(α) ≤ vk′(α),&∃α∗ ∈ [0, x], vk(α∗) < vk′(α∗)}

By Lemma 1, we can rank all quantile functions based on their rankings in a neighborhood

of α1, say (α1, α1 + ∆1]. Let the smallest ranking be 1. There is a group of functions that

equal vk(·) in [0, α1 + ∆1]. Let this group be K1. All the functions in this group have the

same ranking in (α1, α1 + ∆1], which we denote as R1.

As shown in Figure 1a, if we consider v2(·), we have α1 = 0, R1 = 1,K1 = {2, 3}.

(2) We find the smallest splitting point α2 where vk(·) splits from some vk′ in group K1.

That is,

α2 = min
k′ 6=k,k′∈K1

inf{x ∈ [0, 1]|∀α ∈ [0, x], vk(α) ≤ vk′(α),&∃α∗ ∈ [0, x], vk(α∗) < vk′(α∗)}

By Lemma 1, we can rank all quantile functions based on their rankings in a neighborhood

of α2, say (α2, α2 + ∆2]. Let the smallest ranking be 1. There is a group of functions that

equal vk(·) in [0, α2 + ∆2]. Let this group be K2. Denote the ranking of this group as R2.

As shown in Figure 1a, if we consider v2(·), we have α2 = 0.5, R2 = 1,K2 = {2}.

(3) We continue this process until vk(·) is the only function in the group.
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We denote the list of pairs as Pk ≡ {(α1, R1), . . . , (αTk , RTk)}. We call Pk the splitting

path of vk(·). Note that KTk = {k}. As shown Figure 1a, we have P1 = {(0, 2)}, P2 =

{(0, 1), (0.5, 1)} and P3 = {(0, 1), (0.5, 2)}.

Definition 4 (Ordered Tree). An ordered tree is defined by the set of splitting paths P ≡

(P1,P2, . . . ,PK).

This ordered tree can be represented as in Figure 1b. The junctions are located at the

list of splitting points. The branches at each junction represent the rankings of functions

with the bottom one being ranked the first. A splitting path is thus a path through the

tree from the root to a leaf. It describes how a function became distinguished from the rest.

Since we specify an ordering for the branches at each junction, the leaves (i.e., vk(·)s) can

be ordered from bottom to top.

Without loss of generality, we again denote the ordering in the ordered tree as k =

1, 2, . . . , K. Theorem 1 implies the following result.

Corollary 1. The resulting ordered trees and orderings are the same for {vk(·)}k=1,2,...,K and

{bk(·)}k=1,2,...,K in first-price auctions.

The ordered tree summarizes the pairwise relations of RSD on a set of functions. Theorem

1 says that it provides a total ordering on a set of value distributions that is passed to the

bid distributions and unaffected by the utility function and the number of bidders.

4 Identification of Component Bid Distributions

Without loss of generality, let k = 1, 2, . . . , K represent the RSD ordering defined by the set

of primitive value quantile functions. In this section, we apply the eigenvalue decomposition

as in Hu, McAdams, and Shum (2013) to obtain the distributions of unobserved heterogeneity

pk and the component bid distributions Gk(·).
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Theorem 2. Under Assumptions 2 and 4, the distribution of unobserved heterogeneity pk

and the component bid distributions Gk(·) are identified if I ≥ 3.

Proof. We follow closely the identification procedure in Hu, McAdams, and Shum (2013).

Consider three bidders `, i and j. We define a discretization of bids as a monotone onto

mapping D : R+ → {1, . . . , K}, which partition the bid-space into K intervals. Denote

Dı = D(Bı) be the interval to which bidder i’s bid belongs, where ı = i, j. Fix the value of

bidder `’s bid, say b̌`. Define the following matrices:

LDi|K = [gDi|K(i′|k)]i′,k=1,2,...,K ,

LDj ,Di
= [gDj ,Di

(j′, i′)]j′,i′=1,2,...,K ,

LDi,b̌`,Dj
= [gDi,B`,Dj

(i′, b̌`, j
′)]i′,j′=1,2,...,K ,

Db̌`|K = diag{[gB`|K(b̌`|k)]k=1,2,...,K},

where K represents the random variable of unobserved heterogeneity with a slight abuse of

notation, gDi|K(i′|k) is the conditional probability of observing Di = i′ at state k, gDj ,Di
(j′, i′)

is the probability of observing (Dj, Di) = (j′, i′), gDi,B`,Dj
(i′, b̌`, j

′) is the joint density of

(Di, B`, Dj) at (i′, b̌`, j
′), and gB`|K(b̌`|k) is the conditional bid density at state k.

Applying the results in Hu (2008), Hu, McAdams, and Shum (2013) obtain their key

identification equation:

LDi,b̌`,Dj
(LTDj ,Di

)−1 = LDi|KDb̌`|KL
−1
Di|K ,

whose left-hand side is identified from data and the terms in the right-hand side can be

obtained through eigenvalue decomposition. Following the same lines, the K eigenvectors

are uniquely determined. However, the ordering is still arbitrary. That is, LDi|K is identified

up to permutation of its columns.

We now depart from Hu, McAdams, and Shum (2013) by swapping their last two steps.
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In particular, we fix an eigenvector matrix LDi|K = LDi|KQ, which is a matrix generated by

interchanging columns of the true eigenvector matrix LDi|K . Q is an unknown elementary

matrix generated by interchanging columns of the identity matrix.

We now identify

Db̌`|K = LDi|K
−1
[
LDi,b̌`,Dj

(LTDj ,Di
)−1
]
LDi|K ,

which is is a diagonal matrix. Therefore, by varying the value of b̌`, we identify the component

bid density functions (and quantile functions) up to permutation because

Db̌`|K = (LDi|KQ)−1
[
LDi,b̌`,Dj

(LTDj ,Di
)−1
]
LDi|KQ = Q−1Db̌`|KQ.

Note that the set of these “anonymous” component bid quantile functions is precisely the

same as the set of primitive bid quantile functions. Thus, we can construct the same ordered

tree using the former and the latter. Following Corollary 1, the kth function in the set

of primitive value quantile functions is ranked the kth in the set of identified “anonymous”

functions according to the RSD ordering. Therefore, it pins down Db̌`|K and hence determines

the matrix Q. Moreover, LDi|K = LDi|KQ
−1 is identified. The rest of the proof is identical

with that of Hu, McAdams, and Shum (2013).

Theorem 2 provides the component bid distributions Gk(·) and the distribution of unob-

served heterogeneity pk. If bidders are risk neutral, the component value distributions Fk(·)

are identified according to Guerre, Perrigne, and Vuong (2000). In particular, we have the

following FOC in quantile terms:

vk(α) = bk(α) +
1

I − 1
αb′k(α).

Therefore, the symmetric first-price auction model with discrete unobserved heterogeneity

and risk neutrality is fully identified.
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A Sufficient Condition for Assumption 2

This subsection introduces a sufficient condition for the rank condition Assumption 2.

Theorem 3. Assumption 2 is satisfied if the component bid distribution functions are linearly

independent.

This condition has been used in An (2016) for identifying the number of types K. Follow-

ing his paper, one could also describe the linear independence condition in terms of primi-

tives: the functions {F1(s−1
1 (·)), . . . , FK(s−1

K (·))} are linearly independent, where s−1
k (·) is the

inverse bidding strategy in state-k auctions defined by the model primitives {U(·), Fk(·)}.

Recall that the first-order stochastic dominance condition is sufficient for both the UH

monotonicity condition and the UH full-rank condition. See Hu, McAdams, and Shum

(2013). A key step in their proof is to show that the maximum bid is increasing in the state

k, which implies that the component bid distribution functions are linearly independent.6

A Sufficient Condition for Assumption 4

While our RSD condition is weaker than the first-order stochastic dominance condition, it

is interesting to understand the generality of our condition. To this end, we now describe

another sufficient condition for Assumption 4.

Theorem 4. Assumption 4 is satisfied if {vk(·)}k=1,...,K are analytic.

An example of a non-analytic function is f(x) = x4 sin(1/x), where x ∈ [0, 1]. See Figure

2 for its graph on [0, 0.01]. In fact, for any x ∈ (0, 1], we can always find a change of sign in

(0, x]. If this function were the difference of the two value quantile functions, it is obvious

that it is continuously differentiable but there exists no splitting point. For instance, let

v1(α) = α2 and v2(α) = α2 + α4 sin(1/α). Figure 2 shows that v1(·) and v2(·) are strictly

increasing and hence valid quantile functions but they violate Assumption 4.

6In fact, if
∑K

k=1 γkGk(b) = 0, then γk = 0,∀k ∈ K. To see this, consider an arbitrary b ∈ (bK−1, bK).

Since
∑K

k=1 γkGk(b) = γKGK(b) = 0, we have γK = 0. Similarly, we can show that γk = 0 for all
k = K − 1, . . . , 1 by considering a bid b in (bK−2, bK−1), . . . , (b1, b2) sequentially.
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Note that analytic functions are infinitely differentiable. They include all elementary

functions such as the polynomial functions, the exponential functions and the trigonometric

functions. Moreover, the Weierstrass Approximation Theorem says that any continuous

function on a bounded interval can be uniformly approximated by polynomial functions,

which are analytic. For assuming analytic functions to achieve identification in econometrics,

See, e.g., Fox, il Kim, Ryan, and Bajari (2012) in a random coefficients logit model, Quint

(2015) in English auctions, Fox and Gandhi (2016) in a multinomial choice model, and Aryal

(2016) in an adverse selection model.

Nevertheless, Assumption 4 does allow some non-analytic functions. For instance, v1(α) =

α, v2(α) = α + exp(−1/α), if α ∈ (0, 1] and v1(0) = v2(0) = 0.

Figure 2: A non-analytic function: v2(α)− v1(α) = α4 sin(1/α)

5 Applications

In this section, we demonstrate several applications that show how our relaxation of the

first-order stochastic dominance condition further expands the breadth of applicability of

the Hu, McAdams, and Shum (2013) misclassification approach. In particular, we apply

the RSD ordering in identification of several auction models with unobserved heterogeneity:

(a) values are i.i.d. draws from Beta distributions; (b) nonparametric utility function; (c)

affiliated-signal entry models; (d) asymmetric bidders; (e) asymmetry in both preferences

and private values.
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5.1 Beta Distribution

An immediate application of our results is on identification of auctions when values are

from Beta distributions. With a slight abuse of notation, the Beta distribution B(α, β) is a

family of continuous distributions defined on [0, 1] and parameterized by two positive shape

parameters α, β > 0. Its density function is

f(v;α, β) =
vα−1(1− v)β−1∫ 1

0
xα−1(1− x)β−1dx

,

if v ∈ [0, 1], f(v;α, β) = 0 otherwise. It is a flexible distribution that has bounded support.

In fact, any continuous distribution function on [0, 1] can be approximated by a convex

combination of Beta distributions. See Diaconis and Ylvisaker (1985). It is known that this

family of distributions cannot be ranked by the first-order stochastic dominance relations.

We now show that they can be ranked by the RSD relations.

Lemma 5. Any set of distinct Beta distributions satisfies Assumption 4.

In fact, all the Beta distributions split at α† = 0. Consider two different Beta distributions

defined by (α1, β1) and (α2, β2), respectively. It is easy to show that if v → 0, then the

difference log f2(v) − log f1(v) converges to (1) −∞ if α1 < α2, (2) +∞ if α1 > α2, (3) a

positive number if α1 = α2 and β1 < β2, and (4) a negative number if α1 = α2 and β1 > β2.

This leads to a lexicographical ordering based on the RSD relation: first we rank the two

α’s, the larger α is, the higher ranked the distribution is; in case the two α’s are the same,

we rank β’s, the larger β is, the lower ranked the distribution is. Figure 3 shows the quantile

functions of Beta distributions in [0, 1] and [0, 0.01] when α, β ∈ {0.5, 1, 2}. While these

functions cannot be ordered on [0, 1], they do in a neighborhood of 0.

Theorem 5. Under Assumptions 2, if I ≥ 3 and the values are i.i.d. draws from Beta

distributions F (·;αk, βk) conditioning on k ∈ {1, . . . , K}, the symmetric first-price auction

model with discrete unobserved heterogeneity and risk neutrality is identified.
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Figure 3: The Quantile Functions of Beta Distributions: α, β ∈ {0.5, 1, 2}

(a) Probability α ∈ [0, 1] (b) Probability α ∈ [0, 0.01]

5.2 Guerre, Perrigne, and Vuong (2009): Risk Aversion

Theorem 1 says that the ordered trees are the same for the induced bid distributions re-

gardless of the utility function and the number of bidders. This result is particularly useful

to identify auction models with discrete unobserved heterogeneity k and risk aversion (i.e.,

U ′′(·) < 0) in the Guerre, Perrigne, and Vuong (2009) framework. To identify both the

utility and the value distribution functions, the Guerre, Perrigne, and Vuong (2009) method

requires two sets of auctions which have different numbers of bidders and assumes exogenous

participation. In this section, we show how to adjust their exogenous participation approach

and the two-step method of Hu, McAdams, and Shum (2013) to identify the model when

the state k is not known to the econometrician by applying Theorem 1.

In particular, we consider two sets of auctions with unobserved heterogeneity k, which

have I1 and I2 bidders, respectively. We observe the joint distribution of three bids (bi, bj, b`)

conditioning on I = I1, I2. We consider the identification of the distributions of unobserved

heterogeneity pk,I , the utility function U(·), as well as the component value distributions

Fk,I(·).

If bidders are risk averse, we need to deal with the unknown utility function U(·). We

follow Guerre, Perrigne, and Vuong (2009) to exploit the exogenous participation restriction.
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Assumption 5. Fk,I1(·) = Fk,I2(·) = Fk(·) .

Note that we allow pk,I1 and pk,I2 to differ. Conditioning on the number of bidders

I ∈ {I1, I2}, we can apply Theorem 2 to obtain the distribution of unobserved heterogeneity

pk,I , the component bid distributions Gk,I(·) and the corresponding bid quantile functions

bk,I(·). Identification of λ(·) is achieved if we can match the two bid quantile functions that

are derived from the same unobserved heterogeneity k but with different number of bidders,

say 3 ≤ I1 < I2.

The difficulty is how to match the bid quantile functions in the two lists. The reason is

that with the same unobserved heterogeneity, the resulting component bid distributions are

different due to different competition levels I1 and I2. If bidders are risk neutral, these two

bid distributions are related through a known mapping due to exogenous participation7:

bk,I2(α) =
I2 − 1

I1 − 1

[
bk,I1(α) + (I1 − I2)α1−I2

∫ α

0

bk,I1(x)xI2−2dx
]
. (3)

With risk averse bidders, it is unclear how to make a similar connection before identifying

bidders’ utility function. In other words, we are not sure whether the difference between two

bid quantile functions is due to different competition levels or unobserved heterogeneity.

We now show how to deal with this issue using our intermediate results. While we are not

able to match bid distributions through a known functional, the corresponding bid quantile

functions share the same ordered tree, which is inherited from the same set of value quantile

functions and unaffected by the number of bidders.

Applying Theorem 2, we first identify the component bid quantile functions Gk,I condi-

tioning on the number of bidders I = I1, I2, respectively. This gives two ordered trees, PI1

and PI2 , for the two samples of auctions, respectively. The two trees are identical. Second,

we apply Theorem 1 to match these bid quantile functions into pairs. The idea is that two

bid quantile functions are generated by the same value quantile function if they are the same

7See Appendix A.5 for its proof.
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leaves on the two identical ordered trees. Finally, we can apply Guerre, Perrigne, and Vuong

(2009) to identify risk aversion by exploiting the compatibility condition:

bk,I1(α) + λ−1
( 1

I1 − 1
αb′k,I1(α)

)
= bk,I2(α) + λ−1

( 1

I2 − 1
αb′k,I2(α)

)
.

Therefore, the model is identified with two sets of auctions under different competition levels.

Theorem 6. Under Assumptions 2, 4 and 5, the symmetric first-price auction model with

discrete unobserved heterogeneity and risk aversion is identified if I2 > I1 ≥ 3.

In a related paper, Grundl and Zhu (2015) show that the deconvolution method applies to

nonparametric utility functions if unobserved heterogeneity enters valuations additively, but

only to CRRA utility functions if it enters multiplicatively. While the Hu, McAdams, and

Shum (2013) approach requires more bids than the deconvolution method, Theorem 6 says

that their misclassification approach is robust to the utility function. The intuition comes

from the fact that the independence of bids can be inherited from independent values, while

the multiplicative separability of bids may not necessarily be inherited from multiplicatively

separable values.

Discussion

Note that Theorem 2 identifies 2K functions (i.e., K component bid distributions for each

I), but the number of unkonwn primitive functions is 1+K (i.e., the common utility function

U(·) and the value distributions Fk(·)). Obviously, this model is overidentified. An interesting

extension is to allow the utility function be state-specific, say Uk(·). The model becomes

more general and its primitives are {Uk(·), Fk(·), pk,I1 , pk,I2}.

To identify the new model, complications arise due to the interaction of Uk(·) and Fk(·).

Obtaining comparative statics is difficult using the usual stochastic dominance notions. To

make it worse, since Uk(·) and Fk(·) jointly determine bk(·), the same RSD ordering may not

pass from the value quantile functions to the bid quantile functions.
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Despite the difficulties, the notion of RSD is still useful in terms of identifying ordering

because it only requires comparing function locally. One possible identification strategy is to

use a point where the interaction of Uk(·) and Fk(·) disappears. In particular, we focus on the

probability α = 0 and show that v′k(0) = I
I−1

b′k(0), where I = I1, I2 and k ∈ K. Therefore,

the same RSD ordering passes from the value quantile functions to the bid quantile functions.

In sum, the notion of RSD leads to a simple identification assumption.

Assumption 6. v′1(0) < v′2(0) < · · · < v′K(0).

Assumption 6 says that the splitting point is 0 for any two value quantile functions

vk(·) and vk′(·). Many families of distribution functions with bounded supports satisfy this

condition. For instance, the Beta distribution, the uniform distribution and the two-sided

power distribution. We summarize the results in the following theorem.

Theorem 7. Under Assumptions 2, 4, 5 and 6, the symmetric first-price auction model with

discrete unobserved heterogeneity and state-specific risk aversion is identified if I2 > I1 ≥ 3.

5.3 Gentry and Li (2014): Affiliated-Signal Model

Gentry and Li (2014) study identification of the Affiliated-Signal model under risk neutrality,

in which potential bidders have private values v, observe imperfect signals s of their true

values prior to entry, choose whether to undertake a costly entry process and learn their exact

values and submit bids. Let F (v, s|I, z) be the joint distribution of private value and signal

conditioning on the number of bidders I and a continuous cost shifter z, and c(I, z) be the

entry cost function. With two excludable variations F (v, s|I, z) = F (v, s) and c(I, z) = c(z),

they show that the conditional value distribution F (·|s) and the entry cost function c(z) is

point-identified when z is continuous.8

They generalize their results to accommodate unobserved heterogeneity k by introducing

the following assumptions: (1) conditional independence (vi, si) ⊥ (vj, sj)|k; (2) conditional

excludability: F (v, s|I, z, k) = F (v, s|k) and c(I, z, k) = c(z; k); and (3)

8They have interesting results on partial identification with incomplete variation, which we omit here.
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Assumption 7 (Gentry and Li (2014)). 1. Stochastic ordering: F (v|s, k′) ≤ F (v|s, k) if

k′ ≥ k; 2. Entry ordering: for all (I, z), the entry threshold s∗(I, z; k) is decreasing in k.

While Assumptions (1) and (2) are standard and both the stochastic ordering and entry

ordering are intuitive, the orderings are assumed to ensure that the CDF of “realized bids”

G∗w can be indexed with respect to k.

G∗w(W |I, z; k) =


s∗(I, z; k) + [1− s∗(I, z; k)]G∗b(b|I, z; k), if W > 0

s∗(I, z; k), if W = 0

,

where Wi = Bi if i enters and Wi = 0 otherwise. s∗(I, z; k) is the entry threshold. The

authors remark that the mixed random variables (W1, . . . ,WI) are conditionally independent

given k and stochastically increasing in k under Assumption 7.

The identification proceeds as follows: Given I ≥ 3 and z, applying the Hu, McAdams,

and Shum (2013) results, G∗w(Wi|I, z; k) and pk(I, z) are identified up to permutation from

the joint distribution GW (W1, . . . ,WI |I, z). Stochastic ordering of G∗w(Wi|I, z; k) ensures a

unique mapping from the anonymous distributions to the elements of K for every pair (I, z).

In fact, the monotonicity of the entry threshold is sufficient for ordering unobserved

heterogeneity conditioning on every pair (I, z). To see this, we construct an ordered tree

using the corresponding quantile function of {G∗w(Wi|I, z; k)}k=1,...,K . Since the quantile

function remains 0 on [0, s∗(I, z; k)] and jumps to a positive number afterward, the RSD

ordering of G∗w(Wi|I, z; k) is increasing with respect to k. Therefore, allowing for unobserved

heterogeneity, the Gentry and Li (2014) results hold under a smaller set of assumptions: (1)

conditional independence; (2) conditional excludability; and (3) entry ordering.

Discussion

In general, by introducing the covariate z, we have a problem of identifiability of finite

mixture models with covariates, which suffers from a “label switching” problem. To deal

26



with it, further assumptions are usually made. For instance, to identify auction models with

asymmetric anonymous bidders and covariates, Lamy (2012) adopts a similar strategy by

assuming that any two bid distributions are either equal or can be strictly ordered according

to first-order stochastic dominance. That is, either G(·|z, k) and G(·|z, k′) are the same for

any z or G(b|z, k) < G(b|z, k′) for any b and any z. In view of our results, identification

can be achieved by assuming that there exists a known functional M that yields the same

ordering when applied to the set of value functions {G(·|z, k)}k=1,...,K for every z.

For instance, consider symmetric first-price auctions with auction-specific covariates z and

unobserved heterogeneity k, where private values are i.i.d. draws from the Beta distribution

with shape parameters (α(z, k), β(z, k)). The analyst observes repeated measurements, i.e.

three bids per auction (b1, b2, b3), which has joint cumulative distribution

G(b1, b2, b3|z) =
K∑
k=1

pk|z × Π3
i=1GB

(
bi;α(z, k), β(z, k)

)
,

where pk|z is the conditional probability of unobserved heterogeneity, (α(z, k), β(z, k)) are

the shape parameters conditioning on (z, k), and GB(·;α(z, k), β(z, k)) is the corresponding

bid distribution. In view of our results in Subsection 5.1, we provide a sufficient condition

for nonparametric identification of the model primitives {α(·, ·), β(·, ·), pk|z}.9

Corollary 2. Under Assumptions 2, if I ≥ 3, α(z, k) is strictly monotone in k, and the

values are i.i.d. draws from Beta distributions F (·;α(z, k), β(z, k)) conditioning on (z, k), the

symmetric first-price auction model with auction-specific covariates z, discrete unobserved

heterogeneity k and risk neutrality is identified.

5.4 An (2016): Asymmetric Bidders

An (2016) studies identification of first-price auction models where bidders’ values are asym-

9While we constrain ourselves to discrete unobserved heterogeneity in this paper, the RSD ordering can
be applied in the continuous case. See, e.g., Hu and Schennach (2008). We leave it for future research.
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metrically distributed.10 He considered a model with I risk-neutral bidders whose private

values are independent draws from F1(·), . . . , FK(·), which are CDFs with the same support

[v, v]. Each bidder is one of the K types. Let τi denote bidder i’s type known to all the

bidders but unknown to the econometrician. Bidder i’s bidding strategy is a mapping from

his/her value to his/her bid, i.e., si(·, ·) : [v, v] × {1, . . . , K} → [v, v]. An (2016) assumes

that each bidder participates several auctions and the type is invariant, so the econometrician

observes the bidders’ identity and the joint distribution G(b`, b`′ , b`′′).

Applying the results in Hu (2008), he identifies the type specific bid distribution Gk(·)

and then the value distribution Fk(·) under Assumption 3. In view of our results, his results

hold under a weaker condition Assumption 4.

5.5 Multidimensional Unobserved Heterogeneity: Asymmetry in

Both Preferences and Private Values

Now we generalize An (2016)’s results to allow for asymmetry in both preferences and private

values. That is, bidders differ not only in their value distributions but also in their utility

functions. For simplicity, we assume a CRRA utility function for the bidders U(x) = xθ,

where θ ∈ {θH , θL}. Assume 0 < θL < θH ≤ 1 so that type-θL bidders are more risk averse

than type-θH bidders. Moreover, we assume that the econometrician knows the values of θL

and θH for simplicity of exposition.11

Each bidder is one of the K types whose private values are independent draws from

F1(·), . . . , FK(·). Following Guerre, Perrigne, and Vuong (2000) and Flambard and Perrigne

(2006), the FOC can be rewritten as (see also Appendix B)

s−1
i (b) = b+

θi∑
j 6=i gj(b)/Gj(b)

, (4)

10An (2016) also studies identification of the first-price auction model with non-equilibrium beliefs. We
omit the discussion here because ordering follows from model restrictions.

11To identify these two parameters, we can introduce exogenous variations in the competition level I as
in Guerre, Perrigne, and Vuong (2009). See Subsection 5.2.
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where gi(·) and Gi(·) are the bid density and distribution functions of bidder i = 1, . . . , I.

Since Fi(·) = Gi(si(·)), identifying s−1
i (·) and Gi(·) implies the identification of Fi(·).

Note that bidder i is of type k ∈ {1, . . . , K} and θ ∈ {θH , θL}. While the bidders’ two

types θ and k are common knowledge among bidders, they are unknown to the econometri-

cian, which leads to a problem with multidimensional unobserved heterogeneity.12 The model

primitives are the component value quantile functions {vk(·)}k∈{1,...,K} and the proportion of

each bidder type combination {pkθ}k∈{1,...,K},θ∈{θH ,θL}.

We study identification of this model in several steps. Following An (2016), we assume

that each bidder participates at least three independent auctions and the type is invariant.

First, we can relabel the bidder’s type as a combination of risk aversion level θ and the type

of value distribution, i.e. τ = (k, θ). There are 2K types of bidders so τ = 1, . . . , 2K. Let

Gkθ(·) represent the bid distribution function generated from bidders whose value quantile

function is vk(·) and risk aversion level is θ. Second, applying Theorem 2, we identify the

component bid quantile functions bτ (·) up to permutation and the probability of type τ .

Obviously, identification of the value distribution functions relies on correctly assigning θ

to the component bid quantile functions. Moreover, identification of pkθ requires correctly

assigning each τ to a pair (θ, k). However, identification up to permutation does not provide

the correspondence between τ and (k, θ).

Now we describe how to apply our results to assigning θ to the list of “anonymous” bid

quantile functions. It involves iterating the following two steps.

Step 1: We identify the lowest-ranked component bid distribution function and its corre-

sponding value distribution function, say Fk1(·). For any k ∈ K, Appendix B shows that the

bid quantile function of the type-(k, θL) bidders ranks higher than the type-(k, θH) bidders

in our ordered tree that is constructed from {bτ (·)}τ∈{1,...,2K}. Therefore, the lowest ranked

bid quantile function in our ordered tree correspond to the less risk averse bidders, i.e.,

θ = θH . Denote its distribution function as Gk1θH (·). This allows us to identify the inverse

12Identification of multidimensional unobserved heterogeneity is also studied by Aguirregabiria and Mira
(2015) for static games of incomplete information and Xiao (2016) for dynamic games.
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bidding strategy, say s−1
k1θH

(·), and its corresponding value distribution function, say Fk1(·),

via Equation (4) with θi = θH .

Step 2: We identify the other component bid distribution function that corresponds to

the same value distribution function Fk1(·) but a different risk aversion level. In particular,

Appendix B shows that

d

db
logFk1(s

−1
k1θH

(b))− d

db
logFk1(s

−1
k1θL

(b)) =
θL

s−1
k1θL

(b)− b
− θH

s−1
k1θH

(b)− b
, (5)

where s−1
k1θL

(v) = v and s−1
k1θL

(b) = v. We can show that this two points boundary value

problem identifies s−1
k1θL

(·), which make use of the following simple lemma.

Lemma 6. Let h be a differentiable function on [x, x] for which (i) h(x) = 0, (ii) h(x) > 0

implies that h′(x) ≥ 0 and (iii) h(x) < 0 implies that h′(x) ≤ 0. Then h(x) = 0 for all

x ∈ [x, x].

Lemma 7. The two points boundary value problem (5) has a unique solution s−1
k1θL

(·).

Finally, rewriting Equation (4) gives

gk1θL(b)

Gk1θL(b)
=

I∑
ı=1

gı(b)

Gı(b)
− θL

s−1
k1θL

(b)− b
,

which identifies Gk1θL(·) as follows:

Gk1θL(b) = exp
{
−
∫ b

b

[ I∑
ı=1

gı(x)

Gı(x)
− θL

s−1
k1θL

(x)− x
]
dx
}

= ΠI
ı=1Gı(b)·exp{

∫ b

b

θL

s−1
k1θL

(x)− x
dx},

which is derived from the value distribution function Fk1(·) and risk aversion level θL.

Dropping these two bid quantile functions from the list, 2(K − 1) “anonymous” bid

quantile functions remain. We again construct an ordered tree and identify the value quantile

function that corresponds to the lowest ranked bid quantile function, as well as the bid

quantile function of more risk averse bidders who have the same value distribution. We can
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repeat this process till each τ has been assigned a value of θ and a value of k.

In sum, with the same data requirements as in An (2016), the first-price auction model

with unobserved asymmetry in both preferences and private values is identified.

6 Empirical Application

6.1 Data

In this section, we apply our results on empirical analysis of the United States Forest Service

(USFS) timber auctions. See, e.g., Baldwin, Marshall, and Richard (1997), Haile (2001) and

Haile and Tamer (2003). In particular, we analyze the sealed-bid auction data from 1982 to

1990, which are constructed from the data available on Philip A. Haile’s website. Following

Haile, Hong, and Shum (2003), we consider only scaled sales in Forest Service regions 1

and 5, which minimizes the significance of subcontracting/resale and thus common value.

Moreover, we drop sales set aside for small businesses and salvage sales. In sum, we focus on

the auctions that are most likely to satisfy the independent private value assumption. For

simplicity, we focus on the 159 auctions with three bidders.

Table 1 provides summary statistics on a list of auction-specific observables: the winning

bid, the size of the tract (in acres), the estimated volume of timber (in MBF), the appraisal

value (per MBF), the estimated selling value (per MBF), the estimated harvesting cost (per

MBF), the estimated manufacturing cost (per MBF), the species concentration index (HHI)

and the Forest Service region.13

Before implementing our method, we apply the Haile, Hong, and Shum (2003) method to

homogenize the bids. Table 2 displays the regression results. Regression (3) includes all the

control variables as well as year dummies. All of the estimated coefficients have the expected

signs. We calculate the homogenized bids as the exponential of the differences between the

13We construct the variables following Liu and Luo (2016). All dollar values are nominal and all volume
values are in thousand board-feet (MBF) of timber.
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Table 1: Summary Statistics

Variable Mean Std. Dev. Min Max
winning bid 95688.19 148656.6 2848.18 1112966
acres 499.3522 791.237 4 7000
vol sum 1776.107 2493.26 52 12900
AppValue avg 29.48655 26.95233 0.5 162.6877
SellValue avg 349.6786 68.21548 154.9083 532.5739
LogCost avg 134.809 28.0862 64.81 259.44
MfgCost avg 169.1068 33.87054 3.707538 248.6233
HHI 0.578792 0.244737 0.172212 1
D5 0.465409 0.500378 0 1
Note: D5=1 if the Forest Service region is 5, =0 otherwise.

logarithm of the original total bids and the demeaned fitted values of regression (3).

Table 2: Regression Results

VARIABLES (1) (2) (3)
log acres -0.0188 -0.0330

(0.0252) (0.0236)
log vol sum 1.014*** 1.032*** 1.058***

(0.0213) (0.0289) (0.0293)
log AppValue avg 0.595*** 0.456*** 0.458***

(0.0343) (0.0470) (0.0446)
log SellValue avg 1.166*** 1.242***

(0.201) (0.209)
log LogCost avg -0.437*** -0.421***

(0.133) (0.131)
log MfgCost avg -0.205*** -0.268***

(0.0641) (0.0645)
HHI -0.0973 -0.0504

(0.103) (0.0977)
Observations 477 477 477
R-squared 0.841 0.853 0.866
Year FE YES
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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6.2 Estimation Results

In view of the small sample size, we estimate a parametric auction model when bidders

are risk neutral. In particular, we propose the family of the two-sided power distributions,

which is introduced into the statistic literature by Van Dorp and Kotz (2002). It has a

location parameter θ and a shape parameter γ. The two-sided power distribution has two

important advantages in the context of auctions. First, this family of distributions has similar

flexibility as the Beta distribution. It includes the uniform distribution, the standard power

distributions and the triangular distributions. Moreover, similar to the Beta distribution,

one can also show that one can also approximate any continuous distribution function on

[0, 1] arbitrarily close by a convex combination of two-sided power distribution functions (see

Bornkamp and Ickstadt (2009)). Second, it is easy to solve the auction model when values

are draws from the two-sided power distributions.

The two-sided power distribution function is given by

F (x; θ, γ) =


θ(x

θ
)γ if x ∈ [0, θ]

1− (1− θ)(1−x
1−θ )γ if x ∈ (θ, 1]

,

where the location parameter θ ∈ [0, 1] and the shape parameter γ > 0. Since the two-sided

power distribution is supported on the range [0, 1], we alter the location and scale of the

distribution by introducing a linear transformation using an additional location parameter

κ0 and a scale parameter κ1. In particular, we assume that the values satisfy vi = κ0 +

κ1xi, where i ∈ {1, 2, 3}, and xi’s are i.i.d. draws from the two-sided power distribution

conditioning on the auction-specific state (γ, θ).

For simplicity, assume that each of the state parameters (γ, θ) has two possible values,

i.e., γ ∈ {γL, γH} and θ ∈ {θL, θH}, where γL < γH and θL < θH . Two-dimensional unob-

served heterogeneity arises because the analyst does not observe (γ, θ). The primitives are

(κ0, κ1), the location and shape parameters {γL, γH , θL, θH} and the distribution of the state
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{pLL, pLH , pHL, pHH}, where the two subscripts represent the levels of γ and θ, respectively.

We estimate the model via maximum likelihood.14 See, e.g., Donald and Paarsch (1993),

Hirano and Porter (2003) and Chernozhukov and Hong (2004). All dollar values are reported

in thousands. κ0 is estimated to be the minimum homogenized bid, i.e. 2.63. The estimated

scale parameter is κ̂1 = 187.59. The estimated location and shape parameters are γ̂L =

1.00, γ̂H = 5.34, θ̂L = 0.0896, θ̂H = 0.1610. The mixing weights are p̂LL = 0.2612, p̂LH =

0.2365, p̂HL = 0.2459, p̂HH = 0.2564. Note that the two-sided power distribution becomes a

uniform distribution when γ = 1. Thus, assuming that our model is correctly specified, our

results implies that the bids that we observe are mostly likely from a mixture of a uniform

distribution, and two two-sided power distributions with parameters (γ̂H , θ̂L) and (γ̂H , θ̂H),

respectively. The mixing weights are 49.77%, 24.59% and 25.64%, respectively. Figure 4

shows the three component value distribution functions.

Figure 4: Estimated Component Value Distributions

7 Conclusion

In this paper, we introduce the concept of restricted stochastic dominance in auctions. We

show that the same relationship passes from the value quantile functions to the bid quantile

14We use the Nelder-Mead Simplex Method for maximizing the objective function. Our estimation con-
verges to the same solution for all attempted starting values.
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functions. Relying on these results, we define a RSD ordering for a set of distinct quan-

tile functions and show that this ordering is preserved by the mapping from value quantile

function to bid quantile function in symmetric first-price auctions. This property is used to

generalize Hu, McAdams, and Shum (2013) by allowing nonseparable unobserved heterogene-

ity under an RSD condition. This condition is more general than the first-order stochastic

dominance condition and it allows all analytic functions as well as some non-analytic ones.

Therefore, our results further expand the breadth of applicability of their misclassification

approach. Finally, we apply our results to identification of various auction models with

unobserved heterogeneity.

While we focus on auction models in this paper, the RSD ordering can be useful in other

applications of measurement error models. See Hu (2015) for a recent survey on applications

in empirical industrial organization and labor economics. Moreover, although we study only

discrete unobserved heterogeneity in this paper, the RSD ordering can also be applied in the

continuous case. See, e.g., Hu and Schennach (2008). We leave this for future research.

35



Appendices

A Proofs

A.1 Proof of Lemma 1

Proof. Consider an arbitrary ε > 0. First, consider v1(·) and v2(·). There exists x12 ∈

[α†, α† + ε) such that ∀α ∈ [0, x12], v1(α) ≤ v2(α),&∃α12 ∈ (α†, x12], v1(α12) < v2(α12).

Second, consider v2(·) and v3(·). There exists x23 ∈ [α†, α12) such that ∀α ∈ [0, x23], v2(α) ≤

v3(α),&∃α23 ∈ (α†, x23], v2(α23) < v3(α23). Note that 0 ≤ α† < α23 ≤ x23 < α12 ≤ x12 <

α† + ε. In sum, α23 ∈ [0, x23] ⊂ [0, x12] and v1(α23) ≤ v2(α23) < v3(α23), where the first

inequality follows ∀α ∈ [0, x12], v1(α) ≤ v2(α). Moreover, ∀α ∈ [0, x23], v1(α) ≤ v2(α) ≤

v3(α). Therefore, v1(·) ≺
α†
v3(·).

A.2 Proof of Lemma 2

Proof. Consider an arbitrary ε > 0. We consider three exhaustive and exclusive cases:

(1) If α† = α††, we obtain v1(·) ≺
α†

v3(·) because Lemma 1 applies. (2) If α† < α††,

v2(·) ≺
α††

v3(·) implies that there exists x23 ∈ [α††, α†† + ε) such that ∀α ∈ [0, x23], v2(α) ≤

v3(α),&∃α23 ∈ (α††, x23], v2(α23) < v3(α23). Moreover, v1(·) ≺
α†
v2(·) implies that there exists

x12 ∈ [α†,min{α23, α†+ε}) such that ∀α ∈ [0, x12], v1(α) ≤ v2(α),&∃α12 ∈ (α†, x12], v1(α12) <

v2(α12). Note that 0 ≤ α† < α12 ≤ x12 < α23 ≤ x23 < α††+ε. In sum, α12 ∈ [0, x12] ⊂ [0, x23]

and v1(α12) < v2(α12) ≤ v3(α12), where the second inequality follows ∀α ∈ [0, x23], v2(α) ≤

v3(α). Moreover, ∀α ∈ [0, x12], v1(α) ≤ v2(α) ≤ v3(α). Therefore, v1(·) ≺
α†
v3(·). (3) If

α† > α††, we obtain v1(·) ≺
α††

v3(·) following similar lines as in (2).

A.3 Proof of Lemma 3

Proof. We prove by contradiction. Suppose b1(αR) > b2(αR) for some αR ∈ [0, x]. Let

αL ≡ inf{x′ ∈ (0, αR]|b1(α) > b2(α), ∀α ∈ (x′, αR]}. From the continuity of bk(·)s, we

have b1(αL) = b2(αL). On the other hand, since b1(α) > b2(α),∀α ∈ (αL, αR], we have

36



b′1(α) < b′2(α), ∀α ∈ (αL, αR]. In fact, since v1(α) ≤ v2(α), ∀α ∈ [0, x], we have v1(α) −

b1(α) < v2(α)− b2(α), ∀α ∈ (αL, αR]. Thus, monotonicity of λ(·) implies that

I − 1

α
λ(v1(α)− b1(α)) <

I − 1

α
λ(v2(α)− b2(α)),

which implies that b′1(α) < b′2(α), ∀α ∈ (αL, αR] due to Equation (2). Therefore, b1(αR) =

b1(αL) +
∫ αR

αL
b′1(x)dx < b2(αL) +

∫ αR

αL
b′2(x)dx = b2(αR), a contradiction.

A.4 Proof of Lemma 4

Proof. Let αL = sup{x′ ∈ [0, α∗)|v1(α) = v2(α), ∀α ∈ [0, x′]}. By continuity of vk(·), αL < α∗

and v1(αL) = v2(αL). Lemma 3 implies that b1(αL) = b2(αL) as well. By definition of αL,

for any ε > 0, there exists a probability α ∈ (αL, αL + ε) such that v1(α) < v2(α).

Consider a probability α ∈ (αL, x]. Equation (2) implies that

α[b′2(α)− b′1(α)] = (I − 1)[λ(v2(α)− b2(α))− λ(v1(α)− b1(α))]

= (I − 1)λ′(R̃(α))[(v2(α)− v1(α))− (b2(α)− b1(α))],

where the second equation follows the mean value theorem and R̃(α) is a value between

v1(α)−b1(α) and v2(α)−b2(α). Denote y(α) = b2(α)−b1(α), q(α) = −(I−1)λ′(R̃(α))/α, p(α) =

(I − 1)(v2(α)− v1(α))λ′(R̃(α))/α. We obtain y′(α) = q(α)y(α) + p(α), whose solutions are

of the form

y(α) = ceQ(α) + eQ(α)

∫ α

αL

e−Q(x)p(x)dx,

where Q(α) =
∫ α
αL
q(x)dx and c is a constant. The boundary condition y(αL) = b2(αL) −

b1(αL) = 0 implies that c = 0. Since λ′(·) = (U(·)/U ′(·))′ = 1 − U(·)U ′′(·)/(U ′(·))2 ≥

1, v2(α) − v1(α) ≥ 0, ∀α ∈ (αL, α] and v2(α′) − v1(α′) > 0 for some α′ ∈ (αL, α), we

have p(α) ≥ 0,∀α ∈ (αL, α] and p(α′) > 0 for some α′ ∈ (αL, α). Therefore, y(α) =∫ α
αL
eQ(α)−Q(x)p(x)dx > 0. In other words, b2(α) > b1(α), ∀α ∈ (αL, x].
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A.5 Proof of Equation 3

Proof. For simplicity, consider homogeneous auctions. First, bidders’ valuation quantile

function satisfies the FOC

v(α) = bI(α) +
1

I − 1
αb′I(α).

Let y(α) = b(α), q(α) = −(I − 1)/α, p(α) = (I − 1)v(α)/α. We obtain y′(α) = q(α)y(α) +

p(α), whose solutions are of the form

y(α) = ceQ(α) + eQ(α)

∫ α

0

e−Q(x)p(x)dx,

where Q(α) =
∫ α

0
q(x)dx and c is a constant. Note that Q(α) − Q(x) =

∫ α
x
q(z)dz =

ln(x/α)I−1. The boundary condition y(0) = v implies that c = 0. Rearranging terms leads

to an explicit mapping from valuation quantile function to bid quantile function

bI(α) = (I − 1)α1−I
∫ α

0

v(x)xI−2dx.

See also Gimenes and Guerre (2016) and Liu and Luo (2016). Therefore, the two bid quantile

functions under different competition levels satisfy the following condition

bI2(α) = (I2 − 1)α1−I2
∫ α

0

[bI1(x) +
1

I1 − 1
xb′I1(x)]xI2−2dx.

Integration by parts gives

bI2(α) =
I2 − 1

I1 − 1

[
bI1(α) + (I1 − I2)α1−I2

∫ α

0

bI1(x)xI2−2dx
]
.

Moreover, it is also known that bI1(·) < bI2(·) on (0, 1] if I1 < I2, and bI1(0) = bI2(0) = v.

See Guerre, Perrigne, and Vuong (2009).
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A.6 Proof of Theorem 3

Proof. Note that LDj ,Di
= LDj |K × DK × LTDi|K , where DK = diag{Pr{K = k}k∈{1,...,K}}

has rank K. We only need to show that both LDj |K and LDi|K have rank K.

For an arbitrary list of cutoff points x1 < . . . < xı,

LDj |K =



F1(x1)− 0 F2(x1)− 0 . . . FK(x1)− 0

F1(x2)− F1(x1) F2(x2)− F2(x1) . . . FK(x2)− FK(x1)

. . . . . . . . . . . .

F1(xı)− F1(xı−1) F2(xı)− F2(xı−1) . . . FK(xı)− FK(xı−1)

1− F1(xı) 1− F2(xı) . . . 1− FK(xı)


By adding every row to all its later ones and then reordering rows, we obtain the following

matrix which has the same rank as LDj |K :

Aı =



1 1 . . . 1

F1(x1) F2(x1) . . . FK(x1)

F1(x2) F2(x2) . . . FK(x2)

. . . . . . . . . . . .

F1(xı) F2(xı) . . . FK(xı)


For notational convenience, we look for a list of cutoff points such that Aı has rank K.

The proof has two steps. In the first step, we show there exists a list of cutoff points such

that Aı is of rank K by adding well-chosen points to an arbitrary list of cutoff points. Take

an arbitrary list of cutoff points x1 < x2 < . . . < xı, where ı ≥ K − 1. If Aı is of rank K, we

move directly to the second step of the proof. If Aı is not of rank K, we can find a nonzero

vector β ∈ RK such that Aıβ = 0. Since the distributions are linearly independent, we can
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find xı+1 such that
∑K

k=1 Fk(xı+1)βk 6= 0. Let

Aı+1 =

 Aı

F1(xı+1) F2(xı+1) . . . FK(xı+1)

 .

We now show that Aı+1 has a larger rank than Aı. If not, they are of the same rank,

which implies that the new row is a linear combination of the original rows. That is,

Fk(xı+1) =
∑ı

`=0 γ`Fk(x`) for some (γ0, . . . , γı)
′, where Fk(x0) = 1. Since

∑K
k=1 Fk(xı+1)βk 6=

0, we have
∑K

k=1[
∑ı

`=0 γ`Fk(x`)]βk 6= 0. On the other hand, Aıβ = 0 implies that 0 =∑ı
`=0 γ`[

∑K
k=1 Fk(x`)βk] =

∑K
k=1[

∑ı
`=0 γ`Fk(x`)]βk, a contradiction.

We can continue adding new rows in this manner till the rank increases to K. Without

loss of generality, denote the cutoff points as x1 < x2 < . . . < xı, where ı ≥ K − 1.

In the second step, based on the list {x1, . . . , xı}, we can find exactly K− 1 cutoff points

{x1, . . . , xK−1} such that AK is of rank K by applying Lemma 2 in Xiao (2015).

A.7 Proof of Theorem 4

Proof. Suppose vk(·) and vk′(·) are analytic and Assumption 4 is not true. Then, for any

x ∈ (0, 1], we can find a switch of sign for the function vk(·)−vk′(·) in [0, x]. By the interme-

diate value theorem, there exists an α(1) in (0, 1] such that vk(α(1)) = vk′(α(1)). For the same

reason, we can find an α(2) in (0,min{1/2, α(1)}] such that vk(α(2)) = vk′(α(2)). Repeating this

procedure yields a converging sequence {α(m)}m=1,2,..., where α(m) ∈ (0,min{1/2m−1, α(m−1)],

such that vk(α(m)) = vk′(α(m)), and limm→∞ α(m) = 0. Note that vk(0) − vk′(0) = 0.

Therefore, the difference must be 0 in (0, 1] by the principle of permanence, meaning that

vk(α) = vk′(α), ∀α ∈ [0, 1], a contradiction.

A.8 Proof of Lemma 5

Proof. Consider two different Beta distributions defined by (α1, β1) and (α2, β2), respectively.

Note that if f1 ≤ f2, ∀a ∈ [0, x], then F1 ≤ F2,∀a ∈ [0, x]. Thus, we only need to show that
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there exists a point x such that the difference between the two pdfs has no change of sign

on (0, x). We proof by contradiction. Suppose that for any x, we can find a change of sign

on (0, x) and thus a point in (0, x) such that the two pdf’s are the same. Take a point x

where the two pdf’s are the same, i.e. xα1−1(1 − x)β1−1/B1 = xα2−1(1 − x)β2−1/B2, where

Bt =
∫ 1

0
xαt−1(1− x)βt−1dx. Taking the logarithm gives

T (x) ≡ (α2 − α1) log x+ (β2 − β1) log(1− x)− log(B2/B1) = 0

Note that for any natural number M , we can find a point xM such that xM ∈ (0, 1/2M)

and T (xM) = 0. Consider two cases: (1) if α2 = α1 or β2 = β1, T (·) can only have one

zero point, a contradiction. (2) if α2 6= α1 and β2 6= β1. When M → +∞, we have

xM → 0, log xM → −∞, log(1 − xM) → 0. Therefore, for an arbitrary ε > 0, ‖T (xM)‖ > ε

when M is large enough, a contradiction.

A.9 Proof of Theorem 7

Proof. For a given I = I1, I2, we need to show that the same ordering passes from the value

quantile functions to the bid quantile functions under Assumption 6. To this end, we focus

on homogeneous auctions and show that v′(0) = I
I−1

b′(0).

Equation (1) implies that

v′(α) = b′(α) +
1

I − 1
× λ−1′(

1

I − 1
αb′(α))× [αb′′(α) + b′(α)].

Therefore,

v′(0) = [1 +
1

I − 1
λ−1′(0)]b′(0) =

I

I − 1
b′(0).

In fact, note that λ(·) = U(·)/U ′(·) and we assume U(0) = 0, U ′(·) > 0, U ′′(·) ≤ 0. Thus,

λ(0) = 0. Note that λ′(α) = (U ′(·))2−U(·)U ′′(·)
(U ′(·))2 . Thus, λ′(0) = (U ′(0))2/(U ′(0))2 = 1. In sum,

λ−1′(0) = 1/λ′(0) = 1.
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A.10 Proof of Lemma 6

Proof. We proceed by contradiction. Without loss of generality, suppose that there exists

a point x∗ ∈ [x, x) such that h(x∗) > 0. Let xL ≡ inf{x ∈ (x∗, x]|h(x) = 0}. From the

continuity of h(·), we have h(xL) = 0. Moreover, h(x) > 0,∀x ∈ (x∗, xL). Otherwise we have

a contradiction of the definition of xL in either of the two exhaustive cases: (1) h(x1) = 0 for

some x1 ∈ (x∗, xL); (2) h(x2) < 0 for some x2 ∈ (x∗, xL). In this case, by the intermediate

value theorem, there exists another x3 ∈ (x∗, x2) such that h(x3) = 0.

Since h(x) > 0,∀x ∈ (x∗, xL), Condition (ii) implies that h′(x) ≥ 0,∀x ∈ (x∗, xL).

However, by the mean value theorem, there exists a point x ∈ (x∗, xL) such that h′(x) =

h(xL)−h(x∗)
xL−x∗

< 0, which contradicts the statement that h′(x) ≥ 0,∀x ∈ (x∗, xL).

Proof of Lemma 7

Proof. Consider two solutions ξ(·) and ξ̃(·). Denote h(x) = logFk1(ξ̃(·)) − logFk1(ξ(·)).

Thus, h(b) = 0 and d
db

logFk1(ξ(b)) + θL
ξ(b)−b = d

db
logFk1(ξ̃(b)) + θL

ξ̃(b)−b
, which implies that

d

db
logFk1(ξ̃(b))/Fk1(ξ(b)) =

θL(ξ̃(b)− ξ(b))
(ξ(b)− b)(ξ̃(b)− b)

.

Thus, (i) if h(b) > 0, then ξ̃(b) > ξ(b) and also h′(b) = d
db

logFk1(ξ̃(b))/Fk1(ξ(b)) > 0 and

(ii) if h(b) < 0, then ξ̃(b) < ξ(b) and also h′(b) = d
db

logFk1(ξ̃(b))/Fk1(ξ(b)) < 0. Lemma 6

implies that h(b) = 0 for all b ∈ [b, b]. In other words, ξ̃(·) = ξ(·).

B Restricted Stochastic Dominance in Asymmetric Auctions

Asymmetry among bidders can arise from either different valuation distributions Fi(·) and/or

different utility functions Ui(·). In an independent private value first-price auction, bidder i

maximizes the payoff

Ui(v − b) · Πj 6=iFj(s
−1
j (b)),
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where Πj 6=iFj(s
−1
j (b)) is the probability of winning. After some algebra, the FOC can be

rewritten as

1

λi(v − b)
=
∑
j 6=i

fj(s
−1
j (b))

Fj(s
−1
j (b))

1

s′j(s
−1
j (b))

.

For notation simplicity, we first consider the RSD ordering in auctions with asymmetry in

private values and then in auctions with asymmetry in preferences.

Asymmetry in Private Values

Consider the asymmetric IPV model with risk neutral bidders. Assume that the I bidders

have potentially different value distributions Fk(·) with support [v, v], where k = 1, . . . , I.

Lebrun (1999) and Maskin and Riley (2000) show that the equilibrium is characterized by

d

db
ξk(b) =

Fk(ξk(b))

(I − 1)fk(ξk(b))

{
I∑
`=1

1

ξ`(b)− b
− I − 1

ξk(b)− b

}
,

along with the boundary conditions: ξk(b) = v and ξk(v) = v, where ξk(·) ≡ s−1
k (·) is the

inverse bidding strategy. We remark the theory predicts that bidders’ bids share the same

support. In contrast to symmetric auctions, we focus on the distribution functions instead

of the quantile functions. Moreover, we treat the graph of Fk(·) as directioned while letting

(v, 1) and (v, 0) be our starting point and ending point, respectively.

Suppose Fi(·) ≥ Fj(·) in [z, v], where i 6= j ∈ {1, . . . , I}. We now show that the same

RSD relation passes to the bid distributions, i.e. Gi(·) ≥ Gj(·) on [si(z), b]. In general, no

closed-form solution exists, which excludes direct comparisons.

First, note that d
db

logFk(ξk(b)) = fk(ξk(b))
Fk(ξk(b))

[
d
db
ξk(b)

]
. The FOC becomes

d

db
logFk(ξk(b)) =

1

I − 1

I∑
`=1

1

ξ`(b)− b
− 1

ξk(b)− b
,
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which implies that

d

db
logFj(ξj(b))−

d

db
logFi(ξi(b)) =

1

ξi(b)− b
− 1

ξj(b)− b
.

Plugging in b = si(v) and changing the differentiation to v gives

d

dv
logFj(ξj(si(v))) =

d

dv
logFi(v) + s′i(v)

[ 1

v − si(v)
− 1

ξj(si(v))− si(v)

]
. (6)

Second, Fj(F
−1
j (Fi(v))) = Fi(v) implies that

d

dv
logFj(F

−1
j (Fi(v))) =

d

dv
logFi(v). (7)

Note that: 1), logFj(F
−1
j (Fi(v))) = logFi(v) = 0 and logFj(ξj(si(v))) = 0; 2), If

logFj(ξj(si(v))) = logFj(F
−1
j (Fi(v))) in [v†, v], we have ξj(si(v)) = F−1

j (Fi(v)) ≥ v be-

cause Fi(v) ≥ Fj(v). Thus,
[

1
v−si(v)

− 1
ξj(si(v))−si(v)

]
=

ξj(si(v))−v
(v−si(v))(ξj(si(v))−si(v))

≥ 0. Equations

(6) and (7) imply that d
dv

logFj(ξj(si(v))) ≥ d
dv

logFi(v) = d
dv

logFj(F
−1
j (Fi(v))) in [z, v].

Finally, 1) and 2) imply that logFj(ξj(si(v))) ≤ logFj(F
−1
j (Fi(v))), which implies that

ξj(si(v)) ≤ F−1
j (Fi(v)),∀v ∈ [z, v].

See, e.g., Milgrom and Weber (1982) and Lebrun (1999). Replacing v = ξi(b) gives Fj(ξj(b)) ≤

Fi(ξi(b)). That is, Gi(·) ≥ Gj(·) in [si(z), b].

Asymmetry in Preferences

Alternatively, we could assume that bidders are symmetric in private values but asymmetric

in preferences, i.e., degrees of risk aversion. Again, we consider the case in which bidders
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have CRRA utility functions. The equilibrium is characterized by

d

db
ξi(b) =

F (ξi(b))

(I − 1)f(ξi(b))

{
I∑
ı=1

θı
ξı(b)− b

− (I − 1)θi
ξi(b)− b

}
,

along with the boundary conditions: ξi(b) = v and ξi(v) = v, where ξi(·) ≡ s−1
i (·) is the

inverse bidding strategy of bidder i. F (·) is the common value distribution and θi ∈ (0, 1] is

bidder i’s CRRA parameter (i.e., Ui(x) = xθi).

Consider two bidders i and j such that θi < θj. Following similar lines, we obtain

d

db
logF (ξj(b))−

d

db
logF (ξi(b)) =

θi
ξi(b)− b

− θj
ξj(b)− b

.

Plugging in b = si(v) and changing the differentiation to v gives

d

dv
logF (ξj(si(v))) =

d

dv
logF (v) + s′i(v)

[ θi
v − si(v)

− θj
ξj(si(v))− si(v)

]
.

Note that: 1), logF (v) = 0 and logF (ξj(si(v))) = 0; 2), If logF (ξj(si(v))) = logF (v), we

have ξj(si(v)) = v and then

θi
v − si(v)

− θj
ξj(si(v))− si(v)

=
θi − θj
v − si(v)

< 0,

which implies that d
dv

logF (ξj(si(v))) < d
dv

logF (v). In sum, 1) and 2) imply that logF (ξj(si(v))) >

logF (v), which implies that si(v) > sj(v),∀v ∈ (v, v) and Gj(b) > Gi(b),∀b ∈ (b, b). In other

words, the more risk averse the bidder is, the higher he/she bids.
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