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1 Introduction

In September 2011, five severed heads were found in front of Benito Juárez Elementary

School in Acapulco, Mexico, accompanied by handwritten messages to drug traffickers in the

area.1 This event was one of many that occurred during the early years of the “war on drugs”

that escalated after 2006, and which has included incidents that have directly targeted school

children, spreading fear and terror in their immediate environment. These incidents speak

to the potential for violence to generate significant consequences for children’s educational

performance. In Acapulco, for example, the act of graphic violence led to a temporary

school closure and repeated strikes by teachers who demanded safety in schools, while there

are parallel concerns about the possibility of significant psychological stress on students and

their parents, which may amplify the negative effects of violence.

Reflecting these concerns, we investigate the effects of violence on educational perfor-

mance among primary school students in Mexico during the peak of violence associated

with the “war on drugs” from 2006-11.2 Our central question is whether psychological stress

caused by exposure to violence may be an important — but previously overlooked — mech-

anism linking violence to reduced educational performance. We focus particularly on the

potential for acute short-term effects; more specifically, the possibility that homicides that

occur in the week immediately prior to national exams may generate acute psychological

stress and result in reduced exam performance. This is, to our knowledge, the first paper

both to provide detailed tests of the role of psychological stress in linking violence to edu-

cational performance, and to focus attention on the potential for acute short-term effects of

exposure to violence. In exploring this possibility we draw on a rich body of psychological

research that has documented the potential for violence to contribute to both short-term

acute psychological stress, and longer-term prolonged psychological stress.3 Symptoms of

both can include difficulty concentrating, anxiety, intrusive thoughts, sleep disturbances,

reduced cognitive development and aggressive behavior, as well as psycho-biological effects

(Margolin and Gordis, 2000).4 Critically, given our focus on primary school students, there
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is evidence that parental stress disorders caused by community violence are a contributor to

children’s stress levels (Osofsky, 1995; Margolin and Gordis, 2000).5

Empirically, we combine data on violence from the Ministry of Health (Secretaría de

Salud) with data about performance among primary school students on national standardized

exams (Evaluación Nacional del Logro Académico en Centros Escolares) over the period of

rapidly escalating violence from 2006-2011. Our analysis builds on the approach in Monteiro

and Rocha (2016), as we assemble geo-located data on the positions of schools and homicides,

and then add additional information on the precise timing of those homicides. This allows us

to map the occurrence of homicides located within 2k, 5km and 10km of individual schools,

and link higher levels of homicides, during specific time periods, to changes in student scores

on standardized national exams within schools over time. In particular, we focus on the

immediate impacts of homicides that occur in the seven days prior to exams, and on the

longer-term impact of accumulated homicides over the entire school year (nine months). This

allows us to establish more precise estimates of the links between homicides and educational

performance, and to disentangle the previously unexplored importance of the short-term

effects of violence on educational performance, which we attribute to acute psychological

stress. While we cannot measure psychological stress directly, the fine-grained character of

our data allows us to rule out alternative possibilities either because they operate over longer

time horizons, or by testing for those alternatives directly.

We find a significant negative effect of violence on educational performance over both the

short (seven days) and long (nine months) term, and show that the negative effect on exam

scores generally increases in size as the level of violence increases and when the violence is

geographically closer to the affected school. Critically, we find that homicides that occur in

the week immediately prior to national standardized tests have dramatically larger impacts

on performance than homicides that occur further from exam dates. Specifically, we find

that schools that are exposed to at least three homicides within a 2km radius in the week

immediately prior to exams see scores fall by an average of about 4.4 points (out of 800), or

3



about 0.1 standard deviations. By contrast, when we focus on homicides that occur in the

nine months prior to the exam exposure to at least 100 homicides generates roughly the same

average decline in exam scores. This implies that the impact on educational performance of

a homicide that occurs in the week immediately prior to exams is more than 30 times larger

than an additional homicide that occurs earlier in the school year. We conduct a series of

placebo tests in order to ensure the robustness of the results.

Overall, the results highlight the importance of focusing on the immediate short-term

effects of violence on educational performance, which have previously been overlooked in

the literature. It likewise reinforces the view that this short-term effect is attributable to

acute psychological stress, as none of mechanisms previously studied in the literature could

account for the much larger effect of violence over the short-term. An important question

raised by the short-term results is whether we are capturing a decline in overall learning —

as disruption prior to exams disrupts the consolidation of learning that has occurred over

the course of the school year — or only a transitory decline in exam performance. Even if

we are capturing only a transitory disruption of exam performance this can have important

implications in so far as exam performance shapes future educational opportunities, teacher

evaluations or school funding. In these scenarios, reduced exam performance resulting from

exposure to violence may negatively and lastingly affect the educational trajectory of af-

fected students, while it may result in reduced funding and evaluations for affected schools

— potentially contributing to reduced performance and reinforcing prior inequalities. The

results correspondingly suggest that where schools are exposed to significant violence in the

lead up to important exams governments may consider providing various forms of additional

psychological support to students and along with postponing exams, or else otherwise seeking

to account for the negative impacts of exposure to violence.

In advancing this analysis we build upon a growing body of research. An increasingly

large number of studies have sought to understand the impacts of violence on educational

outcomes in countries that have been affected by violent conflicts, wars, and more general
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violence and crime. Prominent examples are Alderman et al. (2006), Akresh and Walque

(2008), and Chamarbagwala and Moran (2011), and Shemyakina (2011), who show that

violent conflict almost always reduces access to education, school attainment, and academic

achievement. Akbulut-Yuksel (2014), Ichino and Winter-Ebmer (2004), and Leon (2012),

and Justino et al. (2013) find that shocks to educational access can lead to significant and

long-lasting detrimental effects on individual human capital accumulation, which in turn

explain long-term trends in socioeconomic status (Case and Paxson, 2008; Maccini and

Yang, 2009). The critical long-term importance of investments in children and adolescents

for skill development and socioeconomic advancement is highlighted by Cunha and Heckman

(2007).

While these studies highlight the negative impacts of violence on overall educational

outcomes, only a more limited number of studies have looked explicitly at the impact of

violence on educational performance among students. We build most explicitly on Monteiro

and Rocha (2016), who explore the impact of variation in conflict intensity on children’s edu-

cational performance in Rio de Janeiro’s favelas, and argue that reduced school supply is the

main driver of poor exam results after increases in violence intensity. They do not, however,

explore the particular role of psychological stress, nor do they isolate short-term effects. In

an unpublished working paper, Brück et al. (2014) find detrimental effects of violence on

educational performance in affected regions in the Palestinian territories. Building upon our

study, they consider the possibility that psychological stress may help to explain reduced

student performance. However, they are only able to test this mechanism with significantly

less precision owing to the more limited geographical and temporal disaggregation of their

data, and more highly aggregated measures of educational performance.

In the Mexican context Brown and Velásquez (2017) draw on longitudinal and municipality-

level data on drug-related violence over time, and find negative effects of drug-related violence

on overall educational attainment and employment outcomes over time, while demonstrat-

ing that violence results in significant student migration. Of relevance here, they include an
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attempt to test for the impacts of violence on cognitive alertness — a potential result of psy-

chological stress — and find no result, but note explicitly that their lack of any finding may

be explained by their inability to capture the very short-term impacts expected to be associ-

ated with acute psychological stress. Jarillo et al. (2016) focus on the impact of exposure to

drug related turf wars in Mexico on educational performance and establish a negative effect

of violence on educational performance, particularly in poor urban settings affected by the

presence of drug gangs. They attribute this effect to supply-side impacts, including teacher

absenteeism and turnover, as well as demand-side impacts, including students’ absenteeism

and tardiness. However, their study employs a less constrained and demanding difference-in-

difference estimation, while they rely on data aggregated at the municipal level, rather than

more precisely geo-locating data on homicides and educational performance. As a conse-

quence they are unable to capture short-term effects of violence on educational performance,

and they do not explore the role of psychological stress as a transmission mechanism. Fi-

nally, in an unpublished working paper Márquez-Padilla et al. (2015) investigate the impact

of violence in Mexico on human capital accumulation and schooling decisions. Focusing on

municipality-level effects of violence on school enrolment, they do not find any statistically

significant impact for most age groups and time periods. Our results suggest that their null

findings reflect the comparatively aggregated nature of their measures, and a corresponding

failure to capture effects that depend on both geographic and temporal proximity.

The paper is organized as follows. In the next section, we provide background information

on the violent conflict in Mexico. In Section 3 we describe the data and descriptive statistics.

Section 4 describes the empirical strategy. Section 5 presents the core empirical results for

violence over both seven days and nine months prior to exams. In Section 6 we discuss the

mechanisms underpinning the relationship between violence and educational performance,

and test alternatives to the psychological stress mechanism. In Section 7 robustness checks

are presented. We conclude in Section 8.
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2 Violence in Mexico

Violence associated with the illicit narcotics trade in Mexico first emerged as a significant

issue in the 1980s when Colombian drug trafficking organizations (DTOs) began to co-

operate with Mexican cartels in order to traffic drugs from Latin America to the United

States. Violence was relatively low and geographically confined for the two decades that fol-

lowed. With increasing political decentralization initiated by electoral reforms in 1997 (Rios,

2012), traditional patterns of power shifted in many local governments. This altered previ-

ously relatively stable corruption patterns and caused conflicts between DTOs to multiply

(Guerrero-Gutiérrez, 2011).

By 2006, the beginning of this study, six major drug cartels were active in more than

two thirds of Mexico’s 2,457 municipalities. These cartels controlled different geographical

areas of the drug trafficking network, with drug-related violence concentrated in states near

the Mexico-U.S. border and along the Pacific coast (Shirk, 2010). In 2006 President Felipe

Calderón was elected, and declared a “war on drugs”, giving the military a mandate to disrupt

trafficking patterns and to detain cartel leaders (drug lords). The arrest of cartel leaders,

and disruption of existing drug trade networks, contributed to factionalization among the

DTOs, expanding turf wars, and escalating levels of violence. This was accompanied by an

increase in a variety of criminal activities among the cartels including kidnapping, torture,

human and weapon trafficking and money laundering (Guerrero-Gutiérrez, 2011).

A critical feature of this escalating violence and criminality from the perspective of this

study was its broad reach and focus on sowing generating fear and anxiety — psychologi-

cal stress — within affected communities. Actual violence was frequently accompanied by

threats, was often relatively public and graphic in order to sow fear, and increasingly tar-

geted local politicians, journalists as well as the police and military. Additionally, while

broad campaigns of kidnapping and extortion targeted a wide range of citizens — including,

for example, individuals who participate in the conditional cash transfer program Oportu-

nidades (Díaz-Cayeros et al., 2011). Meanwhile, at least some possible mechanisms by which
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violence may affect educational performance seem to play little role: there has been little

destruction of educational infrastructure, there have not been broad based and long-term

school closures and, as education funding is controlled by the federal government, it is thus

not vulnerable to local political dynamics.

Notwithstanding the diversity of violence and threats, it is widely held in the literature

that these broader criminal activities are proxied effectively by overall levels of homicides,

which is our focus here. An overview of the geographic evolution of violence in Mexico’s

municipalities is provided in Figure 1 using the official municipal-level database (SIMBAD

- Sistema Estatal y Municipal de Bases de Datos) from Mexico’s autonomous governmental

statistical agency (INEGI - Istituto Nacional de Estadística and Geografía). The maps show

the distribution and dispersion of homicides across municipalities over time: violence is more

intense and covers more municipalities as time goes by. Molzahn et al. (2013) document

that at the end of the relevant period men were the largest share of the victims of drug-

related killings (only 9% were women), with an average age of 32 years. This contrasts

with the common perception that most victims were among unemployed youth without

future prospects — and, as these adult victims are connected with other members of their

communities, it is consistent with drug related violence having broader psychological impacts

within the areas affected.

[Insert Figure 1 here]

We can place this expansion in violence in comparative context by comparing offi-

cial homicides data from Mexico to cross-country data from the United Nations Office

on Drugs and Crime (UNODC).6 During this period Mexico’s homicide rate moved from

7.8 per 100,000 of population in 2007, a level slightly higher than that of the United

States (5.6/100,000), to 22.5 per 100,000 in 2011 — a level roughly on par with Brazil

(23.5/100,000), which is widely regarded as one of the world’s most violent countries. That

said, it remained significantly lower than in either Honduras (91.4/100,000 in 2011) or

Guatemala (38.6/100,000 in 2011), which have consistently been home to among the highest
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murder rates in the world.

In seeking to paint a more detailed view of the evolution of violence over time, we have

access to a variety of alternative data sources on homicides in Mexico. They include several

official sources, such as those from Mexico’s statistical agency (INEGI), Mexico’s National

Security System (SNSP), and the Ministry of Health (SALUD — Secretaría de Salud), and a

number of others from non-governmental sources, like the newspapers Reforma and Milenio.

The INEGI dataset has been most widely used in the literature, but reports homicide data

at the municipality level, and on a monthly basis. We correspondingly rely in what follows

on source data from SALUD, which contains underlying death records disaggregated at the

locality level, and reported on a daily basis. In order to ensure comparability with the

INEGI dataset we classifying deaths in the SALUD dataset according to the International

Classification of Diseases system (ICD-10) — the same classification employed by INEGI. In

Figure 2, we plot homicide data at the national level from the often-used SIMBAD dataset

from INEGI, the dataset that we assemble using data from SALUD, and the dataset of drug

related homicides maintained by the Reforma newspaper. We see that in aggregate terms

the INEGI and SALUD datasets are overlapping, confirming that the SALUD data that we

employ is comparable with earlier studies using INEGI data, while providing more spatially

and temporally disaggregated information on homicides.

[Insert Figure 2 here]

A key challenge in working with homicide data lies in identifying the precise extent

of drug related violence, as distinct from other homicides. This challenge is reflected in

Figure 2: the INEGI and SALUD datasets report a broader range of intentional homicides,

while the Reforma dataset focuses on drug related homicides. While homicides increase

rapidly in each case, the overall level of homicides is significantly higher than the level of

homicides that can confidently be attributed to the drug trade. This reflects the existence

of homicides unrelated to the drug trade, as well as the difficulty of classifying the motive

for homicides across categories. That said, it is clear that the large increase in violence
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over time is overwhelmingly attributable to increases in drug related violence. Heinle et al.

(2014) offer a detailed analysis of a range of alternative data sources, and conclude that

while it is not possible to say with certainty which homicides are strictly drug related, this

share has certainly increased over time: between 22% and 32% of all intentional homicides

were classified by one of the data sources that they consider as drug-related in 2007, while

this proportion had reached 45% to 72% in 2011. An alternative is to consider the share

of homicides committed using firearms, which are generally associated with the drug trade

(McDougal et al., 2013; Dube et al., 2013). In Figure 3 we present two figures using the

SALUD data: the evolution of total homicides using three alternative definitions (homicides

that were intentional or of unknown intent, intentional homicides, and homicides committed

with firearms), and a graph of total homicides broken down by type of murder. In both

cases the rapidly increasing share of homicides using firearms is apparent, with the increase

in homicides using firearms accounting for most of the overall increase in homicides over

time.

[Insert Figure 3 here]

3 Data and Descriptive Statistics

In the analysis to follow we rely on data on homicides from SALUD, on data from the

ENLACE national standardized tests to measure educational performance, and on a range

of control variables drawn from primarily from INEGI. We describe each in turn.

We rely on the SALUD dataset on homicides because it offers the highest level of spa-

tial and temporal disaggregation, which is necessary to support our identification strategy.

Homicides are reported at the locality level, on a daily basis, making it possible for us to

link homicides to specific time periods, localities and schools. These localities are, in turn,

small enough to allow for relatively accurate mapping of homicides with school locations:

the average locality has a population of only 576 individuals, while municipalities, which are
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the level of aggregation used in earlier studies, are comprised of an average of 98 separate

localities. As described above, we classify each homicide in the SALUD dataset according to

the International Classification of Diseases system (ICD-10), which is also used by INEGI. In

the core analysis we focus on homicides classified as intentional. In the sensitivity tests that

follow we also consider a broader definition, which also incorporates homicides of unknown

intent, and a more restrictive definition based only on deaths from firearms. The trends in

these alternative variables are reported in Figure 3.

In order to measure educational performance we focus on results from Evaluación Na-

cional del Logro Académico en Centros Escolares (ENLACE) exams, which are standardized

tests coordinated by the Minister of Public Education (SEP — Secretaría de Educación

Pública), which have been conducted in all of Mexico’s primary and secondary schools since

2005/06. At the primary school level students in grades 3 to 6 (corresponding to ages 8

through 11) have taken these exams in Mathematics and Spanish in every school year, while

each year they also take an exam in one additional subject: Science in 2007/08; Civic Ed-

ucation and Ethics in 2008/09; History in 2009/10 and Geography in 2010/11. The tests

are held during national evaluation week, which occurred in April in 2006 to 2010, and in

late May in 2011. While they were not used for allocating school funding, assigning student

grades, or evaluating teacher performance, they were widely cited and discussed in the media

and among politicians (Agüero and Beleche, 2013).

Notwithstanding debates about the overall educational value of standardized tests, the

ENLACE results are ideal for our purposes. Average scores by school, grade level and

subject are downloadable from the SEP website and are directly comparable over time and

across schools, allowing us to pool all schools and academic years into one data set and

control for school fixed effects. Critically, Vázquez and Romero (2011) show that ENLACE

results appear to be an accurate reflection of student learning, and thus a good measure of

students’ educational performance. Reflecting this assessment, ENLACE results have been

used in several other academic studies (Agüero and Beleche, 2013; Alcaraz Pribaz et al.,
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2017; Estrada and Gignoux, 2014). Extensive measures are taken to insure the integrity of

the tests results, including administration by independent teachers. There have been some

accusations of fraud related to the exams, resulting from teachers urging weaker students

to stay home and the illegal trading of exam copies before the exam date (Navarro, 2013).

However, this effect appears limited. Further, it should not affect our overall identification

strategy, as we have no reason to believe that such fraud is correlated with the intensity of

violence, as discussed below.

Ultimately, our sample consists of average scores by school, subject (Math and Spanish)

and grade level in order to create a panel dataset for all urban public schools, each of which

is attached to state (32 in total), municipality (2,454) and locality (299,455) codes that allow

us to match school locations to our data on homicides. Average scores range from 200 to

800, with significant variation in educational outcomes across schools and geographic areas.

We are also able to retrieve attendance rates during the exam sessions, numbers of students

enrolled and numbers of students who failed the exam, the administrative structure of the

school (i.e. the role of the principal and other staff), as well as the number of schoolteachers,

and the number of those instructors that have degrees. We employ these data to address

alternative mechanisms linking violence to educational performance.

We focus exclusively on primary school because this avoids concerns about reverse cau-

sation running from educational performance to violence among older students. We focus on

urban schools owing to the greater challenges of geo-matching violence and schools data in

sparsely populated rural localities, and the fact that the surge in violence from 2006 occurred

primarily in urban areas (Figure B1, in the Appendix). We likewise exclude private schools

because the geographic coupling between students’ places of residence and school location

is less clear for the private school system: different private schools may draw students from

long distances, while others may serve much smaller neighborhoods. We correspondingly use

the private schools sample as a robustness check to illustrate the validity of our identification

strategy in Section 7.
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While the datasets are relatively clear, the key to our use of the data, and identifica-

tion strategy, lies in geo-matching data on homicides with education performance at nearby

schools. This allows us to identify the level of homicides occurring within a specific geographic

radius around the school during a specific time period. This type of detailed matching has

only appeared in one other paper, from Monteiro and Rocha (2016) for Brazil, and allows

for the more precise identification of links between violence and educational performance.

Specifically, we map a series of concentric circles around each school, with radii of 2km,

5km and 10km. We then identify all homicides that occur during a given time period (i)

within the overall radius covered by each circle (i.e. distances 0-2km, 0-5km and 0-10km),

and (ii) within each individual “ring” created by those concentric circles (e.g. 0-2km, 2-5km

and 5-10km). In the analysis to follow this allows us to understand the aggregate effect of

all homicides within a given radius, as well as the incremental impact of homicides within

each individual ring — something which, most importantly, allows us to assess whether

violence occurring closer to schools has a larger impact on educational performance. Because

homicides are identified only down to the locality level, rather than to a specific geo-location,

our methodology requires us to match the homicides that occur within specific localities to

specific “rings” around individual schools. Appendix A offers a more detailed description of

the process used for achieving this linking.

Finally, while our analysis includes municipality fixed effects we also include a set of

variables drawn from INEGI that are intended to control for time variant municipality level

differences which could be related to both primary educational performance and the intensity

of violence. We include the number of registered automobiles per capita, gross municipality

expenditure per capita, gross income per-capita, population density at the municipality level,

the population of the municipality, the amount of net public works and social expenditure

per capita as a share of total net expenditure per capita, the value added per worker, an

indicator for whether the area is a “low development” area, and the amount per capita spent

on the conditional cash transfer program, Oportunidades. Following Dell (2015) we also
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include a variety of electoral indicators to ensure that we have appropriately captured the

influence of the political environment of the school’s location. Finally, we also calculate the

distance between each school and the municipality seat (the midpoint of the locality that is

the center of the municipality), as a proxy for the type of neighborhood (i.e. central to the

city center and very dynamic vs. far outside the core and more likely to be close to shipping

and industrial areas). Collectively, these variables seek to control for changes in the level of

economic wealth and vibrancy of an area, which may affect both violence and educational

performance.

Our final sample consists of an unbalanced panel of 17,632 public, urban, primary schools,

across 1301 Mexican municipalities, observed beginning with the 2006/07 school year and

ending in 2010/11.7 The average ENLACE exam score is 515 with a standard deviation of

44. The average attendance rate for the exam in our representative sample is 94% and in

the average school approximately 194 students are enrolled at exam time. These figures are

shown in the upper panel of Table B1 in the Appendix B. For most municipal characteristics

our sample is in line with or somewhat better off than the national average. Our measure of

value-added per worker averages about 207 (1000$ MEX/Worker), while the national average

in 2013 was closer to 170. This is consistent with our focus on an urban sample. Meanwhile,

spending on social programs is somewhat lower in our sample, consistent with somewhat less

poverty in urban areas.

Turning to the frequency of homicides near schools, the lower panel of Table B1 in

Appendix B reports that on average schools were exposed to roughly 15 homicides over a

school year of nine months within a 2km radius, increasing to roughly 30 homicides within

a 5km radius and 58 within a 10km radius. This average masks a significant increase in

violence over time. The mean value of the homicide count over a nine month period, within

a 5km radius, increased from about 16 in 2006/07 to about 49 in 2010/11. Treating homicides

as a dichotomous variable, about 9.1% of all schools experienced at least three homicides

within a 2km radius in the week prior to exams at least once, with that figure increasing to
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19.1 % of schools within a 5km radius and 29.1% within a 10km radius. Again this disguises

a significant increase over time: in 2006/07, 1.7% of schools experienced at least three

homicides in a 2km radius during the week before the exam, while that share had increased

to 7.6% by 2010/11. Figure 4 offers an overview of the aggregate evolution of violence over

time, graphing the weekly number of homicides nationally over the entire period, along with

relevant exam dates.

[Insert Figure 4 here ]

4 Identification Strategy

Our core focus is on estimating the marginal impact of increases in violence (measured

by homicides) on educational performance (measured by exam scores) of primary school

students, and in exploring the roles of acute and prolonged psychological stress in driving that

relationship. We cannot directly measure the extent of acute and prolonged psychological

stress affecting students, nor, by extension, the impact of such stress on exam scores. As

such, our approach is to attempt to rule out alternative mechanisms that may explain any

association between violence and exam scores, thus leaving acute and prolonged psychological

stress, respectively, as the residual explanations for observed outcomes.

The existing literature describes a variety of potential mechanisms, which can be usefully

classified into supply and demand side mechanisms. Supply-side mechanisms focus on possi-

ble drivers of declines in the quality or availability of education. Violence may result in the

destruction of schools and related infrastructure or in school closures and broader disruption

of academic activities. It may also result in declines in the quality of the learning environ-

ment owing to increases in principal or teacher turnover, or increased teacher absenteeism

(Monteiro and Rocha, 2016).

Demand-side factors focus on the extent to which the performance of students may in-

dependently decline as a result of violence. Most research has focused on the possibility
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that violence may result in increased student absenteeism, withdrawal from school or out-

migration. As discussed in the introduction, the roles of acute and prolonged psychological

stress offer the primary alternative demand-side mechanisms, though they have yet to be

compellingly estimated in existing research. In both cases exposure to violence may result in

anxiety, intrusive thoughts, sleep disturbances, reduced cognitive development and aggres-

sive behavior, as well as psycho-biological effects. This may occur through direct awareness

of violence, or may be transmitted to younger children via parental stress (Margolin and

Gordis, 2000). Most relevant to our study, this may collectively result in significant difficul-

ties concentrating and, as a result, reduced exam performance.

Our core focus is on identifying the impact of acute psychological stress caused by expo-

sure to homicides on exam scores. To do so we consider the number of homicides within the

immediate vicinity of individual schools — that is, within a radius of 2km, 5km or 10km —

over the course of the week (seven days) prior to the ENLACE standardized tests, and link

that violence to educational performance, as measured by average scores on the ENLACE

tests. We argue that evidence of such a temporally proximate link between local violence

and decreased educational performance is most plausibly explained by an acute stress mecha-

nism. The other mechanisms that are proposed in the literature to link violence to decreased

performance are unlikely to operate over such a short time period: such violence does not

produce destruction of infrastructure and is too temporally proximate to drive significant mi-

gration, while risks of reduced learning related to teacher or principal absenteeism, turnover

or school closures are minimized by the very short time horizon — at most a few school

days — relative to the longer period over which learning takes place. The only plausible

alternative mechanism is through reduced attendance at exams, which we are able to test

for directly.

In order to contextualize this short-term analysis we subsequently look at the impact of

accumulated homicides over a period of nine months (roughly the length of the school year)

on exam scores. Any decline in performance in this case is plausibly also attributable to
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psychological stress associated with prolonged exposure to violence. However, because of

the longer time horizon alternative explanations become possible. We correspondingly at-

tempt to test for alternative transmission mechanisms, including degradation of the learning

environment and out-migration of better students. As importantly, if the short-term effect of

homicides on exam scores is significantly larger than the long-term effect this would suggest

the importance of an acute stress mechanism: it is the only hypothesized mechanism that is

unique to the short-term, whereas if results are driven by alternative mechanisms from the

literature that operate over both the short- and longer-term we would expect the magnitude

of the short- and longer-term effects to be relatively similar.

For both the short- and longer-term analysis the equation that identifies the effect of

violence on educational performance — represented by the ENLACE exam score, yijt , is:

yijt = β1Hitd + β2Xijt + β3Zjt + γi + δt + εijt

where i, j, and t are subscripts for schools, municipalities, and school years, respectively, and

d is a subscript for the radius or ring around a school in which homicides are counted. Xijt is

a vector of time-variant school characteristics and Zjt is a vector of time-variant municipality

characteristics. γi and δt are school and school year fixed effects, respectively. Hitd is the

violence measure of interest: exposure to homicides for a given school i and school year t

within a distance radius or ring d around the school.

We construct several measures of violence intensity that vary in the time period prior to

the ENLACE tests — the seven days or nine months before the exam — and the distance

from the school, defined by the radius (2km, 5km or 10km) or ring (0-2km, 2-5km or 5-10km)

of interest. The generic formula for these measures of violence intensity can be seen as:

Hit =
∑
l

∑
s

1{Dil≤A}∩{Pe(t),s≤B} · hlst

where l is a subscript for localities, s is the date, and e(t) is the exam date for a given school
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year t, and Di,l is the distance between a given school and a locality centroid. A is the cutoff

threshold for the radius of interest. Pe(t),s is the time between the date of a homicide and

the exam date for the school year of interest. B is the cutoff threshold for the time range of

interest. hlst is a count of the number of homicides that occurred in a given locality on a given

date in a given school year. This formula tells us the sum of the homicides that occurred

during the time and distance range of interest in a radius around each school. Measures of

the violence intensity in a ring of interest are generated by subtracting the smaller radius

values — i.e. the violence intensity in a 2-5km ring is the conflict intensity in the 5km

radius less that of the 2km radius. Testing both rings and radii around each school allows

us to focus carefully on the linkages between where homicides happen and their impacts on

children’s educational performance: radii allow us to focus on “cumulative” effects, while

rings enable us to delve further into the independent effects of violence in each geographic

range, while controlling for violence in other distance ranges.

For the short-term analysis we focus on the raw number of homicides in the week prior

to the exam, and construct dummy variables for three threshold levels of violence: three,

five or seven homicides. We employ these dummy variables, rather than a continuous mea-

sure of homicides, for clarity of exposition, and in order to focus attention on the impact

on educational performance of exposure to relatively high levels of violence. Table B1 in

Appendix B reports homicide data during the period one week before the exam, for different

levels of violence and different distances from schools. For the long-term analysis we initially

employ a continuous measure of the number of homicides, reflecting the higher number of

homicides overall (see Table B1 in Appendix B). While some previous studies have employed

the homicide rate as their key variable of interest, we prefer to split the homicide rate into

its component parts: the homicide count, and the log of population. This allows us to isolate

the impact of each additional homicide, for comparison to the short-term results, and is thus

clearer for purposes of exposition and interpretation. As critically, reliance on the homicide

count then allows us to neatly capture the potentially non-linear relationship between homi-
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cides and exam scores by dividing the schools for analysis into “bins” based on the level of

homicides in the preceding nine months (0-25 homicides, 25-100 and greater than 100).

We consider several potential threats to our identification strategy. The first issue is

unobserved heterogeneity, such as average socioeconomic development in an area or the

political power of the residents.8 This could, for example, affect the distribution of public

spending, which may affect both the intensity of local violence and educational performance.

To account for this possibility we include municipality fixed effects, school year fixed effects,

and a range of control variables, which account for these municipality-specific time-varying

effects.

The second potential problem arises from reverse causality between educational perfor-

mance and the local level of violence. While an increase in violence is likely to worsen perfor-

mance, poor educational performance could also contribute to violence as violent groups can

more easily recruit young individuals from badly performing schools.9 As described earlier

this is why we focus on primary school children, under the age of 12, who are far less likely

to be targeted for recruitment or involvement in homicides. That said, it is important not to

overstate this risk: reverse causation should not have any affect on our short-term estimates

given the short time horizon.

Third, our identification strategy may be vulnerable to bias caused by teachers or students

cheating. Among the ways that this might occur, teachers may strategically encourage

and/or force low-performing students to stay home on exam days in order to have better

school-level performance. Meanwhile, students may seek to gain access to exams in advance.

This would be a threat to our identification strategy if there is a systematic relationship

between cheating behavior and the intensity of violence, but there is no evidence that that

is the case. To further protect against any risk we focus our analysis on the “representative

sample” of schools recommended by SEP, for which exam attendance is at least 80% and

there is no evidence of significant cheating.10

Finally, there may be a risk of measurement error in so far as our measure of homicides
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does not exclusively capture drug related violence. The SALUD data do not indicate whether

a homicide is related to drug trafficking specifically, owing to the difficulty of such coding.

As a result, we certainly include some non-drug related homicides. We do not, however,

think that this poses a threat to our approach. The data presented in the previous section

makes clear that the increase in violence from 2006 to 2011 is explained overwhelmingly by

increases in drug related violence. In turn, we expect drug related violence to be more likely

to cause psychological stress among students owing, for example, to it being more graphic, or

associated with wider threats. As such, the inclusion of a broader range of homicides would,

if anything, cause us to underestimate the impact of drug related violence on educational

performance, making our estimates a lower bound.

5 Results

We focus first on estimating the impact of violence in the seven days prior to exams on exam

scores, in an effort to isolate the role of acute psychological stress on educational performance.

We rely on thresholds of three, five or seven homicides in the seven days prior to the exams

to identify the effects of violence. The key message about the frequency of violence is that

violence at these levels is far from universal, but nonetheless meaningful: 9.11% (9.73%,

17.19%) of schools experienced three or more homicides within a 0-2km (2-5km, 5-10km)

ring around their school in the seven days before the exam for at least one of the years that

we consider.

[Insert Table 1 here]

Table 1 presents the first set of results, which show a significant and meaningful negative

impact of homicides on exam performance. Pooled regressions reported in columns (1), (3)

and (5) show a positive correlation between increased violence and average exam scores. This

is consistent with violence being concentrated in larger and more vibrant urban areas, which

also tend to be home to stronger educational performance. Once we control for school fixed
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effects in order to properly estimate our relationship of interest the coefficients are rendered

strongly negative: within-school estimations report statistically significant negative impacts

of violence on educational performance that hold across different distances and thresholds of

violence. The substantive magnitude of the effects is plausible and substantial. For schools

with at least three homicides within a 2km radius, for example, the average exam score is

roughly 4.4 points lower.

We can then look at how the magnitude of these effects varies across distance and levels

of violence. To highlight the effects of homicides that occur at different distances from

respective schools, Table 2 reports the results by rings — that is, the marginal impact of

homicides 0-2km, 2-5km and 5-10km from schools. To measure these effects we control, in

each case, for homicides within the smaller rings when computing the impact of additional

homicides in the outer rings. At all of the violence thresholds we find that homicides that

occur further from schools have a smaller effect on exam performance. Illustratively, if we

focus on schools that experience at least three homicides, that level of violence within 2km

is associated with a decline in exam scores of roughly 4.4 points, whereas homicides 2-5km

and 5-10km from the school are associated with 2.3 and 1.6 point declines.

[Insert Table 2 here]

Focusing on changes in the size of the effect as the number of homicides increases we

generally see larger effects at higher levels of violence. We see a large increase in the mag-

nitude of the effect when we move from the three homicide to five homicide cut-off. As

reported in Table 1, the magnitude of the effects within the 2km radius increases from 4.4

to 4.6, within the 5km radius it increases from 2.4 points to 5.0 points and within the 10km

radius it increases from 1.5 points to 5 points. The fact that the effect of higher levels of

violence becomes more important with greater distance seems intuitive. Within a 2km ring

even three homicides is likely to be very psychologically stressful, whereas with greater dis-

tance it is only higher levels of violence that generate the same level of acute psychological

stress. When we move to the seven homicide cut-off we do not see a further increase in in
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the magnitude of the impact on exam scores, but instead see a magnitude very similar to

that for the five-homicide cut-off. This could be explained by the fact that the number of

schools exposed to seven or more homicides is comparatively small, while in any case the

overall pattern is broadly consistent with expectations.

Finally, we look at how these overall patterns vary by subject (math or Spanish) and

grade level (3-6), with results reported in Table 3. We see a slightly stronger effect on math

scores, though the effect is negative and significant for both subjects. This is consistent

with previous literature generally suggesting that the impacts of psychological stress might

be reflected more strongly in math scores as Spanish exercises (or other wording exercises)

allow more ‘flexible grading’ (Baker and Hoekstra, 2010; Schwartz and Gorman, 2003). We

similarly see slightly larger effects for younger students, which is encouraging in ruling out

concerns about endogeneity between poor educational performance and violence. This is,

again, consistent with the literature on violence and psychological stress, which has generally

suggested that the effects may be largest for younger students (Rønholt et al., 2013; Allwood

et al., 2002; Schwab-Stone et al., 1999).11

[Insert Table 3 here]

In order to place these results in broader context, we turn to estimating the longer-

term impact of accumulated violence over the course of nine months prior to the exams.

This serves two purposes: estimating this effect of accumulated violence is independently

important, while also offering a perspective of the relative importance of the short-term

effects reported so far.

Table 4 reports these longer-term results, again using 2km, 5km and 10km radii around

the schools. As with the short-term effects, we find a positive relationship in a linear pooled

model (column 1), while the relationship between homicides and exam scores becomes neg-

ative and significant after including school fixed effects (column 2). This holds true for

homicides within 2km, 5km or 10km of the schools. The magnitude of the effect is relatively

small: an increase of one homicide within 2km of a school over the preceding nine months
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is associated with a decrease in exam scores of only 0.009 points. Because we suspect that

the impact of homicides on educational performance may be non-linear we then implement

a non-linear model (column 3). The non-linear model appears to offer a better fit, with the

estimated impact increasing about five fold, such that an additional homicide is associated

with a 0.044 point decline in exam scores.

[Insert Table 4 here]

In order to more clearly capture the non-linear relationship between homicides and ed-

ucational performance we divide our sample into three bins, capturing schools exposed to

below 25 homicides, 25-100 homicides, and greater than 100 homicides — with the latter

two categories including 17.8% and 5.8% of school-years, respectively. Consistent with a

non-linear relationship, we find a larger and more significant negative association between

homicides and exam scores in areas with at least 100 homicides. Schools that are exposed to

at least 100 homicides within a 2km radius in the preceding nine months have, on average,

exam scores that are 3.5 points lower. As we expand the radius, this effect declines to 2.2

points for the same level of homicides within a 10km radius. We also see some evidence

of a smaller negative effect for schools exposed to 25-100 homicides, with a negative and

significant coefficient when focusing on the 5km radius — and an estimated effect on scores

of about 1.4 points.

Taken together the short- and longer-term results reveal a significant relationship between

violence and educational performance, while pointing in particular toward the importance

of relatively overlooked short-term effects, which we argue are associated with acute psycho-

logical stress. Our results suggest that relatively small numbers of homicides in the week

immediately prior to the exams have the same effect on exam performance as much larger

levels of violence over the preceding nine months. More specifically, we find that among

schools that are exposed to at least three homicides within a 2km radius in the week prior to

exams there is a decline in exam scores of 4.4 points. Within this group the average number

of homicides is 6.8. Yet this comparatively small number of homicides has a larger effect
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on exam scores than being in a school that was exposed to at least 100 homicides over the

preceding nine months (3.5 points, with an average of about 206 homicides). This suggests

that the effect of each homicide is roughly 38 times larger when they occur in the week

immediately prior to the exam. This pattern is illustrated graphically in Figure 5, which

plots the impact of one additional homicide on exam scores over progressively longer time

periods.12

[Insert Figure 5 here]

The magnitude of the effects that we identify is strikingly similar to those reported by

Monteiro and Rocha (2016) in Brazil, in the only other study to have employed similarly

geographically fine grained data and within school estimates of the effects of increases in

violence. They focus on the impact of homicides that occur in the academic term prior to

exams, using schools within 250m of favelas that experience gun-fights. Their measure is

thus somewhat more geographically, and less temporally, proximate, but bears important

similarities to our analysis. They ultimately report an effect equivalent to 0.051 standard

deviations. This is about half of the magnitude that we report for the impact on exam scores

of experiencing three homicides within 2km in the seven days prior to exams, which it is

five or more times larger than our long-term effect. If anything the fact that their estimated

long-term effect is smaller than our short-term effect — despite a very tight geographic focus

— offers further support for the importance of a very short-term acute psychological stress

mechanism.

The most similar previous study of the Mexican context comes from Jarillo et al. (2016),

who estimate only the longer-term effect of violence on educational performance. They

look at the impact of homicides over the course of the previous year on exam scores using

municipal level data, and focus exclusively on math scores and homicides committed with

firearms. They employ a difference-in-difference estimation strategy which is less constrained

and demanding than our fixed effects specification and, consistent with that difference, report

an effects of -0.045 standard deviations. As with Monteiro and Rocha (2016), this estimated
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effect is about half the size of our short-term effect, and significantly larger than our long-

term effect. While our estimation strategy is more robust overall, we can usefully think

of our long-term estimates as capturing a lower bound, while Jarillo et al. (2016) capture

an upper bound. Meanwhile, their results again highlight the substantial magnitude of the

short-term effect that we capture.

Finally, it is important to note that we are capturing the marginal impact of increases

in violence over seven days or nine months, as distinct from the still longer-term effects on

learning of living in areas affected by chronic violence. This has important implications, as

explained in a similar study by Monteiro and Rocha (2016, p. 220): “It is worth emphasizing

that our analysis estimates the effect of exposure to extreme but temporary episodes of

violence, and does not take into account the cross-sectional variation in violence and the

impact of being under the rule of drug dealers for extended periods. Consequently, one

might reasonably interpret our estimates as a lower bound for the impact of drug-related

violence on student achievement.”

6 Understanding Mechanisms

We argue that the impact of homicides occurring in the seven days prior to exams on exam

performance is best explained by an acute psychological stress transmission mechanism.

While we cannot measure student stress levels directly, the short time horizon between

homicides, and the significant decline that we observe in scores, seems to rule out most

alternative mechanisms. On the supply-side there is no destruction of educational infras-

tructure, while broader impacts on student learning resulting from teacher turnover, teacher

stress or absenteeism would be unlikely to have large effects given the short timeline — par-

ticularly for younger students for whom learning is likely to be cumulative over the school

year. Meanwhile, demand side factors related to out-migration of the best students seem

unrealistic over such a short time horizon. Critically our confidence in the relevance of the
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acute stress mechanism is reinforced by the magnitude of our empirical findings: the fact

that homicides that occur immediately prior to exams are associated with dramatically larger

declines in exam scores — more than 30 times larger — is highly consistent with acute stress

being the driving factor. The acute psychological stress mechanism is the only hypothesized

mechanism that operates exclusively over the short-term, and which could thus explain the

much larger short-term effect. By contrast, if the effect were driven by alternative mecha-

nisms that operate over both the short- and long-term we would expect the magnitudes of

the short and long-term effects to be relatively similar.

There is, however, one possible alternative explanation for our short-term results: we can

imagine stories in which local violence may result in reduced exam attendance concentrated

among higher income and better performing students, thus resulting in lower average scores

within affected schools. To rule out this possibility we run tests of the impact of homicides

in the week prior to exams on exam attendance, which we are able to access alongside exam

scores. Results are reported in Table 5, and we do see evidence of a very small negative impact

of violence on exam attendance, with attendance in areas affected by violence declining by

an average of about 0.3%. However, even if we make the extreme assumption that the 0.3%

of students who do not attend would have all otherwise received perfect scores on the exam

(800, as compared to a national average of 515), this would only result in the average score

for that school declining by 0.85 points — as compared to a total decline in those areas

of about 4.4 points. Under more realistic assumptions any effect of reduced attendance on

exam scores would be marginal.13

[Insert Table 5 here]

Untangling the mechanisms underlying the longer-term effect of accumulated homicides

over the course of nine months on exam scores is more complex. Prolonged psychological

stress is one possibility, but a wide variety of other mechanisms from the literature are

likewise possible. To gain some insight we run tests looking at two of the most common

mechanisms suggested by the literature: out-migration of high performing students, and a
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decline in the quality of the learning environment. In both cases we fail to find significant

and meaningful support for these alternative mechanisms, though in both cases our measures

are subject to important limitations.

Table 6 reports results when looking at the impact of accumulated violence over nine

months on levels of student migration, which we proxy by looking at declines in enrollment

over the course of the school year. The intuition here is straightforward: violence may induce

some students to move to new schools in safer areas, and higher income students — who tend

to be better performing — are more likely to be able to move. In practice, we see a small

and sometimes statistically significant increase in migration, of at most 0.5% of students. As

with the case of reduced attendance at exams discussed above, this scale of migration would

explain at most a small part of the total decline in exam scores even if we assume that all

of the migrating students would be extremely high performing. In turn, this relatively low

rate of migration is unsurprising: most migration is likely to occur between school years,

whereas we are only interested in migration that occurs during the school year. That said,

it is important to note that we are measuring gross changes in enrollment, rather than

net migration: we thus cannot entirely rule out the possibility that larger numbers of high

income and higher performing students migrate away, but are replaced by lower performing

students — such a scenario would cause us to underestimate the potential role of migration

in explaining the decline in exam scores.

We next consider whether there is evidence of violence contributing to reduced quality of

the learning environment. Table 6 reports results when we look at the impact of homicides

on teacher attrition, which has been reported to increase alongside violence in other contexts

(Brück et al., 2014). The results are almost universally insignificant while the point estimates

are of negligible magnitude, thus making clear that there is no decline in aggregate teaching

resources.14 However, this does not entirely rule out other mechanisms by which violence

might undermine the quality of the learning environment, but for which we lack the data to

conduct effective tests. While we are able to test the aggregate number of teachers at the
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beginning and end of the year, there may be increased turnover over the course of the year,

which could undermine learning outcomes. Likewise, the quality of instruction could decline

owing to psychological stress among teachers, increased absenteeism or school closures. Other

studies offer reasons to believe that these factors may, in fact, play an important role. For

example, Monteiro and Rocha (2016) find significant impacts in Brazil of violence on both

teacher absenteeism (38% of the sample mean) and temporary school closings (31%).

[Insert Table 6 here]

Overall, these additional tests offer significant support for the relevance of an acute stress

mechanism linking violence immediately prior to exams to reduced performance. Most alter-

native mechanisms proposed by the literature are not plausible over this short time period —

or at least seem incapable of explaining the relatively large magnitude of the effect — while

we are able to rule out reduced exam attendance as the most plausible alternative explana-

tion of our results. Unpacking the mechanisms underpinning the longer-term relationship

is more difficult, owing to the wider range of potentially confounding factors. It remains

possible that this effect is attributable to the accumulated effects of prolonged stress caused

by nearby violence. However, we are not able to rule out all alternative possibilities for the

long-term effect.

7 Robustness Tests

To see if our results are dependent on the particular definition of violence used, we re-run

our core short-term analysis using two alternative definitions of violence. Whereas our core

results rely only on intentional homicides, we now consider, first, a combined measure of

both intentional homicides and homicides of unknown intent, and, second, a measure of only

those homicides committed with a firearm, which are most strongly associated with drug

related violence. Results are presented in Table 7. We find very similar results in both cases,

as the coefficients on homicides are negative and significant in all specifications, spanning
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differences in both distance and the extent of violence, while the magnitude of the coefficients

is very similar to the core analysis.

[Insert Table 7 here]

Next we perform a series of placebo tests in order to ensure that our results are reliable.

First, we run tests to see if we find any association between accidental deaths and educational

performance. While accidental deaths may be traumatic within small circles of personal

connections, we would not generally expect them to be related to the war on drugs, or

to generate equivalent levels of psychological stress among students. And, indeed, results

reported in columns (1)-(3) in Table 8 reveal no consistent connection between accidental

deaths and exam scores. We find marginally significant results in some specifications, though

even then with much weaker significance and smaller magnitudes than the core results. This

is consistent with the potential for accidental deaths to cause some local psychological stress,

but far less so than homicides. This offers confidence in our core results, and reinforces the

fact that it is homicides specifically that are strongly associated with lower exam scores.

[Insert Table 8 here]

Second, we test the effects of homicides that occurred immediately after the exam period

on educational performance, as homicides that occur after the exam date should not affect

exam scores. This formulation is a common test in the literature (see, for example, Monteiro

and Rocha (2016)). We focus on the second week following the exam, as we worry that data

for the first week may be misleading: bodies that are found in the days immediately after the

exam may actually have been murdered before the exam took place, or have been reflected

in escalating threats and tensions within the community in the week before the exam. As

reported in columns (4)-(6) of Table 8 we find no association between violence following the

exam and average scores.

Third, we look at the impact of homicides on educational performance at private schools.

Private schools do not have the same tight geographic links to their surrounding environments

(i.e. their catchment areas are much less precisely defined and they may draw students from
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relatively far away). As such, our prior is that we should not see the same impact on exam

scores of homicides that occur close to these schools because students themselves are not

uniformly from those same communities. Results reported in columns (7)-(9) of Table 8

are consistent with this story. We see only very weak evidence of an association between

homicides and exam scores, with only two of nine specifications yielding significant results,

and the coefficients universally smaller in magnitude that in the core results. Moreover,

the two significant results that we do find are for higher levels of violence, and larger radii

around the schools, both of which are consistent with private school students being more

widely dispersed and thus less affected by violence occurring directly around the schools.15

8 Conclusions

A growing strand of the literature has provided evidence that violence reduces educational

achievement, attainment or performance. However, only a small part of this literature has

focused specifically on students’ educational performance, while evidence on the mechanisms

underlying such a relationship has remained limited. The strongest existing evidence has

focused on the impacts of violence on the supply of education, and on student migration,

over the course of full school years. While a few recent studies have highlighted psychological

stress as a potential alternative mechanism linking violence to educational performance, none

of them have been able to test this potential relationship convincingly.

Against this background our key contribution lies in employing temporally and geograph-

ically disaggregated data on homicides and exam scores to provide evidence of the role of

acute psychological stress as a key transmission mechanism linking violence and educational

performance. While we cannot measure psychological stress, our detailed data allows us to

implement an identification strategy that rules out competing explanations for the short-term

connection between geographically proximate homicides and reduced exam performance. In

turn, the comparison of the magnitude of our short- and longer-term estimates makes clear
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the importance of the timing of homicides in shaping exam performance — a dynamic that

has been entirely overlooked by previous studies, and highlights the importance of acute psy-

chological stress as a critical part of any story about violence and educational performance.

A final important question for our study is whether we are capturing a relationship be-

tween exposure to violence and transitory changes in exam performance, or broader negative

impacts on student learning. In so far as the literature is correct in viewing the ENLACE

exams as a genuine reflection of student learning, we feel relatively confident in asserting that

our long-term results are capturing a reduction in student learning as a result of exposure to

ongoing high levels of violence. The interpretation of our short-term results is more complex.

We may be capturing a decline in long-term learning if acute psychological stress disrupts

studying prior to exams in a way that results in reduced internalization of information from

the preceding school year. Alternatively, we may be capturing a more transitory negative

effect on exam scores owing to difficulty studying and writing exams, but without any sig-

nificant decline in overall learning. In the latter case the impact of acute psychological stress

on long-term human capital accumulation may be comparatively limited. However, even if

we are capturing primarily a transitory effect of violence on exam scores this could have

important consequences that demand policy responses. In so far as exam scores shape sub-

sequent opportunities for students — such as admission to better schools as they age — then

students living in areas heavily affected by violence could be systematically disadvantaged.

Likewise, if exam scores are used, formally or informally, to evaluate teachers or assign school

funding those in high violence areas may similarly face a systematic disadvantage over time

— potentially reinforcing future violence and patterns of inequality. The results reported

here minimally point toward the importance of considering the potential for violence to dis-

rupt short-term educational performance, and the need to adapt accordingly through, for

example, postponing exams, taking exposure to violence into account in evaluating student

performance, or offering extra support to students (and, potentially, parents) exposed to

such violence.
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Notes

1https://justiceinmexico.org/severed-heads-found-outside-of-elementary-school-in-acapulco/

2In 2012 national elections saw the victory of Enrique Peña Nieto, who oversaw a progres-

sive de-escalation of drug related violence, with overall levels of violence remaining high, but

declining progressively beginning in 2012-13. In order to isolate our study from the effects

of this broader transition we thus focus on the period of rapidly escalating violence from

2006-2011.

3In their most acute forms exposure to violence may give rise to Acute Stress Disorder

(ASD) and Post Traumatic Stress Disorders (PTSD), though our interest is also in captur-

ing the impacts of psychological stress that may fall short of these clinical thresholds but

nonetheless have negative impacts on concentration and learning (Colman, 2009; Pynoos,

1994; Osofsky, 1995).

4One psycho-biological effect is cortisol disruption. Cortisol is a hormone produced by

the human body, which is released in response to stress, and has negative consequences on

the immune system, bone formation and increased blood pressure, among other effects, at

elevated levels — an effect which was found among adolescents after exposure to community

violence in Boston (Suglia et al., 2010).

5For example, children of parents who were exposed to war in Bosnia and Herzegovina

demonstrated this effect (Bratti and Mendola, 2014).

6Data on homicides from the UNODC for Mexico is in line with official data from INEGI,

thus ensuring the broad validity of these comparisons.

7In total, there are 2,454 municipalities in Mexico; 1,150 municipalities are not covered

by our sample due to missing or implausible data or because none of the primary schools in
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our representative, urban, public school sample reside in these municipalities.

8For a discussion of the relationship between crime and educational investment in Mexico,

see Hansen (2010).

9For an overview of youth crime in Mexico and other Latin American countries, see e.g.

World Bank (2011).

10We also confirm that there is no relationship between the sample of schools that are

excluded from this representative sample and the intensity of violence.

11These patterns by subject and grade level are similar in the long-term, and are therefore

not repeated here to avoid redundancy. The results are available on request from the author.

12Strictly speaking this figure likely understates the actual impact of one additional homi-

cide over longer time periods, as it relies on a linear specification. The results in Table 4

reveal a larger coefficient when using a non-linear specification, while our analysis divided

by bins yields an estimate per homicide that falls between the two. However, relative to the

size of the effects when homicides occur closer to the exam date these differences are small,

and the Figure thus accurately reflects the overall pattern of results.

13We also experiment with including attendance as a control in our main tests, and find a

negligible effect on the results.

14We also run similar tests of the effect of violence intensity on student/teacher ratios,

and on attrition among principals and administrative staff, and find similarly insignificant

results.

15We conduct similar placebos tests for the long-term results, using both accidents and

private schools. In both cases the placebo tests similarly yield insignificant results. These

figures are available upon request from the author.
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Figure 1: Homicides per 1,000 inhabitants by municipality over time

Notes: Authors’ construction based on SIMBAD data. See appendix for details on the construction of the data.

39



Figure 2: Comparison across different sources of homicide data
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Figure 3: Comparison of homicide measures and types
Notes: Authors’ construction using SALUD data. See appendix for details on construction of data.
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Figure 4: Weekly homicides count and school dates
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Table 1: The effect of violence on educational performance (using 7-day homicide measure
and Km radii)

DEPENDENT VARIABLE: Z-Average score

(1) (2) (3) (4) (5) (6)
λ = 3 λ = 3 λ = 5 λ = 5 λ = 7 λ = 7

Distance radius up to: 2km

No. of Homicides ≥ λ 0.0663*** -0.0999*** 0.1039*** -0.1027*** 0.0987*** -0.1001***
(0.0172) (0.0160) (0.0232) (0.0222) (0.0288) (0.0243)

Distance radius up to: 5km

No. of Homicides ≥ λ 0.0742*** -0.0549*** 0.0677*** -0.1141*** 0.0995*** -0.1083***
(0.0121) (0.0112) (0.0157) (0.0142) (0.0201) (0.0163)

Distance radius up to: 10km

No. of Homicides ≥ λ 0.0008 -0.0346*** -0.0018 -0.1135*** -0.0005 -0.0983***
(0.0107) (0.0109) (0.0113) (0.0113) (0.0124) (0.0116)

Controls Yes Yes Yes Yes Yes Yes
School FE No Yes No Yes No Yes
Municipality Time Trend Yes Yes Yes Yes Yes Yes
School year FE Yes Yes Yes Yes Yes Yes

Sample Size 56,262 56,262 56,262 56,262 56,262 56,262
Number of Schools . 17,632 . 17,632 . 17,632

Notes: Each coefficient stems from a separate regression. The violence variable is a binary indicator of whether homicides numbering over
3 (5, 7) occurred in the previous 7 days to the exam in a 2 (5, 10) km radius around each school. The violence variable uses the INEGI
definition of homicides. The λ for each column indicates the homicides threshold used in that column to generate the binary homicides
indicator. Control variables are: Number of enrolled students (school level), student/teacher ratio (school level), teachers with a degree
(school level), principals groups (school level), groups (school level), registered automobiles per capita (municipality level), gross expenditure
(municipality level), expenditure Oportunidades (municipality level), social expenditure as share of total net expenditure (municipality level),
population(municipality level), population density (municipality level), low development indicator (municipality level), value added per worker
(municipality level), the school’s distance from the municipality center, and a variety of indicators for election years and victories by particular
parties. Standard errors are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%, 5% and 1%,
respectively. The sample used is the “representative” sample, as defined by the SEP.

43



Table 2: The effect of violence on educational performance (using 7-day homicide measure
and Km rings)

DEPENDENT VARIABLE: Z-Average score

(1) (2) (3) (4) (5) (6)
λ = 3 λ = 3 λ = 5 λ = 5 λ = 7 λ = 7

Distance rings up to: 2km

No. of Homicides ≥ λ, 0-2km 0.0663*** -0.0999*** 0.1039*** -0.1027*** 0.0987*** -0.1001***
(0.0172) (0.0160) (0.0232) (0.0222) (0.0288) (0.0243)

Distance rings up to: 5km

No. of Homicides ≥ λ, 0-2km 0.0709*** -0.1020*** 0.1086*** -0.1088*** 0.1024*** -0.1028***
(0.0173) (0.0160) (0.0233) (0.0222) (0.0288) (0.0243)

No. of Homicides ≥ λ, 2-5km 0.0464*** -0.0569*** 0.0386** -0.1145*** 0.0766*** -0.0903***
(0.0152) (0.0143) (0.0195) (0.0178) (0.0276) (0.0216)

Distance rings up to: 10km

No. of Homicides ≥ λ, 0-2km 0.0697*** -0.0991*** 0.1028*** -0.1089*** 0.1002*** -0.1028***
(0.0173) (0.0159) (0.0235) (0.0223) (0.0289) (0.0244)

No. of Homicides ≥ λ, 2-5km 0.0504*** -0.0529*** 0.0376* -0.1093*** 0.0770*** -0.0873***
(0.0152) (0.0143) (0.0195) (0.0179) (0.0276) (0.0216)

No. of Homicides ≥ λ, 5-10km -0.0611*** -0.0363*** -0.0466*** -0.0742*** -0.0398** -0.0374**
(0.0115) (0.0128) (0.0136) (0.0156) (0.0172) (0.0169)

Controls Yes Yes Yes Yes Yes Yes
School FE No Yes No Yes No Yes
Municipality Time Trend Yes Yes Yes Yes Yes Yes
School year FE Yes Yes Yes Yes Yes Yes

Sample Size 56,262 56,262 56,262 56,262 56,262 56,262
Number of Schools . 17,632 . 17,632 . 17,632

Notes: Each coefficient stems from a separate regression. The violence variable is a binary indicator of whether homicides numbering over 3
(5, 7) occurred in the previous 7 days to the exam in a 0-2 (2-5, 5-10) km ring around each school. The violence variable uses the INEGI
definition of homicides. The λ for each column indicates the homicides threshold used in that column to generate the binary homicides
indicator. Control variables are: Number of enrolled students (school level), student/teacher ratio (school level), teachers with a degree
(school level), principals groups (school level), groups (school level), registered automobiles per capita (municipality level), gross expenditure
(municipality level), expenditure Oportunidades (municipality level), social expenditure as share of total net expenditure (municipality level),
population(municipality level), population density (municipality level), low development indicator (municipality level), value added per worker
(municipality level), the school’s distance from the municipality center, and a variety of indicators for election years and victories by particular
parties. Standard errors are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%, 5% and 1%,
respectively. The sample used is the “representative” sample, as defined by the SEP.
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Table 3: The effect of violence on educational performance by subjects and grades

DEPENDENT VARIABLE: Z-Average score by Subject/Grade

(1) (2) (3) (4) (5) (6)
Math Spanish Grade 3 Grade 4 Grade 5 Grade 6

Distance radius up to: 2km

No. of Homicides ≥ 5 -0.0498** -0.0308 -0.0971*** -0.0798*** -0.0889*** -0.0149
(0.0211) (0.0197) (0.0285) (0.0295) (0.0293) (0.0295)

Distance radius up to: 5km

No. of Homicides ≥ 5 -0.0673*** -0.0421*** -0.1227*** -0.0945*** -0.0553*** -0.0436**
(0.0139) (0.0131) (0.0196) (0.0196) (0.0197) (0.0196)

Distance radius up to: 10km

No. of Homicides ≥ 5 -0.0792*** -0.0638*** -0.1282*** -0.1113*** -0.0942*** -0.0672***
(0.0115) (0.0107) (0.0159) (0.0158) (0.0161) (0.0161)

Controls Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes
Municipality Time Trend Yes Yes Yes Yes Yes Yes
School year FE Yes Yes Yes Yes Yes Yes

Sample Size 44,588 44,589 44,617 44,542 44,476 44,389
Number of Schools 17,473 17,473 17,499 17,465 17,432 17,376

Notes: Each coefficient stems from a separate regression. The violence variable is a binary indicator of whether homicides numbering over
5 occurred in the previous 7 days to the exam in a 2 (5, 10) km radius around each school. Each column is a different dependant variable,
reflecting the standardized score for the subject/grade indicated in that column. The violence variable uses the INEGI definition of homi-
cides. Control variables are: Number of enrolled students (school level), student/teacher ratio (school level), teachers with a degree (school
level), principals groups (school level), groups (school level), registered automobiles per capita (municipality level), gross expenditure (mu-
nicipality level), expenditure Oportunidades (municipality level), social expenditure as share of total net expenditure (municipality level),
population(municipality level), population density (municipality level), low development indicator (municipality level), value added per worker
(municipality level), the school’s distance from the municipality center, and a variety of indicators for election years and victories by particular
parties. Standard errors are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%, 5% and 1%,
respectively. The sample used is the “representative” sample, as defined by the SEP.
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Table 4: The effect of violence on educational performance (using 9-month homicide measure
and Km radii)

DEPENDENT VARIABLE: Z-Average score

(1) (2) (3) (4)

Distance radius up to: 2km

Homicide Count 0.0004*** -0.0002* -0.0010***
(0.0001) (0.0001) (0.0003)

Homicides Countˆ2 0.0000***
(0.0000)

Up To 25 Homicides 0.0229**
(0.0102)

25-100 Homicides -0.0151
(0.0186)

Over 100 Homicides -0.0799***
(0.0291)

Distance radius up to: 5km

Homicide Count 0.0005*** -0.0004*** -0.0011***
(0.0001) (0.0001) (0.0002)

Homicides Countˆ2 0.0000***
(0.0000)

Up To 25 Homicides 0.0142
(0.0108)

25-100 Homicides -0.0327*
(0.0179)

Over 100 Homicides -0.0945***
(0.0240)

Distance radius up to: 10km

Homicide Count 0.0003*** -0.0003*** -0.0010***
(0.0000) (0.0001) (0.0002)

Homicides Countˆ2 0.0000***
(0.0000)

Up To 25 Homicides 0.0366**
(0.0147)

25-100 Homicides 0.0103
(0.0202)

Over 100 Homicides -0.0490*
(0.0254)

Controls Yes Yes Yes Yes
School FE No Yes Yes Yes
Municipality Time Trend Yes Yes Yes Yes
School year FE Yes Yes Yes Yes

Sample Size 56,262 56,262 56,262 56,262
Number of Schools . 17,632 17,632 17,632

Notes: Each coefficient stems from a separate regression. The violence variables are defined using the INEGI definition of homicides over the
9 months prior to the exam (i.e. 8-267 days prior to the exam) in a 2 (5, 10) km radius around each school. The variable 0-25 homicides
is a dummy variable indicating that the nine month homicide count fell within that range, similarly for 25-100 homicides, and over 100
homicides. Control variables are: log(population) at the municipality level, the number of enrolled students (school level), student/teacher
ratio (school level), teachers with a degree (school level), principals groups (school level), groups (school level), registered automobiles per
capita (municipality level), gross expenditure (municipality level), expenditure Oportunidades (municipality level), social expenditure as share
of total net expenditure (municipality level), population(municipality level), population density (municipality level), low development indicator
(municipality level), value added per worker (municipality level), the school’s distance from the municipality center, and a variety of indicators
for election years and victories by particular parties. Standard errors are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗

denote significance level of 10%, 5% and 1%, respectively. The sample used is the “representative” sample, as defined by the SEP.

46



Figure 5: The effect of violence over time
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Notes: The violence variables are defined using the INEGI definition of intentional homicides in a 2 (5, 10) km radius
around each school. Date range is from the week listed (e.g. 52) until one week before the exam. The estimates plotted in
this graph are shown in Figure B3 in the Appendix. Control variables are: Number of enrolled students (school level), stu-
dent/teacher ratio (school level), teachers with a degree (school level), principals groups (school level), groups (school level),
registered automobiles per capita (municipality level), gross expenditure (municipality level), expenditure Oportunidades
(municipality level), social expenditure as share of total net expenditure (municipality level), population(municipality
level), population density (municipality level), low development indicator (municipality level), value added per worker
(municipality level), the school’s distance from the municipality center, and a variety of indicators for election years and
victories by particular parties. Standard errors are clustered by school. The sample used is the “representative” sample, as
defined by the SEP.
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Table 5: The exam attendance mechanism

DEPENDENT VARIABLE: Exam Attendance

(1) (2) (3)
λ = 3 λ = 5 λ = 7

Distance radius up to: 2km

No. of Homicides ≥ λ -0.2945*** -0.3724*** -0.2161
(0.0975) (0.1267) (0.1464)

Distance radius up to: 5km

No. of Homicides ≥ λ -0.2624*** -0.1773** 0.0435
(0.0689) (0.0852) (0.1023)

Distance radius up to: 10km

No. of Homicides ≥ λ -0.3309*** -0.2559*** -0.0584
(0.0630) (0.0659) (0.0693)

Controls Yes Yes Yes
School FE Yes Yes Yes
Municipality Time Trend Yes Yes Yes
School year FE Yes Yes Yes

Sample Size 56,262 56,262 56,262
Number of Schools 17,632 17,632 17,632

Notes: Each coefficient stems from a separate regression. The violence variable is a binary indicator
of whether homicides numbering over 3 (5, 7) occurred in the previous 7 days to the exam in a 2 (5,
10) km radius around each school. The violence variable uses the INEGI definition of homicides.
The λ for each column indicates the threshold used in that column. The dependant variables are the
exam attendance rate as calculated using ENLACE data. Control variables are: Number of enrolled
students (school level), student/teacher ratio (school level), teachers with a degree (school level),
principals groups (school level), groups (school level), registered automobiles per capita (municipal-
ity level), gross expenditure (municipality level), expenditure Oportunidades (municipality level),
social expenditure as share of total net expenditure (municipality level), population(municipality
level), population density (municipality level), low development indicator (municipality level), value
added per worker (municipality level), the school’s distance from the municipality center, and a vari-
ety of indicators for election years and victories by particular parties. Standard errors are clustered
by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%, 5% and
1%, respectively. The sample used is the “representative” sample, as defined by the SEP.
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Table 6: The student migration and teacher attrition mechanisms

DEPENDENT VARIABLE:

Student Migration Teacher Attrition

(1) (2) (3) (4) (5) (6)

Distance radius up to: 2km

Homicides Count 0.0000*** 0.0000 -0.0000 -0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Homicides Countˆ2 -0.0000 0.0000
(0.0000) (0.0000)

Up To 25 Homicides -0.0003 -0.0010
(0.0008) (0.0016)

25-100 Homicides 0.0037** 0.0009
(0.0015) (0.0026)

Over 100 Homicides 0.0050* 0.0005
(0.0028) (0.0038)

Distance radius up to: 5km

Homicides Count 0.0000* 0.0000 -0.0000 -0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Homicides Countˆ2 -0.0000 0.0000
(0.0000) (0.0000)

Up To 25 Homicides -0.0007 -0.0030
(0.0010) (0.0019)

25-100 Homicides 0.0015 -0.0057**
(0.0016) (0.0026)

Over 100 Homicides 0.0036* -0.0034
(0.0021) (0.0036)

Distance radius up to: 10km

Homicides Count 0.0000 0.0000** -0.0000 -0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Homicides Countˆ2 -0.0000*** 0.0000
(0.0000) (0.0000)

Up To 25 Homicides -0.0017 -0.0046*
(0.0015) (0.0025)

25-100 Homicides -0.0009 -0.0049
(0.0018) (0.0031)

Over 100 Homicides 0.0041 -0.0021
(0.0026) (0.0037)

Controls Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes
Municipality Time Trend Yes Yes Yes Yes Yes Yes
School year FE Yes Yes Yes Yes Yes Yes

Sample Size 56,262 56,262 56,262 56,148 56,148 56,148
Number of Schools 17,632 17,632 17,632 17,590 17,590 17,590

Notes: Each coefficient stems from a separate regression. The violence variables use the INEGI definition of homicides. The dependant variables
are the percentage difference in number of students between start and end of term (% ∆ No. Students) and the percentage difference in number
of teachers between start and end of term (% ∆ No. Teachers). The variable 0-25 homicides is a dummy variable indicating that the nine
month homicide count fell within that range, similarly for 25-100 homicides, and over 100 homicides. Control variables are: log(population)
at the municipality level, the number of enrolled students (school level), student/teacher ratio (school level), teachers with a degree (school
level), principals groups (school level), groups (school level), registered automobiles per capita (municipality level), gross expenditure (mu-
nicipality level), expenditure Oportunidades (municipality level), social expenditure as share of total net expenditure (municipality level),
population(municipality level), population density (municipality level), low development indicator (municipality level), value added per worker
(municipality level), the school’s distance from the municipality center, and a variety of indicators for election years and victories by particular
parties. Standard errors are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%, 5% and 1%,
respectively. The sample used is the “representative” sample, as defined by the SEP.
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Table 7: Sensitivity checks using alternative violence definitions

DEPENDENT VARIABLE: Z-Average score

Intentional + Unknown Intent Firearms

(1) (2) (3) (4) (5) (6)
λ = 3 λ = 5 λ = 7 λ = 3 λ = 5 λ = 7

Distance radius up to: 2km

Homicide Count ≥ λ -0.0631*** -0.1070*** -0.0914*** -0.0967*** -0.0664*** -0.0732***
(0.0133) (0.0200) (0.0231) (0.0187) (0.0245) (0.0248)

Distance radius up to: 5km

Homicide Count ≥ λ -0.0394*** -0.1045*** -0.0853*** -0.0931*** -0.0725*** -0.0748***
(0.0098) (0.0130) (0.0144) (0.0126) (0.0162) (0.0173)

Distance radius up to: 10km

Homicide Count ≥ λ -0.0279*** -0.1062*** -0.1028*** -0.1118*** -0.0846*** -0.0743***
(0.0099) (0.0108) (0.0113) (0.0104) (0.0116) (0.0131)

Controls Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes
Municipality Time Trend Yes Yes Yes Yes Yes Yes
School year FE Yes Yes Yes Yes Yes Yes

Sample Size 56,262 56,262 56,262 56,262 56,148 56,262
Number of Schools 17,632 17,632 17,632 17,632 17,632 17,632

Notes: Each coefficient stems from a separate regression. The violence variable is a binary indicator of whether homicides numbering over 3
(5, 7) occurred in the previous 7 days to the exam in a 2 (5, 10) km radius around each school. The violence variables are defined using the
INEGI definition of intentional homicides and those of unknown intent in (1), (2), and (3) and using the firearms homicides definition in (3),
(4), and (5) over the 7 days prior to the exam in a 2 (5, 10) km radius around each school. The λ for each column indicates the threshold used
in that column. Control variables are: Number of enrolled students (school level), student/teacher ratio (school level), teachers with a degree
(school level), principals groups (school level), groups (school level), registered automobiles per capita (municipality level), gross expenditure
(municipality level), expenditure Oportunidades (municipality level), social expenditure as share of total net expenditure (municipality level),
population(municipality level), population density (municipality level), low development indicator (municipality level), value added per worker
(municipality level), the school’s distance from the municipality center, and a variety of indicators for election years and victories by particular
parties. Standard errors are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%, 5% and 1%,
respectively. The sample used is the “representative” sample, as defined by the SEP.
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Table 8: Placebo tests

DEPENDENT VARIABLE: Z-Average score

Using Accidents After-Exam Effect Using Private Schools Sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)
λ = 3 λ = 5 λ = 7 λ = 3 λ = 5 λ = 7 λ = 3 λ = 5 λ = 7

Distance radius up to: 2km

No. of Homicides ≥ λ -0.0212* -0.0173 -0.0406** 0.0265 0.0218 0.0247 0.0184 0.0094 -0.0435
(0.0120) (0.0157) (0.0183) (0.0197) (0.0205) (0.0257) (0.0277) (0.0341) (0.0422)

Distance radius up to: 5km

No. of Homicides ≥ λ -0.0242** 0.0040 -0.0122 -0.0050 -0.0129 -0.0156 -0.0039 -0.0224 -0.0195
(0.0101) (0.0109) (0.0127) (0.0130) (0.0154) (0.0172) (0.0193) (0.0227) (0.0254)

Distance radius up to: 10km

No. of Homicides ≥ λ -0.0217** -0.0192** -0.0012 0.0130 0.0243** -0.0199* -0.0194 -0.0489** -0.0323*
(0.0098) (0.0095) (0.0108) (0.0122) (0.0121) (0.0116) (0.0206) (0.0206) (0.0190)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Municipality Time Trend Yes Yes Yes Yes Yes Yes Yes Yes Yes
School year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Sample Size 56,262 56,262 56,262 56,262 56,262 56,262 14,215 14,215 14,215
Number of Schools 17,632 17,632 17,632 17,632 17,632 17,632 4,768 4,768 4,768

Notes: Each coefficient stems from a separate regression. The violence variable is a binary indicator of whether deaths numbering over 3 (5, 7) occurred in the previous 7
days to the exam in a 2 (5, 10) km radius around each school. The placebo variables are the number of accidental deaths in (1), (2), and (3); the number of homicides
in the second week after the exam (i.e. 8-14 days after) in (3), (4), and (5); and the INEGI homicides definition over the 7 days prior to the exam for the private schools
sample in (6), (7), and (8). In each case, regressions are performed at a 2 (5, 10) km radius around each school. The λ for each column indicates the threshold used
in that column. Control variables are: Number of enrolled students (school level), student/teacher ratio (school level), teachers with a degree (school level), principals
groups (school level), groups (school level), registered automobiles per capita (municipality level), gross expenditure (municipality level), expenditure Oportunidades
(municipality level), social expenditure as share of total net expenditure (municipality level), population(municipality level), population density (municipality level), low
development indicator (municipality level), value added per worker (municipality level), the school’s distance from the municipality center, and a variety of indicators for
election years and victories by particular parties. Standard errors are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%,
5% and 1%, respectively. The sample used is the “representative” sample, as defined by the SEP.
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Appendix A

A9 Classification of Drug-Related Homicides

We use three different definitions of homicides: intentional homicides; intentional homicides

and those of unknown intent; and homicides committed with firearms. In all cases we draw

on INEGI classifications, which are based on the following definitions from the International

Classification of Diseases system (ICD-10):

Intentional homicides:

ICD-10 X85-Y09

Source: http://www.inegi.org.mx

Intentional homicides and homicides of unknown intent:

Intentional homicides: ICD-10 X85-Y09

Homicides for which intent is undetermined: Y10-Y34, Y87.2, Y89.9

We also include homicides of state security personnel (legal intervention/war) among those

of unknown intent, as they seem comparatively likely to be associated with the war on drugs:

Y35-Y36, Y89(.0, .1)

Source: External Cause of Injury Mortality Matrix for ICD-10,

www.cdc.govnchsdataiceicd10_transcode.pdf

Homicides by firearm:

X93-X95, Y22-Y25 and Y350

We rely on homicides using firearms as a proxy for drug-related violence. The total number
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of homicides using firearms lies between official figures on intentional homicides and unoffi-

cial statistics from media outlets on drug related homicides.

Source: External Cause of Injury Mortality Matrix for ICD-10,

www.cdc.govnchsdataiceicd10_transcode.pdf

A10 Homicide Measure Construction & Data Imputa-

tion Strategy

Because data on homicides are reported at the locality level, rather than having specific loca-

tion coordinates, we need to employ a strategy for matching locality level data on homicides

as precisely as possible to specific geographic areas around individual schools.

To do this we rely on two key pieces of data. First, we have access to geographic coordi-

nates for individual schools. Second, we have coordinates for the centroid for each locality

– the point such that equal amounts of area would be located on either side of any straight

line passing through that point. Because homicides are recorded at the locality level, the

best estimate of the distance between a school and a particular homicide is the distance

between the school’s coordinates and the coordinates of the locality centroid for the locality

in which the homicide occurred. Because localities are generally very small, with an average

population size of 576, this mapping is normally straightforward.

However, in some case where localities are geographically larger the mapping can be

slightly more complex. In some cases this counting process means that a school may not

necessarily be assigned the homicides for its own locality. This can occur if there are other

locality centroids which are within the radius (or ring) but the “home” locality of the school

is not within the radius (or ring). In such cases only those localities inside the radius or ring

are assigned.

In other cases, schools are located in areas such that one or more of the radius (or ring)
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values of interest do not contain the centroid of any locality. In this case, an imputation

strategy is employed to generate a similar measure of the number of homicides within the

radius (or ring). Specifically, a school is assigned the homicide values for the locality within

which it is located if the radius of interest does not contain any locality centroids. Because

this might be true of the 2km, 5km, or 10km radius measures (or rings), when more than

one of the measures do not contain a single locality centroid, then the homicide count of the

home locality is assigned to both radius or ring measures in proportion to the percentage of

the area covered by each radius/ring. For example, if both the 0km – 2km ring and the 2km

– 5km ring are missing, because there are no locality centroids within those rings around the

school, then 1/5 of the homicides for the home locality are assigned to the 0km – 2km ring,

and 4/5 the values are assigned to the 2km – 5km ring, as this roughly corresponds to the

percentage of the total area that falls within each ring.

A11 Population Measure Construction & Data Imputa-

tion Strategy

The INEGI Census of Population and Housing is decennial. Thus, data is only available

for 2000 and 2010, at the locality level. In order to estimate the population of each locality

in the intervening years, we calculate the population for each locality in each year under a

constant growth rate, according to the following formula:

poplt = popl,2000 ∗
[(

popl,2010

popl,2000

)0.1]t−2000
where l is a subscript for localities, and t is the academic year. We use this to construct

measures of the population inside each radius or ring around a school.

Similar to the data construction for homicides discussed in Appendix A Section A10

the number of people residing within a given radius (or ring around) of a school cannot

be precisely determined, but can be estimated using the coordinates of the school and the

localities that are inside the population radius (or ring) of interest. If a locality’s centroid
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falls within the radius (or ring) of interest, then the full population of the locality is counted

as falling within the radius or ring. As in the case of homicides, if no locality centroid falls

within the radius (or ring) of interest, then the population of the “home” locality is used, in

proportion to the area of the radius (or ring) that is missing data.

In some cases, there are schools that are missing population data, but not homicide data.

These cases arise primarily when schools are in “fringe” or boundary areas of a municipality

– i.e. near rural localities, but still themselves in areas that are defined as urban. This

is a plausible cause of missing data, because Mexico employs random sampling techniques

to construct census data in rural areas, rather than mandating door to door enumeration

(INEGI, 2003). Because of how rural localities are defined (a rural locality is any that

includes at least one dwelling place that is in a rural municipality/rural geographical basic

statistical division) they can have very low populations (in some cases down to a single

household). Combined with the sampling methodology for the census, this can result in

missing population data for some rural localities. This can, in turn, imply missing population

data in some of the rings around urban school that lie near the boundaries of urban areas.

In order to address this problem when there is a missing population value we use the mean

population of the five nearest non-missing neighboring localities in place of the missing value.

In some cases, these strategies can cause the 2km radius to be assigned a larger pop-

ulation than the 5km radius (or the 5km radius larger than the 10km radius). When this

happens, the ring measures (i.e. the 2-5km ring or the 5-10km ring) are recorded as having

negative populations. When logarithms of these populations are taken, these generate miss-

ing values. In order to mitigate this issue, the population values are smoothed. Effectively,

if the 5km radius has a lower population than the 2km radius, for example, then the two

population values are reversed. An alternate interpretation of this procedure is that the

excess population that is assigned to the 2km radius is re-assigned to the 5km radius. This

ensures that the population is monotonically increasing in radius around every school, which

in turn ensures that there are no negative population value rings, and no missing logarithms.
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Appendix B: List of Figures and Tables for the Online

Appendix

Figure B1: Comparison of Homicide Counts in Urban vs Rural Areas
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Notes: Authors’ construction using SALUD data. See appendix for details on the construction of the data.
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Table B1: Descriptive statistics

Mean Std.Dev. Min Max

School Characteristics
Average Exam Score 515 (44.26) 334 782
Exam Attendance Rate 94 (4.30) 80 100
Number of Students Examined 194 (123.50) 8 1,183
School-Municipality Centre Distance
(Km)

4 (10.31) 0 204

Municipality Characteristics
Share w/o Social Security 0.56 (0.19) 0 1
Cars per capita 0.16 (0.10) 0 1
Density (Inhabitants/kmˆ2) 32.77 (100.57) 0 949
Gross Income per capita (1000s of
$MXN)

884.34 (1232.41) 2 7,495

Share of Expenditure on Social Pro-
grams

0.29 (0.17) 0 1

Oportunidades Expenditure per capita
(1000s of $MXN)

0.43 (0.45) 0 22

Value Added (1000s of $MXN/Worker) 207.21 (527.16) 3 17,570

Homicides: Dichotomous Mea-
sures
No. of Homicides ≥ 3, 7 Days, 2km Ra-
dius

0.05 (0.21) 0 1

No. of Homicides ≥ 3, 7 Days, 5km Ra-
dius

0.11 (0.31) 0 1

No. of Homicides ≥ 3, 7 Days, 10km
Radius

0.21 (0.41) 0 1

No. of Homicides ≥ 5, 7 Days, 2km Ra-
dius

0.02 (0.16) 0 1

No. of Homicides ≥ 5, 7 Days, 5km Ra-
dius

0.06 (0.23) 0 1

No. of Homicides ≥ 5, 7 Days, 10km
Radius

0.14 (0.35) 0 1

No. of Homicides ≥ 7, 7 Days, 2km Ra-
dius

0.02 (0.12) 0 1

No. of Homicides ≥ 7, 7 Days, 5km Ra-
dius

0.03 (0.18) 0 1

No. of Homicides ≥ 7, 7 Days, 10km
Radius

0.09 (0.29) 0 1

Homicides: Continuous Measures
Homicide Count, 9 Months, 2km Radius 15.27 (47.88) 0 614
Homicide Count, 9 Months, 5km Radius 29.56 (66.48) 0 614
Homicide Count, 9 Months, 10km Ra-
dius

57.94 (108.22) 0 804

Sample Size 56,262

Note: Authors’ calculations using ENLACE, INEGI, and SALUD data. For details on the construction of the variables,
please see the appendix. Monetary values are reported in deflated $MXN, except the value added figure, which is reported
in nominal $MXN.
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Table B2: Number of public schools exposed to homicides in the 7 days before exam

year
Homicide Count 2007 2008 2010 2011 Total

No. % No. % No. % No. % No. %
0 11,850 87.40% 9,690 83.47% 12,597 80.85% 12,465 80.35% 46,602 82.83%
1 995 7.34% 1,397 12.03% 1,315 8.44% 1,376 8.87% 5,083 9.03%
2 480 3.54% 294 2.53% 705 4.52% 484 3.12% 1,963 3.49%
3 148 1.09% 74 0.64% 127 0.82% 297 1.91% 646 1.15%
4 69 0.51% 43 0.37% 214 1.37% 243 1.57% 569 1.01%
5 16 0.12% 53 0.46% 137 0.88% 256 1.65% 462 0.82%
6 0 0.00% 0 0.00% 0 0.00% 79 0.51% 79 0.14%

7 or More 0 0.00% 58 0.50% 486 3.12% 314 2.02% 858 1.53%
Total 13,558 100.00% 11,609 100.00% 15,581 100.00% 15,514 100.00% 56,262 100.00%

Notes: Authors’ calculations using SALUD data on intentional homicides. The sample considered here is urban public
schools. See appendix for details on the construction of the data.
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Table B3: The effect of violence over time (estimates for Figure 5)

DEPENDENT VARIABLE: Z-Average score

(1) (2) (3) (4) (5) (6) (7) (8)
λ = 52 λ = 36 λ = 24 λ = 12 λ = 4 λ = 3 λ = 2 λ = 1

Distance radius up to: 2km

Homicide Count, λ Weeks Before -0.0002** -0.0002* -0.0002 -0.0000 0.0005 0.0005 0.0001 -0.0040*
(0.0001) (0.0001) (0.0002) (0.0003) (0.0004) (0.0004) (0.0009) (0.0021)

log(Population) 0.6165*** 0.6166*** 0.6167*** 0.6187*** 0.6176*** 0.6176*** 0.6186*** 0.6201***
(0.0771) (0.0771) (0.0771) (0.0771) (0.0771) (0.0771) (0.0771) (0.0771)

Distance radius up to: 5km

Homicide Count, λ Weeks Before -0.0003*** -0.0004*** -0.0005*** -0.0004** -0.0001 -0.0001 -0.0010 -0.0053***
(0.0001) (0.0001) (0.0001) (0.0002) (0.0004) (0.0004) (0.0007) (0.0015)

log(Population) 1.0671*** 1.0687*** 1.0681*** 1.0801*** 1.0809*** 1.0809*** 1.0816*** 1.0800***
(0.1112) (0.1112) (0.1112) (0.1111) (0.1111) (0.1111) (0.1111) (0.1111)

Distance radius up to: 10km

Homicide Count, λ Weeks Before -0.0002*** -0.0003*** -0.0004*** -0.0005*** -0.0004 -0.0004 -0.0017*** -0.0060***
(0.0000) (0.0001) (0.0001) (0.0002) (0.0003) (0.0003) (0.0006) (0.0011)

log(Population) 1.4062*** 1.4024*** 1.3986*** 1.4024*** 1.3937*** 1.3937*** 1.4056*** 1.4112***
(0.1346) (0.1346) (0.1346) (0.1346) (0.1348) (0.1348) (0.1348) (0.1347)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
School FE Yes Yes Yes Yes Yes Yes Yes Yes
Municipality Time Trend Yes Yes Yes Yes Yes Yes Yes Yes
School year FE Yes Yes Yes Yes Yes Yes Yes Yes

Sample Size 56,262 56,262 56,262 56,262 56,262 56,262 56,262 56,262
Number of Schools 17,632 17,632 17,632 17,632 17,632 17,632 17,632 17,632

Notes: Each coefficient stems from a separate regression. Date range is from the week listed (e.g. 52) until one week before the exam. The violence variables are
defined using the INEGI definition of intentional homicides. Control variables are: log(population) at the municipality level, the number of enrolled students (school
level), student/teacher ratio (school level), teachers with a degree (school level), principals groups (school level), groups (school level), registered automobiles per
capita (municipality level), gross expenditure (municipality level), expenditure Oportunidades (municipality level), social expenditure as share of total net expenditure
(municipality level), population(municipality level), population density (municipality level), low development indicator (municipality level), value added per worker
(municipality level), the school’s distance from the municipality center, and a variety of indicators for election years and victories by particular parties. Standard errors
are clustered by school and are reported in parentheses. ∗,∗∗ and ∗∗∗ denote significance level of 10%, 5% and 1%, respectively. The sample used is the “representative”
sample, as defined by the SEP.
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