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Abstract

Cross-country differences in capital intensity are larger in agriculture than in

the non-agricultural sector. I build a two-sector model featuring technology adop-

tion in agriculture. As the economy develops, farmers gradually adopt modern

capital-intensive technologies to replace traditional labor-intensive technologies,

as is observed in the U.S. historical data. Using this model, I find that technol-

ogy adoption is key to explaining lower agricultural capital intensity and labor

productivity in poor countries. By allowing for technology adoption, my model

can explain 1.56-fold more in rich-poor agricultural productivity differences. I

further show that land misallocation impedes technology adoption and magnifies

productivity differences.
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1 Introduction

Cross-country labor productivity differences are larger in the agricultural sector than

in the non-agricultural sector. Moreover, poor countries allocate a larger percentage

of employment to their agricultural sector due to low agricultural productivity and

the need to meet the subsistence requirement for the agricultural good (Caselli, 2005;

Restuccia et al., 2008). In this paper, I study the cross-country agricultural productiv-

ity differences through the lens of technology adoption, where rich countries mechanize

their agricultural production using modern capital-intensive technology, while poor

countries use less productive traditional technology with low capital intensity.

The difference in agricultural technology adoption is motivated by a new stylized

fact that has not yet been explored in the literature: agricultural production in poor

countries is far less capital intensive than in rich countries. I construct a new cross-

country dataset on sectoral capital intensity, which can be measured by either the

capital-output ratio or the capital-labor ratio. I find that capital intensity is generally

lower in poor countries, and that the differences are particularly large in the agri-

cultural sector. This indicates that rich and poor countries use different agricultural

technology embedded in the capital stock, which is also confirmed by observed cross-

country differences in modern machinery inputs in agriculture, such as tractors and

combine harvesters.

To study changes in agricultural technology over time, I explore historical data for

the United States on capital intensity and agricultural technology, covering the twenti-
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eth century. I find that although the capital-output ratio remained relatively constant

in the non-agricultural sector, it increased over time in the agricultural sector. This

century also saw massive mechanization of the U.S. agricultural production process,

especially in the post-war period, when farmers substituted labor with tractors, har-

vesters, and other major machines. Motivated by these pieces of evidence, I address

two research questions in this paper: why poor countries have not mechanized their

agricultural production, and how differences in agricultural mechanization contribute

to international differences in agricultural capital intensity and labor productivity.

I model the observed mechanization as a process of technology adoption in agri-

culture. I build a general equilibrium model with an agricultural sector and a non-

agricultural sector, allowing for technology adoption in agriculture. Farmers choose

from two technologies: a traditional labor-intensive technology with a lower capital

share and a lower total factor productivity (TFP), and a modern capital-intensive tech-

nology with a higher capital share and a higher TFP. As the economy develops, capital

becomes cheaper relative to labor — wage increases as labor productivity increases,

while the price of capital decreases due to the improvement of investment-specific tech-

nology as in Greenwood et al. (1997). As a result, farming with modern technology

becomes more profitable and the traditional technology is gradually replaced. Along

with this process, agricultural labor productivity increases for two reasons. First, cap-

ital intensity increases in agriculture, which increases labor productivity. This is the

capital deepening effect. Second and more importantly, there is an increase in agricul-

tural sectoral TFP that is embedded in the capital deepening process, since the modern
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technology has a higher TFP than the traditional technology. As a result, the model

is consistent with the data that, in the U.S., we observe rapid agricultural labor pro-

ductivity growth over the twentieth century, together with an increased capital-output

ratio in agriculture. It follows that, the observed cross-country variation in agricul-

tural capital intensity can reflect underlying differences in technology adoption and

the associated differences in sectoral TFP. The international differences in both capital

intensity and sectoral TFP contribute to agricultural labor productivity differences.

To discipline the analysis, I calibrate this model to U.S. historical data covering

the entirety of the twentieth century (1900-2000). The model successfully replicates

the time series of agricultural employment share, labor productivity, capital intensity,

and, in particular, the technology adoption curve as seen in the historical U.S. data.

Then I use this model reflecting mechanization in the U.S., which is my benchmark,

to study the lack of mechanization in the poor countries. This calibrated model allows

me to identify whether the lack of mechanization in poor countries is due to their lower

stages of development, or due to exogenous frictions that impede technology adoption.

I first focus on aggregate factors by measuring economy-wide TFP and barrier to

investment. These aggregate factors affect both the agricultural and non-agricultural

sectors and are estimated using moments from the non-agricultural sector. I also

control for land and labor endowments. I then vary the model parameters to match

the moments of the non-agricultural sector of the poorest countries, and use the model

to generate agricultural moments. I find that these aggregate factors can explain

two thirds of the observed differences between the U.S. and the poorest countries in
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terms of agricultural capital intensity and labor productivity. Furthermore, I find that

technology adoption is crucial for the model to match the data. As I will discuss in

detail later, without a technology adoption choice, the model would predict higher

agricultural capital-output ratio for poor countries than for rich countries, which is

opposite to what we observe in the data.

To explain the remaining portion of observed differences, I explore the role of land

misallocation as a potential candidate. Recent literature emphasizes that land market

misallocation is especially severe in the agricultural sector in poor countries.1 I extend

my model to include untitled land, where farmers are allocated exogenous amounts of

land and land rentals among farmers are prohibited due to a lack of proper ownership.

This form of land misallocation is common in less developed countries with poor insti-

tutions (Chen, forthcoming). I find that land misallocation further reduces the capital

intensity and agricultural productivity. Intuitively, farming with modern technology is

only profitable if farm size is large enough for farmers to use machines to replace human

labor. If farmers cannot buy or rent additional land to expand their farm size, then

they have less incentive to adopt the modern technology. With untitled land on top of

the aggregate factor differences, the model is able to explain almost all the observed

differences between the U.S. and poor countries with respect to capital intensity and

72% of the agricultural productivity differences. Furthermore, the technology adoption

curve of poor countries is different from that of the U.S.

1See, for example, Adamopoulos and Restuccia (2014), Adamopoulos and Restuccia (2015), and
Chen (forthcoming), among others.
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My paper is related to the macroeconomic literature on agricultural productivity

differences across countries.2 My paper differs from existing literature in that I intro-

duce technology adoption in agriculture to capture the phenomenon of mechanization.

A closely related paper in the literature on technology adoption is Manuelli and Se-

shadri (2014), which finds that the diffusion of tractors in the U.S. economy can be

explained in a frictionless framework by improvement in quality of tractors and in the

relative price between tractors and labor. My paper differs from theirs by focusing

more on a cross-country comparison of technology adoption, and studying how this

can explain international agricultural productivity differences. My results are consis-

tent with their finding that the relative price between capital and labor is important

in explaining technology adoption.3 Another closely related paper in the literature

on agricultural productivity is Caunedo and Keller (2016), which finds that the qual-

ity of agricultural capital differs across countries, and that this fact accounts for 40%

of agricultural productivity differences between rich and middle-income countries. By

focusing on agricultural capital intensity differences across countries, my paper comple-

ments their findings on capital quality differences.4 Caunedo and Keller (2016) further

calibrate their model to exactly match the quality differences of agricultural capital

2See, for example, Gollin et al. (2002), Gollin et al. (2004), Gollin et al. (2007), Restuccia et al.
(2008), Adamopoulos (2011), Lagakos and Waugh (2013), Gollin and Rogerson (2014), Gollin et al.
(2014a), Adamopoulos and Restuccia (2014), Tombe (2015), Adamopoulos and Restuccia (2015),
Donovan (2016), Gottlieb and Grobovšek (2016), and Chen (forthcoming), among others.

3I further model heterogeneous farmers to build a micro foundation of technology adoption, com-
pared to the aggregate production function approach in their paper.

4The stylized fact of agricultural capital intensity differences holds even if capital is measured in
physical quantities. Hence, the measured differences in capital intensity are not simply due to the
differences in the quality of capital, as emphasised in Caunedo and Keller (2016).
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across countries, while I calibrate my model to historical data of the U.S. and then use

my model to explain the cross-country differences in agricultural capital quantity.5

My paper is also related to the literature studying long-run economic growth, in

particular, the transition to the modern balanced growth path.6 Two closely related

papers are Gollin et al. (2007) and Yang and Zhu (2013). They both model the choice

between a traditional technology and a modern technology in agriculture, and study

how the economy converges to the modern balanced growth path. My paper differs from

these works in two ways. First, my motivation for modelling technology adoption is to

explain cross-country agricultural productivity differences, instead of long-run growth.

Second, I model heterogeneous farmers and study technology adoption at the farm

level. Modelling heterogeneity allows me to empirically match the technology adoption

curve observed in the data. It also allows me to study the role of land misallocation

and its negative impact on technology adoption. Hence, my paper also contributes to

both the technology adoption literature and the literature studying land misallocation

in agriculture.7

The paper proceeds as follows. Section 2 describes both cross-country and U.S.

historical stylized facts on capital intensity in agriculture. Section 3 describes the

5My model also matches the U.S. historical data on structural transformation, capital intensity,
and technology adoption.

6See, for example, Hansen and Prescott (2002) and Ngai (2004), among others.
7See, for example, Parente and Prescott (1994), Comin and Hobijn (2010), and Bustos et al. (2016)

for technology adoption, and Ayerst (2016) for the impact of misallocation on technology adoption.
The misallocation literature includes, for example, Restuccia and Rogerson (2008) and Hsieh and
Klenow (2009), and in particular the literature studying misallocation in agriculture includes, for
example, Adamopoulos and Restuccia (2015), Adamopoulos et al. (2016), Restuccia and Santaeulàlia-
Llopis (2017), and Chen et al. (2017).
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model. Section 4 discusses the calibration strategy. Section 5 shows my results of the

quantitative analysis. Section 6 concludes the paper.

2 Evidence on Capital Intensity

I document two stylized facts of agricultural capital intensity. First, capital intensity

differences across countries are especially prominent in the agricultural sector. Second,

historically in the U.S., capital intensity is seen to increase much faster in agriculture

than in non-agriculture. I show that these patterns are consistent with the trend of

agricultural technology adoption.

2.1 Agricultural Capital Intensity across Countries

Data.—I construct a dataset on sectoral capital intensity that are comparable across

countries. I first use data from the World Bank (Larson et al., 2000), which provide

estimates of capital stocks for both agricultural and non-agricultural sectors across 62

countries, covering both rich and poor ones, for the years 1967 - 1992. The capital

stocks data are, however, measured in local price. To obtain real measure that is

comparable across countries, I adjust for local price of capital using price data from

the Penn World Table 8.0 (Feenstra et al., 2015). I next estimate the sectoral real

value-added, following the procedure described in Caselli (2005) and Gottlieb and

Grobovšek (2016) and combining data from two different sources: 1) data from the

World Development Indicators (WDI) on nominal sectoral value-added with associated

price data, and 2) data from the Food and Agricultural Organization (FAO) on real
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agricultural gross output with associated price data. I combine data for sectoral capital

and output to calculate capital-output ratios at the sectoral level. Additionally, I

calculate capital-labor ratios using employment data from the FAO and the Penn World

Table 8.0. See the data appendix for a detailed description of data sources.

I also calculate sectoral capital-output ratios using the World Input-Output Database

(Timmer et al., 2015). This database provides a balanced panel of capital-output ra-

tios across countries, which is suitable for regression analysis. The problem of this

dataset is, however, that it mainly covers rich and middle-income countries, while my

dataset has better coverage of poor countries. Hence, I only use the WIOD data as a

robustness check.

International patterns of capital intensity.—It is well-known that, relative to rich coun-

tries, poor countries have lower capital intensity, measured as real capital-output ratio

or capital-labor ratio (Hsieh and Klenow, 2007).8 What is less well-known is that these

differences are larger in the agricultural sector than in the non-agricultural sector. The

upper panels of Figure 1 shows the real capital-output ratio and capital-labor ratio

across countries, for both the agricultural and non-agricultural sectors. The figure il-

lustrates the first stylized fact: richer countries have higher capital-output ratio and

capital-labor ratio in both sectors, but the differences in agriculture are much larger.

For example, the non-agricultural capital-labor ratio differs by around 10-fold between

8In cross-country analysis, real means that capital and output are measured using common inter-
national prices, while nominal means they are measured in local prices. This is in contrast to the time
series analysis in the next stylized fact, where nominal means that capital and output are measured
using current prices instead of constant prices.
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the U.S. and the 20% poorest countries in my sample, while the agricultural capital-

labor ratio differs by 165-fold.9 Note that this fact is not driven by the price deflators

since it also holds if we compare nominal capital-output ratio, measured using local

prices, across countries. The bottom panel of Figure 1 shows that, while the nominal

capital-output ratio in the non-agricultural sector is roughly the same across countries,

it differs substantially in the agricultural sector.

I further confirm this stylized fact in a cross-country regression using both my con-

structed data and the WIOD data. Let ∆K
Y

= log Ka
Ya
− log Kn

Yn
denote the difference of

capital-output ratios between agriculture and non-agriculture within a country, mea-

sured either in nominal or real terms. I regress this variable on countries’ real GDP

per capita, time dummies, and country dummies. The results are displayed in Table 1:

the capital-output ratio of agriculture increases with GDP per capita relative to that

of the non-agricultural sector, under both nominal and real measures, consistent with

Figure 1. Therefore, it is a robust fact that the cross-country differences of capital

intensity are larger in agriculture than in the non-agricultural sector.

This fact is consistent with evidence in international differences in agricultural

technology from the Cross-Country Historical Adoption of Technology (CHAT) data set

(Comin and Hobijn, 2004). According to the CHAT dataset, the aforementioned 20%

poorest countries in my dataset have on average only 1.40 tractors per 1000 hectares,

compared to 10.96 tractors in the U.S. Similarly, agricultural harvester machines also

9The 20% poorest countries in my sample are El Salvador, Malawi, Tanzania, Madagascar, India,
Kenya, Egypt, and Pakistan, sorted by their real GDP per capita.
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Figure 1: The Capital Intensity across Countries
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(a) Real Capital-Output Ratio
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(b) Capital-Labor Ratio
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(c) Nominal Capital-Output Ratio

Note:

[1] All variables are normalized relative to the U.S. and are in log scale.

[2] In Figure (a) and (b), capital and output are both real measures, adjusted by their price deflators

across countries. In Figure (c), Capital and output are nominal measures with local prices.

[3] The slopes of the fitted lines in Figure (a) are 0.87 and 0.41 for agriculture and non-agriculture,

respectively. The corresponding numbers are 1.90 and 0.95 in Figure (b), and 0.69 and 0.07 in Figure

(c).
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Table 1: Capital-output Ratio across Countries

Dep. Var. Constructed Dataset WIOD Data
(∆K/Y ) (1) (2) (3) (4) (5) (6)

Log GDP 0.66 0.31 0.43 0.56 0.41 0.19
(0.03) (0.09) (0.03) (0.07) (0.03) (0.14)

Time FE X X X
Country FE X X X
∆K/Y Measure Nominal Nominal Real Real Nominal Nominal

Note:

[1] The data are from the World Bank (Larson et al., 2000) and the World Input-Output Database

(Timmer et al., 2015).

[2] I regress ∆K
Y (log(Ka

Ya
) − log(Kn

Yn
)) on log GDP per capita (PPP), country dummies and time

dummies. Standard errors are in bracket.

[3] Nominal measure means capital and output are measured using local price; real measure uses

international comparable prices.

differ by around 14-fold. Therefore, rich and poor countries differ in the organization

of agricultural production, as reflected by differences in agricultural capital intensity

and usage of modern machinery inputs.

2.2 U.S. Agricultural Capital Intensity over Time

The second stylized fact is that, in the United States, capital intensity increases faster in

the agricultural sector than in the non-agricultural sector in the twentieth century. The

left panel of Figure 2 shows the capital-output ratio in the U.S. of both agricultural

and non-agricultural sectors, which are from the U.S. Bureau of Economic Analysis

(BEA).10 We can see that while the capital-output ratio (measured in current prices) is

stable in the non-agricultural sector, consistent with the Kaldor facts, it increases over

time in the agricultural sector. The increasing agricultural capital intensity comes from

10Note that the data from the BEA have already account for quality improvements. See Chapter 4
of the National Income and Product Accounts (NIPA) Handbook.
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Figure 2: The Capital-Output Ratio in the U.S.
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Note:

[1] The left figure shows the capital-output ratio in the U.S. measured using current prices and the

data are from the U.S. Bureau of Economic Analysis (BEA).

[2] The right figure shows the percentage of agricultural output produced by farms with modern

machinery, calculated using data from the U.S. census of agriculture.

the postwar period of mechanization in the U.S. agricultural sector. The right panel of

Figure 2 shows the percentage of agricultural output produced by farms with modern

machinery, such as trucks, tractors, and combines, in the U.S. starting from 1920.

Machinery usage increases rapidly between 1940 and 1980, which is also the period

that agricultural capital intensity increases relative to the non-agricultural sector.11

3 A Model with Technology Adoption

I present a two-sector neoclassical growth model featuring technology adoption in agri-

culture. I describe the model in two steps. First, I consider a static problem where

farmers choose between different technologies taking prices as given. Second, I close

the model by introducing the dynamic general equilibrium with two sectors, where I lay

11Manuelli and Seshadri (2014) provides an excellent discussion on how tractors replace horses and
human labor in agricultural production, in response to the drop in relative price of tractors versus
other inputs.

13



out the market structure and the representative household’s problem on consumption

and investment, as well as labor supply to both sectors.

3.1 Farmers’ Problem

I start by describing the farmer’s choice problem between different technologies, taking

prices as given. This problem helps us understand the process of technology adoption,

which is a key component of my model. Since this problem is static, I omit the time

subscript t to simplify notation.

There is a measure Na of farmers in the economy, who can produce the agricultural

good on their farms and sell it at price p. Each farmer operates one farm, and is

endowed with one unit of labor in each period and supplies it inelastically to the farm.

Farmers differ in their farming ability s ∈ F (s). This ability can be interpreted as

knowledge of crop cultivation, managerial talent of the farming business, or even the

physical strength.

3.1.1 Traditional and Modern Technologies

The agricultural good can be produced using two alternative technologies: a traditional

technology that is less capital intensive and a modern technology that is more capital

intensive. Consider a farmer with ability s. He can operate a farm with the traditional

technology given by

y = Aκs1−αr−γrkαr lγr ,
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where y is the farm’s output, A is the economy-wide productivity, κ is the agricultural-

specific productivity (such that A and κ are common to all farms), k and l are the

capital and land inputs of the farm, and αr and γr are the capital and land shares of

the traditional technology. Following Adamopoulos and Restuccia (2014) and Chen

(forthcoming), I assume that farms use labor input from the farmer only, which is s

in efficiency units, and does not hire any off-farm labor.12 The profit of operating a

traditional farm is given by

πr(s) = max
{k,l}
{pAκs1−αr−γrkαr lγr − pkrk − ql},

where r and q are the rental rates of capital and land, and pk is the price of the capital

good.

The farmer can also operate a farm with modern technology given by

y = ABκs1−αm−γmkαmlγm ,

where αm and γm are the capital and land shares of the modern technology, and B

measures the relative productivity difference between the traditional and the modern

technologies.13 I assume αm > αr since modern technology is more capital intensive.

It is then natural to assume that the traditional technology is more labor and land

12I focus on family farms and abstract from hiring labor decision, following the literature. In the
data, labor hired by farms is usually difficult to measure due to issues such as unauthorized labor.
Furthermore, evidence suggests that hired labor is relatively limited in quantity compared to family
labor: Adamopoulos and Restuccia (2014) show that, among 55 countries over the world, each farm
on average uses 5.26 household member workers, and only 0.2 outside-hired workers who work more
than 6 months of the year.

13Technically, B = B1 · B2, where B1 is a scaling constant (which is necessary since the two tech-
nologies have different factor shares and are therefore not unit-free), while B2 measures the difference
of productivity between the two technologies. As a result, B = 1 does not necessarily mean that the
two technologies have the same productivity.

15



intensive, which implies γm < γr and 1 − αm − γm < 1 − αr − γr. The profit of

operating a modern farm is given by

πm(s) = max
{k,l}
{pABκs1−αm−γmkαmlγm − pkrk − ql}.

Choosing the modern technology incurs a fixed cost of f units of capital good in

every period. This fixed cost can be interpreted as indivisibility of equipment, up-front

investment in learning, or the required infrastructure of modern technology. This as-

sumption of fixed cost associated with technology choice is widely used in the literature,

such as Helpman et al. (2004) and Adamopoulos and Restuccia (2015). Sunding and

Zilberman (2001) survey literature studying technology adoption in agriculture, and

find that this fixed cost assumption does capture the salient features of agricultural

technology adoption observed in the data. I model this fixed cost as a per period cost,

but we can also view it as a one-time up-front fixed cost that is financed over multiple

periods.14

3.1.2 Technology Choice

A farmer with ability s will choose the modern technology if and only if the profit from

using the modern technology exceeds that of using the traditional technology by at

least the value of the fixed cost:

∆π(s) = πm(s)− πr(s) > pkf. (1)

14As will be clear later, since there is no financial friction or uncertainty in this model, these two
setups are equivalent.
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Figure 3: Technology Choice
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The difference in profits is linear in the farmer’s ability s: ∆π(s) = πm(s) − πr(s) =

sΩ(p, q, r, pk), where Ω is a function of prices independent of s. Therefore, Equation

(1) can be rewritten as

∆π(s) = sΩ > pkf. (2)

There are two possible scenarios associated with technology adoption. Scenario

(1): Ω > 0, so that πm(s) − πr(s) = sΩ > 0 for any farmer. I plot this scenario in

the left panel of Figure 3, where the profit functions are plotted against farmer ability.

Modern technology is potentially more profitable than traditional technology for all

farmers (the line of πm is always above the line of πr), but the fixed cost reduces the

actual payoff of the modern technology (the line of πm shifts down to πm − pkf). As

a result, only high-ability farmers whose farms are large enough can afford the fixed

cost and adopt the modern technology. Let us denote the cut-off ability as ŝ such that,

given the fixed cost, a farmer with s = ŝ is indifferent between the two technologies.

This requires ŝΩ = pkf , or ŝ = pkf
Ω

. All farmers above this threshold (s > ŝ) choose

modern technology, and farmers below it choose traditional technology. Scenario (2):

if Ω < 0, then Equation (2) can never be satisfied and the modern technology will not
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be adopted by any of the farmers. This scenario is illustrated in the right panel of

Figure 3.

3.2 Dynamic General Equilibrium

Having described the farmers’ problem, I close the model by introducing a simple

two-sector dynamic general equilibrium.

3.2.1 Two Sectors

There are two sectors in this economy: an agricultural sector and a non-agricultural

sector. In the agricultural sector, farmers of heterogeneous ability produce the agri-

cultural good on their farms as described before. The agricultural good is priced at pt

and is used for consumption only.

In the non-agricultural sector, there is a representative firm that employs capital

K̃nt and labor Ñnt to produce the non-agricultural good Ynt:

Ynt = AtK̃
αn
nt Ñ

1−αn
nt ,

where At is the economy-wide TFP (common to both agriculture and non-agriculture),

and αn is the capital share in the non-agricultural sector. Let the non-agricultural good

be the numeraire with its price normalized to one.

The non-agricultural good can either be used for consumption or transformed into

capital through a linear technology, following Greenwood et al. (1997). Let υt denote

this investment-specific technology: 1 unit of non-agricultural good can be transformed

into υt units of capital good. Therefore, the price of capital good is given by pkt = 1
υt

.
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3.2.2 The Representative Household’s Problem

There is a measure one of infinitely-lived representative household in this economy.

This household has Nt members in period t and grows at a rate of n. Each household

member is endowed with one unit of time in each period that is supplied inelastically

to the labor market. The household allocates Nat of its members to be farmers in the

agricultural sector and the remaining Nnt = Nt−Nat to be workers at the representative

firm in the non-agricultural sector. Farmers are heterogeneous in their farming ability

s and each earn farming profit π(s). Workers are, however, homogeneous and earn

the same wage w subject to a tax rate ξ. I use this tax to capture the labor mobility

barrier between sectors, which is also used in Adamopoulos and Restuccia (2014) and

Chen (forthcoming). I will discuss this barrier in detail in the calibration. The tax

revenue is rebated to the household so it does not affect aggregate demand. The total

household labor income is given by

Nntwt(1− ξ) +Nat

∫
s∈S

πt(s)F (ds),

where the first term represents income from workers and the second term is that from

farmers.

I follow Adamopoulos and Restuccia (2014) in abstracting from selection in oc-

cupational choice. In other words, the household only determines the fraction of its

members working in agriculture without selecting on the basis of ability. This assump-

tion keeps the distribution of farmer ability constant across time and across country.

Lagakos and Waugh (2013) study self-selection in depth and show that it aggravates
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agricultural productivity differences across countries. Since selection is well understood

in the literature, I abstract from it in this paper to keep my model tractable.15

The household derives its utility from consuming both the agricultural good and

the non-agricultural good:

U =
∞∑
t=0

βt
[
φ log(cat − ā) + (1− φ) log(cnt)

]
Nt,

where β is the discount factor, φ is a preference weight of the agricultural good, and ā

is a subsistence requirements for agricultural consumption. Consumption of each good

in period t is denoted by cat and cnt, respectively. The household’s total income is the

sum of labor income, capital income, and land income:

(Nt −Nat)wt(1− ξ) +

∫
s∈S

πt(s)F (ds)Nat + pkt rtkt + qtL+ Tt, ∀t.

where L and kt are total household land endowment and capital stock, and Tt is the

household rebate from labor income tax which equals (Nt − Nat)wtξ in equilibrium.

This household divides its total income into consumption (ptcat+cnt)Nt and investment

pkt xt in each period t. The investment expenditure increases the capital stock for the

next period:

kt+1 = (1− δ)kt +
xt
η
.

Here η is the barrier to investment: I follow Ngai (2004) and Restuccia (2004) by

assuming that one unit of investment increases capital stock by 1
η

units. Therefore,

this parameter η captures the distorted prices for capital typically observed in poor

15Note that although there is no selection in occupational choice, there is selection in technology
adoption choice among farmers.
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countries (Restuccia and Urrutia, 2001).16

3.2.3 Equilibrium and Characterization

I focus on the competitive equilibrium for this economy, which is defined in Appendix

A.1. Although this model may seem complex, its dynamic properties are similar to

a standard one-sector neoclassical growth model. In Appendix A.2, I show how the

model can be aggregated. The aggregate growth of my model is similar to that of the

neoclassical growth model, with two distinct features in the long-run growth. First,

with economic development, there will be ongoing structural transformation, where

employment is reallocated from the agricultural sector to the non-agricultural sector:

as labor productivity improves in the agricultural sector, fewer resources are required

to produce the subsistence requirement ā (Kongsamut et al., 2001; Herrendorf et al.,

2014).17 Second, the investment-specific technology υt plays a larger role in my model

than in the standard neoclassical growth model. In the neoclassical growth model,

the economy-wide TFP and the investment-specific technology have similar impact on

labor productivity. In my model, however, an improvement in υ reduces the cost of

capital and benefits farmers with modern technology more than farmers with traditional

technology, thus promoting technology adoption. This is in contrast with economy-wide

TFP, which affects farmers neutrally, regardless of technology choice.

16Technically, a change in η is similar to a change in the level of {υt}∞t=0 in affecting the cost of
capital. Later in the quantitative analysis, I assume that the investment-specific technology {υt}∞t=0

is common to all countries, while this barrier η is country-specific and time-invariant.
17I follow this literature of structural change by assuming there is no trade in the agricultural good,

consistent with evidence from Tombe (2015).
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4 Calibration

4.1 Parameters and Targets

I calibrate my model to historical data of the U.S. economy encompassing the entire

twentieth century (1900 to 2000). This century saw impressive mechanization in the

agricultural sector of the U.S. economy. During this period, the price of capital de-

creased relative to labor, and capital-output ratio increased in the agricultural sector

but barely changed in the non-agricultural sector. The historical data for this period

provide information on the prevalence of modern technology adoption given prices,

productivity changes, and capital intensity changes in agriculture. Therefore, I use

historical data to calibrate my model, in particular, to restrict parameters determining

technology adoption. The data appendix describes in detail the historical data used in

my calibration.

4.1.1 Time-Invariant Parameters

Some parameters of the model are time-invariant, while others have a time series of

values that change over time. Let me begin by describing how I choose the values of

the 12 parameters that are time-invariant, consisting of five parameters determining

factor shares (αr, γr, αm, γm, αn), three parameters determining household’s preferences

(φ, ā, β), the barrier to labor mobility ξ, the depreciation rate δ, the barrier to invest-

ment η, and one parameter governing the farmer ability distribution F (s). Eight of

them (αr, γr, αm, γm, αn, δ, η, ξ) are directly assigned values that are either common in

the literature or from moments that do not depend on the equilibrium. The other four
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are calibrated by comparing the model’s equilibrium moments with data.

Factor Shares: αr, γr, αm, γm, αn.—I choose the parameters of the technologies such

that the factor shares are consistent with estimations in the literature. I set αm =

0.36 and γm = 0.18. As a result, the capital, labor, and land shares associated with

modern technology are 0.36, 0.46, and 0.18, respectively, consistent with Valentinyi and

Herrendorf (2008). I set αr = 0.1 and γr = 0.25 such that the capital, labor, and land

shares associated with traditional technology are 0.10, 0.65, and 0.25, respectively,

similar to Caselli and Coleman (2001) and Gollin et al. (2007). Note that the key

assumption of capital deepening (αm > αr) is satisfied in the calibration. The capital

share associated with the non-agricultural sector, αn, is set to 0.33 following Gollin

(2002).

Preferences : φ, ā, β.—Two preference parameters φ and ā govern the agricultural

employment share. In particular, when an economy is still in its early stages of devel-

opment and agricultural productivity is low, agricultural employment share is mainly

determined by ā. The term φ then determines agricultural employment share when

the economy converges to the asymptotic balanced growth path. I choose the values

of these two parameters such that, given agricultural labor productivity for each of

1900 and 2000, agricultural employment share is 33.97% for the year 1900 and 1.48%

for 2000 to match the data. I set the discount rate β to 0.96 to match an average

capital-output ratio of 3 in the non-agricultural sector.

Ability Distribution.—I assume that farmer ability follows a lognormal distribu-

tion, with mean normalized to 0 and standard deviation of σs. I choose the dispersion
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Figure 4: Ability Distribution
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Note: This graph compares the distribution of farm output generated by the model with the data.

The data are obtained from Table 58 of the U.S. Census of Agriculture, which sorts farms into different

bins according to their size, and calculates the value-added, which corresponds to output in my model,

of farms within each bin.

parameter σs = 1.33 such that, once all farmers adopt modern technology, the dis-

tribution of farm output by farm size best matches the data in the 2007 U.S. Census

of Agriculture. Figure 4 shows that the distribution of farm output in the calibrated

model matches the data well.

Barrier to labor Mobility : ξ.—As is well-known for the U.S., the nominal labor

productivity of the non-agricultural sector is much higher than that of the agricultural

sector. This phenomenon is often referred to as the nominal agricultural productivity

gap (Gollin et al., 2014b). For example, during the years 1990 - 2000, the relative

productivity of non-agriculture (versus agriculture) is on average 1.68. In my model,

however, if labor is perfectly mobile between sectors, the relative labor productivity is

1−αr−γr
1−αn = 0.90 before technology adoption starts and 1−αm−γm

1−αn = 0.69 after adoption is

completed, both of which are considerably smaller than 1.68. To reconcile the relative

labor productivity of the model with that of data, I introduce a barrier to labor mobility

between sectors: working in the non-agricultural sector is subject to a wage tax rate
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Table 2: Summary of Calibration

Parameter Moment Parameter Moment

αr 0.10 Capital share (traditional) αm 0.36 Capital share (modern)
γr 0.25 Land share (traditional) γm 0.18 Land share (modern)
αn 0.33 Capital share (non-agr.) δ 0.04 Depreciation
η 1 Normalization β 0.96 K/Y ratio (non-agr)
c̄ 0.055 Agr. employment (%, 1900) φ 0.003 Agr. employment (%, 2000)
σs 1.327 Farm size distribution (2007) ξ 0.59 Labor productivity gap

ξ. I choose ξ to match the 1.68-fold gap of nominal labor productivity for the years

1990 - 2000, when technology adoption is roughly completed. This requires ξ = 1 −

0.69/1.68 = 0.59. Note that although this nominal labor productivity gap between

sectors is wider in earlier periods, it turns out that a constant ξ successfully reconciles

the gap for the whole historical period (see Figure 7). In other words, my model can

endogenously generate the nominal productivity gap that narrows over time. This is

because the gap is equal to 1/(1−ξ) multiplied by the ratio of agricultural labor share to

non-agricultural labor share (Herrendorf and Schoellman, 2015), and agricultural labor

share associated with traditional technology is higher than that of modern technology.

Therefore, along with technology adoption, labor share decreases in agriculture and

the nominal productivity gap narrows as observed in the data. Further note that this

barrier ξ is also held constant in the cross-country analysis.

Other Parameters : δ, η.—I follow the literature and set the depreciation rate of

capital δ to be 0.04. The barrier to investment η is normalized to 1 in the benchmark

calibration. Table 2 summarizes the values of time-invariant parameters as well as the

main targets for calibration.

25



4.1.2 Time Series

On top of these time-invariant parameters, we also need to calibrate seven time se-

ries parameters: the endowments of land and labor {Nt, Lt}, the investment-specific

technology {υt}, the economy-wide and agriculture-specific TFP {At, κt}, the relative

productivity between traditional and modern technologies {Bt}, and the fixed cost of

adoption {ft}. Note that I use time subscripts t with curly braces to signify time series,

to differentiate them from the previous 12 time-invariant parameters. For each time

series, we need to determine the level and pattern of growth using historical data.

Endowments : {Nt, Lt}.—Endowment values are taken directly from the data. Total

land size is rather stable over time, so I normalize Lt = 1 for all t. I normalize

population size to 1 for the year 2000, and set the annual population growth rate to

be 1.32%, consistent with the population data.

Investment-Specific Technology : {υt}.—The investment-specific technology governs

the price of the capital good (pk). Following Greenwood et al. (1997) and Gort et al.

(1999), I measure the relative price of investment and durable goods to that of con-

sumption non-durable goods and services, using historical price data from the Bureau

of Economic Analysis.18 Note that the price series from the BEA already take into

account the necessary adjustment for quality improvements of capital goods. I nor-

malize the level of υt to be 1 for the year 2000, and choose the sequence such that the

implied price series {pkt } decreases over time in a linear pattern as shown in Figure

18BEA also report price data for each sector separately. Since I assume capital is homogeneous
between sectors, I use the aggregate price data for both sectors. The trends of price are similar
between the agricultural and the non-agricultural sectors.
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Figure 5: Relative Price of Capital Goods
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[1] The red curve shows the relative price of investment and durable goods over consumption non-

durable goods and services. The data of price series are from the Bureau of Economic Analysis (BEA)

tables. The price is normalized to one for the year 2000.

[2] The blue dashed line is fitted the linear trend of the data, and is used in my calibration.

5. Note that price data are only available after 1929. I extrapolate this price series

back to 1900 with the assumption that 1900 - 1929 prices change in the same pattern

as observed for 1929 onwards. The results are rather insensitive to the extrapolation

method of pre-1929 prices, as this period saw little technology adoption in agricul-

ture. Without technology adoption, the change in the TFP (A) and the change in

the investment-specific technology (υ) have similar impact on labor productivity, as

discussed in Section 3.2.3.

Productivity : {At, κt}.—The economy-wide TFP {At} and agriculture-specific TFP

{κt} are determined in the equilibrium and are chosen to match sectoral labor produc-

tivity over time. I normalize the level of {At} and {κt} to 1 for the year 2000. I

assume they grow at constant rates. The growth rate of {At} is chosen to be 1% per

year such that non-agricultural labor productivity increases 6.9-fold between 1900 and

2000. In contrast, agricultural labor productivity increases 30.4-fold over the same
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period. While technology adoption in my model implies extra growth in agricultural

labor productivity, it can only account for a portion of the disparity in labor productiv-

ity increase between sectors. The remaining is captured by the growth of {κt}, which

is around 1% per year. For example, the channel of self-selection can generate the

pattern that labor productivity grows faster in agriculture than in non-agriculture over

time (Lagakos and Waugh, 2013; Young, 2014). Although this channel is not explicitly

modelled, it is captured by the growth of {κt}.

Technology Adoption.—Before we can calibrate the fixed cost of adopting the mod-

ern technology {ft} and the relative productivity between modern and traditional

technologies {Bt}, let me briefly describe the technology adoption curve. The adop-

tion curve is defined as a time series indicating the percentage of output produced

by farms with modern technology at each period. In the data, there is no indicator

variable differentiating farms using modern versus traditional technology. As a proxy,

I treat farms with modern machinery as farms with modern technology. The U.S. Cen-

sus of Agriculture records five kinds of modern machines over time: tractors, trucks,

combines, mower conditioners, and pickup balers. I construct, for example, a time

series of the percentages of output produced by farms with tractors in each year. I

then normalize the value to 100% for the year 2000 and scale the pre-2000 values ac-

cordingly. This time series would represent the adoption curve of tractors. I replicate

it for the other four machines, and then take the average of these five adoption curves

as my technology adoption curve for the calibration, which is shown in Figure 6. See

the data appendix for details. Note that in the data we also observe the pattern that
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Figure 6: Technology Adoption Curve

1900 1920 1940 1960 1980 2000
Year

0

0.2

0.4

0.6

0.8

1

Te
ch

no
lo

gy
 A

do
pt

io
n 

R
at

e

Data
Model

Note: The technology adoption rate of the model is the percentage of output produced using modern

technology; the rate in the data is the average percentage of output produced by farms with modern

machines. See the text for a detailed description.

larger farms adopt modern technology earlier, consistent with the model’s prediction.

Now, let us determine the last two series, which are also determined in the equilib-

rium: {ft} and {Bt}. To reduce the number of free parameters, I restrict the growth

rates of these two series to be constant over time, so we only need to determine their

levels and growth rates (four parameters in total). These four parameters are chosen

such that the technology adoption curve in my model best matches that of the data

(see Figure 6). The values for best fit are f1990 = 0.75 decreasing at 3.7% per year,

and B1900 = 2.2 increasing at 0.1% per year. Although the magnitude of {ft} has

little intuition, we can tell that it is not sizeable: for example, in the year 1950 when

technology adoption is rapid, the fixed cost constitutes on average 4.8% of farming out-

put among farmers using modern technology. The level of {Bt} cannot be interpreted

directly, either, since it includes a scaling constant that makes the two technologies

comparable. The growth of {Bt} is, however, more intuitive: {Bt} increases over time,

indicating that the productivity of the modern technology increases faster than that
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of the traditional technology. Note that {ft} and {Bt} can be separately identified

since the fixed cost {ft} is the same for every farm that adopts modern technology,

while relative productivity {Bt} affects farms proportionally based on farm size. It

follows that, the technology adoption of large farms depends more on {Bt}, while that

of smaller farms is more sensitive to {ft}.

4.2 Model Fit and Discussion

The calibrated model successfully replicates the historical mechanization process of the

U.S. as well as its long-run growth. Moreover, the model is also able to match other

moments which are important in long-run growth, despite the fact that they are not

directly targeted in the calibration. The top panel of Figure 7 shows that the model

generates the same pattern of structural transformation, which can be measured either

as sectoral value-added share or employment share, as seen in the data, although I only

target the agricultural employment share at the beginning and end of this period.19

The bottom panel of Figure 7 shows that the model is also capable of replicating the

sectoral capital-output ratio over time, measured in current price. In particular, the

model clearly replicates the capital deepening process in agriculture. Note that I do not

explicitly target the capital-output ratio in the agricultural sector; it is the technology

adoption channel that accounts for this capital deepening process.20 At the sectoral

level, my model implies that capital and labor are more substitutable than Cobb-

19The employment share in the data is a bit higher than in the model during the 1930s and 1940s,
likely due to the Great Depression and World War II, which are not in my model.

20I target the adoption cost {ft} and the disparity of productivity between modern and traditional
technologies {Bt} in the calibration; neither directly affect capital intensity in agriculture.
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Figure 7: Model V.S. Data – Structural Transformation
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Note: The top figures compare the model’s prediction on two measures of structural transformation

with the data. The bottom figure compares the model’s prediction on capital-output ratio with the

data. These series are not directly targeted in the calibration.

Douglas in agriculture, consistent with Herrendorf et al. (2015) and Alvarez-Cuadrado

et al. (forthcoming).

In the calibrated economy, modern technology gradually replaces traditional tech-

nology over time for three reasons. First, as the economy-wide TFP and investment-

specific technology grows over time, wage increases 6.9-fold relative to the non-agricultural

good (the numeraire) while the price of capital decreases 2.3-fold, as observed in the

data. Hence, the relative price between capital and labor decreases more than 15 times

in the sample period, making the modern technology more profitable. This echoes the

finding in Manuelli and Seshadri (2014) that relative prices play an important role in

31



the diffusion of tractors in the U.S. economy. Second, with structural transformation,

the number of farmers decreases while land endowment is fixed. As a result, average

farm size increases 23-fold. This increase in farm size over time increases the practical-

ity of paying the fixed cost for adopting the modern technology. Third, the productivity

of modern technology also improves faster than that of the traditional technology.

My calibration also provides insight into sectoral labor productivity growth of the

U.S. economy. Over the twentieth century, labor productivity grows faster in agricul-

ture than in non-agriculture. Recall that the latter only increased 6.9-fold while the

former increased 30.4-fold. A portion of this difference in sectoral productivity growth

can be accounted for by technology adoption. In fact, this technology adoption chan-

nel, together with its resulting capital deepening in agriculture, accounts for 3.3-fold

of agricultural labor productivity growth over the twentieth century (i.e., 79.9% of the

difference in sectoral productivity growth).21

5 Quantitative Analysis

I use the calibrated model to study cross-country differences in agricultural capital

intensity and labor productivity. I focus on the comparison between the United States,

which I set as my benchmark, and 20% of the poorest countries in my sample.22

21Sectoral productivity growth differs by 30.4/6.9=4.4 fold, while technology adoption contributes
3.3 fold. Therefore, this channel accounts for log(3.3)/log(4.4)=79.9% of the observed difference in
sectoral productivity growth. The remaining portion is explained by the growth of κ.

22Recall that the 20% poorest countries in my sample, sorted by their real GDP per capita, are El
Salvador, Malawi, Tanzania, Madagascar, India, Kenya, Egypt, and Pakistan.
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5.1 Aggregate Factors

This experiment seeks to answer how differences in measured aggregate factors across

countries can explain differences in their agricultural capital intensity and labor pro-

ductivity. After discussing all results, I also use this experiment to illustrate how the

technology adoption channel works in my model.

I compare the United States with the poorest 20% of countries in my sample. Note

that cross-country comparable data are only available for years 1980 – 1990. For my

cross-country comparison, I take the mean of the 11 years of available data for each

country. The first aggregate factor I consider is land endowment (L): land endowment

per capita differs by 2.13-fold between the U.S. and the poor countries. I also consider

barrier to investment (η): literature has documented that poor countries have higher

barriers to investment, leading to distorted prices for capital and lower capital-output

ratios (Jones, 1994; Restuccia and Urrutia, 2001). The capital-output ratio, measured

in the international price, is 2.08-fold higher in the United States compared to the

poorest countries in the non-agricultural sector, so I set the barrier η = 2.08 for the

poor countries.23 The third aggregate factor I consider is the economy-wide TFP (A).

Labor productivity in the non-agricultural sector is 4.42-fold higher in the United

States versus the poorest countries. I therefore set AUS and Apoor to differ by 2.08-fold

so that the differences in A and η jointly contribute to the 4.42-fold difference in non-

23Note that the investment-specific technology ({υt}) and the barrier to investment (η) are not
separately identified in the cross-country analysis. As a result, it is without loss of generality to
assume {υt} to be the same across countries while η varies to match the differences in observed price
of capital.
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Table 3: Effects of Aggregate Factors

Data Model Explained

Agriculture:
Capital-output ratio 3.2 2.4 75%
Capital-labor ratio 165.0 27.7 65%
Labor productivity 48.8 11.4 63%

Non-agriculture (targeted):
Capital-output ratio 2.1 2.1 -
Labor productivity 4.4 4.4 -

Whole Economy:
GDP per capita 21.4 5.1 53%

Note:

[1] All moments are reported as the ratio between the U.S. (the benchmark economy) and the poorest

20% countries in my sample.

[2] The model’s prediction is when the economy-wide TFP, barrier to investment, and land endowment

are set to the level of the poorest countries.

[3] Explained portion is the ratio of log model moment over log data moment.

agricultural labor productivity. Note that I treat all differences in the non-agricultural

sector as exogenous and use them to determine the aggregate factor differences. I do

not target the agricultural capital-output ratio or labor productivity.

Since my cross-country data are from 1980 – 1990, I perform this experiment based

on the parameter values of the year 1985. I vary the parameters {L,A, η} by 2.13, 2.11,

and 2.08-fold respectively as described above, and assume that the economy is in steady

state. Using differences in each nations’ aggregate factors only, my model can explain a

sizable portion of the observed disparity in these nations’ agricultural capital intensity

and labor productivity. I summarize the results in Table 3. The agricultural capital-

output ratio differs by 3.2-fold between the U.S. and the poorest countries, 2.4-fold of

which can be explained by the model using differences in aggregate factors. Hence,
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the aggregate factors explain log(2.4)/ log(3.2) = 75% of the observed differences of

capital-output ratio in the data. The model also explains 27.7-fold of capital-labor ratio

differences and 11.4-fold of agricultural labor productivity differences, which account

for 65% and 63% of the observed differences in the data. Therefore, using aggregate

factor differences only, the model can explain about two-third of the differences in

agricultural capital intensity and labor productivity across countries.

The model also has implications for other moments. With differences in aggregate

factors, the agricultural employment share increases to 21.3%, which is considerably

higher than the benchmark U.S. economy of this period. Due to smaller land endowe-

ment and higher agricultural employment share, the average farm size of poor countries

predicted by the model is around 30-fold smaller than that of the U.S., consistent with

Adamopoulos and Restuccia (2014) who find that the average farm size is much smaller

in poor countries. The model also predicts a much lower technology adoption rate, de-

creasing from nearly 100% in the U.S. to just 26.6%. This is consistent qualitatively

with the evidence from the CHAT data set. According to the CHAT dataset, the poor

countries in my experiment have on average 1.40 tractors per 1000 hectares, compared

to 10.96 tractors per hectare in the U.S., a difference of around 8-fold.24 Similarly, agri-

cultural harvesters per 1000 hectares also differ by around 14-fold between the U.S.

and the poor countries. Therefore, it is likely that the technology adoption rate of poor

24I calculate a tractor-to-land ratio instead of a tractor-to-farmer ratio. This is because farmers with
tractors usually operate larger farms, so the tractor-to-farmer ratio would understate the technology
adoption rate in its early stages. For example, there is more than a 360-fold difference in the tractor-
to-farmer ratio between the U.S. and poor countries, which is considerably larger than if we use the
tractor-to-land ratio.
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countries is only 1/8 to 1/14 of that of the U.S., which is around 10%. In contrast,

recall that using aggregate factor differences, the model predicts the technology adop-

tion rate to be 26.6% in poor countries. Hence, aggregate factors alone can account

for a large portion of the cross-country differences in technology adoption.

If we compare the relative importance of the aggregate factors {L, η,A}, the economy-

wide TFP (A) is the most important factor among these three. Differences in this fac-

tor alone can generate 4.9-fold of labor productivity differences in agriculture, roughly

log 4.9
log 11.4

= 65% of the 11.4-fold differences when all three factors are considered. The

barrier to investment η alone can generate 24% of the 11.4-fold differences, while the

land endowment differences only generates 7%. This is consistent with Adamopoulos

and Restuccia (2014), who also find differences in land endowment to be relatively

unimportant. The remaining is contributed by interactions among these three factors.

5.2 The Channel of Technology Adoption

The novelty of my model, compared to the existing literature on agricultural productiv-

ity, is the technology adoption channel. In this section, I use the previous experiment

to illustrate how this channel of technology adoption works, and why it amplifies agri-

cultural productivity differences across countries.

Recall the previous experiment quantifying the explanatory power of aggregate fac-

tors for international differences in agricultural capital intensity and labor productivity.

I now perform this experiment again without technology adoption channel: the only

available technology is the modern technology. I choose to keep modern technology
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Table 4: Importance of Technology Adoption

Data Model No adoption

Agriculture:
Capital-output ratio 3.2 2.4 0.9
Capital-labor ratio 165.0 27.7 6.8
labor productivity 48.8 11.4 7.3

Whole Economy:
GDP per capita 21.4 5.1 4.8

Note:

[1] All moments are reported as the ratio between the U.S. (the benchmark economy) and the poorest

20% countries in my sample.

[2] The model’s prediction is when the economy-wide TFP, barrier to investment, and land endowment

are set to the level of the poorest countries.

[3] Explained portion is the ratio of log model moment over log data moment.

instead of the traditional one to make results comparable to the literature: papers in

this literature often calibrate agricultural technology to the current U.S. data, resulting

in an agricultural technology similar to the modern technology in my model. Table 4

compares the predictions of my model with and without technology adoption. When

we shut down the channel of technology adoption, the model predicts that poor coun-

tries will have higher agricultural capital-output ratio than the U.S. (the ratio between

U.S. and poor countries is 0.9), which is opposite in direction compared to data. In-

tuitively, poor countries have lower agricultural productivity, with inelastic demand of

the agricultural good near the subsistence level of consumption. Hence, the price of

the agricultural good is much higher in poor countries, and as a result, farmers can

afford to use more capital in production. That is why the real capital-output ratio is

higher in poor countries than in the U.S., although the nominal capital-output ratio,

which equals αm/r without technology adoption, is constant across countries in this
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scenario. Therefore, technology adoption is the key channel for matching the stylized

fact that the cross-country differences in capital intensity are larger in agriculture than

in the non-agricultural sector.

Without the technology adoption channel, the model’s predictions would also suffer

in other moments. For example, the predicted agricultural labor productivity differ-

ences reduce from 11.4-fold to 7.3-fold. This implies that a model without technology

adoption would substantially understate the explanatory power of aggregate factors.

In other words, the technology adoption channel amplifies the importance of aggregate

factors in explaining the international differences in agricultural labor productivity by

1.56-fold.

The channel of technology adoption amplifies agricultural productivity differences

in two ways. First, different levels of technology adoption imply different levels of

agricultural capital intensity, and in turn, different labor productivity. Second and more

important, technology adoption directly affects the sectoral TFP of agriculture, since

modern technology is more productive and improves faster than traditional technology

(Bt increases over time). To see this, consider the following equation

Ya
Na

= TFP
1

1−α−γ
a

(Ka

Ya

) α
1−α−γ

( L
Ya

) γ
1−α−γ

, (3)

which decomposes agricultural labor productivity into contributions from endogenous

sectoral productivity (TFPa), capital-output ratio (Ka
Ya

), and land-output ratio (La
Ya

).

We can again look at the comparison of the model’s predictions with and without

technology adoption in Table 4. The model’s prediction differs by 1.56-fold on la-
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bor productivity ( Ya
Na

), 1.23-fold on capital-output ratio raised by the capital share

(
(
Ka
Ya

) α
1−α−γ ), and virtually none in land-output ratio. Therefore, changes in endoge-

nous sectoral TFP contributes to the remaining 1.27-fold difference (1.56/1.23=1.27).

Note that changes in sectoral TFP are completely from technology adoption choice,

since the exogenous productivity parameters A and κ are the same in this comparison.

To summarize our findings from this exercise, technology adoption amplifies labor pro-

ductivity differences by 1.56 folds given the aggregate factor differences, where 46.4%

(=log(1.23)/log(1.56)) is from capital deepening, and the remaining 53.6% is from

changes in sectoral TFP.

It is important to emphasize that so far the quantitative analysis is based on a

neoclassical framework with few frictions: I assume the U.S. and the poorest countries

only differ in the measured aggregate factor differences. This means that, differences in

technology adoption across countries can largely explained by the price effect: it is not

profitable for farmers in poor countries to adopt the modern technology and use capital

to substitute labor, because the price of labor is cheap enough while modern technology

is labor-saving. This result is consistent with experiences on tractor promotion projects

in many Sub-Saharan countries. Between 1970–1980, various organizations provided

tractors to farmers through subsidized credit or state sponsored rentals. However, most

of these projects failed as “in many tractor project areas no tractors can be found today

(Pingali, 2007)”, mostly because human labor is cheap enough in these areas so the

demand of machinery is low (Pingali et al., 1987). This evidence indicates that capital

frictions, in particular the collateral constraint of acquiring machinery, are not likely
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to play a large role. Therefore, instead of capital frictions, I examine the role of land

misallocation, which is shown as important by recent literature, to see whether they

are able to account for the unexplained differences by aggregate factors.

5.3 Land Misallocation

This experiment examines the role of land misallocation. Recent literature shows that

resource misallocation negatively affects aggregate productivity. In particular, land

misallocation is identified as one of the main obstacles in agricultural development,

since it is prevalent in low-income countries where land property rights are usually

poorly defined. For example, Adamopoulos and Restuccia (2014) show that the dis-

tribution of farm size differs substantially across countries, largely due to policies and

institutions that misallocate land across farmers. They further show that these dif-

ferences in farm size distributions have important implications on cross-country agri-

cultural productivity differences. Chen (forthcoming) focuses on untitled land as a

specific form of land misallocation. In many poor countries, farmers do not have le-

gal ownership of land. Local leaders grant this untitled land to farmers, usually on

an egalitarian or nepotistic basis. Given that farmers are unable to trade or rent

their allocated land amongst each other, the resulting operational scales of farms are

generally uncorrelated with farmer ability (Goldstein and Udry, 2008; Restuccia and

Santaeulàlia-Llopis, 2017). In this section, I use my model to study how untitled land

can affect agricultural capital intensity and agricultural productivity.

I model untitled land following Chen (forthcoming) together with the aforemen-
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tioned aggregate factors. In particular, I assume every farmer is allocated an endow-

ment of land that cannot be traded or rented. I choose the distribution of untitled

land across farmers to match the land distribution in the Malawi data described by

Restuccia and Santaeulàlia-Llopis (2017), since Malawi is a country where virtually

all land is untitled. In particular, they find that (log) untitled land holdings and (log)

farmer ability have a weak linear positive correlation. Therefore, I assume the following

functional form of untitled land across farmers:

log l̄i = β0 + β1 log si + εi,

where l̄i denotes the untitled land holdings of farmer i, and εi is a random variable

following a normal distribution with a standard deviation of σε. There is no land market

and the farm size distribution is exogenous among farmers. β1 and σε jointly determine

the dispersion of untitled land and its correlation with farming ability. I choose β1 =

0.07 and σε = 2.65 to match two moments from Restuccia and Santaeulàlia-Llopis

(2017): a dispersion of (log) untitled land holdings among farmers of 0.77, and a

correlation between farmer ability and untitled land holdings of 0.12. β0 is a scale

parameter to be determined in equilibrium.

Table 5 shows the results of the enriched model with untitled land. We can see

that the predictions of the enriched model match the data better. For example, the

model is now able to generate a 4.1-fold difference in capital-output ratio and a 71.0-

fold difference in capital-labor ratio between the U.S. and the poorest countries, which

are much closer to the data. Untitled land further lowers the agricultural productivity
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Table 5: Importance of Untitled Land

Data Model Explained
AF Only w/ Unt. Land

Agriculture:
Capital-output ratio 3.2 2.4 4.1 121%
Capital-labor ratio 165.0 27.7 71.0 83%
labor productivity 48.8 11.4 17.5 74%

Notes:

[1] All moments are reported as the ratio between the U.S. (the benchmark economy) and the poorest

20% countries in my sample.

[2] The “AF Only” column shows the model’s prediction when only aggregate factors are considered,

while the next column shows the prediction after adding untitled land to the model.

[3] Explained portion is the ratio of log model moment over log data moment.

by around 54%: the model with untitled land predicts a 17.5-fold difference in labor

productivity, compared to the original 11.4-fold prediction without untitled land.

Untitled land affects agricultural productivity in two ways. First, as untitled land

cannot be traded/rented across farmers, there is land misallocation across farmers,

which directly lowers agricultural productivity. Second, untitled land impedes technol-

ogy adoption. The adoption rate of the modern technology decreases to less than 1%,

compared to 26.6% without untitled land. Intuitively, modern technology is profitable

only when the farm size is large enough to afford the fixed cost of technology adoption.

With untitled land, however, the egalitarian allocation of land prevents higher-ability

farmers from renting or buying land and operating larger farms. As a result, farmers

have less incentive to pay the fixed cost of adopting modern technology.25 Untitled

land is typically thought of as a friction in the land market. However, it affects capital

25In reality, machinery, such as tractors, can be shared by more than one farm. My model accounts
for the sharing of machinery operation costs through the setup of farmers renting capital from the
market. The estimated fixed cost of technology adoption represents other costs which may not be
shared between farms, such as up-front learning costs or required infrastructure for machine operation.
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intensity indirectly through its impact on technology adoption. Therefore, untitled

land creates joint misallocation in land and capital markets in this framework.

Note that other forms of land market frictions can affect technology adoption in a

similar fashion. For example, imposing ceilings on farm size is another common form

of land market friction. Adamopoulos and Restuccia (2015) describe a land reform

in the Philippines, imposing a ceiling on farm size (5 hectares) and restricting farm

land transaction. Similar to untitled land, land ceilings also prevent higher-ability

farmers from operating larger farms and therefore impede technology adoption. The

key similarity of these land frictions is that they prevent farms from expanding, while

technology adoption depends crucially on the profitability of modern technology on

large farms.

5.4 Long-Run Growth

Previous experiments study cross-country differences and show that aggregate factors

and untitled land impede technology adoption in poor countries and therefore affect

their current agricultural productivity. This section studies the pattern of long-run

growth and convergence. In particular, I consider the following experiment: suppose

we assume that productivity and endowments grow at the same rates as observed in

the twentieth century. When will technology adoption happen in poor countries with

untitled land? How will agricultural productivity evolve over time in poor countries

relative to the U.S.?

I assume that for the period 2000–2060, time series parameters, including economy-
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Figure 8: Long-Run Growth and Convergence
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[1] The black solid curve represents moments in the U.S., while the red and blue dashed curves

represent moments in poor countries with and without untitled land, respectively.

[2] The top panel shows the rate of modern technology adoption, defined as the percentage of output

produced by farms with modern technology. The bottom panel shows differences in agricultural labor

productivity between the U.S. and the poor countries, measured as Ya/Na|US

Ya/Na|Poor
.

wide TFP (At), agricultural-specific productivity (κt), investment-specific productivity

(υt), and population (Nt), grow at the same rates as observed for the period 1900–2000

in the U.S. These growth rates are the same for both the U.S. and the poor countries.

Furthermore, I assume that aggregate factor differences between the U.S. and poor

countries remain time-invariant at the same levels as in Section 5.1: LUS,t = 2.13LPoor,t,

AUS,t = 2.11APoor,t, and ηPoor,t = 2.08ηUS,t for all t. Untitled land is also distributed

among farmers in the same way as in Section 5.3. I also assume that ft and Bt are time-

invariant after 1985. This assumption is due to the fact that technology adoption is

largely completed in the U.S. and other rich countries at 1985. Therefore, it would not

be profitable for research and development firms in rich countries to further improve

the modern technology.
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I then let the economies of both the U.S. and poor countries grow for 60 years.

Figure 8 shows the long-run growth pattern of both the U.S. and poor countries, with

and without untitled land. Let us first focus on the comparison between the U.S. (black

solid curve) and poor countries with untitled land (red dashed line). The top panel

shows that poor countries with untitled land start technology adoption roughly 75 years

later than the U.S. This adoption lag translates to lower agricultural labor productiv-

ity, shown in the bottom panel. Before modern technology was adopted in the U.S., the

US-poor agricultural productivity differences were predicted to be smaller than current

differences. When technology adoption commenced in the U.S., US-poor agricultural

productivity differences also increased. These differences peak when technology adop-

tion is completed in the U.S. but barely initiated in poor countries. As poor countries

adopt more modern technology, the differences gradually diminish. Therefore, there is

a period, with length equal to the poor countries’ technology adoption lag, in which

US-poor agricultural productivity differences are temporarily larger due to differences

in technology adoption. Note that agricultural productivity in poor countries will never

be the same to that of the U.S., as illustrated in the bottom panel, due to aggregate

factor differences and the existence of untitled land.

Land titling also has long-run impacts. If there were no untitled land in poor

countries (i.e. farmers could sell or rent their land frictionlessly), then the technology

adoption lag would be substantially shortened to around 50 years. The slope of the

adoption curve would also be steeper, meaning that the adoption process would be

faster. Furthermore, the agricultural productivity differences at the peak would also
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reduce. Comparing poor countries with untitled land (red dashed curve) to hypothet-

ical poor countries without untitled land (blue dashed curve) in the bottom panel, we

can see that untitled land has two impacts. First, it introduces static land misallo-

cation, reflected by the distance between the two curves before technology adoption

starts and after it finishes. Second, the existence of untitled land impedes technology

adoption, reflected by the much wider gap between the two curves around the year

2000.

6 Conclusion

The differences of capital intensity between rich and poor countries are larger in agricul-

ture than in non-agriculture. Meanwhile, the capital intensity of the U.S. agricultural

sector increases in the 20th century. I study these phenomena using a model featuring

technology adoption in agriculture, which can account for the increasing agricultural

capital intensity in the U.S. Then, I use this model to perform cross-country analysis

and find that countries’ aggregate factors can explain around two thirds of rich-poor

differences in capital intensity and labor productivity, and show that accounting for

technology adoption choice is crucial for the model to match the data. I further show

that untitled land, which is prevalent in poor countries, also impedes technology adop-

tion and reduce labor productivity in agriculture.

46



References

Adamopoulos, Tasso (2011), “Transportation costs, agricultural productivity, and
cross-country income differences.” International Economic Review, 52, 489–521.

Adamopoulos, Tasso, Loren Brandt, Jessica Leight, and Diego Restuccia (2016), “Mis-
allocation, selection and productivity: A quantitative analysis with panel data from
China.” Working Paper.

Adamopoulos, Tasso and Diego Restuccia (2014), “The size distribution of farms and
international productivity differences.” American Economic Review, 104, 1667–1697.

Adamopoulos, Tasso and Diego Restuccia (2015), “Land reform and productivity: A
quantitative analysis with micro data.” Working Paper.

Alvarez-Cuadrado, Francisco, Ngo Van Long, and Markus Poschke (forthcoming),
“Capital-labor substitution, structural change and growth.” Theoretical Economics.

Ayerst, Stephen (2016), “Idiosyncratic distortions and technology adoption.” Working
Paper.

Bustos, Paula, Bruno Caprettini, and Jacopo Ponticelli (2016), “Agricultural produc-
tivity and structural transformation: Evidence from brazil.” American Economic
Review, 106, 1320–1365.

Caselli, Francesco (2005), “Accounting for cross-country income differences.” Handbook
of Economic Growth, 1, 679 – 741.

Caselli, Francesco and Wilbur John Coleman, II (2001), “The U.S. structural transfor-
mation and regional convergence: A reinterpretation.” Journal of Political Economy,
109, 584–616.

Caunedo, Julieta and Elisa Keller (2016), “Capital obsolescence and agricultural pro-
ductivity.” Working Paper.

Chen, Chaoran (forthcoming), “Untitled land, occupational choice, and agricultural
productivity.” American Economic Journal: Macroeconomics.

Chen, Chaoran, Diego Restuccia, and Raül Santaeulàlia-Llopis (2017), “Land markets,
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structural transformation.” Handbook of Economic Growth, 2, 855–941.

Herrendorf, Berthold and Todd Schoellman (2015), “Why is measured productivity so
low in agriculture?” Review of Economic Dynamics, 18, 1003 – 1022.

Hsieh, Chang-Tai and Peter J. Klenow (2007), “Relative prices and relative prosperity.”
American Economic Review, 97, 562–585.

Hsieh, Chang-Tai and Peter J. Klenow (2009), “Misallocation and manufacturing TFP
in China and India.” Quarterly Journal of Economics, 124, 1403–1448.

Jones, Charles I. (1994), “Economic growth and the relative price of capital.” Journal
of Monetary Economics, 34, 359 – 382.

Kendrick, John W. (1961), Productivity Trends in the United States. Princeton Uni-
versity Press.

Kongsamut, Piyabha, Sergio Rebelo, and Danyang Xie (2001), “Beyond balanced
growth.” Review of Economic Studies, 68, 869–882.

Lagakos, David and Michael E. Waugh (2013), “Selection, agriculture, and cross-
country productivity differences.” American Economic Review, 103, 948–980.

Larson, Donald F., Rita Butzer, Yair Mundlak, and Al Crego (2000), “A cross-country
database for sector investment and capital.” World Bank Economic Review, 14, 371–
391.

Lebergott, Stanley (1984), The Americans: An Economic Record. Norton.

Manuelli, Rodolfo E. and Ananth Seshadri (2014), “Frictionless technology diffusion:
The case of tractors.” American Economic Review, 104, 1368–1391.

Ngai, L. Rachel (2004), “Barriers and the transition to modern growth.” Journal of
Monetary Economics, 51, 1353–1383.

Parente, Stephen L. and Edward C. Prescott (1994), “Barriers to technology adoption
and development.” Journal of Political Economy, 102, 298–321.

Pingali, Prabhu (2007), “Agricultural mechanization: Adoption patterns and economic
impact.” Handbook of Agricultural Economics, 3, 2779–2805.

49



Pingali, Prabhu, Yves Bigot, and Hans P. Binswanger (1987), Agricultural Mechaniza-
tion and the Evolution of Farming Systems in Sub-Saharan Africa. Published for the
World Bank, The Johns Hopkins University Press.

Restuccia, Diego (2004), “Barriers to capital accumulation and aggregate total factor
productivity.” International Economic Review, 45, 225–238.

Restuccia, Diego and Richard Rogerson (2008), “Policy distortions and aggregate pro-
ductivity with heterogeneous establishments.” Review of Economic Dynamics, 11,
707–720.
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Appendix (For Online Publication)

A Characterization of the Model

A.1 Definition of the Competitive Equilibrium

I focus on the competitive equilibrium of this economy, which is defined as follows.

Definition 1. Given K0, the competitive equilibrium consists of sequences of con-

sumption {cat, cnt}∞t=0, investments {xt}∞t=0, farm inputs, outputs, and profits {kt(s),

lt(s), yt(s), πt(s) ∀s ∈ S}∞t=0, prices of the agricultural and capital goods {pt, pkt }∞t=0,

wages {wt}∞t=0, interest rates {rt}∞t=0, non-agricultural inputs and outputs of the repre-

sentative firm {K̃nt, Ñnt, Ynt}∞t=0, aggregate capital stocks in the economy {Kt}∞t=0, and

measures of agricultural employment {Nat}∞t=0, such that

• Given prices, interest rates, farming profits, and wages, the representative house-

hold maximizes its utility by choosing the optimal levels of consumption, invest-

ment, and agricultural employment share {cat, cnt, xt, kt+1, Nat}∞t=0.

• Given prices, interest rates and wages, the representative firm in the non-agricultural

sector maximizes its profit by choosing {K̃nt, Ñnt}∞t=0.

• Given prices and interest rates, farmers maximize farming profit by choosing the

optimal level of inputs and outputs {kt(s), lt(s), yt(s),∀s ∈ S}∞t=0.

• All markets clear:
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– Agricultural good:

catNt = Nat

∫
s

yt(s)F (ds), ∀t.

– Non-agricultural good:

cntNt +
xt
υt

+

∫
s
fD(s)F (ds)

υt
= Ỹnt, ∀t,

where D(s) is a dummy indicating technology adoption choice and
∫
s
fD(s)F (ds)

is the aggregate expenditure on the fixed cost of technology adoption.

– Capital market:

Nat

∫
s

kt(s)F (ds) + K̃nt = Kt = kt, ∀t.

– labor market:

Nat

∫
s

F (ds) + Ñnt = Nt, ∀t.

– Land market:

Nat

∫
s

lt(s)F (ds) = L, ∀t.

A.2 Characterization

In each period, let ct denote the household’s per capita consumption. It can be shown

that the consumption of each good satisfies

cat = φ
ct − ptā
pt

+ ā and cnt = (1− φ)(ct − ptā) (4)
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and the indirect utility function is given by

ũ(ct, pt) = log(ct − ptā)− φ log pt + log(φφ(1− φ)1−φ). (5)

The household also chooses Nat to maximize its labor income Nat

∫
s∈S πt(s)F (ds) +

(Nt −Nat)(1− ξ)wt. The first order condition implies

(1− ξ)wt =

∫
s∈S

πt(s)F (ds). (6)

Therefore, the total labor income of the household can be written as

(Nt −Nat)(1− ξ)wt +Nat

∫
s∈S

πt(s)F (ds) = Nt(1− ξ)wt. (7)

With Equation (5) and (7), we can rewrite the household’s problem as

max
ct,xt

∞∑
t=0

βtNtũ(ct, pt),

s.t. Ntct + pkt xt = (1− ξ)wtNt + pkt rtkt + qtL,

kt+1 = (1− δ)kt +
xt
η
.

This problem is similar to that of a standard one-sector neoclassical growth model with

the familiar Euler equation written as

ũc(ct, pt) = βũc(ct+1, pt+1)
(rt+1

η
+ 1− δ

)pkt+1

pkt
. (8)

This equation implies a period t+ 1 interest rate of

rt+1 = η
[ ũc(ct, pt)

ũc(ct+1, pt+1)

pkt
pkt+1

1

β
− (1− δ)

]
= η
[ct+1 − pt+1ā

ct − ptā
υt+1

υt

1

β
− (1− δ)

]
= η
[gctgυt
β
− (1− δ)

]
,

(9)
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where gct and gυt denote the growth rates of excess consumption (total consumption

less subsistence requirements) and the investment-specific technology υt, respectively.

B Data

In this section, I briefly describe my data source.

B.1 Cross-country Data

I compare the following moments across countries: capital-output ratio, capital-labor

ratio, and labor productivity, for both agriculture and non-agriculture. For the capital-

output ratio, I study both nominal and real measures. Here, nominal means that

capital and output are measured using local price, while real means that the moments

are computed using common price (international dollar).

B.1.1 Benchmark Data

Capital Stock.—The data on capital stock across countries are from Larson et al. (2000).

They construct measures of fixed capital stocks for both the agricultural and non-

agricultural sectors.26 Capital is measured in local price at the 1990 constant U.S.

dollar, adjusted by the price deflator of each sector. Therefore, they provide nominal

measures of capital in both sectors. I transform these nominal measures into real

measures using the relative price index of capital provided by the Penn World Table

8.0. I assume that capital in each of the two sectors have the same price for a given

26FAO’s database also provides measures of capital stock in agriculture, but there is no correspond-
ing measure in the non-agricultural sector, so it is not comparable between sectors.
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country.

The agricultural capital measure of Larson et al. (2000) has three components: agri-

cultural fixed capital, livestock, and treestock, while only fixed capital is measured for

the non-agricultural sector. In my analysis, I only include fixed capital as my measure

of capital in the agricultural sector for three reasons. First, since only fixed capital is

included in the capital measure of the non-agricultural sector, it would be more com-

parable to only look at fixed capital in agriculture as well. Second, as defined in the

model, capital must be produced in the non-agricultural sector, which means capital

goods cannot be agricultural in origin. Since livestock and treestock are agricultural

in origin, it is therefore consistent with the model to exclude them. Third, not all

livestock are used in production. For example, a horse is used for production while

a pig is not, but both are included in the measure of livestock. Conceptually, a pig

should be treated as farm output, rather than capital input. Chen et al. (2017) study

household survey data in Ethiopia, and find that only a small portion of livestock are

for agricultural purposes. Therefore, a cleaner measure of capital in agriculture would

be only including the fixed capital stock. However, note that all of the results still hold

qualitatively if I include livestocks and treestocks.

Output.—Data on nominal output (value added) at the sectoral level are available

from the World Development Indicator (WDI) database, and is denominated in current

U.S. dollars. The WDI also provides real output at the aggregate level, but not at the

sectoral level. I therefore estimate real output for the sectoral level following Caselli
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(2005) and Gottlieb and Grobovšek (2016). See the latter for details.

Employment.—Sectoral employment data are not directly available from the WDI,

either. I estimate them in two steps. First, I estimate the employment share in

agriculture from FAO data. FAO provides the number of economically active people in

agriculture as well as in the whole economy. The ratio of the two gives the percentage

of employment in agriculture. I then take the employment numbers from Penn World

Table 8.0, and use agricultural employment share to back out employment numbers for

both the agricultural and the non-agricultural sectors.

B.1.2 Alternative Data

Another source of sectoral capital stock and output data is the World Input-Output

Database (WIOD) at the Growth and Development Center of Groningen University

(Timmer et al., 2015). This database provides comparable data on nominal capital,

nominal output, and employment for each sector. Therefore, I also use WIOD to cal-

culate nominal capital-output ratio. Since WIOD provides a balanced panel, I perform

cross-country analysis by regressing the nominal capital-output ratio on log GDP per

capita, controlling for country and time fixed effects. I find that log GDP per capita

is positively correlated with agricultural capital-output ratio, and is significant even

after controlling for country and time fixed effects, while its correlation with the non-

agricultural capital-output ratio is less significant, or even negative. I do not use these

results as my benchmark, however, because the WIOD mostly only covers rich and

middle-income countries, with little coverage on poor countries.
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B.2 Historical Data of the U.S.

I first document historical facts of the U.S. economy over time. The agricultural sector

in my model refers to the farm sector in the data. I exclude fishery, forestry, and

agricultural service sub-sectors of agriculture in my analysis, as the data of these sectors

are usually not available for the earlier periods.

B.2.1 Aggregate Endowments

I obtain the total size of cultivated land from the Historical Statistics of the U.S.,

Millennial Edition (HSUSME), Series Da159. This series provides data on the total

size of cultivated land from the years 1900 to 1997. Then I use the U.S. Census of

Agriculture (USCA) to obtain data on the same statistic for more recent years. The

data for land endowment is collected every 10 years, with higher frequencies in more

recent years. Figure 9 shows the trend of total cultivated land across time. Data on

the U.S. population over the past century is also obtained from the HSUSME (Series

Aa125). This series provides U.S. population data up to the year 1999. Population

data for more recent years come from the government census. The population trend

over the past century is shown in Figure 9, with a roughly constant growth rate of

1.3%.

B.2.2 Agricultural Employment Share

I construct the statistic of the agricultural employment share by combining different

sources.
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Figure 9: Land and Labor Endowments

1900 1920 1940 1960 1980 2000

To
ta

l C
ul

tiv
at

ed
 A

re
a,

 1
00

0 
Ac

re
s

×105

8
9

10
11
12

Po
pu

la
tio

n

×108

0

1

2

3

4

Total Cultivated Area
Population

After 1948.—Agricultural employment can be grouped into three main components:

wage employment, self-employment, and unpaid family labor. The Bureau of Economic

Analysis (BEA) estimates hours of wage employment across sectors from 1948 to 1999

(Table 6.9), as well as the number of full-time and part-time employees at the sectoral

level (Table 6.4). The BEA also estimates the number of self-employed persons at the

sectoral level (Table 6.7). Unpaid family labor data are taken from the HSUSME (Series

Ba930-932). However, the labor hours of these two latter categories are unavailable.

Therefore, I assume the average hours of self-employed persons and unpaid family labor

to be the same as those of wage employees, following Herrendorf et al. (2015). I use

this to obtain aggregate labor hours of the farm and non-farm sectors for the years

after 1948. Note that, since the HSUSME ends in the year 1999, I extrapolate my data

to the year 2000 by assuming that the agricultural employment in 2000 is the same as

that of 1999.

1900 - 1948.—I use the estimated labor hours reported in Kendrick (1961) between
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the years 1900 and 1948. Table A-X of Kendrick (1961) provides the aggregate labor

hours for the farm and non-farm sectors of the U.S., which include wage employment,

self-employment, and unpaid family labor. For the year 1948, Kendrick’s estimation

overlaps with that of the BEA. In this year, Kendrick’s estimate for the agricultural

employment share is slightly lower than that of the BEA. I therefore scale up Kendrick’s

estimation over the period 1900 – 1948 to make it comparable with that of the BEA.

Figure 7 shows the agricultural employment share of the U.S. over time.

Note that Lebergott (1984) also estimates the agricultural employment share for

pre-1960 U.S. Lebergott’s estimates are generally higher than the data I am using; for

example, in 1900, the agricultural employment share is around 33% in my data, while

Lebergott (1984) estimates it to be around 40%. This discrepancy is likely due to the

fact that Lebergott’s estimation does not account for differences in labor hours between

sectors: Kendrick (1961) points out that the average hours of farmers are substantially

lower than that of non-agricultural workers before the 1940s, while they are similar

thereafter.

B.2.3 Capital Stock and Output Over Time

I use two measures of capital stock and output: a (nominal) current price measure and

(real) chain-type quantity indices.

Nominal Capital and Output.—The nominal measure (current cost) of capital is

from Table 6.1 and Table 7.1 of National Income and Product Accounts (NIPA). Table

6.1 provides the nominal capital stock of the farming, manufacturing , and non-farm
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non-manufacturing sectors; Table 7.1 provides the nominal capital stock owned by the

government. The capital stock of farms corresponds to the nominal measure of capital

stock in agriculture in my paper, while the remaining components sum up to that of

the non-agricultural sector.

I collect data on the nominal output (value added) of agriculture and the whole

economy from the NIPA tables. Table 7.3.5 reports the nominal value added of the

farming sector. Note that the BEA does not include “rent paid to non-operator land-

lords” in its value added statistic of agriculture. However, Herrendorf et al. (2015)

argue that this component should be counted in the value added of agriculture, so I

add this component to the value added of agriculture. Table 1.1.5 provides the measure

of nominal GDP for the whole country. I subtract agricultural value added from this

to obtain non-agricultural value added.

Chain-Type Quantity Indices of Capital.—The BEA also reports a (real) chain-

type quantity index of capital. Note that this chain-type quantity index is not additive

(Whelan, 2002). NIPA Table 4.2 provides the quantity indices of farm capital and

other non-farm private capital; Table 7.2 provides the quantity index of government

capital. The real measure of capital in my paper refers to these quantity indices.

Real Measure of Output.—The real measure of output is the chain-type quantity

index of output from the BEA. NIPA Table 7.3.3 has the quantity index of the value

added of the farming sector, and I also adjust it to include the rent paid to non-operator

landlords. Table 1.5.3 has the quantity index of the GDP of the whole economy. I
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subtract the agricultural (farm) sector GDP from total GDP to obtain the quantity

index of the non-agricultural (non-farm) sector.

These data series from the BEA are only available starting from 1929. To construct

real sectoral value added for the period 1900 – 1929, I use the estimation of real value

added from Table A-III of Kendrick (1961), which provides real value added of the

farm sector and the total economy, using the 1929 fixed price deflator. I compute the

real value added for the period 1900 – 1929 as percentages of the 1929 level and then

use these to supplement the data series from the BEA.

The Relative Price of Investment.—The relative price of investment goods versus

consumption goods decreases over time (Greenwood et al., 1997). NIPA Table 1.5.3

and Table 1.5.5 provide the (real) chain-type quantity indices and nominal values of the

national account. The price indices are the ratio of those two. In the national account,

consumption goods are aggregated from three components: consumer non-durables,

services, and government consumption. Investment goods also aggregates from three

components: consumer durables, private investment, and government investment. The

relative price of investment goods versus consumption goods is shown in Figure 5. Note

that my measure differs from Greenwood et al. (1997), since they only consider the

relative price of equipment versus consumption goods, while I also include structures,

consumer durables, and residential components as part of investment goods.

61



B.2.4 Ability Distribution

I calibrate the farmers’ ability to the distribution of value added across farms using data

from the 2007 U.S. Census of Agriculture (USCA), following the method described in

Adamopoulos and Restuccia (2014). The data are from Table 58 of the 2007 USCA,

“Summary by Farm Size”. Value added in dollars is calculated as the difference between

gross output (measured as sales) and intermediate inputs. Intermediate inputs include

seed, feed, fertilizer and other chemicals, gasoline and other fuels, utilities, supplies,

repairs and maintenance. Note that the census categorizes farms into different bins by

size, and provides the number of farms in each bin. Then I calculate the distribution

of farm value added across bins. I choose the ability distribution in my model so that

the distribution of farm value added in my model best matches the data. Figure 4

compares the distribution of value added in the data with that of my calibration.

One difference between my calibration and Adamopoulos and Restuccia (2014) is

that I calibrate the ability distribution to match the distribution of farm value added

in the data, while they calibrate it to match the farm size distribution. They use

a constant elasticity of substitution technology, where ability is land augmenting, to

capture the fact that the dispersion of farm size is much larger than the dispersion of

value added. Since my paper does not focus on farm size distribution, I abstract from

this feature and use Cobb-Douglas technologies for simplicity.

Note that in the USCA there are two ways to sort farms: Table 58 of USCA sorts

farms by farm size, and Table 59 sorts farms by their sales. Both farm size and sales
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can be indicators of farmer ability; sales are, however, less robust to stochastic output

shocks (like rainfall shocks), while farm size is a more stable indicator over time and

better reflects farmers’ true ability.27 Once we sort farms into bins by size and compute

the average value added for each bin, the stochastic shocks cancel out since stochastic

output shocks are not correlated with farm size and there are sufficiently large numbers

of farms within each bin. In contrast, if we were to sort farms according to their sales,

the stochastic shocks would not cancel out, since sales are correlated with output

shocks. The following example helps illustrate this problem.

Example 1. Suppose half of farmers have high ability sh = 2 and the other half have

low ability sl = 1. Their farm sizes are lh = 1000 and ll = 100. Note that farm sizes

are not exactly proportional to ability as in Adamopoulos and Restuccia (2014). Their

sales without shocks are yh = 200 and yl = 100, with intermediate input mh = 50 and

ml = 25. Suppose half of farmers get a good output shock, i.e., εg = 1.5, and the other

half get a bad shock εb = 0.5. As a result, we observe four types of sales: high-ability,

good-shock: yhεg = 300; high-ability, bad-shock: yhεb = 100; low-ability, good-shock:

ylεg = 150; low-ability, bad-shock: ylεb = 50. If we sort them by farm size, the value

added of the higher half over that of the lower half is∑
i

∑
j(yiεj −mi)1[l = 1000]∑

i

∑
j(yiεj −mi)1[l = 100]

=
(yhεg −mh) + (yhεb −mh)

(ylεg −ml) + (ylεb −ml)
=

250 + 50

125 + 25
= 2,

27Note that farm size and ability may not map into each other in a linear way, as argued in
Adamopoulos and Restuccia (2014). My analysis here only assumes that the rank correlation between
farm size and ability is higher than that between farm sales and ability.
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which is a correct measure of the ability. If we sort them by their sales, we have∑
i

∑
j(yiεj −mi)1[yiεj > 150]∑

i

∑
j(yiεj −mi)1[yiεj < 150]

=
(yhεg −mh) + (ylεg −ml)

(yhεb −mh) + (ylεb −ml)
=

250 + 125

50 + 25
= 5,

which overestimates the dispersion of ability.

B.2.5 Technology Adoption

For illustration purposes, this section describes how I construct the adoption curve for

farms with tractors. I then repeat this process for other machines and take the average

to obtain the technology adoption curve used in this paper.

If a farm uses at least one tractor, I treat this farm as a farm with modern technol-

ogy. The first measure of technology adoption (Measure 1, hereafter) is the percentage

of farms with tractors defined as

Measure 1 ≡
∑

i 1i{Tractor > 1}
N

,

where N stands for the total number of farms. I calculate the percentage of farms with

tractors from the historical publications of the USCA for the years 1920, 1930, 1940,

1945, 1954, and every 5 years after this. The earliest observation is in the year 1920

in which only 3% farms had tractors. Since even fewer tractors were in use before this

time, let us assume that technology adoption started in 1920. The blue line of Figure

10 shows the evolution of this measure over time.

Measure 1 is intuitive but it does not take into account the fact that farms adopting

modern technology (tractors) tend to be larger than other farms. Therefore, I define
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Figure 10: Technology Adoption
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Note: This figure shows Measure 1 and Measure 2 of technology adoption (see definition in text) over

time. Circles represent data points, while stars indicate estimated values.

an alternative as

Measure 2 ≡
∑

i 1i{Tractor > 1}yi∑
i yi

.

It measures the percentage of output produced by farms with tractors. It is shown as

the red line in Figure 10.28 It is clear that Measure 2 is always larger than Measure 1,

confirming my conjecture that farms with modern technology (tractors) are in general

larger. I use this second measure as my measure of technology adoption in the paper

since it takes into account size differences between adopters and non-adopters of modern

technology.

Technically, these two measures map into each other: given the number of farms

with modern technology, the model can generate the fraction of output produced by

these farms with modern technology. However, the actual mapping observed in the data

28Note that instead of publishing data at the farm level, the USCA groups farms into different bins
according to relevant features like farm size, and then publishes statistics at the bin level. As a result,
I assume farms within each bin are homogeneous when I calculate my statistics.
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differs from that of the model. In the model, larger farms adopt modern technology

strictly earlier than smaller farms (a property of the threshold model of technology

adoption). Although we do generally observe this to be true in the data, there are

some small farms that also adopt the modern technology early due to unobserved

heterogeneity which we abstract from in the model. As a result, if I use Measure

1 in my calibration to match the percentage of farms adopting modern technology,

the model result will be inconsistent with the data in terms of the contribution of

modern technology adopting farms to total output, which is important in determining

agricultural productivity. This can be corrected by introducing an error term in the

model to account for the unobserved heterogeneity in technology adoption, but this

would unnecessarily complicate the model.

The problem with Measure 2, however, is that it can only be constructed for the

years 1945, 1959, 1974, and later (red circles in Figure 10), while Measure 1 is available

all the way back to 1920. For the years in which Measure 2 is not directly available, I

calculate it from Measure 1 by estimating a threshold model with unobserved hetero-

geneity, which I will explain below. The estimated data points are labelled as red stars

in Figure 10.

I then normalize the adoption rate in the final year to be 100% and scale up the

whole time series proportionally to obtain the adoption curve for tractors. I repeat

this process for four other types of modern machinery: trucks, combines, balers, and

conditioners. I then take the average of these five curves to derive the technology

adoption curve used in this paper.
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A threshold model with unobserved heterogeneity.—Assume that farmers with ability

si adopt the modern technology if si >
ft
eit

, where ft is the fixed cost of adopting the

modern technology at period t, and eit is a random variable independent of ability

following a lognormal distribution with standard error σe. We can interpret this as

the unobserved heterogeneity of technology adoption. Modern technology is adopted if

log(eit) < log(ft) + log(si). and therefore the percentage of technology-adopting farms

is given by Φ(log(ft) + log(si)). The distribution of si has been estimated previously

in Section B.2.4. Only ft and σe remain to be estimated. We have the following two

moments for each period:

Measure 1 =

∑
i 1{log(eit) < log(ft) + log(si)}

Nt

,

Measure 2 =

∑
i 1{log(eit) < log(ft) + log(si)}yit∑

i yit
.

I pick three years (1945, 1959, 1978) where both measures are available and there exists

adequate variation in both measures to estimate {σe, f1945, f1969, f1978}. We have six

moments (two in each period). The estimation algorithm is as follows. 1) Guess an

initial value of σe. 2) Use Measure 1 in each period to estimate ft. 3) Substitute ft

into the expression of Measure 2 and compare the estimated Measure 2 with the true

Measure 2 from the data to obtain the error term for each period. 4) Define the loss

function as the sum of the squared error of each period. 5) Update the guess of σe

to minimize this loss. After determining time-invariant σe, I then use this model to

estimate Measure 2 from Measure 1 for the years in which Measure 2 is unavailable.
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