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Abstract

We study the identi�cation and estimation of structural parameters in dynamic panel data
logit models where decisions are forward-looking and the joint distribution of unobserved het-
erogeneity and observable state variables is nonparametric, i.e., �xed-e¤ects model. We consider
models with two endogenous state variables: the lagged decision variable, and the time duration
in the last choice. This class of models includes as particular cases important economic applica-
tions such as models of market entry-exit, occupational choice, machine replacement, inventory
and investment decisions, or dynamic demand of di¤erentiated products. The identi�cation of
structural parameters requires a su¢ cient statistic that controls for unobserved heterogeneity
not only in current utility but also in the continuation value of the forward-looking decision
problem. We obtain the minimal su¢ cient statistic and prove identi�cation of some structural
parameters using a conditional likelihood approach. We apply this estimator to a machine
replacement model.
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1 Introduction

Persistent unobserved heterogeneity is pervasive in empirical applications using panel data of indi-

viduals, households, or �rms. An important challenge in these applications consists of distinguish-

ing between true dynamics due to state dependence and spurious dynamics due to unobserved

heterogeneity (Heckman, 1981). The identi�cation of true dynamics, when persistent unobserved

heterogeneity is present, should deal with two key econometric issues: the incidental parameters

problem, and the initial conditions problem. The �rst one establishes that a simple dummy-variables

estimator, that treats each individual unobservable as a parameter to be estimated jointly with the

parameters of interest, is inconsistent in most nonlinear panel data models when T is �xed (Ney-

man and Scott, 1948, Lancaster, 2000). Given this issue, it would seem reasonable to consider a

nonparametric (or a �exible) joint distribution of the unobserved heterogeneity and the observables

variables, and construct a likelihood function that is integrated over unobservables. In this context,

the initial conditions problem establishes that the joint distribution of the unobserved heterogene-

ity and the initial values of the observable variables is not nonparametrically identi�ed, but the

misspeci�cation of this joint distribution can generate important biases in the estimation of the

parameters of interest (Heckman, 1981, Chamberlain, 1985, among others).

There are two general approaches to deal with this issue: random e¤ects and �xed e¤ects

models/methods. Random-e¤ects models impose restrictions on the distribution of unobserved

heterogeneity (e.g., parametric, �nite mixture), and on the joint distribution of these unobservables

and the initial conditions of the observable explanatory variables. Under these restrictions, the

parameters of interest and the distribution of the unobserved heterogeneity are jointly estimated.

In contrast, �xed-e¤ects methods focus on the estimation of the parameters of interest and they do

not try to identify the distribution of the unobserved heterogeneity. These methods are more robust

because they are fully nonparametric in the speci�cation of the joint distribution of unobserved

heterogeneity and exogenous or predetermined explanatory variables.1

A �xed e¤ect method, pioneered by Andersen (1970) and extended by Chamberlain (1980), is

based on the derivation of su¢ cient statistics for the incidental parameters (�xed e¤ects) and the

maximization of a likelihood function conditional on these su¢ cient statistics. This paper deals

1See Arellano and Honoré (2001), and Arellano and Bonhomme (2012, 2017) for recent surveys on the econometrics
of nonlinear panel data models.
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with this �xed e¤ects - su¢ cient statistics - conditional maximum likelihood approach (FE-CML

hereinafter). We study the applicability of this approach to structural dynamic discrete choice

models where agents are forward-looking.2

There is a wide class of nonlinear panel data models where the FE-CML approach cannot

identify the structural parameters.3 In general, a su¢ cient statistic of the incidental parameters

always exists.4 The identi�cation problem appears when the minimal su¢ cient statistic is such

that the likelihood conditional on this statistic does not depend on the structural parameters.

For instance, in the context of binary choice models, Chamberlain (1993, 2010) shows that a

necessary and su¢ cient condition for (point) identi�cation under the FE-CML approach is that the

distribution of the time-varying unobservable is logistic.5 Similarly, identi�cation is not possible in

discrete choice models where unobserved heterogeneity appears in the slope parameters, interacting

with predetermined explanatory variables 6 This has important implications for structural dynamic

discrete choice models. In these models, an agent�s optimal decision depends not only on her current

utility but also on the continuation value function, which is an endogenous object. In general,

unobserved heterogeneity enters non-additively in the continuation value function and interacts

with the observable state variables, even when this unobserved heterogeneity is additively separable

in the one-period utility function. This interaction between the unobserved heterogeneity and the

2Among the class of �xed-e¤ects estimators in short panels, the dummy-variables estimator is the simplest of these
methods. However, as mentioned above, this estimator is inconsistent in most nonlinear panel data models when T is
�xed. Two-step bias reduction methods, both analytical and simulation-based, have been proposed to correct for the
asymptotic bias of these dummy-variables �xed-e¤ect estimators (e.g., Hahn and Newey, 2004, Browning and Carro,
2010, and Hahn and Kuersteiner, 2011, among others). Other �xed-e¤ects estimators are based on a transformation
of the model that eliminates the �xed e¤ects, e.g., Manski�s maximum score estimator (Manski, 1987). However, in
nonlinear models, these estimators require strict exogeneity of the explanatory variables, ruling out nonlinear dynamic
models. Bonhomme (2012) presents a functional di¤erencing approach that includes as particular cases di¤erent �xed
e¤ects estimators in the literature.

3 In this paper, the concepts of identi�cation and consistent estimation, as N goes not in�nity and T is �xed, are
used as synonymous.

4For instance, we could de�ne as su¢ cient statistic the complete choice history of an individual. Obviously,
the conditional likelihood function based on this su¢ cient statistic does not depend neither on incidental nor on
structural parameters. Though this is an extreme example, it illustrates that the key identi�cation problem is not
�nding a su¢ cient statistic for the incidental parameters but showing that there are su¢ cient statistics for which the
conditional likelihood still depends on the structural parameters.

5Chamberlain (1993, 2010) considers the model where the time-varying unobservables are independently and
identically distributed. Magnac (2004) studies a two-period model where the two time-varying unobservables have a
general joint distribution. Honorè and Tamer (2006) study partial identi�cation of the dynamic Probit model and
derive sharp bounds on parameters.

6Browining and Carro (2014) study the identi�cation of this type of dynamic binary choice model with maximal
heterogeneity in short panels. The �xed-e¤ects model (nonparametric speci�cation of the unobserved heterogeneity)
is not identi�ed. They consider a �nite mixture speci�cation of the heterogeneous parameters. This is in the same
spirit as Kasahara and Shimotsu (2009), though these other authors consider a nonparametric Markov chain with
�nite mixture unobserved heterogeneity.
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endogenous state variables implies that structural parameters are not identi�ed in the �xed-e¤ects

model.

For non-structural (i.e., myopic) dynamic logit models with unobserved heterogeneity only in

the intercept, Chamberlain (1985) and Honoré and Kyriazidou (2000) have shown that the FE-CML

approach can identify the parameters of interest.7 In contrast, all the methods and applications

for structural dynamic discrete choice models have considered random-e¤ects models with a �nite

mixture distribution, e.g., Keane and Wolpin (1997), Aguirregabiria and Mira (2007), Kasahara and

Shimotsu (2009), Arcidiacono and Miller (2011), among many others. This random-e¤ects approach

imposes important restrictions: the number of points in the support of the unobserved heterogeneity

is �nite and is typically reduced to a small number of points; furthermore, the joint distribution of

the unobserved heterogeneity and the initial conditions of the observable state variables is restricted.

In this paper, we revisit the applicability of FE-CML methods to the identi�cation and esti-

mation of structural dynamic discrete choice models. We follow the su¢ cient statistics approach

to study the identi�cation of payo¤ function parameters in structural dynamic logit models with a

�xed-e¤ects speci�cation of the time-invariant unobserved heterogeneity. We consider multinomial

models with two types of endogenous state variables: the lagged value of the decision variable,

and the time duration in the last choice. The main challenge for the identi�cation of this model

comes from the fact that unobserved heterogeneity enters not only in current utility but also in

the continuation value of the forward-looking decision problem. In general, this continuation value

is a nonlinear function of unobserved heterogeneity and state variables.8 Therefore, identi�cation

requires a su¢ cient statistic that controls for this continuation value but implies a conditional

likelihood that still depends on the structural parameters that capture true state dependence. We

derive the minimal su¢ cient statistic and show that some structural parameters are identi�ed. The

forward-looking model where the only state variable is the lagged decision is identi�ed under the

same conditions as the myopic version of the model. Instead, with duration dependence, there are

some parameters identi�ed in the myopic model but not in the forward-looking model.

7 In the models of these papers, the only endogenous (predetermined) explanatory variable is the lagged decision.
For instance, time duration in the last choice is not an explanatory variable. In our model, we include both lagged
decision and duration as state variables.

8 In fact, before solving the model, we do not know how unobserved heterogeneity and state variables enter this
continuation value function. Therefore, for �xed-e¤ects estimation, it is as if we had a nonparametric speci�cation of
this function.
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Based on our identi�cation results, we consider a conditional maximum likelihood estimator,

and a test for the validity of a correlated random e¤ects speci�cation. We apply this estimator and

the test to the bus engine model Rust (1987) using both simulated and actual data.

In most empirical applications of structural models, the researcher is not only interested in the

value of the structural parameters but also on the estimation of marginal e¤ects and counterfactual

experiments. The identi�cation of marginal e¤ects and counterfactuals requires the identi�cation of

the distribution of the observed heterogeneity. Point identi�cation requires imposing restrictions on

the joint distribution of unobserved heterogeneity and the initial conditions of the state variables.

Alternatively, the researcher may prefer not to impose these restrictions and then set-identify the

distribution of the unobservables and the marginal e¤ects (Chernozhukov, Fernandez-Val, Hahn,

and Newey, 2013). We discuss this problem is section 3.4.

This paper contributes to the literature on structural dynamic discrete choice models. The

structure of the payo¤ function and of the endogenous state variables that we consider in this

paper includes as particular cases important economic applications in the literature of dynamic

discrete choice structural models, such as models of market entry and exit either binary (Roberts

and Tybout, 1997, Aguirregabiria and Mira, 2007) or multinomial (Sweeting, 2013; Caliendo et al,

2015); occupational choice models (Miller, 1984; Keane and Wolpin, 1997); machine replacement

models (Rust, 1987; Das, 1992; Kennet, 1993; and Kasahara, 2009); inventory and investment

decision models (Aguirregabiria 1999; Ryan, 2013; Kalouptsidi, 2014); demand of di¤erentiated

products with consumer brand switching costs (Erdem, Keane, and Sun, 2008) or storable products

(Erdem, Imai, and Keane, 2003; Hendel and Nevo, 2006); and dynamic pricing models with menu

costs (Willis, 2006), or with duration dependence due to in�ation or other forms of depreciation

(Slade, 1998; Aguirregabiria, 1999; Kano, 2013); among others.9 Our paper also contributes to the

literature on nonlinear dynamic panel data models by providing new identi�cation results of �xed

e¤ects dynamic logit models with duration dependence (Frederiksen, Honoré, and Hu, 2007).

The rest of the paper is organized as follows. Section 2 describes the class of models that we

study in this paper. Section 3 presents our identi�cation results. Section 4 deals with estimation and

9Note that most of the empirical applications cited above in this paragraph do not allow for time-invariant
unobserved heterogeneity. This is still a common restriction in empirical applications of dynamic structural models,
and it is mostly justi�ed by computational convenience. The exceptions, within the cited papers, are Keane and
Wolpin (1997), Erdem, Imai, and Keane (2003), Willis (2006), Aguirregabiria and Mira (2007), and Erdem, Keane,
and Sun (2008).
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inference. In section 5, we illustrate our identi�cation results in the context of a bus replacement

model. Section 6 summarizes and concludes. Proofs of Lemmas and Propositions are in the

Appendix. Also in the Appendix, we show that our identi�cation results extend to an extended

version of our model where the endogenous state variables have a stochastic transition rule.

2 Model

Time is discrete and indexed by t that belongs to f1; 2; :::;1g.10 Agents are indexed by i. Every

period t, agent i chooses a value of the discrete variable yit 2 Y = f0; 1; :::; Jg to maximize her

expected and discounted intertemporal utility Et
hP1

j=0�
j
i �i;t+j(yi;t+j)

i
, where �i 2 (0; 1) is agent

i�s time discount factor, and �it(y) is her one-period utility if she chooses action y. This utility is

a function of four types of state variables which are known to the agent at period t:

�it(y) = � (y;�i; zit) + � (y;xit; zit) + "it(y). (1)

zit and xit are observable to the researcher, and "it and �i are unobservable. The vector zit

contains exogenous state variables and it follows a Markov process with transition probability

function fz(zi;t+1jzit). The vector xit contains endogenous state variables. We describe below the

nature of these endogenous state variables and their transition rules. Both zit and xit have discrete

supports Z and X , respectively. The unobservable variables f"it(y) : y 2 Yg are i:i:d: over (i; t; y)

with an extreme value type I distribution. The vector �i represents time-invariant unobserved

heterogeneity from the point of view of the researcher. Let �i � (�i; �i) represent the unobserved

heterogeneity from individual i. The probability distribution of �i conditional on the history of

observable state variables fzit;xit : t = 1; 2; :::g is unrestricted and nonparametrically speci�ed,

i.e., �xed e¤ects model. Functions � (y;�; z) and � (y;x; z) are nonparametrically speci�ed but

they are bounded.

Our speci�cation of the utility function represents a general semiparametric �xed-e¤ect logit

model. It builds on Rust model (Rust, 1987, 1994) and generalizes it in two directions. First, Rust

assumes that all the unobservables satisfy the conditions of additive separability and conditional

independence, and they have an extreme value distribution. While our time-varying unobserv-

ables "it(y) satisfy these conditions, our time-invariant unobserved heterogeneity interacts, in an

10The time horizon of the decision problem is in�nite.
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unrestricted way, with the exogenous state variables and the choice, and they do not satisfy the con-

ditional independence assumption. Second, we allow for unobserved heterogeneity in the discount

factor.

The assumption of additive separability between �i and the endogenous state variables in xit is

key for the identi�cation results in this paper. This condition does not imply that the conditional-

choice value functions, that describe the solution of the dynamic model, are additive separability

between �i and xit. In general, the solution of the dynamic programming problem implies a value

function that is not additively separable in �i and xit even when the utility function is additive in

these variables.

The model includes two types of endogenous state variables that correspond to two di¤erent

types of state dependence, xit = (yi;t�1; dit): (a) dependence on the the lagged decision variable,

yi;t�1; and (b) duration dependence, where dit 2 f1; 2; :::;1g is the number of periods since the last

change in choice. The lagged decision has the obvious transition rule. The transition rule for the

duration variable is di;t+1 = 1 fyit = yi;t�1g dit + 1, where 1f:g is the indicator function.11

The term � (y;xit; zit) in the payo¤ function captures the dynamics, or structural state depen-

dence, in the model. We distinguish in this function two additive components that correspond to

the two forms of state dependence in the model:

� (y;xit; zit) = 1fy = yi;t�1g �d (y; dit; zit) + 1fy 6= yi;t�1g �y (y; yi;t�1; zit) (2)

Function �d (y; dit; zit) captures duration dependence. For instance, in an occupational choice

model, this term captures the return on earnings of job experience in the current occupation.

Function �y (y; yi;t�1; zit) represents switching costs. In an occupational choice model, this term

represents the cost of switching from occupation yi;t�1 to occupation y. The additive separability

between switching costs and "returns to experience" is not without loss of generality. For instance,

the cost of switching occupation could depend on experience in the current job not only through the

loss of the returns of experience, i.e., �y(:) could depend on dit. However, this additive separability

facilitates our analysis of identi�cation and the model is still more general than previous �xed-e¤ects

discrete choice models.
11Note that these endogenous state variables follow deterministic transition rules. In the Appendix, we present a

version of the model that allows for stochastic transition rules for the endogenous state variables.
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We impose a restriction on the structural function �d (y; d; zit) that plays a role in our iden-

ti�cation results for this function. We assume that there is not duration dependence in choice

alternative y = 0, i.e., �d (0; d; zit) = 0 for any value of d. Also, but without loss of generality, we

set �y(y; y; zit) = 0, i.e., the switching cost of no-switching is zero.12 Assumption 1 summarizes our

basic conditions on the model. For the rest of the paper, we assume that this assumption holds.

ASSUMPTION 1. (A) The time horizon is in�nite and �i 2 (0; 1). (B) The utility function has

the form given by equations (1) and (2), and functions � (y; �; z), �d (y; d; z), and �y(y; y�1; z)

are bounded. (C) �y(y; y; z) = 0, �d (0; d; z) = 0. (D) f"it(y) : y 2 Yg are i:i:d: over (i; t; y)

with a extreme value type I distribution. (E) zit has discrete and �nite support Z and follows a

time-homogeneous Markov process. (F) The probability distribution of �i � (�i; �i) conditional on

fzit;xit : t = 1; 2; :::g is nonparametrically speci�ed and completely unrestricted. �

Since the model does not have duration dependence when at choice alternative 0, it is convenient

for notation to make duration equal to zero at state yt�1 = 0. In other words, we consider the

following modi�cation in the transition rule for duration:

di;t+1 =

�
1 fyit = yi;t�1g dit + 1 if yit > 0

0 if yit = 0
(3)

For our identi�cation results in forward-looking models with duration dependence, we also

impose the following assumption.

ASSUMPTION 2. For any y 2 Y there is a �nite value of duration, d�y <1, such that the marginal

return of duration is zero for values greater that d�y:
13

�d (y; d; z) = �d
�
y; d�y; z

�
for any d � d�y � (4)

For the moment, we assume that the researcher knows the values of d�y. In section 4, we show

that these values fd�yg are identi�ed from the data.

The following are some examples of models within the class de�ned by Assumption 1.

(a) Market entry-exit models. In its simpler version, there is only one market, and the choice

variable is binary and represents a �rm�s decision of being active in the market (yit = 1) or not

12Given the payo¤ function in equation (2), the parameter �y(y; y) is completely irrelevant for an individual�s
optimal decision. When yit = yi;t�1 = y, we have that � (y;xit) = �d (y; dit) + 0 such that the term �y (y; y) never
enters in the relevant payo¤ function. Therefore, �y (y; y) can be normalized to zero without loss of generality.
13The assumption of no duration dependence in choice alternative y = 0 is equivalent to assuming d�0 = 1.
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(yit = 0), e.g., Dunne et al. (2013). The only endogenous state variable is the lagged decision, yi;t�1.

The parameter ��y (1; 0; z) represents the cost of entry in the market. Similarly, the parameter

��y (0; 1; z) represents the cost of exit from the market. An extension of the basic entry model

includes as an endogenous state variable the number of periods of experience since last entry in the

market, dit, which follows the transition rule di;t+1 = dit+1 if yit = 1 and di;t+1 = 0 if yit = 0. The

parameter �d (1; d; z) represents the e¤ect of market experience on the �rm�s pro�t (Roberts and

Tybout, 1997). The model can be extended to J markets (Sweeting, 2013; Caliendo et al, 2015).

The two endogenous state variables are the index of the market where the �rm was active at the

previous period (yi;t�1) and the number of periods of experience in the current market (dit). The

parameter �y (y; y�1; z) represents the cost of switching from market y�1 to market y. There is not

duration dependence if a �rm is not active in any market (if y = 0), and the marginal return to

experience in market y is zero after d�y periods in the market.

(b) Occupational choice models (Miller, 1984; Keane and Wolpin, 1997). A worker chooses between

J occupations and the choice alternative of not working (y = 0). There are costs of switching

occupations such that a worker�s occupation at previous period, yit�1, is a state variable of the

model. There is (passive) learning that increases productivity in the current occupation. There is

not duration dependence if the worker is unemployed.

(c) Machine replacement models (Rust, 1987; Das, 1992; Kennet, 1993; and Kasahara, 2009). The

choice variable is binary and it represents the decision of keeping a machine (yit = 1) or replacing it

(yit = 0). The only endogenous state variable is the number of periods since the last replacement,

dit, i.e., the machine age. The evolution of the machine age is di;t+1 = dit + 1 if yit = 1 and

di;t+1 = 0 if yit = 0. The parameter �d (1; d; z) represents the e¤ect of age on the �rm�s pro�t,

e.g., productivity declines and maintenance costs increase with age.14 More generally, the class of

models in this paper includes binary choice models of investment in capital, inventory, or capacity

(Aguirregabiria 1999; Ryan, 2013; Kalouptsidi, 2014), as long as the depreciation of the stock is

deterministic.

(d) Dynamic demand of di¤erentiated products (Erdem, Imai, and Keane, 2003; Hendel and Nevo,

14 In some versions of this model, such as Rust (1987), the endogenous state variable represents cumulative usage
of the machine and it can follow a stochastic transition rule. We consider this stochastic version of the model in the
Appendix.
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2006). A di¤erentiated product has J varieties and a consumer chooses which one, if any, to

purchase (no purchase is represented by y = 0). Brand switching costs imply that the brand in

the last purchase is a state variable (Erdem, Keane, and Sun, 2008). For storable products, the

duration since last purchase, dit, represents (or proxies) the consumer�s level of inventory that is an

endogenous state variable. Function �d (y; d; z) captures the e¤ect of inventory on the consumer�s

utility, and function �y (y; y�d; ; z) represents brand switching costs.

(e) Menu costs models of pricing (Slade, 1998; Aguirregabiria, 1999; Willis, 2006; Kano, 2013).

A �rm sells a product and chooses its price to maximize intertemporal pro�ts. The �rm�s pro�t

has two components: a variable pro�t that depends on the real price (in logarithms), rit; and a

�xed menu cost that is paid only if the �rm changes its nominal price. There is a constant in�ation

rate, �, that erodes the real price. Every period, the �rm decides whether to keep its nominal

price (yit = 1) or to adjust it (yit = 0) such that current real price becomes r�. The evolution of

log-real-price is: rit+1 = rit � � if yit = 1, and rit+1 = r� � � if yit = 0. If dit represents the time

duration since the last nominal price change, we can represent the transition rule of the real price

as follows: (rit+1 � r�)=� = dit + 1 if yit = 1, and (rit+1 � r�)=� = 0 if yit = 0. This model has a

similar structure as the machine replacement models described above. �

We now derive the optimal decision rule and the conditional choice probabilities in this model.

Agent i chooses yit to maximize its expected and discounted intertemporal utility. Given the in�nite

horizon and the time-homogeneous utility and transition probability functions, Blackwell�s Theorem

establishes that the value function and the optimal decision rule are time-invariant (Blackwell,

1965). Let V�i (yt; dt; zt) be the integrated (or smoothed) value function for agent type �i, as

de�ned by Rust (1994).15 The optimal choice at period t can be represented as:

yit = argmax
y2Y

f � (y;�i; zit) + � (y;xit; zit) + "it(y) + �i E [V�i (y; di;t+1; zi;t+1) j y, xit; zit] g

(5)

Note that di;t+1 is a deterministic function of (y, xit), i.e., conditional on yit = y. There-

fore, we can represent the continuation value E[V�i (y; di;t+1; zi;t+1) j y, xit; zit] using a function

v�i(y; dt+1[y;xit]); zit) with dt+1[y;xit] = 0 if y = 0 and dt+1[y;xit] = 1fy = yit�1gdit + 1 if y > 0.
15The integrated value function is de�ned as the integral of the value function over the distribution of the i.i.d.

unobservable state variables ".
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The extreme value type 1 distribution of the unobservables " implies that the conditional choice

probability (CCP) function has the following form:

P�i (y j xit; zit) =
exp f � (y;�i; zit) + � (y;xit; zit) + v�i(y; dt+1[y;xit]; zit) gP

j2Y
exp f � (j;�i; zit) + � (j;xit; zit) + v�i(j; dt+1[j;xit]; zit) g (6)

The continuation value function v�i has two properties which play an important role in our

identi�cation results. These properties establish conditions under which the continuation values do

not depend on current endogenous state variables, (yi;t�1:dit).

Property 1. In a model without duration dependence (i.e., �d = 0), the continuation value function

becomes v�i(y; zit) that does not depend on the state variable, yit�1.

Property 2. In a model with duration dependence, the continuation v�i(y; dt+1[y;xit]; zit) is equal

to v�i(y; d
�
y; zit) for any duration dt+1[y;xit] � d�y.

3 Identi�cation

3.1 Preliminaries

The researcher has a panel dataset of N individuals over T periods of time, fyit; xit ; zit : i =

1; 2; :::; N ; t = 1; 2; :::; Tg. We consider microeconometric applications where N is large and T

is small. More precisely, our identi�cation results and the asymptotic properties of the proposed

estimator assume that N goes to in�nity and T is small and �xed.16 We are interested in the

identi�cation of the functions �y and �d that represent the dependence of utility with respect to

the endogenous state variables.

For the rest of this section, we omit the individual subindex i in most of the expressions, and

instead we include � as an argument (or subindex) in those functions that depend on the time-

invariant unobserved heterogeneity, i.e., �� (y; z) and v� (x; z). We use � to represent the vector of

structural parameters that de�ne the functions �y and �d.17

As in Honoré and Kyriazidou (2000), our su¢ cient statistics include the condition that the

exogenous state variables, z, remains constant over several periods. For notational simplicity,
16Note that T represents the number of periods with data on the decision variable and the state variables for all

the individuals. The set of observable state variables includes the endogenous state variables yi;t�1 and dit. Knowing
the values of these state variables at the initial period t = 1 (i.e., yi0 and di1) may require data on the individual�s
choices for periods before t = 1. Therefore, the time dimension T may not correspond to the actual time dimension
of the required panel dataset.
17Since (yt;xt; zt) has �nite support, we can represent the structural functions �y (yt; yt�1; zt) and �d (yt; dt; zt)

using a �nite vector of parameters.

10



we omit z as an argument in most of the expressions for the rest of this section. In section 4,

we explain how to deal with this condition in the implementation of the conditional maximum

likelihood estimator.

Let ey = fy1; y2; :::; yT g be an individual�s observed history of choices and exogenous state

variables, respectively. The model implies that:

P (ey j x1; �; �) = TY
t=1

exp f �� (yt) + � (yt;xt) + v� (yt; dt+1[yt;xt]) gP
j2Y

exp f �� (j) + � (j;xt) + v� (j; dt+1[j;xt]) g
(7)

Our identi�cation results, for di¤erent versions of the model, have the following common features.

First, we show that the log-probability function lnP (ey j x1; �; �) has the following structure:
lnP (ey j x1; �; �) = U(ey;x1)0g� + S(ey;x1)0�� (8)

where U(ey;x1) and S(ey;x1) are vectors of statistics (i.e., deterministic functions of the history
(ey;x1)), g� is a vector of functions of �, and �� is a vector of linear combinations of the original
vector of structural parameters �. This representation is such that each of the vectors, U , g�, S,

and ��, has elements which are linearly independent.18 Based on this representation of the log-

probability of a choice history, we establish the following results. For notational simplicity, we use

U and S to represent U(ey;x1) and S(ey;x1), respectively.
(i) Su¢ ciency. U is a su¢ cient statistic for �, i.e., for any (ey;x1) and �, P (eyjx1; �; U) does not
depend on �. By de�nition, lnP (eyjx1; �; U) is equal to lnP (eyjx1; �)� lnP (U jx1; �), and taking

into account the form of the log-probability in equation (8), we have:

lnP (eyjx1; U; ��) = U 0g� + S
0�� � ln

 P
j:U(j)=U

exp fU(j)0g(�) + S(j)0��g
!

= S0�� � ln
 P
j:U(j)=U

exp fS(j)0��g
! (9)

where
P
j:U(j)=U represents the sum over all the histories that imply the same value U of the vector

of su¢ cient statistics. Equation (9) shows that the structure of the log-probability in (8) implies

that U is a su¢ cient statistic for �.
18Suppose that S and � are K � 1 vectors, and only K� < K elements in S are linearly independent. Then,

S = [Sa; Sb] where Sa contains K� linearly independent elements, and Sb = A Sa where A is a (K � K�) � K�

matrix. This implies that S0� = S0a�
� with �� = [I

... A]0�, such that Sa and �� are vectors with linearly independent
elements.
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(ii) Minimal su¢ ciency. U is a minimal su¢ cient statistic, i.e., it does not contain redundant

information. More formally, let U be a matrix where each row corresponds to a value of the choice

history (ey;x1). Then, U is minimal if and only if matrix U is full-column rank.

(iii) Identi�cation. De�ne the conditional log-likelihood function, in the population, ` (��) �

E(ey;x1) [lnP (eyjx1; U; ��)]. The vector of parameters �� is point identi�ed if the population likelihood
is uniquely maximized at the true value of ��. Lemma 1 establishes a necessary and su¢ cient

condition for identi�cation that is simple to verify. Let K be the dimension of the vector of

statistics S and of the vector of parameters ��.

LEMMA 1. Given K + 1 histories (ey;x1), say fAj : j = 0; 1; 2:::;Kg, de�ne a K �K matrix S

such that every row j is associated to a history and contains the vector of statistics S(Aj)0�S(A0)0.

The vector of parameters �� is identi�ed if and only if there exist K + 1 histories with the same

value of the statistic U and a non-singular matrix S. �

Corollary: If K = 1, parameter �� is identi�ed i¤ there are two histories, A and B, such that

U(A) = U(B) and S(A) 6= S(B).

The derivation of these su¢ cient statistics should deal with two issues that do not appear in

the previous literature on FE-CMLE of non-structural (or myopic) nonlinear panel data models.

First, we consider models with duration dependence. Second, we should take into account that

unobserved heterogeneity enters in the continuation value function, v�. This implies that the su¢ -

cient statistic U should control not only for �� (yt) but also for the continuation values v� (yt; dt+1).

This is challenging because, in general, these continuation values depend on the endogenous state

variables. We cannot fully control for (or condition on) the value of the state variables because the

identi�cation condition (iii) would not hold. We show that there are states where the continuation

value does not depend on current state variables once we condition on current choices.

The presentation of our identi�cation results tries to emphasize both the links and extensions

with previous results in the literature. For this reason, we start presenting identi�cation results for

the binary choice model, that is the model more extensively studied in the literature of nonlinear

dynamic panel data. For this binary choice model, we present new identi�cation results for the

myopic model with duration dependence and for the forward-looking model with and without

duration dependence. Then, we present our identi�cation results for multinomial models.
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Some useful statistics. We show below that, in our model, the log-probability of a choice history,

P (ey j y0; d1; �; �), can be written in terms of several sets of statistics or functions of (y0; d1; ey): the
initial and �nal choices, fy0; yT g; the initial and �nal durations, fd1; dT+1g; and the statistics that

we denote as hits, dyads, histogram of states, and histogram of choice-states. We now de�ne these

statistics. Note that each of these statistics for a single history (y0; d1; ey).
Hit statistics. For any choice alternative y 2 Y, the hit statistic T (y) represents the number of

times that alternative y is visited (or hit) during the choice history ey, i.e., T (y) �PT
t=1 1fyt = yg.

Dyad statistics. For y�1 and y in Y, the dyad statistic D(y�1;y) is the number of times that the

sequence (y�1; y) is observed at two consecutive periods in the choice history (y0; ey), i.e., D(y�1;y) �PT
t=1 1fyt�1 = y�1, yt = yg.

Histogram of states. Given a history (y0; d1; ey), the statistic H(y)(d) (for y 2 Y and d � 0)

is the number of times that we observe state (yt�1; dt) = (y; d), i.e., H(y)(d) =
PT
t=1 1fyt�1 = y,

dt = dg.

Extended histogram of states. For any y 2 Y and d � 0, the statistic X(y)(d) represents the

number of times that we observe state (yt�1; dt) = (y; d) and the individual decides to continue one

more period in choice y. By de�nition, X(y)(d) =
PT
t=1 1fyt�1 = yt = y, dt = dg.

Di¤erence between �nal and initial states. For any y 2 Y and d � 0, the statistic �(y)(d) is

de�ned as 1fyT = y, dT+1 = dg�1fy0 = y; d1 = dg. When the di¤erence applies only to the choice

variable, we represent it as �(y) � 1fyT = yg � 1fy0 = yg.

Table 1 summarizes our de�nition of statistics. The following Lemma 2 establishes several

properties of these statistics that we apply in our derivations.

LEMMA 2. For any history (y0; d1; ey) and value y > 0 the following properties apply: (i)

H(y)(0) = 0; (ii) X(y)(0) = 0; (iii)
P
d�1H

(y)(d) = T (y) � �(y); (iv)
P
d�1X

(y)(d) = D(y;y);

(v) for d � 1, X(y)(d) = H(y)(d+ 1) +�(y)(d+ 1); (vi)
P
d�1�

(y)(d) = �(y); and (vii) for y � 1,P
y�1 6=yD

(y�1;y) = H(y)(1) + �(y). �
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Table 1
De�nition of statistics for a choice history fy0; d1 j eyg

Name: Symbol De�nition

Hits: T (y)
PT
t=1 1fyt = yg

Dyad: D(y�1;y)
PT
t=1 1fyt�1 = y�1, yt = yg

Histogram of states: H(y)(d)
PT
t=1 1fyt�1 = y, dt = dg

Extended histogram of states: X(y)(d)
PT
t=1 1fyt�1 = yt = y, dt = dg

Di¤. �nal-initial states: �(y)(d) 1fyT = y,dT+1 = dg � 1fy0 = y; d1 = dg
�(y) 1fyT = yg � 1fy0 = yg

3.2 Binary choice models

Consider the binary choice version of the model characterized by Assumption 1. The optimal

decision rule in this model is:

yt = 1

8<:
��(1)� ��(0) + �(1; yt�1; dt)� �(0; yt�1; dt)

+v� (1; dt + 1)� v� (0) + "t(1)� "t(0) � 0

9=; (10)

where for choice y = 0 we use v� (0) instead v� (0; 0) to emphasize that there is not duration

dependence when the state is y = 0. We now present identi�cation results for di¤erent versions of

this model, starting with the myopic model without duration dependence that has been studied by

Chamberlain (1985) and Honoré and Kyriazidou (2000).

3.2.1 Myopic dynamic model without duration dependence

Consider the model in equation (10) under the restrictions of myopic behavior (i.e., � = 0) and

no duration dependence (i.e., �d(y; d) = 0). These restrictions imply that the continuation val-

ues, v� (1; dt + 1) and v� (0), become zero, and the term �(1; yt�1; dt) � �(0; yt�1; dt) becomes

equal to �y(1; 0) � yt�1 [�y(1; 0) + �y(0; 1)]. We can present this model using the more standard

representation,

yt = 1
ne�� + e�y yt�1 + e"t � 0o (11)

with e�� � ��(1)� ��(0) + �y(1; 0), e�y � ��y(1; 0)� �y(0; 1), and e"t � "t(1)� "t(0). In a model of
market entry-exit, the parameter e�y represents the sum of the costs of entry and exit, or equivalently
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the sunk cost of entry. This is an important structural parameter.

De�ne function ��(yt�1) � � ln
�
1 + exp

ne�� + e�yyt�1o�. The log-probability of the choice
history ey conditional on (y0; �) is:

lnP (ey j y0; �) =
TP
t=1
yt

he�� + e�yyt�1i+ (1� yt�1) ��(0) + yt�1 ��(1) (12)

Proposition 1 establishes (i) the su¢ cient statistic, (ii) minimal su¢ ciency, and (iii) identi�cation

for this model.

PROPOSITION 1. In the myopic binary choice model without duration dependence the log-probability

of a choice history has the form

lnP (ey j y0; �) = T (1) g�;1 +�
(1) g�;2 + e�y D(1;1) (13)

with g�;1 � e��+��(1)���(0), and g�;2 � ��(0)���(1), such that U = fT (1); �(1)g, S = D(1;1), and
�� = e�y. We have that: (i) U = fT (1); �(1)g is a su¢ cient statistic; (ii) T (1) and �(1) are linearly
independent such that U is a minimal su¢ cient statistic; and (iii) for T � 3 there is a pair of

histories fy0jeyg, say A and B, with U(A) = U(B) and S(A) 6= S(B) such that the parameter e�y is
identi�ed as [lnP (AjU)� lnP (BjU)] =

h
D
(1;1)
A �D(1;1)B

i
. For instance, with T = 3, A = f0j0; 1; 1g

and B = f0j1; 0; 1g. �

This Proposition 1 is almost identical to the identi�cation result in Chamberlain (1985). Cham-

berlain shows that the vector of statistics fT (1); y0, yT g is su¢ cient for �, and conditional on this

vector the parameter e�y is identi�ed. Our Proposition 1 shows that Chamberlain�s su¢ cient sta-
tistic is not minimal and the minimal statistic is fT (1); yT �y0g. However, it turns out that, in this

binary choice model, the extra variation left by the minimal su¢ cient statistic does not help in the

identi�cation of e�y, so the two CMLEs are equivalent.
3.2.2 Forward-looking dynamic model without duration dependence

Consider a forward-looking version of the model in equation (10) but still without duration de-

pendence. Since the model is of forward-looking behavior, now we have the continuation values

v� (1; dt + 1)�v� (0). However, there is not duration dependence, and the only state variable is yt�1.

Therefore, for this version of the model we have that v� (1; dt + 1)� v� (0) becomes v�(1)� v�(0) �
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ev�, i.e., continuation values depend on current choices but not on the current state variable yt�1.
We can represent this model as,

yt = 1fe�� + ev� + e�yyt�1 + e"t � 0g (14)

The only di¤erence between this model and the myopic model is that now the �xed e¤ect has two

components: e�� that comes from current pro�t, and ev� that comes from the continuation values.

However, from the point of view of identi�cation and estimation, the two models are observationally

equivalent.

A key feature of this model, that determines the observational equivalence with the myopic

model, is the property that the state variable at period t+1 depends on the choice at period t but

not on the state variable at period t, i.e., xt+1 = yt.

Proposition 2 establishes this equivalence.

PROPOSITION 2. In the forward-looking binary choice model without duration dependence the

log-probability of a choice history has the form

lnP (ey j y0; �) = T (1) g�;1 +�
(1) g�;2 + e�y D(1;1) (15)

with g�;1 � e��+ev�+��(1)���(0), and g�;2 � ��(0)���(1), such that U = fT (1); �(1)g, S = D(1;1),
and �� = e�y. We have that: (i) U = fT (1); �(1)g is a su¢ cient statistic; (ii) T (1) and �(1) are

linearly independent such that U is a minimal su¢ cient statistic; and (iii) for T � 3 there is a pair

of histories fy0jeyg, say A and B, with U(A) = U(B) and S(A) 6= S(B) such that the parametere�y is identi�ed as [lnP (AjU)� lnP (BjU)] = hD(1;1)A �D(1;1)B

i
. �

3.2.3 Myopic dynamic model with duration dependence

The continuation values are zero, and the term �(1; yt�1; dt) � �(0; yt�1; dt) is equal to (1 � yt�1)

�y(1; 0)+ yt�1 �d(1; dt)� yt�1�y(0; 1), and it can be represented as �y(1; 0) + e�y yt�1 + �d(1; dt)
yt�1. Therefore, we can present this model as

yt = 1fe�� + e�yyt�1 + �d(1; dt) yt�1 + e"t � 0g (16)

For this model, the log-probability of the choice history ey conditional on (y0; d1; �) is:
lnP (ey j y0; d1; �) =

TP
t=1
yt

he�� + e�y yt�1 + �d(1; dt) yt�1i+ ��(yt�1; dt) (17)
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where ��(yt�1; dt) � � ln
�
1 + exp

ne�� + e�y yt�1 + �d(1; dt) yt�1o�. In order to emphasize that
��(yt�1; dt) does not depend on dt when yt�1 = 0, we use the notation ��(0) to represent ��(0; 0).

Proposition 3 establishes the minimal su¢ cient statistic and identi�cation of structural para-

meters in this model.

PROPOSITION 3. In the myopic binary choice model with duration dependence under Assumption

1, the log-probability of a choice history has the form

lnP (eyjy0; d1) =
P
d�1

H(1)(d) g�;1(d) + �
(1) g�;2 +

P
d�1

�(1)(d) (d� 1) (18)

with g�;1(d) � e�� + ��(1; d)� ��(0) + (d� 1), g�;2 � e��, (d) � e�y + �d(1; d), and (0) = 0, such
that U = fH(1)(d) : d � 1; �(1)g, S = f�(1)(d) : d � 1g, and �� = f(d) : d � 1g. Then, we have

that: (i) U is a su¢ cient statistic. (ii) The elements in the vector U are linearly independent such

that U is a minimal su¢ cient statistic. (iii) Conditional on U , the statistics f�(1)(d) : d � 1g

have variation and the structural parameters f(d) : 1 � d � T � 2g are identi�ed, i.e., for any

1 � d � T � 2, there is a pair of histories, A and B, such that U(A) = U(B) and (d) =

lnP (AjU)� lnP (BjU). �

Proof. The derivation of equation (18) is in the Appendix. Proof of (iii). For any duration n,

with 1 � n � T � 2, de�ne a sub-history fy0; d1 j yn+2g, and consider the sub-histories A =

f0; 0 j 0;1n+1g and B = f0; 0 j 1n; 0; 1g, where 1n represents a sequence of n consecutive 10s. The

corresponding histories of durations fdt : t = 1; :::; n + 2g are: for A, f0; 0; 1; :::; ng; and for B,

f0; 1; :::; n; 0g. It is clear that the histogram of durations is the same under the two histories:

H
(1)
A (d) = H

(1)
B (d) = 1 for any 1 � d � n, and H(1)

A (d) = H
(1)
B (d) = 0 for d � n + 1. Also,

�
(1)
A = yn+2;A�y0;A = 1 and �(1)B = yn+2;B�y0;B = 1. Therefore, we conclude that U(A) = U(B).

For the statistics associated to the structural parameters: d1;A = 0 and dn+3;A = n+ 1, such that

�
(1)
A (n+1) = 1 and �

(1)
A (d) = 0 for any d 6= n+1; d1;B = 0 and dn+3;B = 1, such that �

(1)
B (d) = 0

for any d � 2. Therefore, lnP (AjU) � lnP (BjU) = [�
(1)
A (n + 1) ��

(1)
B (n + 1)] (n) = (n), and

this structural parameter is identi�ed. �

For this model, the vector of su¢ cient statistics include the histogram of durations, fH(1)(d) :

d � 1g. Conditional on these statistics, the identi�cation of the structural parameter (d) comes

from the di¤erence between the �nal and the initial value of duration, �(1)(d + 1) = 1fdT+1 =
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d+1g� 1fd1 = d+1g. The identi�cation result in Proposition 3 for the myopic model with duration

dependence does not depend on Assumption 2.

In this binary choice model, the parameters e�y and �d(1; n) cannot be separately identi�ed.
However, given the parameters f(d) : 1 � d � T � 2g, we can identify the marginal returns to

experience �d(1; d)� �d(1; d� 1) as (d)� (d� 1) for any value d between 2 and T � 2.19

3.2.4 Forward-looking dynamic model with duration dependence

Now, the optimal decision rule includes the di¤erence of continuation values v� (1; dt + 1)� v� (0).

Therefore, the model is:

yt = 1
ne�� + e�y yt�1 + �d(1; dt) yt�1 + v� (1; dt + 1) + e"t � 0o (19)

where now e�� � ��(1)� ��(0) + �y(1; 0)� v� (0). For this model, the log-probability of the choice
history ey conditional on (y0; d1; �) is:

lnP (ey j y0; d1; �) =
TP
t=1
yt

he�� + e�yyt�1 + �d(1; dt)yt�1 + v� (1; dt + 1)i+ ��(yt�1; dt) (20)

with ��(yt�1; dt) � � ln(1+ expfe��+ e�yyt�1+ �d(1; dt)yt�1+ v� (1; dt + 1)g). Comparing equation
(20) with (17) we can see the forward looking model has the additional term

PT
t=1 yt v� (1; dt + 1).

Proposition 4 establishes that under Assumption 1 (and without Assumption 2) there is not

identi�cation of any structural parameter.

PROPOSITION 4. In the forward-looking binary choice model with duration dependence under

Assumption 1, the log-probability of a choice history has the following form

lnP (eyjy0; d1; �) =
P
d�1

H(1)(d) g�;1(d) +
P
d�1

�(1)(d) g�;2(d) (21)

with g�;1(d) � e�� + ��(1; d) � ��(0) + (d � 1) + v� (1; d), g�;2(d) � e�� + v� (1; d) + (d � 1),
(d) � e�y + �d(1; d), and (0) = 0, such that S = f�(1)(d) : d � 1g and U = fH(1)(d) : d � 1;

�(1)(d) : d � 1g. The minimal su¢ cient statistic U includes the whole vector S, and therefore, the

structural parameters (d) are not identi�ed. �
19 In this binary choice model with both switching costs and duration dependence, it is not possible to separately

identify the switching cost parameter e�y and the level of the return to experience �d(1; d). This result resembles the
under-identi�cation of the autoregressive of the order two model studied by Chamberlain (1985). In that model, we
have yit = 1fe�i + �1 yi;t�1 + �2 yi;t�2 + e"it � 0g. Chamberlain shows that the parameter �2 is identi�ed but the
parameter �1 is not.
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In terms of the minimal su¢ cient statistic, the di¤erence between this forward-looking model

and its myopic counterpart is that now we need to control for the di¤erence between �nal and

initial duration, �(1)(d+ 1). These additional statistics are also the only statistics associated with

the structural parameter (d). Therefore, after controlling for the vector of su¢ cient statistics U ,

there is not variation left that can identify structural parameters in this model.

The under-identi�cation result in Proposition 4 applies to the model under Assumption 1 but

without Assumption 2. Under Assumption 2, continuation values are such that v� (1; d) = v� (1; d�)

for any d � d�. This property provides identi�cation of some structural parameters. Proposition 5

establishes this result.

PROPOSITION 5. In the forward-looking binary choice model with duration dependence under

Assumptions 1 and 2, the log-probability of a choice history has the following form

lnP (eyjy0; �) =
P

d�d��1
H(1)(d) g�;1(d) +

" P
d�d�

H(1)(d)

#
g�;1(d

�)

+
P

d�d��1
�(1)(d) g�;2(d) +

" P
d�d�

�(1)(d)

#
g�;2(d

�)

+ �(1)(d�) [�d(1; d
� � 1)� �d(1; d�)]

(22)

with g�;1(d) � e��+��(1; d)���(0)+(d�1)+ v� (1; d), and g�;2(d) � e��+ v� (1; d)+(d�1). We
have that: (i) U = fH(1)(d) : d � d� � 1;

P
d�d�H

(1)(d); �(1)(d) : d � d� � 1,
P
d�d��

(1)(d)g is a

su¢ cient statistic for �. (ii) The elements in the vector U are linearly independent such that U is

a minimal su¢ cient statistic. (iii) Conditional on U , the statistic �(1)(d�) has variation and the

structural parameter ��d(d�) � �d(1; d�)��d(1; d��1) is identi�ed, i.e., there is a pair of histories,

A and B, such that U(A) = U(B) and��d(d�) = [lnP (AjU) � lnP (BjU)]=[�(1)A (d�) ��
(1)
B (d

�)].

�

Proof. The derivation of equation (22) is in the Appendix. Proof of (iii). Given a choice history

fy0; d1 j eyg consider the sub-history fy0; d1 j y1; y2; :::; y2d�+1g. Consider the choice histories A =
f0; 0 j 1d��1; 0;1d�+1g and B = f0; 0 j 1d� ; 0;1d�g. The corresponding histories of durations fdt :

t = 1; :::; 2d� + 1g are: for A, f0; 1; 2; :::; d� � 1; 0; 1; 2; :::; d�g; and for B, f0; 1; 2; :::; d�; 0;

1; 2; :::; d� � 1g. We verify that U(A) = U(B): (a) for any d � d� � 1, HA(d) = HB(d) = 2;

(b)
P
d�d� HA(d) =

P
d�d� HB(d) = 1; (c) for any d � d� � 1, �(1)A (d) = �

(1)
B (d) = 0; and
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(d)
P
d�d��

(1)
A (d) =

P
d�d��

(1)
B (d) = 1. The two histories have di¤erent values for the statistic

�(1)(d�), i.e., �(1)A (d
�) = 0 and �(1)B (d

�) = 1. Therefore, lnP (AjU) � lnP (BjU) = [�
(1)
A (d

�) �

�
(1)
B (d

�)] [���d(d�)] = ��d(d�). �

In the forward-looking binary choice model with duration dependence, only��d(d�) is identi�ed.

This result contrasts with the myopic model where we can identify ��d(d) for any duration 2 �

d � T � 1 (Proposition 3).

Table 2 summarizes the identi�cation results for the binary choice model.

Table 2
Identi�cation of Dynamic Binary Logit Models

Panel 1: Models without duration dependence

Myopic Model Forward-Looking Model
Minimal Identi�ed Identifying Minimal Identi�ed Identifying

su¢ cient stat. parameters statistics su¢ cient stat. parameters statistics

T (1); �(1) e�y D(1;1) T (1); �(1) e�y D(1;1)

Panel 2: Models with duration dependence

Myopic Model Forward-Looking Model
Minimal Identi�ed Identifying Minimal Identi�ed Identifying

su¢ cient stat. parameters statistics su¢ cient stat. parameters statistics

�(1); e�y + �d(1; d) �(1)(d) H(1)(d) : d � d��1; ��d(d
�) � �(1)(d�)

H(1)(d) : d � 1 for d � T � 2
P
d�d�H

(1)(d); �d(1; d
�)

�(1)(d) : d � d��1; ��d(1; d��1)P
d�d��

(1)(d)

Identi�cation of d� in the forward-looking model. We have assumed so far that the value of d� is

known to the researcher. We now establish the identi�cation of d�. Let n be any duration such that

2n + 1 � T . Consider the pair of histories An = f0; 0 j 1n�1; 0;1n+1g and Bn = f0; 0 j 1n; 0;1ng.

We have that:8>>>><>>>>:
For n > d�, U(An) = U(Bn), and lnP (AnjU)� lnP (BnjU) = ��d(n) = 0

For n = d�, U(An) = U(Bn), and lnP (AnjU)� lnP (BnjU) = ��d(d�) 6= 0

For n < d�, U(An) 6= U(Bn)

(23)
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Note that lnP (AnjUn) � lnP (BnjUn) identi�es the parameter ��d(n) only if n � d�. Given a

dataset with T time periods, we can construct histories An and Bn only if 2n + 1 � T . Putting

these two conditions together, the identi�cation of the value of d� requires that T � 2d� + 1 or

equivalently, d� � (T � 1)=2. Under this condition, we can describe the parameter d� as the

maximum value of n such that lnP (AnjUn)� lnP (BnjUn) 6= 0. This condition uniquely identi�es

d�.

PROPOSITION 6. Consider the forward-looking binary choice model with duration dependence

under Assumptions 1 and 2. For any duration n with 2n+1 � T , de�ne the pair of histories An =

f0; 0 j 1n�1; 0;1n+1g and Bn = f0; 0 j 1n; 0;1ng. Then, if d� � (T � 1)=2, we have that the value

of d� is point identi�ed as:

d� = max fn : lnP (AnjUn)� lnP (BnjUn) 6= 0g � (24)

3.3 Multinomial choice models

3.3.1 Multinomial myopic model without duration dependence

We can represent this model as yt = argmaxy2Yf��(y) + �y(y; yt�1) + "t(y)g. The log-probability

of the choice history ey conditional on (y0; �) is:
lnP (eyjy0; �) =

TP
t=1
[��(yt) + �y(yt; yt�1)] + ��(yt�1) (25)

where ��(yt�1) � � ln
hPJ

y=0 expf��(y) + �y(y; yt�1)g
i
. Proposition 7 presents our identi�cation

result for this model.

PROPOSITION 7. In the myopic multinomial model without duration dependence under Assump-

tion 1, the log-probability has the following form

lnP (eyjy0; �) =
JP
y=1
T (y) g�;1(y) +

JP
y=1
�(y) g�;2(y) +

JP
y�1=1

JP
y=1
D(y�1;y) e�y(y; y�1) (26)

where g�;1(y) � ��(y)���(0)+��(y)���(0)+�y(0; y)+�y(y; 0), g�;2(y) � ���(y)+��(0)��y(0; y),

and e�y(y; y�1) � �y(y; y�1) � �y(0; y�1) � �y(y; 0) for any y; y�1 2 Y. Then: (i) U = fT (y) : y �
1; �(y) : y � 1g is a su¢ cient statistic for �. (ii) The elements in the vector U are linearly

independent such that U is a minimal su¢ cient statistic. (iii) Conditional on U , the vector of

statistics fD(y�1;y) : y�1; y 2 Y � f0gg are linearly independent such that they can identify the vector
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of parameters fe�y(y; y�1) : y�1; y 2 Y � f0gg, i.e., for every pair of choices y�1; y 2 Y � f0g, there
is a pair of histories, A and B, such that U(A) = U(B) and e�y(y; y�1) = [lnP (AjU)� lnP (BjU)]=
[D

(y�1;y)
A �D(y�1;y)B ]. �

The following example illustrates a pair of histories that identi�es e�y(y; y�1).
EXAMPLE 1. Suppose that T = 3 and consider the following two realizations of the history

(y0jey): A = f0 j 0; j; kg and B = f0 j j; 0; kg with j; k 6= 0. We �rst con�rm that U(A) = U(B):

T
(j)
A = T

(j)
B = 1, T (k)A = T

(k)
B = 1, and T (y)A = T

(y)
B = 0 for any y 6= 0; j; k. The identifying statistics

D(y�1;y) take the following values: D(j;k)A �D(j;k)B = 1, D(j;0)A �D(j;0)B = �1, D(0;k)A �D(0;k)B = �1, and

D
(y�1;y)
A �D(y�1;y)B = 0 for any other pair (y�1; y). Therefore, we have that lnP (AjU)�lnP (BjU) =e�y(k; j)� e�y(0; j)� e�y(k; 0) = e�y(k; j). A particular case of this example is when j = k, such that

A = f0 j 0; j; jg and B = f0 j j; 0; jg. In this case, lnP (AjU)� lnP (BjU) identi�es e�y(j; j) that is
equal to the sunk cost ��y(0; j)� �y(j; 0). �

As in the binary choice model, we cannot identify the whole switching cost function �y. With

J + 1 choice alternatives, we can identify J2 switching cost parameters. However, the structural

parameter e�y(y; y�1) � �y(y; y�1)��y(0; y�1)��y(y; 0) has a clear interpretation: it is the di¤erence
in switching cost between a direct switch from y�1 to y and an indirect switch via alternative 0. For

this identi�cation result, there is nothing special with alternative 0 and we could choose any other

alternative as the baseline. Note also that the set of identi�ed structural parameters e�y(y; y�1)
includes the sunk cost of entry in market y, i.e., for any y > 0, e�y(y; y) = ��y(0; y) � �y(y; 0),

because �y(y; y) = 0.

3.3.2 Multinomial forward-looking model without duration dependence

The optimal decision rule for this model is yt = argmaxy2Yf��(y) + v�(y) + �y(y; yt�1) + "t(y)g,

where v�(y) is the continuation value of choosing alternative y. The log-probability of the choice

history ey conditional on (y0; �) has a similar form as in the myopic model, but now the incidental

parameter � enters through the function ��(y) + v�(y).

lnP (eyjy0; �) =
TP
t=1
[��(yt) + v�(yt) + �y(yt; yt�1)] + ��(yt�1) (27)

Therefore, the identi�cation of the structural parameters is the same as in the myopic model without

duration dependence.

22



PROPOSITION 8. In the multinomial forward-looking model without duration dependence under

Assumption 1, the log-probability of a choice history has the following form

lnP (eyjy0; �) =
JP
y=1
T (y) g�;1(y) +

JP
y=1
�(y) g�;2(y) +

JP
y�1=1

JP
y=1
D(y�1;y) e�y(y; y�1) (28)

where g�;1(y) � ��(y) � ��(0) + v�(y) � v�(0) + ��(y) � ��(0) + �y(0; y) + �y(y; 0), and g�;2(y) �

��(y) � ��(0) � �y(0; y). Then: (i) U = fT (y) : y � 1; �(y) : y � 1g is a su¢ cient statistic for

�. (ii) The elements in the vector U are linearly independent such that U is a minimal su¢ cient

statistic. (iii) Conditional on U , the vector of statistics fD(y�1;y) : y�1; y 2 Y � f0gg are linearly

independent such that they can identify the vector of parameters fe�y(y; y�1) : y�1; y 2 Y � f0gg.
�

3.3.3 Multinomial myopic model with duration dependence

The model is yt = argmaxy2Yf��(y) + 1fy 6= yt�1g �y(y; yt�1) + 1fy = yt�1g �d(y; dt) + "t(y)g,

and the log-probability of a choice history ey conditional on (y0; d1; �) is:
lnP (eyjy0; d1; �) =

TP
t=1
[��(yt) + 1fyt 6= yt�1g�y(yt; yt�1) + 1fyt = yt�1g�d(yt; dt)] + ��(yt�1)

(29)

Proposition 9 presents identi�cation results for the structural parameters �y and �d.

PROPOSITION 9. In the multinomial myopic model with duration dependence under Assumption

1, the log-probability of a choice history has the form

lnP (eyjy0; d1) =
JP
y=1

P
d�1
H(y)(d) g�;1(y; d) +

JP
y=1
�(y) g�;2(y)

+
JP

y�1=1

JP
y=1;y 6=y�1

D(y�1;y) e�y(y; y�1) + JP
y=1

P
d�1
�(y)(d) (y; d� 1)

(30)

with g�;1(y; d) � ��(y) � ��(0) + ��(y; d) � ��(0) + �y(0; y) + �y(y; 0) + (y; d � 1), g�;2(y) �

��(y) � ��(0) + �y(y; 0), e�y(y; y�1) � �y(y; y�1) � �y(0; y�1) � �y(y; 0), and (y; d) � �d(y; d) �

�y(y; 0)� �y(0; y). Then: (i) U = fH(y)(d) : y � 1; d � 1; �(y) : y � 1g is a su¢ cient statistic of

�. (ii) The elements in the vector U are linearly independent such that U is a minimal su¢ cient

statistic. (iii) Conditional on U , the vector of statistics fD(y�1;y) : y�1; y � 1; �(y)(d) : y � 1,

d � 1g are linearly independent and they identify the vectors of structural parameters fe�y(y; y�1) :
y�1; y � 1, y 6= y�1; (y; d) : y � 1, d � 1g. �
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The following examples present choice histories that identify structural parameters e�y(y; y�1)
and (y; d) according to Proposition 9.

EXAMPLE 2. Suppose that T = 3 and consider two realizations of the history (y0; d1jey): for j 6= k,
A = f0; 0 j 0; j; kg and B = f0; 0 j j; 0; kg. It is straightforward to verify that U(A) = U(B) and

that lnP (AjU)� lnP (BjU) = �y(k; j)� �y(k; 0)� �y(0; j) = e�y(k; j). �

EXAMPLE 3. Given an arbitrary positive integer n, consider the pair of choice histories (y0; d1jey)
with T = n + 2: A = f0; 0 j 0;yn+1g and B = f0; 0 j yn; 0; yg, where yn represents a vector of

dimension n with all its elements equal to y. It is simple to verify that U(A) = U(B) (i.e., same

values for H(y)(d) and �(y)). Furthermore, �(y)A (n+1) = 1 and �
(y)
B (n+1) = 0, such that we have

lnP (AjU)� lnP (BjU) = (y; n). �

3.3.4 Multinomial forward-looking model with duration dependence

The model is yt = argmaxy2Yf��(y) + �y(y; yt�1) + 1fy = yt�1g�d(y; dt) + v�(y; dt+1[y; yt�1; dt]) +

"t(y)g, where dt+1[y; yt�1; dt] = 0 if y = 0, and dt+1[y; yt�1; dt] = 1fy = yt�1gdt+1 if y 6= 0. In con-

trast to the binary choice model, in the multinomial choice model it is possible to identify switching

cost parameters without imposing Assumption 2. Proposition 10 establishes the identi�cation of

switching costs parameters under Assumption 1.

PROPOSITION 10. In the multinomial forward-looking model with duration dependence under

Assumption 1, the log-probability a choice history has the form

lnP (eyjy0; d1) =
JP
y=1

P
d�1
H(y)(d) g�;1(y; d) +

JP
y=1

P
d�1
�(y)(d) g�;2(y; d)

+
JP

y�1=1

P
y 6=y�1

D(y�1;y) e�y(y; y�1)
(31)

with g�;1(y; d) � ��(y)���(0)+��(y; d)���(0)+�y(0; y)+�y(y; 0)+v� (y; d)�v� (0)+(y; d�1), and

g�;2(y; d) � ��(y)���(0)+�y(0; y)+v� (y; d)�v� (0)+(y; d�1). Then: (i) U = fH(y)(d) : y � 1;

d � 1; �(y)(d) : y � 1, d � 1g is a su¢ cient statistic of �. (ii) The elements in the vector U

are linearly independent such that U is a minimal su¢ cient statistic. (iii) Conditional on U , the

vector of statistics fD(y�1;y) : y�1; y � 1g are linearly independent and they identify the vectors

of structural parameters fe�y(y; y�1) : y�1; y � 1; y 6= y�1g. The duration dependence parameters
(y; d) are not identi�ed. �
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For instance, the pair of choice histories in Example 2, A = f0; 0 j 0; j; kg and B = f0; 0 j j; 0; kg,

have the same continuation values. In this forward-looking model, it is simple to very that these his-

tories satisfy the conditions in Proposition 10 such that U(A) = U(B) and lnP (AjU)�lnP (BjU) =e�y(k; j).
For the identi�cation of duration dependence parameters, we impose the restriction in Assump-

tion 2. Proposition 11 presents this identi�cation result.

PROPOSITION 11. In the multinomial forward-looking model with duration dependence under

Assumptions 1 and 2, the log-probability a choice history has the form

lnP (eyjy0; d1) =
JP
y=1

P
d�d�y�1

H(y)(d) g�;1(y; d) +

"
JP
y=1

P
d�d�y

H(y)(d)

#
g�;1(y; d

�
y)

JP
y=1

P
d�d�y�1

�(y)(d) g�;2(y; d) +

"
JP
y=1

P
d�d�y

�(y)(d)

#
g�;2(y; d

�
y)

+
JP

y�1=1

JP
y=1;y 6=y�1

D(y�1;y) e�y(y; y�1)� JP
y=1
�(y)(d�y) ��d(y; d

�
y)

(32)

with g�;1(y; d) � ��(y)� ��(0) + ��(y; d)� ��(0) + �y(0; y) + �y(y; 0) + v� (y; d)� v� (0) + (y; d�

1), and g�;2(y; d) � ��(y) � ��(0) + �y(y; 0) + v� (y; d) � v� (0) + (y; d � 1), and ��d(y; d�y) �

�d(y; d
�
y) � �d(y; d�y � 1). (i) U = fH(y)(d) : y � 1; d � d�y � 1;

P
d�d�yH

(y)(d); �(y)(d) : y � 1;

d � d�y � 1,
P
d�d�y�

(y)(d)g is a su¢ cient statistic of �. (ii) The elements in the vector U are

linearly independent such that U is a minimal su¢ cient statistic. (iii) Conditional on U , the

vector of statistics fD(y�1;y) : y�1; y � 1g are linearly independent and they identify the vector

of structural parameters fe�y(y; y�1) : y�1; y � 1; y 6= y�1g. Furthermore, the vector of statistics

f�(y)(d�) : y � 1g are also linearly independent and they identify the vector of structural parameters

f��d(y; d�y) : y � 1g. �

EXAMPLE 4. Given y � 1 with d�y � 2, consider the pair of choice historiesA =
n
0; 0 j yd�y�1; 0;yd�y+1

o
and B =

n
0; 0 j yd�y ; 0;yd�y

o
. The two choice histories have the same statistics H(y)(d) for all

1 � d � d�y � 1 and
P
d�d�y H

(y)(d), and minfd1; d�yg and minfdT+1; d�yg agrees between A and

B. Therefore, we have that U(A) = U(B). It is straightforward to show that �(y)A (d
�
y) = 0 and

�
(y)
B (d

�
y) = 1, and this implies that lnP (AjU)� lnP (BjU) = ��d(y; d�y). �
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Table 3 summarizes the identi�cation results for the multinomial model.

Table 3
Identi�cation of Dynamic Multinomial Logit Models

Panel 1: Models without duration dependence

Myopic Model Forward-Looking Model
Minimal Identi�ed Identifying Minimal Identi�ed Identifying

su¢ cient stat. parameters statistics su¢ cient stat. parameters statistics

T (y); �(y): y � 1 e�y(y; y�1) D(y�1;y): T (y); �(y): y � 1 e�y(y; y�1) D(y�1;y)

y�1; y � 1 y�1; y � 1 y�1; y � 1 y�1; y � 1

Panel 2: Models with duration dependence

Myopic Model Forward-Looking Model
Minimal Identi�ed Identifying Minimal Identi�ed Identifying

su¢ cient stat. parameters statistics su¢ cient stat. parameters statistics

�(y): y � 1; e�y(y; y�1) : D(y�1;y): H(y)(d) : e�y(y; y�1) : D(y�1;y)

H(y)(d) : y�1; y � 1 y�1; y � 1 y � 1; d � d�y � 1; y�1 6= y � 1 y�1 6= y � 1
y � 1; d � 1 and and

P
d�d�

H(y)(d) : y � 1; and and

(y; d) : �(y)(d) : �(y)(d) : ��d(y; d
�
y) : �(y)(d�y) : y � 1

y � 1; d � 1 y � 1; d � 1 y � 1; d � d�y � 1; y � 1P
d�d�

�(y)(d) : y � 1
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3.4 Identi�cation of the distribution of unobserved heterogeneity

In empirical applications of dynamic structural models, the answer to some important empirical

questions requires the identi�cation of the distribution of the unobserved heterogeneity. For in-

stance, the researcher can be interested in the average marginal e¤ects
R
[@P� (yj x; ��) =@x] f(�)

d� or
R
[@P� (yj x; ��) =@��] f(�) d�, where f(�) is the density function of the unobserved hetero-

geneity. Without further restrictions, the density function f(�) is not (nonparametrically) point

identi�ed, i.e., initial conditions problem. In this section, we brie�y describe this identi�cation

problem, and two possible approaches that the researcher can take to deal with this problem: (a)

nonparametric �nite mixture; and (b) set identi�cation.

Let f(� j x1) be the density function of � conditional on the initial value of the state variables

x1 � (y0; d1). After the identi�cation/estimation of the structural parameters, ��, the model

implies the following restrictions for the identi�cation of f(� j x1). For any choice history ey, we
have that:

P (eyjx1) = Z " TY
t=1

P (yt j xt; ��; �)
#
f(�jx1) d� (33)

The probabilities of choice histories P (eyjx1) are identi�ed from the data. Also, for a �xed value of

�, the probabilities P (yt j xt; ��; �) are also known to the researcher after the identi�cation of the

structural parameters ��. Therefore, the identi�cation of the density function f(�jx1) can be seen

as the solution to a system of linear equations.

Let j�j be the dimension of the support of �. This dimension can be in�nite. Equation (33)

can be written in vector form as,

Px1 = Lx1 fx1 (34)

Px1 is a vector of dimension (J + 1)T � 1 with the probabilities of all the possible choice histories

with initial conditions x1. Lx1 is a matrix with dimension (J+1)
T�j�j such that each row contains

the probabilities
QT
t=1P (yt j xt; ��; �) for a given choice history and for every value of �. Finally,

fx1 is a j�j � 1 vector with the probabilities f(�jx1). Given this representation, it is clear that fx1
is point identi�ed if and only if matrix Lx1 is full column rank.

If the distribution of � is continuous, then j�j =1 and Lx1 cannot be full-column rank. In fact,

the number of rows in matrix Lx1 (i.e., the number of possible choice histories, (J + 1)
T ) provides

an upper bound to the dimension of the support j�j for which the density is nonparametrically
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(point) identi�ed. The researcher may be willing to impose the restriction that the support of � is

discrete such that matrix Lx1 is full column rank. Under this condition, fx1 can be identi�ed as

the linear projection:

fx1 =
�
L0x1Lx1

��1
L0x1Px1 (35)

Note that the estimator �� is still a �xed-e¤ect estimator that is robust to this �nite-mixture

restriction on the distribution of the unobservables. However, under this approach, the estimation

of marginal e¤ects depends on this assumption. Alternatively, the researcher may prefer not to

impose this �nite support restriction and set-identify the distribution of the unobservables. This is

the approach in Chernozhukov, Fernandez-Val, Hahn, and Newey (2013).

Finally, we would like to comment on a practical issue in the implementation of the �nite-

mixture estimation described above. For the evaluation of the choice probabilities P (yt j xt; ��; �)

in matrix Lx1 , the vector of unobserved heterogeneity � is multidimensional. That is, we need to

choose a grid of points for the parameters ��(y) but also for the continuation values v�(y; d). In

the forward-looking model without duration dependence, unobserved heterogeneity enters through

the term ��(y) � ��(y) + v�(y). Therefore, for this model we need to �x a grid of points for the J

incidental parameters f��(y) : y > 1g. Using a grid of � points for each parameter ��(y) we have

that the dimension of the density vector fx1 is j�j = �J that should be smaller that (J + 1)T in

order to have identi�cation. In the forward-looking model with duration dependence, unobserved

heterogeneity enters through the term ��(y; d) � ��(y)+v�(y; d). Therefore, we need to �x a grid of

points for the JT incidental parameters f��(y; d) : y > 1; 1 � d � Tg. Using a grid of � points for

each parameter ��(y; d) we have that the dimension of fx1 is j�j = �JT that should be smaller that

(J+1)T . This is a strong restriction on the dimension of unobserved heterogeneity, �. However, this

approach is not taking into account that the continuation values v�(y; d) are endogenous objects

that can be obtained given �0�s and �
� by solving the Bellman equation of the model. Taking into

account this structure of the model, we can reduce substantially the dimensionality of �. Given a

value of the J incidental parameters f��(y) : y > 1g, we can solve the Bellman equation to obtain

all the continuation values v�(y; d). Therefore, the dimension of � in the structural model with

duration dependence is also equal to the dimension of f��(y) : y > 1g, as in the model without

duration dependence.
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4 Estimation and Inference

Since the identi�cation is based on the conditional MLE approach, the estimator for the structural

parameters of interest (�y; �d) will be an Andersen (1970) type of estimator. We illustrate the

estimator for the forward-looking multinomial choice model with duration dependence under As-

sumption 1 and 2, since estimators for the structural parameters in the other models can be de�ned

in a similar fashion.

4.1 Estimation of �� (given d�)

Let �� = fe�0y; 0g0 be the vector of identi�ed structural parameters. Let Ui be the vector of su¢ cient
statistics (associated to �), and let Si be the vector of identifying statistics associated to ��. Then,

the conditional MLE for ��is de�ned as the maximizer of the conditional log-likelihood function:

LN (��) =
NX
i=1

Li(��) =
NX
i=1

S0i�
� �

 P
j:U(j)=Ui

exp
�
S(j)0��

	!
(36)

where the condition fj : U(j) = Uig represents all the choice histories (y0; d1; ey) with the same
value of U as observation i. This log-likelihood function is globally concave in ��, and therefore the

computation of the CMLE is straightforward using Newton-Raphson or BHHH algorithm. Using

standard arguments (Newey and McFadden, 1994), we have

p
N(b�� � ��)) N (0; J(��)�1) (37)

The consistent estimator for the Fisher information is JN (b��) = �N�1PN
i=1r��Li(b��).

4.2 Estimation of d�

We describe here a CML estimator for the joint estimation of (d�; ��). Let d�0 represent the true value

of the parameter d�. And let �0(n) be the true value of the parameter �(n) � �d(y; n)��d(y; n�1).

By de�nition, we have that �0(d�0) 6= 0 and �0(n) = 0 for any n > d�0. For notational simplicity,

we use �� and ��0 to represent �(d
�) and and �0(d�0), respectively. We are interested in the joint

identi�cation of (d�0; �
�
0) from the maximization of the conditional likelihood function.

Based on Proposition 6, we consider the following representation of the su¢ cient statistic U .

For any 2 � n � L with L � (T � 1)=2, de�ne the pair of histories An = f0; 0jyn�1; 0;yT�ng and

Bn = f0; 0jyn; 0;yT�n�1g. Then, Ui = fyi 2 An [Bn for some 2 � n � Lg. Given this statistic,
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the conditional likelihood function is:

LN (�) =
LP
n=2

NP
i=1
1fyi = Ang ln

�
exp f�(n)g

1 + exp f�(n)g

�
+ 1fyi = Bng ln

�
1

1 + exp f�(n)g

�
(38)

where �(n) is a parameter that represents the value �d(y; n)��d(y; n�1)+
R
[v�(y; n+1)�v�(y; n)]

dF (�jx1), and � is the vector of parameters f�(n) : n = 2; 3; :::; Lg. The model implies the following

relationship between the parameters �(n) and the structural parameters (d�; ��).

�(n) =

8>>>><>>>>:
unrestricted if n < d�

�� if n = d�

0 if n > d�

(39)

The unconstrained likelihood function LN (�) is globally concave in each of the parameters

�(n). It is straightforward to show that the unconstrained CML estimator of �(n) is bv(n) =
ln bP (An)� ln bP (Bn), where bP (An) and bP (Bn) are the sample frequencies N�1PN

i=11fyi = Ang and

N�1PN
i=11fyi = Bng, respectively. For a given value of d�, let b�cd� be the constrained estimator

of � that imposes the restriction in equation (39) such that: b�cd�(n) = b�(n) (unconstrained) for
n � d�; and b�cd�(n) = 0 (constrained) for n > d�. Furthermore, the estimator of the structural

parameter �� is c�� = b�(d�).
Let `N (d�) be the concentrated likelihood function `N (d�) � LN (b�cd�), i.e., the value of the

likelihood given a value of d� and where the parameters � have been estimated under this restriction.

By de�nition, we have that:

`N (d
�) = N

d�P
n=2

bP (An) ln" bP (An)bP (An) + bP (Bn)
#
+ bP (Bn) ln" bP (Bn)bP (An) + bP (Bn)

#

+ N
LP

n=d�+1

bP (An) ln �1
2

�
+ bP (Bn) ln �1

2

� (40)

The following Proposition 12 establishes some properties of this concentrated likelihood function.

PROPOSITION 12. (A) As N ! 1, the concentrated likelihood function N�1`N (d
�) converges

uniformly in d� to its population counterpart `0(d�). (B) `0(d�0) > `0(d
�) for any d� < d�0, and

`0(d
�
0) = `0(d

�) for any d� > d�0. Therefore, d
�
0 is point identi�ed as the minimum value of d� that

maximizes the concentrated likelihood function: d�0 = minfn : n 2 argmax2�d��L `0(d�)g. �

Given this result, a possible estimator for d�0 would be the sample analog bd� = minfn : n 2

argmax2�d��L `N (d
�)g. However, this estimator has a an important limitation in �nite samples.
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Though the population likelihood function `0(d�) is �at for values of d� greater than the true d�0,

in a �nite sample this likelihood increases with d� and reaches its maximum at the largest possible

value of d�, i.e., d� = L. This is because any value of d� smaller than L implies restrictions on the

parameters �(n) of the model, i.e., �(n) = 0 for n > d�. The larger the value of d�, the smaller the

number of these restrictions and the largest the value of the likelihood function in a �nite sample.

To deal with this problem we consider an estimator of d�0 that maximizes the Bayesian Informa-

tion Criterion (BIC). This criterion function introduces a penalty that increases with the number

of free parameters fv(n)g in the model. In this model, the number of free parameters is equal to

d�. The BIC function is de�ned as:

BICN (d
�) = `N (d

�)� d
�

2
ln(N) (41)

Our estimator of d�0 is de�ned as the value of d
� that maximizes BICN (d�).

PROPOSITION 13. Consider the estimator cd�N = argmax2�d��L BICN (d�). As N !1, P(cd�N =
d�0)! 1. �

The joint estimation of (d�; ��) has the analogy of model selection where d� determines the

model dimension and �� is the parameter of interest. We can use standard inference for the CML

estimator for �� in this joint estimation method since Proposition 13 shows that cd�N is a consistent
estimator for d�0. This is in the same spirit that under consistent model selection: the asymptotic

property of the estimator for parameters in the selected model is una¤ected (see Pötscher, 1991).

However, Pötscher (1991) also pointed out that inference for parameters post model selection can be

problematic in �nite samples if the parameter is too close to zero and the true model is not selected

with probability close to one. In our Monte Carlo experiments, we found that the probability of

selecting the true d�0 is very close to 1 throughout di¤erent data generating processes.
20

20For example, for DGP 1 with Sample B, described in Table 5, out of 1000 repetition, 99% of the times cd�N agrees
with the true d�0.
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5 Empirical Application

Here we revisit the model and data in the seminal article by Rust (1987). The model belongs

to the class of machine replacement models that we have brie�y described in section 2. The

superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company has a �eet

of N buses indexed by i. For every bus i and at every period t, the superintendent decides whether

to keep the bus engine (yit = 1) or to replace it (yit = 0). In Rust�s model, if the engine is replaced,

the payo¤ is equal to �RC+ "it(0), where RC is a parameter that represents the replacement cost.

If the manager decides to keep the engine, the payo¤ is equal to �c0� c1(mit)+"it(1), where mit is

a state variable that represents the engine cumulative mileage, and c0+ c1(mit) is the maintenance

cost. We incorporate two modi�cations in this model. First, we replace cumulative mileagemit with

duration since last replacement, dit. The transition rule for this state variable is dit+1 = yit[dit+1],

such that dit 2 f0; 1; 2; :::g. Using Rust�s actual data, the correlation between the variables mit

and dit is 0.9552. Second, we allow for time-invariant unobserved heterogeneity in the replacement

cost, RCi, and in the constant term in the maintenance cost function, c0i. Using our notation,

the payo¤ function is �i(0) + "it(0) if yit = 0 (replacing the engine), and �i(1) + �d(dit) + "it(1) if

yit = 1 (keeping the engine), where �i(0) = �RCi, �i(1) = �c0i, and �d(dit) = �c1(dit).

In section 5.1, we present evidence from several Monte Carlo experiments using this model. The

purpose of these experiments is threefold. First, showing that the FE-CMLE provides precise and

robust estimates of structural parameters, even when the sample size is not large. Second, showing

that the bias of misspecifying the distribution of the unobserved heterogeneity. And third, showing

that a Hausman test, based on the comparison of the FE-CMLE and a CRE-MLE, has enough

power to reject speci�cations that wrongly ignore unobserved heterogeneity, or that misspeci�ed

its probability distribution or its joint distribution with the initial conditions of the state variables.

In section 5.2, we apply the FE-CMLE method, our procedure to estimate d�, and the Hausman

test to the actual dataset in Rust (1987).

5.1 Monte Carlo experiments

We present experiments using simulated data from four di¤erent Data Generating Processes (DGPs).

Table 4 describes these DGPs. The di¤erence between the four DGPs is in the speci�cation of the
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distribution of the unobserved heterogeneity for the replacement cost RCi. In DGP 1, the distrib-

ution of the replacement cost is normal with mean 8 and standard deviation 2. In DGPs 2 and 3,

this distribution has only two types. Finally, DGP 4 is a model without unobserved heterogeneity.

For each of these DGPs, we do not estimate the model using the whole sample of T = 25

periods. Instead, we construct three samples: sample A, from period 1 to 7; sample B, from period

1 to 14; and Sample C, from period 8 to 21. Therefore, we present results from 12 Monte Carlo

experiments, i.e., four DGPs times 3 samples. We analyze the e¤ect of increasing the number of

time periods T , by comparing the experiments with sample A (with T = 7) and sample B (with

T = 14). We study the e¤ect of the initial conditions problem by comparing the experiments for

sample B (where at t = 1 all the buses have the same initial condition, (yi0; di1) = (0; 0)) and

sample C, that is subject to the initial conditions problem.

Table 4
Description of DGPs in the Monte Carlo experiments

Parameter / Constant DGP 1 DGP 2 DGP 3 DGP 4

�i(0) = �RCi N(�; �2) Two types Two types 1 type
Random draws from: � = 8; � = 2 RC1 = 4:5; RC2 = 9 RC1 = 8; RC2 = 9 RC = 8

�1 = �2 = 0:5 �1 = �2 = 0:5
�i(1) = �c0i 0 0 0 0

�d(d) = � d if d � d� � = 1 � = 1 � = 1 � = 1
d� 3 3 3 3

Discount factor ( �) 0.95 0.95 0.95 0.95

Initial y0; d1 0; 0 0; 0 0; 0 0; 0
Maximum T 25 25 25 25

N (number of buses) 1000 1000 1000 1000
# simulated samples 1000 1000 1000 1000

The structural parameter of interest is parameter � in the maintenance cost function, �d(d) = �

d. We apply four estimators to each of the samples: the FE-CMLE using the true value of d� (that

we denote as CMLE-true-d* ); FE-CMLE using the BIC estimator of d� (that we denote as CMLE-

BIC-d* ); a MLE that imposes the restriction of no unobserved heterogeneity (that we denote as

MLE-noUH ), and a MLE that assumes that there are two types of replacement costs and ignores

the potential initial conditions problem (that we denote as MLE-2types). We compare the bias and

variance of these estimators.21 We also implement two Hausman tests: a test of the null hypothesis
21The code for this experiment is in Matlab. For the two ML estimators, we use the Nested Fixed Point Algorithm.
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of no unobserved heterogeneity, that compares estimators CMLE-BIC-d* and MLE-noUH ; and a

test of the null hypothesis of two-types, that compares estimators CMLE-BIC-d* and MLE-2types.

We present the results of these experiments in tables 5 to 8, one table for each DGP.

Table 5
Monte Carlo Experiments with DGP 1 (Normal RCs)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of � Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0073 1.0086 0.1436 0.9990 1.0003 0.0801 0.9954 0.9978 0.0731

CMLE-BIC-d* 1.0073 1.0086 0.1436 0.9935 1.0001 0.1054 0.9873 0.9971 0.1146

MLE-2types 0.9778 0.9765 0.0528 0.8956 0.8962 0.0325 0.8565 0.8554 0.0308

MLE-noUH 0.6204 0.6191 0.0295 0.5842 0.5835 0.0232 0.5444 0.5439 0.0229

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with signi�cance level with signi�cance level with signi�cance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.541 0.777 0.874 0.999 1.000 1.000 1.000 1.000 1.000

Two types 0.008 0.042 0.096 0.125 0.308 0.429 0.281 0.515 0.658

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.

Table 5 deals with DGP 1, with normally distributed replacement costs. The MLEs are sub-

stantially biased, especially in sample C (with the initial conditions problem) and sample B (with

large T ). When T increases there are multiple spells per bus and this implies stronger correlation

between observed durations and unobserved heterogeneity. This generates a larger bias of the MLE

of a misspeci�ed model. In contrast, the biases of the CMLEs (either with true or estimated d�)

are negligible. The BIC method provides precise estimates of d�: in all our DGPs, the estimated

value of d� is equal to its true value for more than 95% of the Monte Carlo replications. As a result,

the bias of the CMLE estimator of � with estimated d* is very similar to the bias of the CMLE

The maximization of the log-likelihood function applies a quasi-newton method (procedure fminunc) using the true
value of the vector of parameters as the starting value. For the MLE with 2-types, during the search algorithm we
often get a singular Hessian matrix. When this happens, we switch to the BHHH method.
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with true d*. As expected, the CMLEs have larger variance than the MLEs, and the CMLE with

estimated d� has larger variance than the CMLE with true d�. However, the CMLE-BIC-d* has

a Mean Square Error (MSE, variance plus square bias) that is substantially smaller than the one

of the MLE-noUH in the three samples, and of the MLE-2types in samples B and C. In sample

A, the MLE-2types has a MSE comparable to the one of the CMLE. That is, in a DGP without

initial conditions problem and with one duration spell for most of the buses, a misspeci�ed random

e¤ects model with only two types has good properties. However, this is not longer the case in

samples B and C. Hausman test has very strong power to reject the model without unobserved

heterogeneity.22 It has also substantial power to reject the model with two types in samples B and

C. However, the rejection rates for the model with two types in sample A are practically equal to

the nominal size or signi�cance level of the test.

Table 6
Monte Carlo Experiments with DGP 2 (Two types: RC = 4.5, 9)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of � Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0094 1.0060 0.1598 1.0027 1.0033 0.0813 0.9992 0.9948 0.0813

CMLE-BIC-d* 1.0094 1.0060 0.1598 0.9952 1.0025 0.1216 0.9886 0.9941 0.1384

MLE-2types 1.0018 0.9990 0.0513 1.0007 1.0001 0.0289 0.9954 0.9941 0.0288

MLE-noUH 0.5556 0.5557 0.0229 0.5283 0.5284 0.0156 0.5009 0.5004 0.0146

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with signi�cance level with signi�cance level with signi�cance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.590 0.820 0.902 1.000 1.000 1.000 1.000 1.000 1.000

Two types 0.005 0.044 0.094 0.005 0.054 0.096 0.005 0.047 0.107

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.

22Though the distribution of types in DGP 1 is continuous, the level of unobserved heterogeneity is modest. In the
distribution of RCi, the ratio between the standard deviation and the mean is only 25%. Continuous distributions
with higher variance imply higher rejection rates of the model with only two types, even in sample A.
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Table 6 presents results under DGP 2, with two types of replacement costs, RC1 = 4:5 and

RC2 = 9, with equal probabilities. In this case, the MLE-2types and our CMLEs are consistent

estimators. Both estimators have negligible �nite-sample biases in the three samples. As expected,

the MLE-2types has smaller variance, especially in sample A. In the three samples, the MLE-noUH

is still extremely biased and the Hausman test that compares this estimator with CMLE-BIC-d*

has strong power to reject the model without unobserved heterogeneity. For the rejection of the

true model with two types, Hausman test exhibits a rejection rate that is practically identical to

the nominal size or signi�cance level.

Table 7
Monte Carlo Experiments with DGP 3 (Two types: RC = 8, 9)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of � Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0088 1.0058 0.1371 1.0014 1.0035 0.0744 0.9978 0.9957 0.0726

CMLE-BIC-d* 1.0088 1.0058 0.1371 0.9905 1.0026 0.1313 0.9923 0.9941 0.1040

MLE-2types 1.0111 1.0064 0.0626 1.0026 1.0012 0.0374 0.9990 0.9982 0.0389

MLE-noUH 0.9628 0.9609 0.0451 0.9576 0.9564 0.0317 0.9501 0.9492 0.0334

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with signi�cance level with signi�cance level with signi�cance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.014 0.057 0.117 0.031 0.088 0.163 0.032 0.121 0.187

Two types 0.014 0.051 0.104 0.008 0.053 0.100 0.009 0.065 0.115

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.

Table 7 deals with DGP 3, that has also two types of replacement costs, but now these types are

very similar: RC1 = 8 and RC2 = 9, with equal probabilities. The main purpose of the experiments

with this DGP is to investigate the bias of the MLE-noUH and the power of this Hausman test

in an scenario with a very modest amount of unobserved heterogeneity. Even in this scenario,

for samples B and C, the bias of the MLE-noUH is approximately 5% of the true value of the
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parameter, and the Hausman test rejects the null hypothesis of no unobserved heterogeneity with

probability that is more than twice the nominal size of the test.

Finally, Table 8 presents results of experiments under DGP 4 where there is not unobserved

heterogeneity and RC = 8. The purpose of these experiments is to study possible biases in the size

of Hausman test for the null hypothesis of no unobserved heterogeneity. We can see that, for the

three samples, the size of this test is very close to the nominal size.

Table 8
Monte Carlo Experiments with DGP 4 (No UH, RC = 8)

Sample A (t = 1to 7) Sample B (t = 1to 14) Sample C (t = 8to 21)
Estimator Estimate(1) Estimate(1) Estimate(1)

of � Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

CMLE-true-d* 1.0030 1.0029 0.1237 0.9979 0.9942 0.0660 0.9994 0.9994 0.0660

CMLE-BIC-d* 1.0030 1.0029 0.1237 0.9900 0.9937 0.1140 0.9889 0.9986 0.1201

MLE-2types 1.0203 1.0156 0.0513 1.0070 1.0063 0.0312 1.0079 1.0061 0.0318

MLE-noUH 1.0011 1.0004 0.0414 1.0001 0.9990 0.0293 1.0017 1.0005 0.0302

Frequency of Ho rejection Frequency of Ho rejection Frequency of Ho rejection
Testing with signi�cance level with signi�cance level with signi�cance level

null hypothesis 1% 5% 10% 1% 5% 10% 1% 5% 10%

No Unob. Het. 0.007 0.045 0.094 0.009 0.05 0.097 0.014 0.052 0.108

Two types 0.008 0.056 0.104 0.012 0.063 0.109 0.019 0.053 0.107

Note (1): Mean, median, and standard deviation of estimated parameter over the 1,000 replications.

5.2 Estimation using Rust�s dataset

Rust�s full sample contains a total of 124 buses that are classi�ed in eight groups according to the

bus size and the engine manufacturer. For the estimation of the structural model, Rust focuses

on groups 1 to 4 that account for 104 buses. For every bus, the choice history in the data starts

with the actual initial condition of the engine, i.e., the �rst month where the engine was installed.

For these 104 buses, the distribution of the number of engine replacements is the following: 0

engine replacements for 45 buses; 1 replacement for 58 buses; and 2 replacements for 1 bus. For
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the implementation of our FE-CMLE, choice histories with zero replacements do not contain any

useful information. Therefore, for the CMLE we use only 59 buses. For our analysis, we consider

that the frequency of the superintendent�s decisions is at the annual level. Table 9 presents the

empirical distribution of choice histories for the 59 buses with at least one engine replacement, of

which 27 are observed during 6 years, and 32 over 10 years.

Table 9
Bus Engine Replacement (Rust, 1987)
Empirical distribution of choice histories

with replacement
Frequency

Choice history Absolute % % cumulative

110111 2 3.39 3.39
111011 7 11.86 15.25
111101 7 11.86 27.12
111110 11 1864 45.76

1101111111 1 1.69 47.46
1110111111 4 6.78 54.24
1111011111 2 3.39 57.63
1111101111 7 11.86 69.49
1111110111 7 11.86 81.35
1111111011 5 8.47 89.83
1111111101 3 5.08 94.91
1111111110 2 3.39 98.30

1101110111 1 1.69 100.00

Total 59 100.00

Table 10 presents ML estimates of the model with three di¤erent speci�cations of the mainte-

nance cost function �d(d) according to: the value of the parameter d� (at which function �d(d) be-

comes �at); and the functional for durations smaller than d�, i.e., linear, quadratic, and square-root.

We report estimates of the replacement cost parameter and of the parameter ��d � �d(d�)��d(d��1).

We consider a model with two unobserved types. However, for all the speci�cations, we always con-

verge to a model with a single type. We have tried thousands of initial values for the vector of

parameters (i.e., RC1, RC2, �, and �d), and we have also estimated the model using grid search.

Regardless the computational strategy, we always converge to the same estimate with only one
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type. The speci�cation of the function �d(d) that provides the maximum value of the likelihood

function is the the square-root function with a value d� equal to six. For this speci�cation, the

estimate of the replacement cost parameter is dRC = 10:8566 (s:e: = 1:5247), and the estimate of
the parameter of ��d is c��d = 0:3054 (s:e: = 0:0496).

Table 10
Bus Engine Replacement (Rust, 1987)

Maximum Likelihood Estimates
Model RC ��d � ���d(d�)

�d(d) d� dRC se
�dRC� c��d se

�c��d� log-likelihood

Square root 3 28.2218 6.9110 2.0110 0.5149 -162.7081
�d(d) = �

p
d 4 16.5364 3.0438 0.7777 0.1546 -160.7515

5 12.8403 1.9959 0.4486 0.0774 -158.5760
6 10.8566 1.5247 0.3054 0.0496 -158.2108��

7 9.6817 1.2821 0.2317 0.0372 -158.7021
8 8.9953 1.1623 0.1909 0.0313 -159.4693
9 8.6517 1.1183 0.1682 0.0285 -160.0868

Linear 3 18.2995 4.1695 2.0388 0.4977 -162.7529
�d(d) = � d 4 11.4552 1.9053 0.8418 0.1566 -160.9650

5 9.2473 1.2769 0.5103 0.0817 -158.8536
6 7.9817 0.9809 0.3623 0.0548 -158.8132
7 7.1859 0.8219 0.2856 0.0434 -159.7641
8 6.7030 0.7411 0.2448 0.0388 -160.9912
9 6.4612 0.7114 0.2259 0.0379 -161.9368

Square 3 13.1481 2.7300 2.1006 0.4804 -162.8699
�d(d) = � d

2 4 8.7707 1.2806 0.9603 0.1628 -161.4943
5 7.3081 0.8850 0.6257 0.0921 -159.4992
6 6.3777 0.6844 0.4709 0.0673 -160.0882
7 5.7404 0.5689 0.3905 0.0583 -161.9366
8 5.3323 0.5072 0.3535 0.0578 -164.0680
9 5.1227 0.4837 0.3515 0.0636 -165.6751

Table 11 presents estimates of the parameter ��d � �d(d
�) � �d(d� � 1) using the CMLE and

under di¤erent values of d�. Given the observed histories in this dataset (as shown in Table 9), the

parameter ��d is identi�ed only under two possible values of d
� : d� = 3 and d� = 4.23 We report

23To identify ��d for d
� = 2, we need histories with a replacement when duration is equal to 1 (d� � 1). To identify

��d when d
� � 5, we need histories with at least 5 years without replacement both before and after an observed
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the value of the concentrated log-likelihood function and of the BIC function. According to the

BIC function, the estimate of d� is bd� = 3, and the corresponding estimator of ��d is c��d = 1:7009
(s.e. = 1.0244). Note also that for d� = 3, the estimate of ��d is signi�cantly di¤erent to zero for a

signi�cance level of 10% parameter (p-value = 0.0968). In contrast, for d� = 4, this parameter is not

signi�cantly di¤erent to zero for any standard signi�cance level (p-value = 0.8446). Therefore, the

estimate bd� = 3 and c��d = 1:7009 is consistent with the de�nition of d� as the maximum duration

with �d(d)� �d(d� 1) di¤erent to zero.

Table 11
Bus Engine Replacement (Rust, 1987)

Fixed-E¤ects-Conditional Maximum Likelihood
��d p-value concentrated

d� c��d se
�c��d� H0 : �

�
d = 0 log-likelihood BIC(d�)

3 1.7009 1.0244 0.0968 -102.1215 -108.2378

4 0.1178 0.6009 0.8446 -102.1020 -110.2571

Table 12 compares the CMLE estimate of the parameter ��d with the corresponding MLE using

the estimates in Table 10. Given the very small sample size and the corresponding large standard

error of the CMLE estimates, we cannot reject the null hypothesis of no unobserved heterogeneity,

despite the magnitude of the di¤erence between MLE and CMLE estimates is important and it

generates important di¤erences in distribution of durations.

Table 12
Bus Engine Replacement (Rust, 1987)

Hausman Test of Unobserved Heterogeneityc��d (se) c��d (se)
Model MLE CMLE Hausman p-value

Square root 0.4548 (0.0739) 1.7009 (1.0244) 1.4873 0.2226

Linear 0.3623 (0.0549) 1.7009 (1.0244) 1.7123 0.1907

Square 0.3476 (0.0512) 1.7009 (1.0244) 1.7494 0.186

replacement. In this small sample, we do not observe these types of histories.
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6 Conclusions

This paper presents the �rst identi�cation results of structural parameters in forward-looking dy-

namic discrete choice models where the joint distribution of time-invariant unobserved heterogeneity

and endogenous state variables is nonparametrically speci�ed. This unobserved heterogeneity can

have multiple components and can have continuous support. The dependence between the unob-

served heterogeneity and the initial values of the state variables is also unrestricted. We consider

models with two endogenous state variables: the lagged decision variable, and the time duration

in the last choice. We show that structural parameters that capture switching costs are identi�ed

under mild conditions. The identi�cation of structural parameters that capture duration depen-

dence require additional restrictions. In particular, to obtain identi�cation of these parameters we

assume that the marginal return of an additional period of experience (duration) becomes equal to

zero after a �nite number of periods.

Based on our identi�cation results, we propose tests for the validity of restricted models without

unobserved heterogeneity or with a parametric speci�cation of the correlated random e¤ects. Our

Monte Carlo experiments show that the Conditional MLE provides precise estimates of structural

parameters and the speci�cation test has strong power to reject misspeci�ed correlated random

e¤ects models.
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Appendix 1. Proofs

Proof of Lemma 2.

(i) For any y > 0, we have that 1fyt�1 = y, dt = 0g = 0 because yt�1 > 0 implies dt > 0.

Therefore, H(y)(0) =
PT
t=1 1fyt�1 = y, dt = 0g = 0.

(ii) For any y > 0, we have that 1fyt�1 = yt = y, dt = 0g = 0 because yt�1 > 0 implies dt > 0.

Therefore, X(y)(0) =
PT
t=1 1fyt�1 = yt = y; dt = 0g = 0.

(iii) For any y > 0,
P
d�1H

(y)(d) =
P
d�1

PT
t=1 1fyt�1 = y, dt = dg =

PT
t=1 1fyt�1 = yg =

T (y)+ 1fy0 = yg� 1fyT = yg.

(iv) For any y > 0,
P
d�1X

(y)(d) =
P
d�1

PT
t=1 1fyt�1 = yt = y; dt = dg =

PT
t=1 1fyt�1 =

yt = yg = T (y)+ 1fy0 = yg� 1fyT = yg.

(v) First, note that yt�1 = y > 0 implies dt � 1. Therefore, for any y > 0 and d � 1, the

event fyt�1 = yt = y; dt = dg is equivalent to the event fyt = y; dt+1 = d + 1g for any 1 � t � T .

Therefore, X(y)(d) =
PT
t=1fyt = y; dt+1 = d+ 1g =

PT+1
t=2 1fyt�1 = y; dt = d+ 1g = H(y)(d+ 1)�

1fy0 = y; d1 = d+ 1g+ 1fyT = y; dT+1 = d+ 1g. �

Proof of Propositions 1 and 2. Remember that T (y) represents the number of times that

choice alternative y is visited in the choice history ey, and D(y) is the number of times that choice
alternative y is observed at two consecutive periods over the history (y0; ey). For the binary choice
model, we have that

PT
t=1yt = T

(1),
PT
t=1yt�1yt = D

(1;1), and yT � y0 = �(1).

lnP (ey j y0; �) = T (1) [e�� + ��(1)� ��(0)] + �(1) [��(0)� ��(1)] + e�y D(1;1) (A.1)

where we have omitted the term T ��(0) because T is constant over all the histories. Consider choice

histories A = f0j0; 1; 1g and B = f0j1; 0; 1g. It is clear that T (1)A = T
(1)
B = 2, and �(1)A = �

(1)
B = 1,

such that UA = UB. Also, D
(1;1)
A = 1 and D(1;1)B = 0. Therefore, lnP(AjU)� lnP(BjU) = e�y. �

Proof of Proposition 3. The log-probability of this model is:

lnP (ey j y0; d1; �) =
TP
t=1
yt

he�� + e�y yt�1 + �d(1; dt) yt�1i+ ��(yt�1; dt) (A.2)

We have that lnP (ey j y0; d1; �) = T (1)e��+ [T (0) ��(0)]��(0)+ D(1;1)e�y+ Pd�1X
(1)(d) �d(1; d)+P

d�1H
(1)(d) ��(1; d). Taking into account that

P
d�1H

(1)(d) = T (1)��(1) andD(1;1) =
P
d�1X

(1)(d),
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we obtain:
lnP (eyjy0; �) =

P
d�1

H(1)(d) [e�� + ��(1; d)� ��(0)] + �(1)e��
+

P
d�1

X(1)(d) (d)

(A.3)

where we have omitted the term T ��(0) because T is constant over all the histories, and we de�ne

(d) � e�y + �d(1; d). Now, Lemma 2(v) establishes that X(1)(d) = H(1)(d+1)+�(1)(d+1). Note

that
P
d�1

�
H(1)(d+ 1) + �(1)(d+ 1)

�
(d) is equal to

P
d�1

�
H(1)(d) + �(1)(d)

�
(d � 1), if we

de�ne (0) = 0. Then, we have that,

lnP (eyjy0; �) =
P
d�1

H(1)(d) [e�� + ��(1; d)� ��(0)] + �(1)e��
+

P
d�1

�
H(1)(d) + �(1)(d)

�
(d� 1)

=
P
d�1

H(1)(d) [e�� + ��(1; d)� ��(0) + (d� 1)] + �(1)e��
+

P
d�1

�(1)(d) (d� 1) �

(A.4)

Proof of Proposition 4. The log-probability of this model is:

lnP (ey j y0; d1; �) =
TP
t=1
yt

he�� + e�yyt�1 + �d(1; dt)yt�1 + v� (1; dt + 1)i+ ��(yt�1; dt) (A.5)

Comparing this log-probability with the one for the myopic model with duration, we can see that the

only di¤erence is in the term
PT
t=1 yt v� (1; dt + 1), that can be written as

P
d�0

PT
t=1 yt 1fdt = dg

v� (1; d+ 1). For the statistic
PT
t=1 yt 1fdt = dg we can distinguish two cases: (a) if d = 0, thenPT

t=1 yt 1fdt = 0g =
PT
t=1 yt (1� yt�1) = T (1)�D(1;1); and (b) if d � 1, then

PT
t=1 yt 1fdt = dg =PT

t=1 yt yt�1 1fdt = dg = X(1)(d). Therefore,

P
d�0

TP
t=1
yt1fdt = dgv� (1; d+ 1) =

�
T (1) �D(1;1)

�
v� (1; 1) +

P
d�1

X(1)(d) v� (1; d+ 1)

= T (1) v� (1; 1) +
P
d�1

X(1)(d) [v� (1; d+ 1)� v� (1; 1)]
(A.6)

where for the second equality we have applied Lemma 2(iv), D(1;1) =
P
d�1X

(1)(d). Then, the
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log-probability is equal to

lnP (eyjy0; �) =
P
d�1

H(1)(d) [e�� + ��(1; d)� ��(0) + (d� 1)] + �(1)e��
+

P
d�1

�(1)(d) (d� 1)

+ T (1) v� (1; 1) +
P
d�1

X(1)(d) [v� (1; d+ 1)� v� (1; 1)]

(A.7)

From Lemma 2, we have that: (iii) T (1) =
P
d�1H

(1)(d) + �(1); and (v) X(1)(d) = H(1)(d + 1)+

�(1)(d+ 1), and solving these expressions in (A.13), we have that:

lnP (eyjy0; �) =
P
d�1

H(1)(d) [e�� + ��(1; d)� ��(0) + (d� 1) + v� (1; d)]
+ �(1) [e�� + v� (1; 1)]
+

P
d�1

�(1)(d) [v� (1; d)� v� (1; 1) + (d� 1)]

(A.8)

Taking into account that �(1) =
P
d�1�

(1)(d), we have:

lnP (eyjy0; �) =
P
d�1

H(1)(d) g�;1(d) +
P
d�1

�(1)(d) [e�� + v� (1; d) + (d� 1)] (A.9)

with g�;1(d) � e�� + ��(1; d)� ��(0) + (d� 1) + v� (1; d). �

Proof of Proposition 5. De�ne Z �
P
d�1�

(1)(d) [v� (1; d) + (d� 1)]. Under Assumption 2, we

have that v� (1; d) = v� (1; d�) for any d � d�, and  (d� 1) =  (d�) for any d � d� + 1. Therefore,

we have:

Z =
P

d�d��1
�(1)(d) v� (1; d) +

" P
d�d�

�(1)(d)

#
v� (1; d

�)

+
P
d�d�

�(1)(d) (d� 1) +
" P
d�d�+1

�(1)(d)

#
(d�)

=
P

d�d��1
�(1)(d) [v� (1; d) + (d� 1)] +

" P
d�d�

�(1)(d)

#
[v� (1; d

�) + (d�)]

+ �(1)(d�) [(d� � 1)� (d�)]

(A.10)
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Then, the log-probability becomes:

lnP (eyjy0; �) =
P
d�1

H(1)(d) g�;1(d)

+
P

d�d��1
�(1)(d) g�;2(d) +

" P
d�d�

�(1)(d)

#
g�;2(d

�)

+ �(1)(d�) [(d� � 1)� (d�)]

(A.11)

with g�;1(d) � e��+��(1; d)���(0)+(d�1)+v� (1; d), and g�;2(d) � e��+v� (1; d)+(d�1). Note
that g�;1(d) = g�;1(d�) for any d � d�. Therefore, we have

P
d�1H

(1)(d) g�;1(d) =
P
d�d��1H

(1)(d)

g�;1(d)+
hP

d�d�H
(1)(d)

i
g�;1(d

�), such that

lnP (eyjy0; �) =
P

d�d��1
H(1)(d) g�;1(d) +

" P
d�d�

H(1)(d)

#
g�;1(d

�)

+
P

d�d��1
�(1)(d) g�;2(d) +

" P
d�d�

�(1)(d)

#
g�;2(d

�)

+ �(1)(d�) [(d� � 1)� (d�)] �

(A.12)

Proof of Propositions 7 and 8. For this model, the log probability is
PJ
j=0

PT
t=11fyt = jg

��(j)+
PJ
j=0

PJ
k=0

PT
t=11fyt�1 = j, yt = kg �y(k; j)+

PJ
j=0

PT
t=11fyt�1 = jg ��(j). Using the

de�nitions of our statistics, we have that:

lnP (eyjy0; �) =
JP
j=0
T (j)��(j) +

JP
j=0

JP
k=0

D(j;k)�y(k; j) +
JP
j=0

�
T (j) ��(j)

�
��(j) (A.13)

where �(j) � 1fyT = jg � 1fy0 = jg. Note that T (0) = T �
PJ
j=1T

(j), and �(0) = 1�
PJ
j=1�

(j),

such that:

lnP (eyjy0; �) =
JP
j=1
T (j) [��(j)� ��(0) + ��(j)� ��(0)] +

JP
j=1
�(j) [���(j) + ��(0)]

+
JP
j=0

JP
k=0

D(j;k)�y(k; j)

(A.14)

where we have omitted the term T��(0) + ��(0) because it is constant over all the choice histories.

For the term,
PJ
j=0

PJ
k=0D

(j;k)�y(k; j), note that:
PJ
j=0D

(j;k) = T (k) such that D(0;k) = T (k) �
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PJ
j=1D

(j;k); and
PJ
k=0D

(j;k) = T (j)��(j) such that D(j;0) = T (j)��(j)�
PJ
k=1D

(j;k). Therefore,

JP
j=0

JP
k=0

D(j;k)�y(k; j) =
JP
j=0

�
JP
k=1

D(j;k)�y(k; j) +

�
T (j) ��(j) �

JP
k=1

D(j;k)
�
�y(0; j)

�

=
JP
j=0

JP
k=1

D(j;k) [�y(k; j)� �y(0; j)] +
JP
j=1

�
T (j) ��(j)

�
�y(0; j)

(A.15)

where we have omitted the term (T � 1)�y(0; 0) because it is constant over every choice history

(also we have normalized �y(y; y) = 0 for every y). Now, applying a similar property to the termPJ
j=0

PJ
k=1D

(j;k) [�y(k; j)� �y(0; j)], we have:

JP
j=0

JP
k=1

D(j;k) [�y(k; j)� �y(0; j)] =
JP
k=1

"
JP
j=1
D(j;k) [�y(k; j)� �y(0; j)] +

"
T (k) �

JP
j=1
D(j;k)

#
[�y(k; 0)� �y(0; 0)]

#

=
JP
k=1

JP
j=1
D(j;k) [�y(k; j)� �y(0; j)� �y(k; 0)] +

JP
k=1

T (k)�y(k; 0)

(A.16)

Putting together (A.15) and (A.16), we have that:

JP
j=0

JP
k=0

D(j;k)�y(k; j) =
JP
k=1

JP
j=1
D(j;k)e�y(k; j) + JP

j=1
T (j) [�y(0; j) + �y(j; 0)]�

JP
j=1
�(j)�y(0; j)

(A.17)

where e�y(k; j) � �y(k; j) � �y(0; j) � �y(k; 0). And plugging this expression into equation (A.14)
for the log-probability, we obtain:

lnP (eyjy0; �) =
JP
j=1
T (j) g�;1(j) +

JP
j=1
�(j) g�;2(j) +

JP
j=1

JP
k=1

D(j;k)e�y(k; j) (A.18)

where g�;1(j) � ��(j)� ��(0) + ��(j)� ��(0) + �y(0; j) + �y(j; 0), and g�;2(j) � ���(j) + ��(0)�

�y(0; j). �

Proof of Proposition 9. For this model, the log probability is
PJ
j=0

PT
t=11fyt = jg ��(j)+PJ

j=0

PJ
k=0

PT
t=11fyt�1 = j, yt = kg �y(k; j) +

PJ
j=1

PJ
d=1

PT
t=11fyt�1 = yt = j, dt = dg �d(j; d)+PJ

j=0

PJ
d=0

PT
t=11fyt�1 = j, dt = dg ��(j; d). Using the de�nition of the statistics in Table 1, we

can write this log-probability as follows:

lnP (eyjy0; d1; �) =
JP
j=0
T (j)��(j) +

�
T (0) ��(0)

�
��(0) +

JP
j=1

P
d�1
H(j)(d)��(j; d)

+
JP
j=0

JP
k=0

D(j;k)�y(k; j) +
JP
j=1

P
d�1
X(j)(d)�d(j; d)

(A.19)
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Taking into account that: T (0) = T �
PJ
j=1T

(j), we have that
PJ
j=0T

(j)��(j)+ T (0)��(0) =

T [��(0) + ��(0)]+
PJ
j=1T

(j)[��(j) � ��(0) � ��(0)]. And using equation (A.17) from the proof

of Propositions 7-8, we have:

lnP (eyjy0; d1; �) =
JP
j=1
T (j) [��(j)� ��(0)� ��(0) + �y(0; j) + �y(j; 0)] +

JP
j=1
�(j) [��(0)� �y(0; j)]

+
JP
j=1

P
d�1
H(j)(d)��(j; d)

+
JP
k=1

JP
j=1
D(j;k)e�y(k; j) + JP

j=1

P
d�1
X(j)(d)�d(j; d)

(A.20)

where we have omitted the term T��(0) + (T � 1)��(0) because the are constant across all the

histories. Given that T (j) = �(j) +
P
d�1H

(j)(d) and D(j;j) =
P
d�1X

(j)(d) and ~�y(j; j) =

��y(j; 0)� �y(0; j) by construction, we get:

lnP (eyjy0; d1; �) =
JP
j=1

P
d�1
H(j)(d) [��(j)� ��(0) + ��(j; d)� ��(0) + �y(0; j) + �y(j; 0)]

+
JP
j=1
�(j) [��(j)� ��(0) + �y(j; 0)]

+
JP
k=1

P
j 6=k
D(j;k)e�y(k; j) + JP

j=1

P
d�1
X(j)(d) (j; d)

(A.21)

Now, consider the term
PJ
j=1

P
d�1X

(j)(d) �d(j; d). By Lemma 2, for d � 1, X(j)(d) = H(j)(d +

1)��(j)(d+ 1). Therefore,

JP
j=1

P
d�1
X(j)(d) (j; d) =

JP
j=1

P
d�1

�
H(j)(d+ 1) + �(j)(d+ 1)

�
(j; d)

=
JP
j=1

P
d�1

�
H(j)(d) + �(j)(d)

�
(j; d� 1)

(A.22)

where, for the second equality, we take into account the normalization �d(j; 0) = 0 for any j � 1.

Solving equation (A.22) into (A.21), and taking into account that
P
d�1�

(j)(d) = �(j), we obtain:

lnP (eyjy0; d1; �) =
JP
j=1

P
d�1
H(j)(d) g�;1(j; d) +

JP
j=1
�(j)g�;2(j)

+
JP
k=1

JP
j=1;j 6=k

D(j;k)e�y(k; j) + JP
j=1

P
d�1
�(j)(d) (j; d� 1)

(A.23)
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with g�;1(j; d) � ��(j)���(0)+ ��(j; d)� ��(0)+ �y(0; j) + �y(j; 0)+ (j; d� 1), g�;2(j) � ��(j)�

��(0) + �y(j; 0), e�y(y; y�1) � �y(y; y�1) � �y(0; y�1) � �y(y; 0), and (j; d) � �d(j; d) � �y(j; 0) �
�y(0; j). �

Proof of Proposition 10. The expression of the log-probability is similar as in Proposition 9

but now we have the additional term
PT
t=1v�(yt; dt+1[y; yt�1; dt]). This term is equal to T (0)v�(0)+PJ

j=1

P
d�1
PT
t=11fyt = j, dt+1 = dg v�(j; d) = T (0)v�(0) +

PJ
j=1

P
d�1 v�(j; d)

h
H(j)(d) + �(j)(d)

i
.

Given T (0) = T �
PJ
j=1 T

(j) = T �
PJ
j=1

P
d�1H

(j)(d) �
PJ
j=1

P
d�1�

(j)(d) and using equation

(A.23) from the proof of Proposition 9, we have

lnP (eyjy0; d1; �) =
JP
j=1

P
d�1
H(j)(d) g�;1(j; d) +

JP
j=1
�(j)g�;2(j)

+
JP
k=1

P
j 6=k
D(j;k)e�y(k; j) + JP

j=1

P
d�1
�(j)(d) ((j; d� 1) + v�(j; d))

(A.24)

with g�;1(j; d) � ��(j)���(0)+ ��(j; d)� ��(0)+ �y(0; y)+ �y(y; 0)+ (y; d� 1)+ v�(j; d)� v�(0),

g�;2(j) � ��(j)� ��(0) + �y(y; 0)� v�(0)

Taking into account that
P
d�1�

(j)(d) = �(j) for any j � 1, we have

lnP (eyjy0; d1; �) =
JP
j=1

P
d�1
H(j)(d) g�;1(j; d) +

JP
j=1

P
d�1
�(j)(d) g�;2(j; d) +

JP
k=1

P
j 6=k
D(j;k)e�y(k; j)

(A.25)

where g�;2(j; d) � (j; d� 1) + v�(j; d) + ��(j)� ��(0) + �y(y; 0)� v�(0).

Proof of Proposition 11. De�ne Z(j) �
P
d�1�

(j)(d)[v�(j; d)+(j; d�1)]. Under Assumption 2,

we have v�(j; d) = v�(j; d�) for any d � d�j , and (j; d� 1) = (j; d�) for any d � d�j +1. Therefore,

we have for all j � 1,

Z(j) =
P
d�d�j�1

�(j)(d)v�(j; d) +
hP

d�d�j
�(j)(d)

i
v�(j; d

�
j )

+
P
d�d�j

�(j)(d)(j; d� 1) +
hP

d�d�j+1
�(j)(d)

i
(j; d�j )

=
P
d�d�j�1

�(j)(d)[v�(j; d) + (j; d� 1)] +
hP

d�d�j
�(j)(d)

i
[v�(j; d

�
j ) + (j; d

�
j )]

+ �(j)(d�j )[(j; d
�
j � 1)� (j; d�j )]

(A.26)
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Then the log-probability becomes:

lnP (eyjy0; d1; �) =
JP
j=1

P
d�1
H(j)(d) g�;1(j; d) +

JP
k=1

P
j 6=k
D(j;k)e�y(k; j)

+
JP
j=1

P
d�d�j�1

�(j)(d)g�;2(j; d) +
JP
j=1

hP
d�d�j

�(j)(d)
i
g�;2(j; d

�
j )

+
JP
j=1
�(j)(d�j ) ((j; d

�
j � 1)� (j; d�j ))

(A.27)

with g�;1(j; d) � ��(j)���(0)+��(j; d)���(0)+�y(0; y)+�y(y; 0)+(y; d�1)+v�(j; d)�v�(0) and

g�;2(j; d) � ��(j)���(0)+�y(y; 0)�v�(0)+v�(j; d)+(j; d�1). Note that g�;1(j; d) = g�;1(j; d�j ) for

d � d�j . Therefore, we have
P
d�1H

(j)(d)g�;1(d) =
P
d�d�j�1

H(j)(d)g�;1(d)+
hP

d�d�j
H(j)(d)

i
g�;1(d

�
j ),

such that

lnP (eyjy0; d1; �) =
JP
j=1

P
d�d�j�1

H(j)(d) g�;1(j; d) +
JP
j=1

h P
d�d�j

H(j)(d)
i
g�;1(j; d

�
j )

+
JP
k=1

JP
j=1
D(j;k)e�y(k; j)

+
JP
j=1

P
d�d�j�1

�(j)(d)g�;2(j; d) +
JP
j=1

h P
d�d�j

�(j)(d)
i
g�;2(j; d

�
j )

+
JP
j=1
�(j)(d�j ) ((j; d

�
j � 1)� (j; d�j )) �

(A.28)

Proof of Proposition 12. It is clear that bP (An) !p P0 (An) and bP (Bn) !p P0 (Bn) such that

the concentrated likelihood function N�1`N (d
�) converges uniformly to the function:

`0(d
�) =

d�P
n=2

P0 (An) ln
�

P0 (An)
P0 (An) + P0 (Bn)

�
+ P0 (Bn) ln

�
P0 (Bn)

P0 (An) + P0 (Bn)

�

+
LP

n=d�+1
P0 (An) ln

�
1

2

�
+ P0 (Bn) ln

�
1

2

� (A.29)

Lemma. Consider the function f(q) = p1 ln(q) + p2 ln(1 � q) where p1; p2; q 2 (0; 1). This

function is uniquely maximized at q = p1=[p1 + p2].

Taking into account this Lemma, we have that for any value of n:

P0 (An) ln
�

P0 (An)
P0 (An) + P0 (Bn)

�
+ P0 (Bn) ln

�
P0 (Bn)

P0 (An) + P0 (Bn)

�
(A.30)

� P0 (An) ln
�
1

2

�
+ P0 (Bn) ln

�
1

2

�
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and the inequality is strict if and only if P0 (An) = P0 (Bn). Given this result, it is straightforward

to show that: `0(d�0) > `0(d
�) for any d� < d�0; and `0(d

�
0) = `0(d

�) for any d� > d�0. �

Proof of Proposition 13. Let n be a value of the parameter d� di¤erent to the true value d�0.

Given our BIC function, we favor cd�N = n over cd�N = d�0 if and only if BICN (n) > BICN (d�0) and
this is equivalent to:

2 [`N (n)� `N (d�0)] > [n� d�0] ln(N) (A.31)

We show below that, as N ! 1, P(2 [`N (n)� `N (d�0)] > [n� d�0] ln(N)) ! 0, and therefore,

P(cd�N = d�0)! 1.

First, we show that P(cd�N > d�0)! 0 as N !1. By de�nition,

P
�cd�N > d�0� = P (9n > d�0 : 2 [`N (n)� `N (d�0)] > [n� d�0] ln(N)) (A.32)

Proposition 12 implies that, for any n � d�0, N
�1`N (n) !p `0(d

�
0) and 2[`N (n) � `N (d�0)] !d

�2n�d�0
= Op(1). Therefore, P

�cd�N > d�0� = P (Op(1) > [n� d�0] ln(N)) that goes to zero asN !1.

Now, we show that P(cd�N < d�0) ! 0 as N ! 1. We need to prove that, for any n < d�0, the

probability that 2 [`N (d�0)� `N (n)] < [d�0 � n] ln(N) goes to zero as N !1. We can write

2 [`N (d
�
0)� `N (n)] = 2 [`N (d�0)� `N (d�0 � 1)] +

d�0�1X
j=n+1

2 [`N (j)� `N (j � 1)] (A.33)

Since �0(d�0) 6= 0, classical results imply that: (a) there exist constants c and C such that cN

� 2 [`N (d
�
0)� `N (d�0 � 1)] � CN ; and (b)

Pd�0�1
j=n+1 2 [`N (j)� `N (j � 1)] = Op(N) for all n < d�0,

therefore P(2 [`N (d�0)� `N (n)] < [d�0 � n] ln(N))! 0 as N !1. �
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Appendix 2. Model with stochastic transition of the endogenous state variables

Consider a model with the same structure as the model in Section 2 and Assumption 1 but now

the vector of endogenous state variables is xt = (x
y
t ; x

d
t ) and variables x

y
t and x

d
t stochastic versions

of the variables yt�1 and dt, respectively. We now describe precisely the stochastic process of these

variables.

The support of state variable xyt is the choice set Y, and its transition rule is x
y
t+1 = fy(yt; �

y
t+1)

where �yt+1 is i.i.d. over time and independent of xt. The support of state variable xdt is the

set of possible durations, f1; 2; :::;1g, and its transition rule is xdt+1 = 1fyt > 0g[ 1 fyt = xyt g

xdt +1+ �
d
t+1], where �

d
t+1 has support f0; 1; :::;1g, and it is i.i.d. over time and independent of xt.

Importantly, the stochastic shocks �yt+1 and �
d
t+1 are not known to the agent when she makes her

decision at period t. Note that this model becomes our model in the main text when these shocks

have a degenerate probability distribution with p(�yt+1 = 0) = p(�
d
t+1 = 0) = 1.

Assumption 1�below is simply an extension of our Assumption 1 to this stochastic version of

the model. We omit the exogenous state variables zt for notational simplicity.

ASSUMPTION 1�. (A) The time horizon is in�nite and � 2 (0; 1). (B) The utility function

is �t(y) = �� (y) + 1fy = xyt g �d
�
y; xdt

�
+ 1fy 6= xyt g �y (y; x

y
t ) + "t(y), and functions �� (y),

�d
�
y; xdt

�
, and �y(y; x

y
t ) are bounded. (C) �y(y; y) = 0, �d

�
0; xd

�
= 0. (D) f"t(y) : y 2 Yg are

i:i:d: over (i; t; y) with a extreme value type I distribution. (E) zt has discrete and �nite support Z

and follows a time-homogeneous Markov process. (F) The probability distribution of � conditional

on fzt;xt : t = 1; 2; :::g is nonparametrically speci�ed and completely unrestricted. (G) xyt 2 Y, and

xyt+1 = fy(yt; �
y
t+1) where �

y
t+1 is i.i.d. over time and independent of xt; x

d
t 2 f0; 1; :::;1g, and

xdt+1 = 1fyt > 0g[ 1 fyt = x
y
t g xdt + 1 + �dt+1], where �dt+1 has support f0; 1; :::;1g, and it is i.i.d.

over time and independent of xt. �

The model has the following integrated Bellman equation:

V� (xt) = ln

0@X
y2Y

exp
n
�� (y) + � (y;xt) + � E�t+1

h
V�

�
fy(yt; �

y
t+1), 1 fyt = x

y
t gxdt + 1 + �dt+1

�i o1A
where E�t+1(:) the expectation over the distribution of (�

y
t+1,�

d
t+1). Let v�;t be the continuation

value function � E�t+1 [V�
�
fy(yt; �

y
t+1), 1 fyt = x

y
t gxdt + 1 + �dt+1

�
] . Under our assumptions on the

distribution of (�yt+1,�
d
t+1), the continuation value function has very similar properties as in the
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model with a deterministic transition of the endogenous state variables. More speci�cally, (a) it

depends only yt and 1 fyt = xyt gxdt + 1, i.e., v�;t = v�(yt; 1 fyt = xyt gxdt + 1); (b) If yt 6= xyt , then

v�;t = v�(yt; 1); (c) If yt = x
y
t , then v�;t = v�(yt; x

d
t + 1); and (D) if x

d
t � d�y � 1 and yt = x

y
t , then

v�;t = v�(yt; d
�
y).
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