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1. Introduction

Arnott et al. (1993) persuasively argue it is important to use structural models
of congestion as the standard static model “contains ambiguities and is poorly
specified” (p. 161). These structural models are inherently dynamic and are
used to address a variety of important questions, including optimal highway
capacity (Arnott et al. 1993), the value of travel time information (Arnott et al.
1999), optimal parking prices (Fosgerau and de Palma 2013), how tolls affect urban
spatial structure (Gubins and Verhoef 2014; Takayama and Kuwahara 2017), which
road segments should be tolled (de Palma et al. 2004), non-price mechanisms for
addressing congestion (Nie 2015), and the distributional consequences of tolling
(van den Berg and Verhoef 2011; Hall 2017b).1

This paper shows that while standard structural models of congestion generate
a travel time profile that has the right general shape, they fit observed travel
times poorly. In particular, under standard assumptions for parameter values, the
predictions for either peak travel times or the length of rush hour are off by at least
an order of magnitude. The poor fit suggests that these models are abstracting
away from features that have a first-order impact on model predictions, which
limits our ability to use them to evaluate counterfactuals.

I highlight three problems with fitting these models to the data. In decreasing
order of severity, they are; first, travel times climb and fall far slower than the
models predict; second, travel times fall too slowly after the peak relative to how
quickly they climb before the peak; and, third, travel times are essentially flat at
the peak.

The source of the poor fit lies almost entirely with how we model agent preferen-
ces over different arrival times, and has little to do with the model of congestion
itself. Thus these problems affect the bottleneck model of Vickrey (1969) and
Arnott et al. (1993), as well as other structural models such as those of Henderson
(1974) and Chu (1995), the cell transmission model of Daganzo (1994), and the
hydrodynamic traffic flow model of Lighthill and Whitham (1955) and Richards
(1956).2 This is because agent preferences determine the slope of the travel time

1The time-of-use decision at the heart of structural models of traffic congestion is also used in
models of transportation by train (Kraus and Yoshida 2002; De Borger and Fosgerau 2012; de Palma
et al. 2017) and airplane (Silva et al. 2014).
2These models essentially only differ in how they model congestion. In the bottleneck model
drivers only slow down those who come after them, while in Henderson (1974) and Chu (1995)
drivers only slow down those traveling at the same time as them. In the cell transmission and
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profile, while the congestion technology then determines how many agents are
traveling at each point in time.

Of course, as Friedman (1953) argues, we do not expect models to be perfect
representations of reality, but useful abstractions that help us understand reality
better. The problems I identify do not affect all uses of structural congestion
models. However, I show they limit our ability to use these models to quantify
magnitudes of some outcome (e.g., the social welfare gains from some policy) and
derive qualitative results with heterogeneous agents.

I explore multiple solutions to each of the three problems, including allowing
for uncertainty in arrival times and generalizing the schedule delay cost function
beyond being piecewise linear.

I conclude with the following recommendations for improving the ability of
structural models of congestion to fit the data. If your goal is to quantify an
outcome with homogeneous agents, then it is simplest to use significantly lower
parameter values for agents’ schedule delay costs than are typically assumed. If
your goal is a quantitative or qualitative result with heterogeneous agents, then
add the assumptions that (1) agents have a continuum of desired arrival times,
which allows some agents to be inframarginal, (2) agents differ in the flexibility of
their schedules, so some agents actually are inframarginal, and (3) use parameter
values that imply the cost of being late is less than the cost of being early. These
solutions do not fix the problem of travel times being essentially flat at the peak,
however, its magnitude is small after fixing the other two. If it is to be fixed, it is
most tractably fixed by allowing for agents to be indifferent between arrivals in a
small window around their desired arrival time.

The remainder of the paper is structured as follows. After introducing the model
(Section 2), I document the three problems with the fit of the model to the data
(Section 3), explore several solutions to these problems (Section 4), and show these
problems affect our theoretical predictions (Section 5). I conclude in Section 6.

Lighthill and Whitham (1955)–Richards (1956) models drivers slow down both those who come
after and those traveling at the same time. These last two models are less tractable, and only
recently have been combined with models of agent preferences (e.g. Han et al. 2011; Ukkusuri et al.
2012; Friesz et al. 2013).
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2. Model

I start with the model of agent preferences of Vickrey (1969), which is used
throughout the literature, while making minimal assumptions on the congestion
technology.3

2.1. Congestion technology. There is a single road connecting where people live
to where they work. Travel time for an agent arriving at t is

T(t) = T f + Tv(t),

where T f is fixed travel time—the amount of time it takes to travel the road absent
any congestion—and Tv(t) is variable travel time. I assume Tv(t) is continuous
everywhere and differentiable almost everywhere.

For most of the results in this paper, this is all of the structure we need on the
congestion technology. When exploring whether adding uncertainty helps fix the
empirical problems with structural congestion models, I modify the model to add
uncertainty; and I use the bottleneck model when discussing examples of how the
problems identified in this paper affect quantitative and qualitative results.

2.2. Agent preferences. Agents choose when to arrive at work to minimize the
cost of traveling.4 Agents dislike two aspects of traveling: travel time and schedule
delay—that is, arriving earlier or later than desired. These costs combine to form
the trip cost; the trip cost of arriving at time t for an agent of type i is

pi (t) = αiT (t) + Di (t∗ − t) (1)

3 There are other ways of modeling agent preferences that are similar to that above. Most prominent
is the utility-theoretic models of Vickrey (1973) and Fosgerau and Engelson (2011), where agent
preferences are defined in terms of the per-minute utility of time spent traveling, at home, and at
work. If the utility rate of traveling and time at home are constant, and the utlity rate at work is
piecewise-constant with a discontinuity at t∗, then this is isomorphic to what is above. In this case
α is the difference between the per-minute utility at home and the per-minute utility while driving,
β is the difference between the per-minute utility of being at home and the per-minute utility of
being at work before t∗, γ is the difference between the per-minute utility of being at home and the
per-minute utility of being at work after t∗.
4Nearly all papers using structural congestion models focus on the morning commute. de Palma
and Lindsey (2002) point out that a key difference between the morning and evening commutes
may be that in the evening agents have a preferred departure time rather than a preferred arrival
time. The first and third problems discussed below are also issues with the evening commute, and
the improvements that deal with those problems are likewise relevant to the evening commute.

3



where α is the cost per unit time traveling (i.e., the agent’s value of time) and Di is
group i’s schedule delay cost function. Schedule delay costs are piecewise linear,

Di (x) = x

βi x ≤ 0

−γi x > 0

where β is the cost per unit time early to work, and γ is the cost per unit time late
to work. Each of these parameters represents how much an agent is willing to pay
in money to reduce travel time or schedule delay by one unit of time.

Each individual agent has zero mass, and there is mass Ni of agents of type i.
When exploring different ways of improving the fit of structural congestion

models, I consider various extensions to this classic formulation of preferences.

2.3. Definition of equilibrium. The relevant equilibrium concept is that of a
perfect-information, pure-strategy Nash equilibrium, in which no agent can reduce
his trip cost by changing his arrival time.

3. Identifying the problems

To better identify the problems, it is helpful to focus on three ratios: β/α, γ/α

and γ/β. I first show that these ratios have simple economic interpretations, which
helps us assess reasonable values for them, and discuss the commonly assumed
values for them. I then show how these ratios map into the empirical travel time
profile, and use data from three cities to compare the theoretically predicted travel
times given commonly assumed values for these ratios to the empirical travel time
profile.

The ratios β/α and γ/α are an agent’s willingness to pay in travel time to reduce
schedule delay (early and late respectively) by one unit of time, and provide a
measure of the inflexibility of his schedule. As in Hall (2017b), define βi/αi as type
i’s inflexibility. If a shift worker is late he generally faces penalties and when he is
early he passes the time talking with co-workers. Since there is not much difference
for the shift worker between spending time traveling or being at work early, his
β/α is close to one (the largest possible β/α). Similarly, due to the penalty when
late, γ/α is large. In contrast, an academic can start working whenever she gets to
the office and so has a very low marginal disutility from being early or late and so
her β/α is closer to zero.

It seems reasonable to assume that β/α should typically be somewhat large, and
that there should exist a large number of people who have a β/α very near to one.
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Table 1. Assumed parameter values

Paper β/α γ/β

Arnott et al. (1993) 0.61 3.9
de Palma and Lindsey (2002) [0.29, 0.94] 4
de Palma et al. (2004) 0.6 4.17
Fosgerau and Karlström (2010) 0.5 4
Liu and Nie (2011) {0.61, 0.78} {3.04, 3.90}
van den Berg and Verhoef (2011) [0.33, 0.99] 3.9
Tian et al. (2013) [0.19, 0.98] 5.25
Gubins and Verhoef (2014) 0.5 4
Xiao et al. (2014) 0.61 3.9
Takayama and Kuwahara (2017) {0.3, 0.4, 0.45, 0.5} 4

Typical assumptions, as summarized in Table 1, are for mean inflexibility to be
greater than one-half, and maximum values near one.

The ratio γ/β represents the relative cost of being late to early. To the best of
my knowledge, it is always assumed that arriving late is worse than arriving early,
so that γ/β > 1, with typical values near four, as Table 1 shows.

Not only are the standard assumptions on β/α and γ/β intuitively reasonable,
they also have empirical evidence supporting them. Small (1982) estimates a
discrete choice model of when to arrive at work, and finds results supporting
these assumptions. Indeed, most of the papers listed in Table 1 cite Small (1982) in
support of their assumptions.

These preference parameters determine the shape of the travel time profile, T(t).
The first-order condition for choosing arrival time, p′i(t) = 0, implies

T′(t) =
βi

αi
if t < t∗, (2)

T′(t) = −γi

αi
= −γi

βi

βi

αi
if t > t∗, and (3)

−γi

αi
≤ T′(t) ≤ βi

αi
if t = t∗. (4)

These impose the standard requirement that an agent’s marginal rate of substitution
be tangent to the budget line, unless at a corner solution.

For someone to be arriving at any given time t, one of (2)–(4) must be satisfied,
and since someone is arriving at all times during rush hour, one of these equations
must be satisfied at all times during rush hour. Thus the slope of the travel time
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profile is directly governed by agents’ preferences, and by looking at empirical
travel time profiles we can learn about agents’ preferences.

I measure the travel time profile in three cities, Los Angeles, Chicago, and Boston;
using data from a different source for each one.5 Figure 1 compares the model
predicted travel times using the parameters typically assumed in the literature to
travel times on California State Route 91 from the center of Corona to the junction
of SR-91 and I-605.6
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Data
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Figure 1. Travel times predicted by theory compared to average
travel times for CA SR-91W for postmiles 16–42 for 2004. Data from
Caltrans PeMS.

Notes: For the theoretical predictions I assume β/α = 0.6 and γ/β = 3.9. The higher theoretically
predicted travel times come from matching the empirical length of rush hour and the lower
theoretically predicted travel times come from matching the empirical peak travel time. Slopes for
the empirical travel time profile are the steepest slopes over an hour interval.

5I use data from California Department of Transportation (2014), Illinois Department of Transporta-
tion (2017), and data collected from Google Maps.
6I choose this specific segment because it roughly represents the median commute for those
living in Corona who use SR-91, as calculated using data from Sullivan (1999). I calculate travel
times for all business days in 2004 using loop detector data from the California Department of
Transportation’s Performance Measurement System (“PeMS”, 2014).
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As Figure 1 shows, using the standard assumptions about parameter values, the
model fails to match the data. If I match peak travel times, I predict rush hour
is only 46 minutes long, but if I match the length of rush hour, I predict variable
travel times seven times longer than those seen in reality.7

Figure 1 shows three problems with matching the model to the data. The most
significant problem is that the slope of the travel time profile is much lower than
our intuition for the preference parameters suggest it should be. The maximum
slope (over an hour interval) before the peak is 0.25, while the expected average
slope is 0.6 rather than the expected 0.6, and the maximum slope after the peak is
-0.12 rather than -2.34. In addition, the slope after the peak is more shallow than
the slope before the peak: the ratio of the (maximum) slope after the peak to the
(maximum) slope before the peak is 0.48 rather than near 4. Finally, the slope is
relatively flat at the peak.

This mismatch between theory and data is not unique to California State Route
91. Figure 2 shows the pattern holds for I-55 in Chicago from I-80 to I-94 (67.8
kilometers, a long commute) and a more typical commute of I-290 from Wolf Road
to I-94 (22.5 kilometers).8 So far all of this data is just for highways, however, it
holds if we include surface streets as well. Figure 3 also plots travel times from
Hopkinton to Boston Commons (48.5 kilometers, a long commute) and Wellesley
to Boston Commons (24.3 km, a more typical commute) using data from Google
Maps.9 In every case the slope before the peak is less than half that expected, the
slope after is less than a seventh that expected, the ratio of the slope after the peak
to the slope before the peak is always less than 2/5ths that expected, and the slope
of the travel time profile is flat at the peak.

4. Possible solutions

Having identified the three problems with structural models of congestion, I
now explore possible solutions to them. Table 2 summarizes the results of this
section.

7In everyday speech “rush hour” refers to only the period of time when travel times are at their
very worst; here I am using “rush hour” to denote the entire period of time when travel times are
higher than in free flow conditions. It is this entire evolution of travel times across the day that
structural congestion models are designed to explain.
8Data is for all weekdays, and is from Illinois Department of Transportation (2017). The mean
commute in the Chicago metropolitan area is 31.2 minutes (U.S. Census Bureau 2016).
9Data covers all weekdays in July and August of 2017. The mean commute in the Boston metropoli-
tan area is 30.2 minutes (U.S. Census Bureau 2016).
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Figure 2. Average weekday travel time by arrival time for I-55N
(from I-80 to I-94) and I-290E (from Wolf Road to I-94) in Chicago for
2004–2006. Data from Illinois Department of Transportation (2017).

4.1. Slope of travel time profile too low. The most significant problem is that
travel times rise and fall far slower than expected.

4.1.1. Possible solution: There are no inflexible drivers. The simplest solution would
be to conclude that the model is correct and our intuition about reasonable para-
meter values is wrong. Choosing values for β/α and γ/α to best match the data
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Figure 3. Average weekday travel time by arrival time for trips
from Hopkinton to Boston Commons and from Wellesley to Boston
Commons for July and August of 2017. Data collected from Google
Maps.

significantly improves the fit: reducing the sum of squared errors in our prediction
by 99.99 percent.10 However, this yields estimates of β/α = .22 and −γ/α = −.09.

10Specifically, I choose the start of rush hour, the peak of rush hour, β/α, and γ/α to minimize the
sum of squared errors between predicted and actual travel times between 5–10 a.m. The comparison
of sum of squared errors is based on the theoretical predictions matching the length of rush hour.
If I compare to the results from using the traditional parameter values and matching peak travel
time, the estimated parameters reduce the sum of squared errors by 99.66 percent.
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Table 2. Summary of possible solutions

Problem

Slope after peak too small
Modeling change Slopes too small relative to slope before peak Flat top

Change parameter values Yes, but implausible that there Yes, as long as fraction late n/a
are no inflexible drivers. doesn’t change in counterfactual.

Long-run vs. short-run preferences No Yes n/a
Continuum of desired arrival times Yes Yes, but requires all agents to Yes

arrive on-time
Uncertainty over travel times No Maybe, but needs heterogeneous Yes

desired arrival times.
Heterogeneous trip lengths No n/a n/a
Generalize D(t− t∗) Yes, but need heterogeneous n/a Yes, but need heterogeneous

desired arrival times. desired arrival times.
Heterogeneous γ/β n/a Yes n/a

Notes: Entries labeled "n/a" are those which were not applicable to the given problem.

However, these estimates imply there do not exist any agents who have even
moderately inflexible schedules. This is not reasonable; 58 percent of workers in
the 2009 National Household Travel Survey report they cannot choose what time
they start work and thus have a β/α near one (and a large γ/α as well). While I
can reduce the percentage of drivers who are inflexible by only considering trips
on the interstate in the morning and assuming all non-work trips are flexible, I am
still left with 29 percent of agents being very inflexible.11 Inflexible agents exist,
they are just not affecting equilibrium travel times in the way the model with our
standard assumptions predicts.

4.1.2. Long-run vs. short-run preferences. A similar solution is to note that long-run
and short-run preferences can differ, as in Peer et al. (2015). In the long run agents
can adjust on more margins of behavior, and so are more flexible. Consider, for
example, how easy it can be to arrange your schedule to arrive an hour later than
usual versus the cost of arriving an hour late unexpectedly. If our intuition for
reasonable parameter values is based on thinking about the short run, then we
will be looking for values of inflexibility that are too large.

However, as discussed above, many workers lack the ability to choose when
they arrive, even in the long run, and so making the distinction between long- and
short-run preferences does not affect their inflexibility.

4.1.3. Possible solution: Add value of reliability. A third possible solution is to consider
the value of reliability by adding in uncertainty over travel times. As Figure 4
shows, the amount of uncertainty in travel times varies over rush hour. Adding

11I define the morning as trips that end between 4:30–noon.
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this into structural congestion models, as in Arnott et al. (1999) and Fosgerau and
Karlström (2010), would provide an extra incentive for agents to leave early or
late—agents could reduce the uncertainty in their travel time.

However, Fosgerau and Karlström (2010) estimate that the value of reliability
accounts for about 15 percent of total time costs while Small et al. (2005) estimates
it accounts for about a third of total time costs. The slope of the travel time profile
is climbing roughly half as fast as theory suggests, so to close this gap the value
of reliability would need to account for 50 percent of total time costs. Thus while
considering uncertainty helps narrow the gap between the parameters that seem
reasonable and model predictions, it does not close it.

However, even this would not be enough. A model with uncertainty predicts
that travel times at the start and end of rush hour should climb at the same rate
they do in a model without uncertainty. Consider a slightly transformed model
that includes uncertainty. In contrast to above, we now focus on departure times
rather than arrival times. Assume there is a distribution of possible states of the
world, F(φ), where a larger φ means worse traffic, ∂T(td, φ)/∂φ > 0; and that
leaving later means arriving weakly later, ∂T(td, φ)/∂td ≥ −1. Define φ̂(td) as the
largest φ so that an agent departing at td arrives on-time.

Re-writing the cost function in terms of departure times gives

p(td, φ) = αT(td, φ) + D(t∗ − td − T(td, φ)). (5)

Agents choose their departure time to minimize their expected trip cost, which
yields the following first order condition:

dE(p(td, φ))

dtd
= α

∫ ∞

0

∂T(td, φ)

∂td
dF(φ)

− β
∫ φ̂(td)

0

(
1 +

∂T(td, φ)

∂td

)
dF(φ)

+ γ
∫ ∞

φ̂(td)

(
1 +

∂T(td, φ)

∂td

)
dF(φ) = 0. (6)

By considering agents who are always early or always late, I obtain explicit
formulas for the slope of the expected travel time profile from (6). If an agent is
always early, then

dE(T(td, φ))

dtd
=

βi

αi − βi
, (7)
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Figure 4. Average weekday variable travel time and 90th percen-
tile minus the mean travel time by departure time for I-55N and
I-290E in Chicago for 2004–2006. Data from Illinois Department of
Transportation (2017).

while if an agent is always late

dE(T(td, φ))

dtd
= − γi

αi + γi
. (8)
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The slopes for always early and always late agents are identical to what we
obtain in a world without uncertainty.12 Even considering uncertainty, the slope
at the start and end of rush should be much steeper than we observe in the data.
Thus considering the value of uncertainty by adding uncertainty over travel times
does not resolve the problem.

It is worth noting there are many possible sources of travel time uncertainty.
These include demand fluctuations, as well as capacity shocks due to construction,
weather, accidents (as in Fosgerau and Lindsey (2013)), or endogenous capacity
breakdown (as in Hall and Savage (2017)). The analysis above covers all of these
cases.

4.1.4. Possible solution: Heterogeneous trip lengths and origin-destination pairs. A fourth
possible solution is to consider different trip lengths and origin-destination (O-D)
pairs. However, the analysis above holds for any given O-D pair, and while it is
possible, and even likely, that for a given O-D pair there is not someone traveling
at every point in time, it is still the case that if an agent is arriving early or late,
then the slope of the travel time profile at the point in time he is traveling must
be tangent to his indifference curve. In the data we never see slopes like those
we would expect given reasonable parameters, and thus considering different trip
lengths and O-D pairs does not solve the problem.

4.1.5. Possible solution: Only measuring marginal inflexibility. A fifth possible solution
is to note that we are just measuring marginal inflexibility at the equilibrium time
of arrival. If we generalize the schedule delay cost function D to have more
curvature, as in Lindsey (2004) and Fosgerau and Engelson (2011), then the first
order conditions imply

T′(t) =
D′i(t− t∗)

αi
if t 6= t∗.

In this case it is possible for agents to really dislike being very early or very late,
but to have low marginal inflexibility because they are actually arriving very close
to their desired arrival time.

This modeling change alone is not enough to resolve the puzzle. With otherwise
homogeneous agents, we are still stuck concluding agents are very flexible and do
not mind arriving 3 hours early.

12These do not match (2) and (3) because those are in terms of arrival time. For the derivation of
the slope of the travel time profile in terms of departure times see Arnott et al. (1993).
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One possibility is to also allow agents to have heterogeneous levels of inflexibility.
With heterogeneous inflexibility, the inflexible arrive near the peak and on the
margin are quite flexible, while the flexible arrive off-peak and are, likewise, on
the margin quite flexible. However, maintaining the assumption of homogeneous
desired arrival times and adding heterogeneity in inflexibility seems unable to
fully resolve the problem. With homogeneous desired arrival times, we are still
left concluding that the median agent does not mind arriving an hour early or late.

We can resolve the problem by combining the generalization of the schedule
delay cost function with allowing agents to have heterogeneous desired arrival
times. In this case it is possible for there to be no one who is arriving very early
or very late, and so the marginal inflexibility can be low. Given how early some
people arrive at work, it seems most plausible that we would need to also allow
for heterogeneous inflexibility, so that there are flexible agents who are arriving
extremely early or late.

4.1.6. Possible solution: Inframarginal agents. The sixth possible solution to the
problem of travel times climbing and falling too slowly is to allow for the possibility
that some drivers are inframarginal and arriving exactly on-time. This works
because, as (4) shows, when agents are at a corner solution (i.e., arriving exactly
on-time), their marginal rate of substitution need not be tangent to the budget
line (i.e., travel time profile). As a result, we are only observing the inflexibility of
those drivers who choose to arrive early or late. As the least inflexible drivers will
choose to be early or late, the puzzle turns into the not particularly puzzling “the
least inflexible drivers are not very inflexible.”

In order to have inframarginal drivers we need to have a continuum of desired
arrival times. This is necessary because for a positive measure of agents to arrive
exactly on time, there must be a positive measure of desired arrival times. This
modeling assumption, with otherwise homogeneous agents, appeared in the initial
papers using the bottleneck model (Vickrey 1969; Hendrickson and Kocur 1981),
but was subsequently dropped as it did not affect equilibrium outcomes.13

However, when agents are heterogeneous allowing for a continuum of desired
arrival times does affect equilibrium outcomes. As Newell (1987) shows, adding
this assumption means equilibrium travel times and tolls only depend on the
preferences of some drivers, which allows us to rationalize our priors about agent
inflexibility with the empirically observed travel time profile.

13The only exceptions are Newell (1987), de Palma and Lindsey (2002), and Hall (2017b).
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This is also analytically tractable. With otherwise homogeneous agents it is
possible to have fairly flexible specifications of desired arrival times and still find
simple solutions (see Hendrickson and Kocur (1981)). Even with heterogeneous
agents it is possible to find closed-form solutions for the equilibrium both when
the road is free and tolled, as while as for pricing a portion of the lanes, given the
assumption that desired arrival times are uniformly distributed (see Hall (2017b)).

Furthermore, the assumption of a continuum of desired arrival times is more
reasonable than it initially sounds. While it is unlikely there is anyone who wants
to arrive at work at 7:34:21.3, what matters for the model is when agents want
to arrive at the end of the bottleneck or highway, not when they want to arrive
at work. Because the distribution of distances between the end of the bottleneck
and work is continuous, the distribution of desired arrival times at the end of the
bottleneck is also continuous.

4.1.7. Possible solution: All drivers are inframarginal. An extreme special case of
the previous solution would be to assume that all, or nearly all, drivers are
inframarginal with respect to the choice of when to arrive. This requires allowing
for heterogeneous desired arrival times. Were all drivers inframarginal, then
by the logic in Section 4.1.6 the travel time profile only gives bounds on driver
preferences. This solves all three problems, as in equilibrium the travel time profile
could be relatively flat, leading everyone (or almost everyone) to conclude it is not
worthwhile to leave early or late.14

That said, this seems implausible for medium and large cities. Hall (2017a)
reports that 57 percent of those on California SR-91 actually leave early or late
to avoid traffic, which means a majority of drivers are marginal. It also seems
unlikely that many drivers have a desired arrival time of 6 a.m., and so the drivers
doing so are likely marginal.

For small cities, this may very well hold. In these cities travel times are higher at
the peak of rush hour, but perhaps not by enough to induce anyone to leave early
or late.

14In the bottleneck model this requires that the density of desired arrivals at any point during rush
hour exactly equals road capacity, and causes travel times to be indeterminant (that is, there is not
a unique equilibrium). The model of Henderson (1974) and Chu (1995) has a unique equilibrium
when using this solution. In this model, congestion only depends on the number of drivers arriving
at a given time. Travel times rise and fall based on the demand for a given arrival time, without
necessarily requiring any agents to arrive early or late.
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4.1.8. Comparing solutions. Both generalizing the schedule delay cost function and
having a continuum of desired arrival times solve this first problem. I prefer
solving the problem by having a continuum of desired arrival times, and thus
having inframarginal agents for three reasons. First, to solve the problem by
generalizing the schedule delay cost function also requires heterogeneous arrival
times, so adding a continuum of desired arrival times requires the fewest changes
to the model. Second, it is tractable. Third, it matches our intuition that very
inflexible agents exist and that many people strictly prefer their chosen arrival
time over all others.

That said, allowing β/α and γ/α to be unreasonably small does allow models
with homogeneous agents to give reasonable predictions for travel times. There
are likely situations where doing so is appropriate.

4.2. Slope after peak too small relative to before peak. The second problem is
that the slope of the travel time profile after the peak is too small relative to the
slope before the peak. By (2) and (3), the ratio of the slope before and after is γ/β,
and measures the cost of being late relative to being early. This ratio being small
in absolute value suggests agents do not mind arriving late.

4.2.1. Possible solution: Many agents do not mind arriving late. One interpretation
of this result is that the marginal driver who is late incurs lower schedule delay
costs than the marginal driver who is early. Furthermore, recalling the distinction
between long and short-run preferences, being late does not necessarily mean
literally arriving late to an appointment, but can mean you would prefer to go
to the doctor at 9 a.m. but instead schedule the appointment for 11 a.m. to avoid
traffic. You arrive exactly on-time to your 11 a.m. appointment, but still have
schedule delay costs.

In addition, everyday experience with the frequency of late arrivals implies
many people prefer arriving late to arriving early, at least for many non-work
trips.

There are three ways to add agents who do not mind being late to the model.
The first is to allow for heterogeneity in γ/β so that some agents find being
late very costly, while others will not mind being late. Those who find it costly
will arrive early, while those who do not mind being late will arrive late. For
the bottleneck model, Arnott et al. (1994) shows how to solve for equilibrium
analytically when this is the only source of heterogeneity in agent preferences and
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Liu et al. (2015) shows how to solve for equilibrium numerically when there are
additional dimensions of heterogeneity.

A second is to explicitly model the difference between the long and short run.
However, a simpler approach is to simply use a low value for γ/β. While this

amounts to assuming there are no agents who hate arriving late, this only matters
if in the counterfactual policy there are agents who switch from arriving early to
arriving late, or vice-versa. If the policy does not change the fraction of agents who
are late (conditional on other preference parameter values), then this assumption
simplifies analysis without compromising results.

4.2.2. Possible solution: Add value of reliability. Adding the value of reliability by
allowing for uncertainty in travel times might help with this problem. If there are
no agents who are always late, then the slope after the peak can be less steep than
in the deterministic model.

The intuition for this is that when an agent who is sometimes early, and someti-
mes late, makes a small delay in their departure time, they decrease their expected
schedule delay early (a good thing) while increasing their expected schedule delay
late (a bad thing). Thus for a given change in departure time, total schedule delay
costs change by less than they would in a model without uncertainty. In order
to keep agents on their first order condition, this means expected travel times
likewise change by less than they would in a model without uncertainty.

This result for the bottleneck model is implicit in Proposition 1 of Arnott et al.
(1999). To derive it with more general assumptions on the congestion technology
we add the assumption that T(t1, φ1) > T(t2, φ1) ⇔ T(t1, φ2) > T(t2, φ2). This
implies that if we exogenously increase the travel time at td for one φ, we have
increased it for all φ, and so for any set Φ ⊂ R

dE
(

∂T(td,φ)
∂td

∣∣∣ φ ∈ Φ
)

dE
(

∂T(td,φ)
∂td

) > 0.

Next, note φ̂(td) is implicitly defined by

td + T(td, φ̂(td)) = t∗,

and by the implicit function theorem

dφ̂(td)

dtd
= −

(
1 +

∂T(t, φ̂(td))

∂td

)(
∂T(t, φ̂(td)

∂φ

)−1

≤ 0.
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By the implicit function theorem and (6)

d2E (T(td, φ))

dt2
d

= (β + γ)

(
1 +

∂T
∂td

)
dφ̂

dtd

×

(α− β)F
(
φ̂(td)

) dE
(

∂T(td,φ)
∂td

∣∣∣ φ ≤ φ̂(td)
)

dE
(

∂T(td,φ)
∂td

)
+(α + γ)

[
1− F

(
φ̂(td)

)] dE
(

∂T(td,φ)
∂td

∣∣∣ φ > φ̂(td)
)

dE
(

∂T(td,φ)
∂td

)
−1

≤ 0. (9)

Thus expected travel times are concave, and there are not just two slopes. Combi-
ning this with (8) shows that if the last agent to arrive is not always late, then the
slope of the travel time profile is less than it is in the model without uncertainty.

For it to be plausible that no agents are always late, agents must have heteroge-
neous desired arrival times.

While a structural congestion model has yet to be solved with uncertainty in
travel times and heterogeneous desired arrival times, it seems unlikely that there
are no agents who are always late unless the cost of being late is very large. But if
the cost of being late was large, the slope after the peak of rush hour would be
steep. Thus it seems unlikely that adding uncertainty resolves the problem of the
slope after the peak being small relative to the slope before the peak.

4.2.3. Possible solution: All drivers are inframarginal. As discussed in Section 4.1.7, if
all agents are inframarginal then the first-order conditions imply that the travel
time profile only provides bounds on agents’ preferences. However, as discussed
earlier, the data suggests many drivers are marginal.

4.2.4. Comparing solutions. My preferred solution is to use a low value for γ/β as
it is tractable without compromising results. It is uncertain whether adding uncer-
tainty resolves the problem, and adding uncertainty makes the model significantly
less tractable.

4.3. Slope flat at peak. The third problem is that the slope is relatively flat at the
peak of rush hour, while the model implies it should reach a sharp peak.

4.3.1. Possible solution: Add value of reliability. Adding the value of reliability by
allowing for uncertainty solves this problem. As implied by (9), near the peak,
small changes in departure time can lead to imperceptible changes in expected
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schedule delay costs as decreases in expected schedule delay early are offset by
increases in schedule delay late, or vice versa. This leads to agents being relatively
indifferent over a variety of arrival times near the peak, and thus a relatively flat
peak.

4.3.2. Possible solution: Only measuring marginal inflexibility. Allowing for non-
piecewise linear schedule delay costs also solves this problem. With non-linear
schedule delay costs agents do not find it particularly costly to arrive 10 minutes
early or late, even though they hate being an hour early or late. However, for
non-linear schedule delay costs with homogeneous agents to explain the travel
times in Figures 1, 2, and 3 requires assuming agents do not mind arriving thirty
minutes early or late. This is implausible. However, with heterogeneous desired
arrival times it is possible for the window of indifference to be much smaller.

A similar solution would be to keep the piecewise linear schedule delay costs,
but add the assumption that agents are indifferent between arrivals in a small
window around their desired arrival time. As with non-piecewise linear schedule
delay costs, in order to have a reasonably small window of indifference we must
combine it with heterogeneous desired arrival times.

4.3.3. Possible solution: All agents at peak are inframarginal. Again, allowing for
inframarginal agents can help. A less strict version of the solution in Section 4.1.7,
would be to assume all those arriving at the peak of rush hour are inframarginal
with respect to the choice of when to arrive. As before, this requires heterogeneous
desired arrival times so a positive measure of agents can arrive exactly on-time.

In contrast to the other possible solutions, this solution does depend on the
congestion technology. For those arriving at the peak to all be inframarginal,
the congestion technology must allow for greater throughput when travel times
are high. This could happen either because of the traditional trade-off between
throughput and speed on a single route, or because, as Akbar and Duranton (2017)
argue, as travel times climb, additional routes are used, and so system capacity
increases.15

Combining heterogeneous desired arrival times with a congestion technology
that allows greater throughput when travel times are high solves the problem of
the flat peak because it allows almost everyone who wishes to arrive at the peak of
rush hour (say, 8–9 a.m.) to do so. Thus, at the peak of rush hour the marginal

15This point is implicit in models of route choice when the routes do not have identical free flow
travel times, such as the models of Pigou (1920), Arnott et al. (1990), and Liu and Nie (2011).
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agent who is early or late is very flexible, and so the slope of the travel time profile
is very flat. In contrast, at other times system capacity is lower and so more agents
must arrive early or late. The marginal agent who is arriving is less flexible and so
the slope is steeper.

4.3.4. Comparing solutions. All the proposed solutions work in this case, though
allowing for agents to be indifferent over a small window and having heterogene-
ous desired arrival times is likely the most tractable. Fortunately, after fixing the
first and second problems, the magnitude of error introduced by the third error
is small. To see this, consider drawing the triangle that best fits Figures 1, 2, or
3. While it misses the flatness of the peak, it matches significantly better than the
model does under the current assumptions.

5. Why these problems matter

These failures of the standard structural congestion models to fit the data limit
our ability to use these models to quantify magnitudes and change qualitative
results with heterogeneous agents. In this section I give examples of both.

Both of the examples use the congestion technology of the bottleneck model.
In the bottleneck model, travel along the road is uncongested, except for a single
bottleneck through which at most s vehicles can pass per unit time. When the
departure rate, ρ(t), exceeds s, a queue develops. Denoting queue length as Q(t),
variable travel times are given by, Tv(t) = Q(t)/s.

As an example of how our model’s failure to match the data using reasonable
parameter values affects our ability to quantify magnitudes, consider the task of
measuring the social welfare gains from congestion pricing. In the bottleneck
model with homogeneous agents the social welfare gains from adding first best
tolls equal the total variable travel time multiplied by the value of time (Arnott
et al. 1993). As Figure 1 vividly demonstrates, our model fails to accurately predict
total variable travel time, and as a result, we overestimate the welfare gains by a
factor of 23.16

16In Figure 1, total variable travel time is the area under the curve. Arnott et al. (1993) show the
welfare gains equal (1/2)(N2/s)[βγ/(β + γ)]. I use this equation to calculate the welfare gains
using (1) the standard assumptions for β/α and γ/β, and choosing N/s to match (a) the length of
rush hour or (b) peak travel time, and (2) choosing β/α, γ/β, and N/s to match the length of rush
hour, peak travel time, and when the peak occurs. In the text I report the comparison of (1a) to (2),
if instead we compare (1b) to (2) we underestimate the welfare gains by a factor of 0.55.
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Furthermore, inasmuch as these empirical problems imply the standard structu-
ral models of congestion are wrong in important ways, and inasmuch as changing
our model changes our qualitative results, then these empirical problems change
our qualitative results. As an example, consider the distributional effects of con-
gestion pricing with heterogeneous agents. When we add inframarginal agents
by assuming a continuum of desired arrival times, we add agents who strongly
prefer their current arrival times. A policy that changes when they arrive hurts
these agents significantly; and as Hall (2017b) shows, adding inframarginal agents
shrinks the set of parameter values for which congestion pricing generates a Pareto
improvement.

Were we to change the model by allowing for non-piecewise linear schedule
delay costs we would likely get the same outcome. This modeling change preserves
the intuition behind the result in Hall (2017b). It is still the case that we have
added inflexible agents who strongly prefer their current arrival times, and so a
policy that changes arrival times hurts these agents significantly.

6. Conclusion

We need structural models of traffic congestion to answer a wide variety of
policy relevant questions, and improving their ability to fit the data will help us
answer these questions better.

This paper shows that while these models generate a travel time profile that
has the right general shape, they fail to match observed travel times. I identify
three problems with matching these models to the data: (1) travels times climb
and fall far slower than the models predict, (2) travel times fall too slowly after the
peak relative to how quickly they climb before the peak, and (3) travel times are
essentially flat at the peak.

These problems are a consequence of how we model agent preferences, rather
than the model of congestion itself, and so affect the bottleneck model, cell trans-
mission model, hydrodynamic traffic flow model, and the models of Henderson
(1974) and Chu (1995).

While we do not expect models to be perfect, I show these problems matter, and
affect quantitative results with homogeneous or heterogeneous agents, as well as
qualitative results with heterogeneous agents. Thus fixing them matters for our
ability to meaningfully answer a wide variety of questions.
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My recommendations for improving the fit of structural models of traffic conges-
tion are as follows. If the goal is to only quantify some outcome with homogeneous
agents, then it is easier to simply use significantly lower parameter values for
agents’ schedule delay costs than are typically assumed. If the goal is a quantitative
or qualitative result with heterogeneous agents, then add the assumptions that
(1) agents have a continuum of desired arrival times, which allows some agents
to be inframarginal, (2) agents differ in the flexibility of their schedules, so some
agents actually are inframarginal, and (3) use parameter values that imply the cost
of being late is less than the cost of being early. These solutions do not fix the
problem of travel times being essentially flat at the peak, however, its magnitude
is small after fixing the other two. If it is to be fixed, it is most tractably fixed by
allowing for agents to be indifferent between arrivals in a small window around
their desired arrival time.
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