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ABSTRACT: Motivated by the question of how one should evaluate professional election
forecasters, we study a novel dynamic mechanism design problem without transfers. A
principal who wishes to hire only high quality forecasters is faced with an agent of un-
known quality. The agent privately observes signals about a publicly observable future
event, and may strategically misrepresent information to inflate the principal’s perception
of his quality. We show that the optimal deterministic mechanism is simple and easy to
implement in practice: it evaluates a single, optimally timed prediction. We study the gen-
erality of this result and its robustness to randomization and noncommitment.
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“A foolish consistency is the hobgoblin of little minds, adored by little
statesmen and philosophers and divines.”

—Ralph Waldo Emerson

Forecasting is an important industry whose experts’ services are utilized in a variety of different
fields, including politics, sports, meteorology, banking, finance, and economics. Forecasters differ
based on the quality of their predictions which, in turn, is determined by the accuracy of their
information and their ability to process it. The career prospects of an expert depend on public
perceptions of his ability, and hence a strategic forecaster may make predictions designed to inflate
those perceptions. In this paper, we study the dynamic mechanism design problem of a principal
who uses an expert’s predictions to determine whether that expert is worth hiring. In a nutshell,
we are interested in determining the optimal method of screening strategic forecasters.
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For example, consider a governor or senator who is contemplating a presidential run in the
next electoral cycle. She would like to hire a professional election forecaster to help her accurately
determine the viability of her future candidacy. To evaluate the forecaster’s ability, she observes
his predictions at various points in the current electoral cycle; she also eventually observes the
current electoral outcome. What is the best way for her to determine whether the forecaster is
worth hiring? The important factors the politician needs to incorporate into her hiring decision
are that (i) the forecaster’s information and the election outcome are both noisy signals of the
underlying preferences of the electorate; (ii) the forecaster learns about those preferences more
precisely as the election nears; and (iii) his predictions are strategically chosen to make himself
appear to be of higher quality as he anticipates the career implications of his performance.

We develop a novel dynamic model to study these issues. In its simplest symmetric and binary
form (on which the bulk of the paper focuses), the framework can be described as follows. There
is a persistent, unknown state of the world governing the data-generating process. This unob-
served state takes one of two values with equal probability. A binary public outcome, which is a
noisy signal of the underlying state, occurs at time T + 1. Leading up to that outcome, the agent
(forecaster) privately learns about the state (and therefore the expected outcome) via a sequence
of T noisy signals. These binary signals are correlated with the state but are otherwise condition-
ally independent and identically distributed. The agent is equally likely to be either a “good” or
a “bad” type, where a good type observes more precise information. At each point of time, the
agent strategically reports his signal. After the outcome has been realized, the principal decides
whether or not to hire the agent based on a mechanism that is announced (and committed to)
at the beginning of the game. A mechanism in this context is a deterministic mapping from the
history of reported signals and the eventual outcome to a hiring decision. Both parties care only
about this hiring decision, as both the underlying state and the agent’s signals are payoff irrele-
vant. Their incentives diverge, however: the principal only wants to hire the good type, while the
agent always wants to be hired, regardless of his private type.

The critical modeling assumptions of our environment are supported by the disparate litera-
tures that study forecasting in psychology, statistics, economics, and finance. Our underlying in-
formation structure—an unknown data generating process that the forecaster learns over time—is
a standard (albeit simplified) feature of statistical models of forecasting (an up-to-date survey is
Elliott and Timmermann (2016); recent empirical evidence on learning by professional forecasters
can be found in Lahiri and Sheng (2008) and the papers that follow). Psychologists have shown
that experts differ in their forecasting abilities and that better forecasters are consistently more ac-
curate (see, for the instance, the work described in Tetlock (2005) and Tetlock and Gardner (2015)).
Trueman (1994), Ottaviani and Sørensen (2006c), and others have argued that experts who differ
by ability choose their forecasts with the intention of influencing clients’ assessments of that abil-
ity. At a high level, the key departure of this paper from this latter economics literature is that
we incorporate a strategic principal (as opposed to a passive market) who optimally chooses her
method of evaluating such strategic forecasters.

To understand the role played by incentives in this environment, it is instructive to examine the
benchmark case where the principal does not know the agent’s type but can observe his signals.
Here, the principal can screen the agent—even in the absence of a public outcome—by using the
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variance of the observed signals: since the good type receives more precise information, he is more
likely to receive signal profiles with a large proportion of identical signals (or, equivalently, pro-
files with lower signal variance). The public outcome provides another means of screening as, in
addition to decreased variance, the good type is more likely to receive signal profiles in which a
large fraction of signals match the outcome. Hence, the principal’s optimal hiring decision in this
benchmark takes the form of two thresholds: one for accuracy and one for consistency (Theorem 1).
Here, the agent is hired either when he receives sufficiently many signals matching the realized
outcome (more than the accuracy threshold) or sufficiently many signals mismatching the real-
ized outcome (more than the consistency threshold).1 Hence, when the agent cannot strategically
report his signals, the principal screens using both the accuracy and the consistency of the agent’s
information. Note that, given a profile of received signals, the order in which the signals arrive
plays no role as they are generated from a conditionally i.i.d. process.

An immediate and important economic insight is that when the agent is free to report his sig-
nals strategically, the optimal mechanism does not screen using consistency. The reason is quite
intuitive: it is always possible for the agent to report consistent signals regardless of the actual
information he receives. Instead, we show that it is optimal for the principal to screen using a
combination of the accuracy of the agent’s signals along with the order in which they arrive. Specif-
ically, our main result shows that the optimal deterministic mechanism takes the very simple form
of a prediction mechanism: the principal optimally chooses a time period T ≤ T to solicit a single
prediction of the final outcome, and the agent is hired if, and only if, that prediction matches that
outcome (Theorem 3).2 The principal utilizes the order in which the signals arrive by ignoring
information that arrives after T.

This result has a number of features that are worth emphasizing. It may be surprising to some
readers (perhaps in light of the “testing experts” literature we discuss below) that screening is
possible at all in this strategic environment, especially when the principal’s only screening instru-
ment is a coarse hiring decision. Unlike the benchmark case, screening a strategic agent is not
possible in the absence of a public outcome as the bad type is free to follow any reporting strat-
egy. However, with a public outcome, screening becomes possible: since the good type receives
more precise information, his prediction (if truthful) of the outcome in any period is more likely
to be correct than the bad type’s. Thus, a hiring rule where the agent is picked if, and only if, his
prediction in a given period turns out to be accurate is more likely (compared to the initial belief)
to result in the hiring of the good type. Moreover, focusing on a single period’s prediction (and
ignoring the agent’s reports at all other periods) also ensures that it is optimal for the strategic
agent to sincerely predict the outcome he believes to be more likely.

1The most transparent demonstration of why two cutoffs are optimal (as opposed to only one for accuracy) is the corner
case where the good type’s signals are perfectly informative while the bad type’s are completely uninformative. Here,
any variance in the signals immediately reveals the agent to be the bad type, regardless of the fraction that are correct.
The likelihood that the bad type receives the same signal over and over again is thus sufficiently small to ensure that
the principal is happy to hire the agent when his signal profile is perfectly consistent but does not match the outcome.
2It is worth stressing that this mechanism is optimal within the full class of deterministic direct revelation mechanisms
that, in addition to the signals, also ask the agent to report his initial private type. Since such type reporting is not
observed in practice and—as Lemma 1 shows—there is no loss of generality in dispensing with it, we deliberately
focus on mechanisms that do not solicit this information. As we discuss later in Section 6, our results also generalize to
the case where the agent has no initial private information.
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As mentioned above, the optimal mechanism uses the order of signals for screening by dis-
carding information that the agent receives after period T. To see why doing so might help the
principal, suppose she instead always chooses to solicit predictions at the end of period T after
the agent has acquired all possible information. When T is large, both types of the agent learn the
underlying state with high probability, which makes screening by predictions ineffective. Instead,
the principal can choose to screen at an intermediate time period when the learning advantage for
the good type (from receiving more precise information) is at its highest. An insight from the main
result is that the principal is unable to improve screening in a deterministic mechanism (over and
above soliciting a prediction) by using any information that arrives after period T.

A strength of the optimal mechanism is that is very easy to describe and implement in practice.
Moreover, we show that the same optimal outcome can be achieved even without commitment
(Theorem 4), thereby making our results applicable in settings where the principal has little or
no commitment power. This is another novel aspect of our framework as it is quite unusual for
commitment power to not benefit the principal in a dynamic mechanism design environment.

In Section 6, we discuss the generality of the main insight driving our result by showing that
it also applies to very general environments (Theorem 7). We show that the key assumption we
need for the optimality of prediction mechanisms is that the public outcome is binary. As long as
this assumption holds, prediction mechanisms remain optimal even if the agent’s type is drawn
from a general space and the information he receives is generated from a general time-varying
signal process. Additionally, even in this general environment, commitment is not required to
implement the optimal mechanism. The simplicity of optimal mechanisms in so general a setting
opens the door to further research on even richer models which have strategic forecasting as a
component (and we discuss a few avenues for future research in our concluding remarks).

Finally, while our focus on deterministic hiring rules is driven by their suitability for our moti-
vating applications (as it is well known that committment to stochastic policies can be extremely
difficult in practice), randomization plays an interesting theoretical role in our environment.3 This
is most easily demonstrated in the optimal stochastic mechanism for the special case of T = 3 pe-
riods (Theorem 5). Here, we show how the principal fine-tunes her screening by hiring the agent
with different (strictly positive) probabilities that depend on the order of signal arrivals in addi-
tion to the overall composition of the signal profile. Finally, we show that a sufficient condition
for the optimality of randomization is that the time horizon is long enough (Theorem 6).

Related Literature. Expert forecasting is an important industry and the input of forecasters is of-
ten solicited for numerous decisions made by firms and policy makers alike. While the statistical
work on evaluating forecasting models is well developed (see, for instance, the aforementioned
survey Elliott and Timmermann (2016)), there is relatively less research examining the incentives
of strategic experts and how these incentives influence their forecasts (a recent survey of this work
is Marinovic, Ottaviani, and Sørensen (2013)). The theoretical work in this latter literature (see, for
instance, Ottaviani and Sørensen (2006a), Ottaviani and Sørensen (2006c)) differs in that forecast-
ers are evaluated by a rational, but otherwise passive, market and that the environment is static.

3Enforcement is a standard concern with stochastic mechanisms as the randomization device employed by the principal
must also be verifiable in practice; see, for instance, Laffont and Martimort (2009, p. 67).
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This paper differs in that we consider a dynamic environment in which a strategic principal can
alter the incentives of the forecaster by choosing her evaluation criterion.

The literature on testing experts (starting with Foster and Vohra (1998); a recent survey is Ol-
szewski (2015)) shares a similar motivation. Here an abstract dynamic environment is considered
and the focus is on determining the existence of a test which (i) cannot be passed by a strategic
forecaster without knowledge of the true data generating process and (ii) can be passed almost
surely when the forecaster knows the process. Both our model and overall objective differ in that
we allow the agent to be imperfectly informed about the data generating process and that the
principal’s goal is to design a mechanism that maximally separates the good forecaster from the
bad, even if that screening is imperfect.

Since we consider a setting where a principal can commit to her hiring policy (based on se-
quential information received from the agent), our results are related to those in the literature on
dynamic mechanism design. The binary private signals in our simplified model is a key feature
of Battaglini (2005) and Boleslavsky and Said (2013), of which the latter also features private in-
formation about the signal process. These papers differ not only in their reliance on transfers but
also in terms of the payoffs, the structure of the stochastic process governing signal evolution,
and (as a result) the applications to which their models apply. Though it also differs along these
latter dimensions, Guo and Hörner (2015) is more closely related as it also examines a dynamic
mechanism design problem in a binary environment without transfers. In another strand of this
literature, Aghion and Jackson (2016) show that tenure schemes can provide incentives for an
agent to take actions that reveal his competence. However, their setting yields distinct economic
insights as (among other differences) they rely on having multiple opportunities to learn about
the agent’s competence as well as on principal preferences that depend on the agent’s actions in-
stead of his underlying type. We will further discuss the relation of our results to the dynamic
mechanism design literature in more detail in Section 7.1.

Finally, since we also examine the dynamic cheap talk setting where the principal cannot com-
mit, this paper is related to the literature studying how an agent with a privately known type
builds reputation via dynamic communication. The key difference between our setting and this
literature (in addition to the different applications modeled and the fact that we also characterize
the full commitment optimum) is that our principal dynamically screens across types with differ-
ential rates of learning of a fixed underlying state. This is in contrast with Ottaviani and Sørensen
(2006b) and Li (2007), where the agent is evaluated by a competitive market and so his payoff
is simply the posterior belief about his type. Alternatively, Morris (2001) considers a repeated,
two-period setting where a principal makes a decision in each period based on the agent’s report.
While both the principal and the agent in his setting have very different preferences from ours, an
important distinction is that our principal makes a single decision after cheap talk has ended.4

1. MODEL

We consider a T-period, discrete time, finite horizon framework in which a principal determines
whether or not to hire an agent who is an expert forecaster. To make the main insights transparent,

4This aspect is also reminiscent of Krishna and Morgan (2004) (and the papers that follow), where an additional long
communication protocol is added to the canonical model of Crawford and Sobel (1982).
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we define a simplified, symmetric version of the model on which the majority of the paper focuses.
We discuss the full generality of the results in Section 6.

1.1. The Environment

State: The forecaster is being judged on his ability to learn about an unknown state of the world
ω. This state, which governs the data-generating process, is equally likely to be either high (H) or
low (L), so the commonly known prior distribution of states is Pr(ω = H) = Pr(ω = L) = 1

2 .

Agent’s private information: There is a single forecaster whose privately known type (his forecasting
ability) θ can either be good (g) or bad (b) with equal likelihood; thus, the commonly known prior
distribution of ability is Pr(θ = g) = Pr(θ = b) = 1

2 .5

In each period t = 1, . . . , T, the forecaster privately observes a binary signal st ∈ {h, l} about the
unknown state ω. The accuracy of these signals (that is, the probability that each signal “matches”
the true state) is

αθ := Pr(st = h|ω = H, θ) = Pr(st = l|ω = L, θ).

We assume that 1
2 < αb < αg < 1, so that the type-g agent’s signals are more precise than the

type-b agent’s.6 We write st := (s1, . . . , st) to denote a sequence of t signals.

Outcome: At the end of period T, a publicly observed binary outcome r ∈ {h, l} is realized. This
outcome is correlated with the true state ω; we denote by γ ∈

[ 1
2 , 1
]

the probability with which
the outcome r “matches” the true state ω, so

γ := Pr(r = h|ω = H) = Pr(r = l|ω = L).

The corner case where γ = 1 corresponds to situations where the public outcome fully reveals the
underlying state, while γ < 1 reflects environments where that outcome is only a noisy signal.7

1.2. The Game

In each period t, the agent strategically reports his signal s̃t ∈ {h, l}, possibly as the realization
of a mixed strategy (we will discuss implementations where the agent makes predictions instead
of reporting signals in Section 3.3). Our main focus will be on the case where the principal has full
commitment, but we will also examine what happens in the absence of commitment power.

Histories: At the beginning of any period t, hA
t = (st, s̃t−1) denotes the agent’s private history. This

contains the t privately observed signals st and the t− 1 reports s̃t−1 made prior to period t. We
useHA =

⋃T
t=1
(
{h, l}t × {h, l}t−1) to denote the set of all histories for the agent.

The relevant history for the principal hP = (s̃T, r) at which she makes a hiring decision contains
the entire sequence reports made by the agent in all T periods and the final outcome. We use
HP = {h, l}T+1 to denote the set of all such public histories.

5Note that we do not require symmetry in either the state or type distributions for any of the results in the binary
model. This assumption merely allows us to simplify the notation and shorten the proofs without compromising our
main economic insights.
6We exclude the corner cases αg = 1 and αb = 1

2 to simplify our exposition, though our results continue to hold.
7Election outcomes are often affected by last-minute events uncorrelated with the electorate’s underlying preferences
(unexpected news or election-day weather, for instance, might affect turnout). Similarly, unanticipated in-game injuries
often lead to upsets of the “better” team in a sporting event.
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Agent’s strategy: The type-θ agent’s strategy σθ : HA → ∆{h, l} determines the distribution of
signal reports at each history. We will use the signal subscript σθ

s (hA
t ) to denote the probability

that the agent reports signal s ∈ {h, l}.

Principal’s strategy: We denote by xr(s̃T) ∈ {0, 1} the principal’s strategy at history (s̃T, r) ∈ HP. It
determines the probability with which she hires the agent as a function of the T reported signals
s̃T and the outcome r. We focus on deterministic hiring decisions for the principal as we feel that
this is the more natural modeling assumption for the applications we consider. In particular, as
mentioned in the introduction, it is hard in practice for a principal to commit to a stochastic hiring
policy. That said, randomization plays an interesting theoretical role in our model that we discuss
in Section 5.

When the principal has commitment power, we sometimes refer to x as a mechanism, although
it does not correspond to a direct revelation mechanism (since x does not condition on the agent’s
private type θ). We restrict attention to this game as it more closely mirrors the applications of
our model (forecasters do not typically report their types in practice); note, however, that this
restriction is without loss of generality (as we show in Lemma 1).

Payoffs: The payoffs only depend on the agent’s type and the hiring decision. The principal re-
ceives a normalized payoff of 1 if she hires a good (θ = g) forecaster, a normalized payoff of −1 if
she hires a bad (θ = b) forecaster, and a payoff of 0 otherwise. Essentially, these payoffs capture the
principal’s preference to maximize the probability of hiring the good type while simultaneously
minimizing the probability of hiring the bad type.

The agent’s preferences are type-independent: both types want to maximize the probability
with which they are hired. To capture this, we assume that the agent receives a normalized payoff
of 1 if she is hired and a payoff of 0 if not.

Timing: For easy reference, the following flow chart summarizes the game.

Nature draws
unobserved state

ω ∈ {H, L};
Agent learns

type θ ∈ {g, b};

Agent observes
private signal

s1 ∈ {h, l}
and reports
s̃1 ∈ {h, l};

. . .

Agent observes
private signal

sT ∈ {h, l}
and reports
s̃T ∈ {h, l};

Outcome
r ∈ {h, l}
publicly
realized;

Principal
makes hiring

decision
xr(s̃T);

Payoffs
are

realized.

2. BENCHMARK: PUBLICLY OBSERVED SIGNALS

Before we analyze the game, we consider a simple benchmark in which the agent’s signals are
publicly observed. Here, the agent is passive and the only private information is his initial type.
This benchmark helps highlight the issues inherent in trying to attain this “first-best” payoff for
the principal when the agent must be incentivized to truthfully reveal his private signals.

A consequence of the payoff structure is that the principal’s ex-ante expected payoff from any
hiring decision x can be written as

Π := ∑
r∈{h,l}

∑
sT∈{h,l}T

Pr(r, sT)
[
Pr(θ = g|r, sT)− Pr(θ = b|r, sT)

]
xr(sT)
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=
1
2 ∑

r∈{h,l}
∑

sT∈{h,l}T

[
Pr(r, sT|θ = g)− Pr(r, sT|θ = b)

]
xr(sT),

which is the difference in the expected probabilities that the g and b types of the agent are hired.8

Therefore, the optimal hiring decision in this benchmark is given by

xFB
r (sT) =

{
1 if Pr(r, sT|θ = g) ≥ Pr(r, sT|θ = b),
0 otherwise.

(1)

Observe that the principal cannot benefit from randomizing her hiring decision in this first-best
benchmark. In addition, the probabilities that determine the first-best hiring policy can be readily
expressed in terms of the model primitives. In particular, since signals are conditionally i.i.d., only
their frequencies (and not the specific order in which signals arrive) play a role. With this in mind,
the probability of type θ observing a signal profile sT in which n signals that match the outcome is

Pr

(
T

∑
t=1

1r(st) = n

∣∣∣∣∣ θ

)
=

(
T
n

)
βn,T,θ , where βn,T,θ := γαn

θ (1− αθ)
T−n + (1− γ)αT−n

θ (1− αθ)
n

and we define 1r(st) to be the indicator function that takes the value 1 if the period t signal matches
the outcome (st = r) and 0 otherwise.

The first term of βn,T,θ corresponds to the cases where the outcome matches the underlying state
(that is, (r, ω) ∈ {(h, H), (l, L)}), while the second term corresponds to the complementary cases
where the outcome does not match the state (that is, (r, ω) ∈ {(h, L), (l, H)}). Since Pr(r, sT) is
constant across all signal profiles sT with the same number of signals matching the outcome r, the
first-best is then easy to state: hire an agent who receives exactly n signals that match the outcome
if, and only if, the agent is more likely to be of type g than type b, so that

∆n,T := βn,T,g − βn,T,b ≥ 0.

To make the incentive issues in implementing xFB explicit, we now provide a qualitative char-
acterization of the first-best hiring policy in (1).

THEOREM 1. In the benchmark with publicly observable signals, the first-best hiring policy xFB can be
characterized by two cutoffs n and n with T/2 < n ≤ T and n ≤ T − n such that

xFB
r (sT) =

1 if ∑T
t=1 1r(st) ≥ n or ∑T

t=1 1r(st) ≤ n,

0 otherwise.

In words, Theorem 1 states that there are cutoffs n and n such that the agent is hired whenever
he receives at least n signals that match the outcome or at least n signals that do not. We refer to n
as threshold for accuracy and n as the threshold for consistency.

For some intuition on the role played by consistency, consider the case where the outcome is
very uninformative about the true underlying state (that is, γ ≈ 1/2). Here the outcome provides
very little information with which to evaluate the forecaster; instead, the principal can exploit
the fact that the good type is more likely to get similar signals since she receives more precise
information. Of course, the good type’s signals are also more likely to match the outcome, thereby

8This follows from the observation that Pr(θ|r, sT)Pr(r, sT) = Pr(r, sT , θ) = 1
2 Pr(r, sT |θ).
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explaining why the threshold for consistency is higher than that for accuracy (n ≤ T − n). At the
other extreme, when the outcome is almost perfectly informative about the true underlying state
(so that γ ≈ 1), many incorrect signals are an even stronger indication that the agent is the bad
type, and so consistency ceases to be a useful screening device.9

Observe that an immediate consequence of Theorem 1 is that strategic behavior by the agent
will preclude the implementation of the first-best policy whenever n ≥ 0. This is because the
agent always gets hired for sure when she reports the same signal in all periods (regardless of
whether it matches the outcome) and such consistency can—and will—always be mimicked. As
a result, in this case, the principal will achieve no separation whatsoever (both types will be hired
with probability 1) using the first-best policy xFB when faced with a strategic agent. Nontrivial
screening is, however, always possible using the simple class of mechanisms (that are easy to
implement in practice) that we present in the next section.

3. THE OPTIMAL MECHANISM WITH COMMITMENT

In this section, we consider the case where the principal can commit in advance to the mecha-
nism x. We begin by describing a simple class of mechanisms via which screening can always be
achieved. As we will argue, the optimal mechanism also belongs to this class.

3.1. Prediction Mechanisms

A hiring policy x is a period-t prediction mechanism if the agent is hired whenever the outcome
r matches the state viewed as more likely by the agent’s period-t posterior beliefs (which are, of
course, based on his signals st). Put differently, the agent is asked to predict the final outcome at
period t, and is hired whenever this prediction matched the outcome.

Formally, a period-t prediction mechanism can be implemented as a function of the reported
signals as follows

xr(s̃T) =


1 if ∑t′≤t 1r(s̃t′) > t/2,

1 if ∑t′≤t 1r(s̃t′) = t/2 and s̃t = r,

0 otherwise.

(2)

In words, this mechanism hires the agent for sure when a strict majority of his reported signals
up to t match the outcome. When the agent reports an equal number of h and l signals through
period t, then his period-t report determines the hiring decision. Effectively, this is a tie breaking
rule since the agent’s belief assigns equal likelihood to both states.10

It is straightforward to argue that truthtelling is optimal for both types g and b in response to the
mechanism defined in (2). To see this, note that the agent does not have an incentive to misreport
before period t even if he could pick a reporting strategy s̃t after observing all t signals st (instead
of having to report them sequentially), as the majority of the signals corresponds to the outcome

9As either type’s precision αθ rises and mistakes become less likely, the accuracy threshold n becomes less forgiving of
incorrect signals (that is, n increases). Meanwhile, the consistency threshold n may be nonmonotone in αθ : increasing
the quality of an agent’s information decreases the variance of his signals while increasing the accuracy, and these two
effects have countervailing impacts on the likelihood of signals consistently contradicting the public outcome.
10Note that, when ∑t′≤t 1r(s̃t′ ) = t/2, we can use other tie breaking rules to implement the same outcome. For instance,
we can choose an arbitrary period t′ ≤ t and hire the agent whenever s̃t′ = r.

9
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that is more likely to arise. Additionally, since the signals reported after period t do not affect
the hiring decision, it is trivially optimal to report them truthfully. Finally, since the good type is
always more likely to observe a majority of signals corresponding to the underlying state, he will
be hired with greater probability than the bad type, and hence this mechanism always achieves
nontrivial screening.

The principal can optimize within this class of mechanisms by choosing the period in which
she solicits a prediction. The next result shows that it may not be optimal for the principal to wait
until the final period, but instead should limit the information observed by the agent.

THEOREM 2. There exists a T ≥ 1 such that the principal’s payoff from a period-t prediction mechanism
is increasing in t for all t ≤ T and decreasing in t for all t ≥ T.

The intuition for the nonmonotonicity of payoffs in t is simple. As t grows larger, both types
learn about the underlying state more precisely. But in the limit as t becomes arbitrarily large,
both types learn the state perfectly and thus make the same prediction. As a result, screening
becomes less effective, and for sufficiently long time horizons T, the principal prefers to solicit a
prediction at an intermediate time when the learning advantage of the type-g agent over his type-
b counterpart is at its highest. In what follows, we will use T to denote the optimal period for the
principal to solicit the prediction.11

3.2. The Optimal Mechanism

In this section, we will argue that the optimal mechanism is a prediction mechanism. To begin,
it is worth reiterating that the class of mechanisms we consider (functions of the reported signals
alone) is a strict subset of the set of direct revelation mechanisms. This is because the mechanisms
x do not condition on the agent’s initial private type. While a restriction to such mechanisms can
be justified by appealing to their realism, we now argue that this restriction is also without loss
of generality: the principal can achieve the same payoff by maximizing over the class of (indirect)
mechanisms x as she can from the optimal direct revelation mechanism.

A direct revelation mechanism χr(θ, sT) ∈ {0, 1} (or direct mechanism for short) determines the
probability that the agent is hired as a function of his reported initial type θ, his profile of reported
signals sT, and the final outcome r. Note that the revelation principle applies in this environment,
so it is without loss to consider the message space {g, b} × {h, l}T.12 The next result states that the
principal cannot attain a higher payoff from using this larger class of direct mechanisms.

LEMMA 1. There is an optimal direct mechanism that does not depend on the reported type. Specifically,
for any incentive compatible direct mechanism χ, there is an indirect mechanism x with the following
properties:

(1) the principal’s payoff from x is (weakly) higher than her payoff from χ;

11It is straightforward to show that T is decreasing in both αg and αb. Note that as αg grows larger, the type-g agent’s
information becomes more precise quickly and his relative advantage over type b peaks sooner; meanwhile, as αb grows
larger, the type-b agent is able to “catch up” quickly to the type-g agent.
12Strausz (2003) shows that the revelation principle does not always apply when the principal is restricted to deter-
ministic mechanisms. However, it does apply in single-agent settings such as ours; for reference, we present a formal
statement and proof in our supplementary Appendix B.1.
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(2) the type-g agent has an incentive to report his signals truthfully; and
(3) the type-b agent reports his signals optimally.

The intuition for this lemma is transparent. Fix any incentive compatible direct mechanism χ

that depends on the agent’s reported type. Incentive compatibility implies that it is optimal for
the agent to report his initial type truthfully; in particular, the type-b agent receives a lower payoff
from initially misreporting his type as g and then optimally reporting his signals. So consider
the indirect mechanism xr(·) := χr(g, ·). By definition, it is optimal for the good type to report
his signals truthfully (property (2)). Additionally, incentive compatibility of χ ensures that the
bad type’s payoff is lower from x than from χ. Since the principal’s payoff is increasing in type
g’s payoff and decreasing in type b’s, this indirect mechanism will be no worse for her (property
(1)). Finally, note that since x is not a direct mechanism, we cannot a priori restrict attention to
mechanisms where both types report their signals truthfully (made explicit by property (3)).

Henceforth, when we refer to an optimal mechanism x, this will correspond to a mechanism that
yields the highest payoff that the principal can achieve in the full space of direct mechanisms χ.
The next theorem characterizes the optimal mechanism.

THEOREM 3. Let T̃ := min{T, T}. A period-T̃ prediction mechanism is an optimal mechanism.

There are several aspects of the above result that are worth emphasizing. First, the optimal
mechanism takes a very simple form that is easy to implement in practice, as it is both easy to
time when predictions are solicited and to institute a hiring policy that depends on the accuracy
of the predictions. Second, observe that the optimal mechanism has the property that truthtelling
is optimal for both types of the agent. This property finds support from the empirical evidence on
anonymous analyst surveys. In their handbook chapter, Marinovic, Ottaviani, and Sørensen (2013)
point out that, “According to industry experts, forecasters often seem to submit to the anonymous
surveys the same forecasts they have already prepared for public (i.e. nonanonymous) release.”
This is suggestive evidence for the fact that strategic forecasters in the real world predict truthfully
as they have no reason to lie in anonymous surveys.

Third, while the optimal period at which to solicit the prediction T̃ depends on the underlying
parameters, it does not do so in a fine-grained way. Put differently, the optimality of the period-T̃
prediction mechanism will be robust to “small” inaccuracies in the principal’s beliefs about the
underlying parameters. Finally, while we will show the full generality of the insight driving the
above result (in Section 6), it is worth mentioning that it is easy to incorporate asymmetries (in
the prior belief regarding the state, the agent’s type distribution, and the principal’s payoffs from
hiring the good or the bad type) within this simplified version of the model. The only change to
the above result is that a trivial decision (to always or never hire the agent) may become optimal
under some model parameters.

It might seem surprising that the optimal mechanism does not involve more elaborate screen-
ing. The reason is that the principal has limited instruments at her disposal and, as a result,
incentive compatibility significantly restricts the set of mechanisms the principal can utilize. The
characterization of the set of mechanisms that induce the good type-g to report truthfully is the
crucial step in the proof of Theorem 3 and is described in the following lemma.

11
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LEMMA 2. A mechanism x induces truthful signal reporting from the type-g agent if, and only if, it is one
of the following mechanisms:

(1) a trivial mechanism: the principal’s hiring decision does not depend on the agent’s reports, so that
xr(sT) = xr(ŝT) for r = h, l and all sT, ŝT ∈ {h, l}T; or

(2) a period-t prediction mechanism for some 1 ≤ t ≤ T.

Consequently, a mechanism that induces truthful reporting by the type-g agent also induces truthful re-
porting by the type-b agent.

This lemma shows that incentive compatibility for type g (which, by Lemma 1, is a property of
an optimal mechanism) implies that the only nontrivial mechanisms at the principal’s disposal are
prediction mechanisms. Combined with Theorem 2’s payoff single-peakedness result, this implies
Theorem 3. As we will argue further in Section 6, the insight in this lemma is remarkably general,
applying immediately to substantially generalized versions of the model.

The following example is useful to develop intuition for the lemma. Suppose that a type-g
incentive compatible mechanism x is such that, at some period-T history, the hiring decision
is a nontrivial function of the final period-T report sT and the outcome r; that is, there is a se-
quence of signals sT−1 such that the hiring decisions (xh(sT−1, h), xl(sT−1, h)) after a report s̃T = h
differ from the hiring decisions (xh(sT−1, l), xl(sT−1, l)) after a report s̃T = l. Since the hiring
rule is deterministic, this is only possible when (xh(sT−1, s̃T), xl(sT−1, s̃T)) equals either (1, 0) or
(0, 1).13 Incentive compatibility implies that, if (xh(sT−1, sT), xl(sT−1, sT)) = (1, 0), then the agent
must believe the outcome r = h is more likely, as he could instead report s′T 6= sT and face
(xh(sT−1, s′T), xl(sT−1, s′T)) = (0, 1). However, this essentially implies that the agent is hired if,
and only if, the outcome he believes to be more likely is realized; in other words, the mechanism
is effectively soliciting a prediction at this history and then hiring based on its accuracy. The proof
of Lemma 2 generalizes this argument to all histories.

3.3. Alternative Implementations and Interpretations of the Optimal Mechanism

In this section, we revisit our leading example (a political candidate seeking to hire a forecaster)
to discuss alternate ways in which the optimal mechanism can be implemented. This discussion
also allows us to demonstrate the flexibility of our framework to capture the various different
forms that political forecasts often take. The period-t prediction mechanism as defined in (2)
captures the case where the agent reports his signal in each period: this can be interpreted as a
pollster sequentially releasing the predicted outcomes from each poll he conducts. (As we will
argue in Section 6, the model can be generalized to allow for signals with a continuous support in
which case this will correspond to releasing the poll results as a percentage instead of a prediction.)
Here, the prediction from a period-t poll corresponds to his period-t signal and not the cumulative
information he has acquired.

13If xh(ŝT) = xl(ŝT) = 1 for some sequence ŝT , then the agent can guarantee he is hired with probability 1 by always
reporting ŝT , regardless of his true signals. Since this potential deviation remains unused (as the type-g agent is willing
to report truthfully), the principal must therefore always (trivially) hire the agent. An analogous argument applies if
there is some ŝT with xh(ŝT) = xl(ŝT) = 0.

12
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Alternatively, political punditry often takes the form of an expert predicting who he thinks is
more likely to win in each period after aggregating all his past information. In this case, each
report s̃t can be interpreted as a prediction of the final outcome and not a signal report. When the
agent reports this way, the period-t prediction mechanism simply becomes

xr(s̃T) =

{
1 if s̃t = r,
0 otherwise.

(3)

In words, this mechanism asks the agent to predict the final outcome at each period and hires the
agent if and only if the period-t prediction matches the outcome (all other reports are ignored).
A strategic agent facing this mechanism will predict at period t whichever outcome he believes is
more likely to eventually arise. This will simply be the outcome for which the agent has received
more signals up to period t (and he will be indifferent if he has received an equal number of h and
l signals). This implementation clearly achieves the identical payoff to the principal as that in (2).

Finally, our framework is flexible enough to allow for the forecaster to make predictions on the
odds of the likely winner (in the form of a percentage). Such predictions are made by forecasters
like The Upshot of the New York Times or FiveThirtyEight by Nate Silver who aggregate infor-
mation from various polls (and their type determines the accuracy of this aggregation). To model
this, we can simply alter the message space so that the agent is asked to make a percentage predic-
tion (of course, the revelation principle implies that enlarging the message space in this way does
not alter the optimal mechanism). Here the period-t prediction mechanism can be implemented
by hiring the agent if and only if the outcome he predicts is more likely (in a percentage sense) in
period t ends up occurring.

4. THE OPTIMAL MECHANISM WITHOUT COMMITMENT

In this section, we derive the equilibrium that maximizes the principal’s payoff when she cannot
commit to her hiring policy x. Of course, the principal is always weakly better off with commit-
ment power as she can always choose to commit to whatever strategy she can play in its absence.
We show that the principal can achieve the same payoff as in Theorem 3 even when she does not
have commitment power. We view this as further support for the optimal mechanism in Theo-
rem 3 as, in practice, the level of commitment possessed by principals may vary.

In the absence of commitment, our setting constitutes a dynamic cheap talk game. Here, the
agent (the sender) can costlessly make either report in every period t. The reports s̃T themselves
are not payoff relevant; instead, their only purpose is to inform the principal’s (the receiver) de-
cision. The principal’s payoff-relevant information is, instead, the agent’s private type, and (as
in the standard cheap-talk setting) the principal and agent have divergent preferences over the
former’s action choice as a function of this type. Finally, rather than consider alternative message
spaces or games, we will directly show that the principal can achieve the same payoff both with
and without commitment power.

THEOREM 4. There is a sequential equilibrium of the game without commitment that yields the principal
the same payoff as a period-t prediction mechanism. In particular, this implies that the principal can achieve
the same payoff as in the optimal mechanism with commitment.

13
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Due to the simple structure of the optimal mechanism under full commitment, this result is
remarkably straightforward to show. We now describe equilibrium strategies that replicate the
outcome of a period-t prediction mechanism. The principal’s strategy is to ignore all reports of
the agent except that in period t, and she hires the agent if, and only if, his period-t report matches
the outcome. In response, both types of the agent babble in all periods except period t, where they
report the signal corresponding to the outcome that they consider more likely to arise.

Formally, the principal’s strategy is

xr(sT) =

1 if st = r,

0 otherwise.

For any t′ 6= t, the agent’s strategy is

σθ
h (h

A
t′ ) = 1− σθ

l (h
A
t′ ) =

1
2

for all period-t′ agent histories; that is, he mixes both reports with equal probability. For a period
t history hA

t = (st, s̃t−1) (recalling that st denotes the t observed signals and s̃t−1 denotes the t− 1
reports made prior to period t), the agent’s strategy is

σθ
h (s

t, s̃t−1) = 1− σθ
l (s

t, s̃t−1) =


1 if ∑t′≤t 1h(st′) > t/2,
1
2 if ∑t′≤t 1h(st′) = t/2,

0 otherwise.

It is straightforward to see that these strategies constitute an equilibrium. Since the principal
ignores the reports at all period except t, the agent is indifferent at all such histories; in particular,
babbling is therefore a best response. In addition, he is hired only if his period-t report matches
the outcome, so it is a best response for him to report whichever signal he has seen more often
(and is indifferent if he has seen an equal number of h and l signals). Conversely, since the agent
is babbling at all periods except t, it is a best response for the principal to ignore these reports.
Finally, since the type-g agent is more likely to correctly predict the outcome, it is optimal for the
principal to hire the agent when his period-t report matches the outcome.

Note that all possible signal reports are on-path in the agent’s strategy above. Thus, as in the
canonical cheap talk setting of Crawford and Sobel (1982), standard refinements have no bite as
there is no need to discipline off-path behavior. Hence, in particular, the constructed equilibrium
above is a sequential equilibrium. To the best of our knowledge, there are no accepted refinements
of dynamic cheap talk games and, moreover, since our setting is quite different from the canonical
setting, it is not clear how to extend the refinements designed specifically for the static Crawford
and Sobel (1982) environment (most notably Chen, Kartik, and Sobel (2008)). The design of such
refinements for dynamic cheap talk games is an important topic of research but is beyond the
scope of this paper.

5. STOCHASTIC MECHANISMS

In this section, we describe how the principal can utilize randomization to fine-tune screen-
ing. Formally, the principal’s strategy, which we refer to as a stochastic mechanism when she has
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commitment, now has the entire unit interval as its range. We will use the same notation as be-
fore: xr(s̃T) ∈ [0, 1] denotes the probability with which she hires the agent as a function of the T
reported signals s̃T and the outcome r. For brevity, we will sometimes drop the additional “sto-
chastic” qualifier in this section when it is clear that we are referring to a stochastic mechanism.

The optimal mechanism is difficult to derive for arbitrary time horizons T. This is primarily
because the set of incentive compatible stochastic mechanisms is much larger and harder to char-
acterize than in the deterministic mechanism case. Similar issues are also encountered in dynamic
mechanism design environments with transfers (hence the restriction to deterministic mechanisms
in Courty and Li (2000) or Krähmer and Strausz (2011), for instance). The main aim of this section
is to show that the screening is more subtle with randomization for which the restriction to the
special case of T = 3 suffices. That said, we also provide a simple sufficient condition in Section 5.2
for when randomization is a feature of the optimal stochastic mechanism (Theorem 6).

5.1. The Role of Randomization when T = 3

In this subsection, we describe the optimal stochastic mechanism for the T = 3 period case and
discuss its qualitative properties. This special case is convenient to highlight the role played by
randomization as the optimal stochastic mechanism can be characterized and is easy to describe.

We begin by describing the first-best mechanism xFB for the case where the agent’s signals (but
not his initial type θ) are also observed by the principal. The following characterization of the set
of possible accuracy and consistency thresholds (corresponding to Theorem 1) that can arise in
xFB is instructive as a point of contrast with the optimal mechanism.

LEMMA 3. Suppose T = 3. Then the first-best mechanism xFB is one of the following:

(1) hire the agent if, and only if, all three of his signals are accurate (n = 3, n = −1);
(2) hire the agent if, and only if, all three of his signals are consistent (n = 3, n = 0); or
(3) hire the agent if, and only if, a majority of his signals match the outcome (n = 2, n = −1).

Observe that the first-best mechanism in case (3) is simply a period-3 prediction mechanism:
the agent will predict the outcome corresponding to the majority of his signals. This is the case
when ∆2,3 ≥ 0 and the type-g agent is more likely to observe exactly two matches than the type-b
agent; when this is the case, the first-best payoff is achievable. When this is not the case, however,
the first-best payoffs corresponding to cases (1) and (2) cannot be achieved as a strategic agent
can easily feign consistency by simply “cascading” on his first signal. In such circumstances, the
optimal mechanism (characterized in the following theorem) is distorted away from the first-best.

THEOREM 5. Suppose T = 3. When ∆2,3 ≥ 0, the period-3 prediction mechanism is an optimal stochastic
mechanism. Conversely, when ∆2,3 < 0, the optimal stochastic mechanism is given by

xr(s3) =


1 if s1 = s2 = r,

1
2(γαb+(1−γ)(1−αb))

if s1 6= s2 and s3 = r,

0 otherwise.

Faced with this mechanism, it is optimal for both types of the agent to truthfully report.
15



DEB, PAI, AND SAID

The optimal stochastic mechanism when T = 3 hires the agent only if a majority of his reported
signals match the outcome. Moreover, when the type-b agent is more likely to match exactly two of
three signals than the type-g agent (that is, when ∆2,3 < 0), the order of reported signals influences
the hiring decision. Specifically, the optimal mechanism rewards early accuracy: in profiles where
exactly two of the three reports match the outcome, the agent is hired with higher probability
when the first two reports are correct than when one of them mismatches.

Intuitively, when ∆2,3 < 0, the principal would prefer not to hire the agent at histories where
he truthfully reports only two signals matching the outcome (as such profiles are more likely for
the type-b agent). But as we have seen, deterministic mechanisms compel the principal to hire
the agent at such profiles whereas, when the principal can randomize, she can reduce the hiring
probability at such profiles without violating incentive compatibility.

To better understand how randomization permits such a reduction, it is helpful to reinterpret
the hiring rule in Theorem 5 as an option mechanism: in the second period, the agent is offered the
opportunity to make a prediction immediately or to delay his prediction to period three. A correct
prediction in period two is rewarded by hiring the agent for sure, while a correct prediction in
period three is rewarded by hiring the agent with a probability strictly less than one. (An incorrect
forecaster is never hired, regardless of the timing of his prediction.) Faced with this option, an
agent who has observed two identical signals will always make a prediction in period two—no
matter what he observes in the third period, the agent’s prediction will remain unchanged but his
probability of being hired is lower. However, an agent who has observed two mismatched signals
is uncertain about the underlying state, and therefore benefits from delaying his prediction by a
period. Indeed, the reduced probability of being hired in period three after mixed signals is chosen
precisely to ensure that the type-b agent is indifferent about delaying his prediction, while type
g’s better information gives him a strict incentive to wait for an additional signal.14 Of course,
since the type-g agent is more likely to observe two matching signals in the first two periods,
he is correspondingly more likely to make an early prediction (with a larger hiring probability),
compounding his pure informational advantage over the type-b agent.

It is instructive to briefly contrast the proof strategy for Theorem 5 with that for Theorem 3.
First, observe that Lemma 1 also applies to stochastic mechanisms, so it is without loss to consider
stochastic mechanisms where the type-g agent reports truthfully while type b is allowed to opti-
mally misreport. Unlike with deterministic mechanisms, where Lemma 2 showed that incentive
compatibility for type g implies incentive compatibility for type b, incentive constraints in a sto-
chastic mechanism may be less restrictive. In particular, there are stochastic mechanisms where
truthful reporting of signals is incentive compatible for type g but not for type b. Therefore, it is
difficult to formulate a tractable version of the principal’s optimization problem. Our proof in-
stead relies on an auxiliary problem that is both easier to solve and yields the principal a greater
payoff; we then show that resulting solution is in fact feasible in the original problem.

14Note that the randomization necessary to generate this indifference for the type-b agent relies on the informativeness
γ of the public outcome. This is in contrast to the case of deterministic mechanisms where, as long as the public outcome
is equally accurate in both states of the world, the optimal prediction mechanism does not depend on γ.
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5.2. When is Randomization Optimal?

We now provide a simple sufficient condition for the optimality of randomization.

THEOREM 6. The principal’s payoff from the optimal stochastic mechanism is strictly higher than that from
the optimal (deterministic) mechanism when T > T + 1.

This result states that the principal strictly benefits from using randomization for sufficiently
long time horizons. Intuitively, recall that the optimal (deterministic) mechanism for T > T is
a period-T prediction mechanism: in this mechanism, the principal ignores reports after T. In
the optimal stochastic mechanism for T = 3, when the agent in period 2 has conflicting signals
(and therefore thinks both outcomes are equally likely), the principal can fine-tune screening by
lowering the hiring probability (which is beneficial since type b’s higher signal variance implies
he is more likely to receive an equal number of h and l signals) without destroying incentive
compatibility. The principal can similarly lower the hiring probability at profiles in which the
agent reports the same number of h and l signals (or in which the difference between h and l
signals is one) by conditioning the mechanism on reports after period T. The agent prefers such a
mechanism as it allows him the chance to better learn the underlying state.

It is hard to fully characterize the optimal stochastic mechanism for T > 3 since incentive com-
patibility for type g alone is no longer sufficient to pin down type b’s reporting strategy. As a
result, the derivation of the optimal mechanism must account for optimal misreporting, which
makes the problem intractable. In the T = 3 period case, it is possible to identify and individually
account for histories at which the type-b agent might have an incentive to misreport; when T > 3,
however, the set of such histories becomes large and this approach is no longer feasible.

6. A MORE GENERAL MODEL

In this section, we show the generality of our main insight that prediction mechanisms are the
optimal way to screen strategic forecasters. As we will argue, the critical assumption driving our
result is that the outcome r that is being predicted is binary; every other assumption can be sub-
stantially generalized. We describe the key components of the model in their full generality below
and deliberately overload the notation to make the generalization of each assumption explicit.
The timing of the model remains unchanged.

State: There is an unknown underlying state ω drawn from an arbitrary (not necessarily binary)
set Ω that drives the data-generating process. ω is distributed according to a commonly known
probability measure p0 ∈ ∆(Ω).

Agent’s private information: The agent’s type θ is drawn from an arbitrary (again, not necessarily
binary) set Θ. The commonly known prior distribution of θ is given by µ0 ∈ ∆(Θ).

In this general setting, we allow for the possibility that the agent does not perfectly observe his
initial type, but instead learns about his forecasting ability over time.15 We model this by adding

15In discussing the important directions for future research on strategic forecasters, Marinovic, Ottaviani, and Sørensen
(2013) state that a “key challenge lies in finding a tractable and sufficiently general multi-period environment with
learning about the precision as well as about the state.” Our general model takes a step in this direction.
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an additional signal: formally, in period 0, the forecaster observes a single private signal λ ∈ Λ,
where the set Λ is arbitrary. This signal λ is drawn from a (commonly known) measure µθ ∈ ∆(Λ)

that may vary by type θ. Thus, the case of a perfectly informed agent corresponds to Λ = Θ and
µθ({θ}) = 1 for all θ ∈ Θ. On the other hand, the case where µθ = µθ′ for all θ, θ′ ∈ Θ, so the
distribution of λ does not vary by type, corresponds to a “signal jamming” version of our model
(similar to the career concerns literature following Holmstrom (1999)) where both the principal
and the agent start with the same information.

In each period, t = 1, . . . , T, the forecaster privately observes a noisy but informative signal st,
drawn from an arbitrary signal space St, about the unknown state ω. Signals are conditionally in-
dependent given the underlying state ω and the agent’s type θ, and st is drawn from a distribution
αω,θ,t ∈ ∆(St). Note that both the signal spaces and distributions may vary over time.

Outcome: As in the simplified model, a binary outcome r ∈ {h, l} is publicly realized at the end of
period T. We denote by γω ∈ [0, 1] the probability of outcome h arising when the true state is ω.
Note that the outcome remains a potentially noisy signal of the state, but the joint distribution is
not restricted in any way.

Payoffs: The agent of type θ now receives a payoff uθ > 0 from being hired, and a normalized
payoff of 0 if he is not. Note that this does not change the agent’s incentives compared to the
simplified model in Section 1 as his objective is still to maximize the probability of being hired.

Finally, the principal’s payoff can also be made type-dependent: she receives a payoff πθ ∈ R if
she hires an agent of type θ, and a normalized payoff of 0 from not hiring the agent.

Appropriate definitions of strategies and mechanisms generalize to this richer environment in
the obvious way. The next result shows that prediction mechanisms remain optimal even in this
very general environment. Note that the definition of a prediction mechanism as a function of
reported signals will differ from that in (2) as the environment is no longer symmetric and the
signal space is not binary. Instead, we make use of the alternative definition in (3).

THEOREM 7. In the general model, one of the following mechanisms is optimal:

(1) a trivial mechanism: the principal’s hiring decision does not depend on the agent’s reports; or
(2) a period-t prediction mechanism for appropriately chosen t.

Additionally, the principal can implement the same outcome and thereby achieve the same payoff in a se-
quential equilibrium of the game without commitment.

As in the case of simplified model (Theorem 3), prediction mechanisms are optimal within the
full class of direct revelation mechanisms. As we allow for more than two types, it is no longer
possible to directly argue (as in Lemma 1) that the principal cannot benefit by asking the agent to
report his type in a direct revelation mechanism. Instead, our proof characterizes incentive com-
patible direct mechanisms in this general setting. Effectively, we show that the only nontrivial
incentive compatible direct mechanisms are prediction mechanisms and thus, finding the optimal
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mechanism only involves choosing the time at which to solicit the prediction. Of course, addi-
tional structure is necessary to fully characterize the optimal prediction period as a function of the
time horizon T.

Essential to Theorem 7’s characterization of incentive compatibility is the assumption that the
publicly observable outcome—that is, the information available to the principal when evaluating
a forecast—is binary. Enriching the set of possible outcomes yields the principal a substantially
more complex set of instruments: agents could, for instance, be asked to make predictions about
nested partitions of possible outcomes. This increased dimensionality of the set of possible mech-
anisms precludes a characterization of the principal’s optimal mechanism.

On the other hand, the result does not require us to take a stand on the relationship between
the principal’s payoff and the information of the agent. For instance, we do not need to assume
that “good” types (for which v(θ) > 0) receive better information than “bad” types (for which
v(θ) < 0). Of course, some additional structure (like that we impose in our simplified model) is
desirable to capture specific applications.

The critical assumptions of the general model in this section are supported by our leading ap-
plication. The richness of the time-varying signal space captures the myriad different sources
of information that are available to political pundits. Importantly, this application satisfies the
key driving assumption of our model: political predictions are always about the eventual winner
which is a binary outcome in the (effectively) two-party US political system. As we argued in
Section 3.3, our model is flexible enough to capture the variety of different forms that political
predictions come in. It is worth noting that the an election result taken as the difference in vote
counts can be considered as a continuous outcome variable; however, to the best of our knowl-
edge, political forecasters always predict, and are judged on, an election’s winners and not their
win margins.

7. DISCUSSION

In this section, we address a few important structural assumptions of the model. For ease of
exposition, the discussion will employ the simplified setup of Section 1.

7.1. The Role of Sequential Reporting

In the canonical dynamic mechanism design environment with transfers (see, for instance,
Courty and Li (2000) or Pavan, Segal, and Toikka (2014)), the fact that the agent receives his pri-
vate information sequentially plays an important role for the tractability of the model. Because
the agent has single dimensional private information at the time of contracting, incentive compat-
ibility is easier to characterize than in static, multidimensional mechanism design environments
where the agent has acquired all his private information before contracting (Eső and Szentes (2017)
demonstrate the generality of this technique). An important underlying economic insight is that
the principal benefits from being able to contract with an agent when her informational disadvan-
tage is at its lowest as the agent has not acquired the entirety of his private information.

We now isolate the role played by sequential reporting in our model by drawing a contrast with
the optimal stochastic mechanism in the static multidimensional version of our environment. In
the static game, the agent’s strategy σθ is defined as follows: he first observes his T signals sT and
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his strategy σθ(sT) ∈ ∆({h, l}T) determines the distribution over T-vectors s̃T ∈ {h, l}T of signal
reports. As before, the principal’s strategy x(s̃T, r) ∈ [0, 1] depends on the vector of reported
signals and the outcome but observe that we also allow the principal to randomize. We refer to
the principal’s strategy when she can commit as a static stochastic mechanism.

THEOREM 8. The optimal static stochastic mechanism yields the principal the same payoff as that from a
period-T prediction mechanism in the dynamic game with sequential reporting.16

The optimal static mechanism is equivalent to the period-T prediction mechanism in the dy-
namic environment. There are two aspects of Theorem 8 that are worth highlighting. The first is
that, with long time horizons T ≥ T, the principal cannot prevent the agent from using the infor-
mation he receives after period T. This is in contrast with Theorem 3 where the principal chooses
to ignore reports after T. Recall also, that for the case of deterministic hiring policies, the principal
does not even need commitment to maximize her payoff (Theorem 4). Thus, in our main setting
of interest (deterministic mechanisms), the dynamics of agent learning plays a greater role than
commitment.

Secondly, observe that it is not optimal for the principal to employ randomization in the static
setting. This is in contrast with the optimality of randomization when the time horizon is long
(Theorem 6). This latter aspect is also a feature of the sequential screening setting of Courty and Li
(2000). There too, the principal may employ randomization with dynamic reporting but will not
if restricted to using a static mechanism after the agent has acquired all his private information.
This similarity is captured by the Myersonian approach that we take in the proof of Theorem 8.

To summarize, simple mechanisms are optimal in our model unless the principal can randomize
and the environment is dynamic. Put differently, both these aspects must be present simultaneously
in order for the optimal mechanism to take a form more complex than a prediction mechanism.

7.2. Transfers

While our setting without transfers is appropriate for the applications we have in mind, it is
natural to explore the theoretical implications of permitting them. We begin by discussing the
optimal direct mechanism but, as we will argue below, it is also possible to implement this direct
mechanism by with an indirect mechanisms that does not condition on the agent’s type. A direct
mechanism with transfers consists of two functions

χr(θ, sT) ∈ {0, 1} and τr(θ, sT) ∈ R,

where χ is (as before) the hiring decision and τ is a transfer that also depends on the reported
type, signals, and outcome. Both types receive (arbitrary) strictly positive utility from being hired
and zero utility if they are not.

Since the signal distributions of both types are correlated, we can use the insight of Crémer
and McLean (1988) to induce the agent to reveal his type with a zero expected transfer, thereby

16The proof of this result can be found in our supplementary Appendix B.2.
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ensuring that the principal only hires the type-g agent.17 To see this, consider the mechanism

χr(θ, sT) =

1 if θ = g,

0 if θ = b,
and τr(θ, sT) =


κβ if θ = g and s1 = r,

κβ if θ = g and s1 6= r,

0 if θ = b,

where β, β, κ > 0 and

[αgγ + (1− αg)(1− γ)]κβ− [αg(1− γ) + (1− αg)γ]κβ = 0.

In words, this mechanism hires the agent only if he reports type g, and the transfer depends on
the reported period-1 signal. Moreover, this transfer is such that, if the agent reports type g, he
receives κβ if the first signal matches the outcome, makes a payment of κβ to the principal if it
does not, and has an expected payment from reporting truthfully (for a type-g agent) of 0.

Now observe that reporting truthfully is optimal for type g. He has no incentive to report his
initial type as b, as truthful reporting leads to him being hired with an expected transfer of zero.
Moreover, he has no incentive to misreport his period-1 signal s1 as he receives a positive transfer
when the signal matches the outcome (and a negative transfer when it does not). Type b receives
zero utility from truthful reporting. If, instead, the type-b agent misreports his type as g, he will
then find it optimal to report his period-1 signal s1 truthfully (for the same reason as type-g does).
However, type b will now have to make a strictly positive expected payment to the principal (as
αb < αg). κ can always be chosen to be large enough so that this payment will be greater than the
utility that type b gets from being hired. Thus, this mechanism achieves the best possible outcome
for the principal.

Finally note that we can implement a similar outcome using the class of mechanisms that does
not depend on the explicit announcement of the type (due to the presence of transfers, Lemma 1
does not apply here). The principal can always use the first signal report to proxy for the type
announcement (for instance, interpreting s1 = h as an announcement that the agent is type-g
and vice versa). Having solicited this information, the principal can choose her hiring rule and
construct similar transfer lotteries as above using the signal reports st from periods t > 1 to ensure
that only type-g is hired at a zero expected transfer.

8. CONCLUDING REMARKS

In this paper, we introduce the problem of evaluating a strategic forecaster based on the dy-
namics of the predictions he makes about an upcoming event. In doing so, we bring two novel
aspects to the study of evaluating forecasters that differ from the existing literature in economics
and psychology: prediction dynamics and mechanism design by the evaluator. In a very general
setting, we derive the optimal deterministic dynamic mechanism for the principal and show that
it takes a very simple and easy to implement form. The simplicity of the optimal mechanism com-
bined with the fact that commitment is not necessary to implement it implies that it can serve as a
simple guideline for hiring forecasters.

17Olszewski and Pęski (2011) apply a general version of this insight to the “testing experts” problem discussed earlier.
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The tractability of our setting opens the door to future research on more complex forecasting
environments. There at least two obvious generalizations of the model that merit further study.
The first is to enrich the outcome space. As we mentioned earlier, forecasters predict a variety
of different events many of which need not be binary (for instance, predictions about economic
variables). A second natural generalization would be the optimal contest design for multiple
forecasters. We hope to investigate these intriguing questions in future research.
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APPENDIX A. OMITTED PROOFS

PROOF OF THEOREM 1. In the first-best, the principal observes the agent’s signals sT, but not the
agent’s type. Therefore, the first-best optimal mechanism must solve

max
xh(·),xl(·)

 ∑
r∈{h,l}

∑
sT∈{h,l}T

[
1
2

Pr(r, sT|θ = g)− 1
2

Pr(r, sT|θ = b)
]

xr(sT)

 .

Note, however, that Pr(r, sT|θ) is constant across all sT with the same number of matching signals
st = r, regardless of the order of those signals. Therefore, with slight abuse of notation, we can
write any solution xr(sT) to the principal’s problem as x(n), where n = ∑t 1r(st).

Therefore, with slight abuse of the notation from the main text, we write

βn,θ,γ := γαn
θ (1− αθ)

T−n + (1− γ)αT−n
θ (1− αθ)

n and ∆n,γ := βn,g,γ − βn,b,γ

for all n ∈ [0, T]. (Recall that (T
n)βn,θ,γ is the probability that exactly n of the agent’s T signals

with precision αθ match the precision-γ realized outcome.) We can then write the principal’s
observable-signal problem as

max
x(·)

{
1
2

T

∑
n=0

(
T
n

)
∆n,γx(n)

}
.

It is trivial to see that the solution of this linear program depends entirely on the signs of the ∆n,γ

coefficients: we have xFB(n) = 1 if ∆n,γ > 0, and xFB(n) = 0 if ∆n,γ < 0.

CLAIM. Suppose ∆n,γ ≥ 0. Then ∂2

∂n2 ∆n,γ > 0.

PROOF OF CLAIM. Note first that

∂

∂n
∆n,γ =

[
ln
(

α

1− α

)(
γαn(1− α)T−n − (1− γ)αT−n(1− α)n

)]αg

αb

,

implying that

∂2

∂n2 ∆n,γ =

[
ln2
(

α

1− α

)(
γαn(1− α)T−n + (1− γ)αT−n(1− α)n

)]αg

αb

=

[
ln2
(

α

1− α

)]αg

αb

(
γαn

g(1− αg)
T−n + (1− γ)αT−n

g (1− αg)
n
)

+ ln2
(

αb

1− αb

) [
γαn(1− α)T−n + (1− γ)αT−n(1− α)n

]αg

αb

=

[
ln2
(

α

1− α

)]αg

αb

βn,g,γ + ln2
(

αb

1− αb

)
∆n,γ.

Since ln
(

α
1−α

)
is strictly positive and increasing on ( 1

2 , 1) and βn,g,γ > 0, the assumption that
∆n,γ ≥ 0 implies that the expression above is strictly positive. ♦

Thus, ∆n,γ is strictly convex on a neighborhood of any m ∈ [0, T] at which ∆m,γ ≥ 0. Therefore,
if there exists some n ∈ [0, T] with ∆n,γ = 0 and ∂

∂n ∆n,γ ≤ 0, then ∂
∂n ∆m,γ < 0 for all m < n. This

implies that ∆m,γ > 0 for all m ∈ [0, n). Similarly, if there exists some n ∈ [0, T] such that ∆n,γ = 0
and ∂

∂n ∆n,γ ≥ 0, then ∂
∂n ∆m,γ > 0 for all m > n. This implies that ∆m,γ > 0 for all m ∈ (n, T].
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Hence, we may conclude that the function ∆n,γ has at most two zeros in [0, T].

CLAIM. There exists a unique n ∈ ( T
2 , T) such that ∆n,γ = 0.

PROOF OF CLAIM. Note first that ∆T,1 = αT
g − αT

b > 0 since αg > αb. In addition, note that
∆T, 1

2
= 1

2

[
αT + (1− α)T]αg

αb
. However,

∂

∂α

[
αT + (1− α)T

]
= T

[
αT−1 − (1− α)T−1

]
> 0 for all α >

1
2

.

Therefore, ∆T, 1
2
> 0. But since ∆T,γ is linear in γ, this implies that ∆T,γ > 0 for all γ ∈ [ 1

2 , 1].
Next, consider

∆ T
2 ,γ =

[
γα

T
2 (1− α)T− T

2 + (1− γ)αT− T
2 (1− α)

T
2

]αg

αb
=
[
(α(1− α))

T
2

]αg

αb
.

Since α(1− α) is strictly decreasing on ( 1
2 , 1), we have ∆ T

2 ,γ < 0 for all γ ∈ [ 1
2 , 1].

Finally, because ∆n,γ is continuous in n, there must exist some n ∈ ( T
2 , T) such that ∆n,γ = 0.

Moreover, the convexity argument above implies that this n is the unique zero in ( T
2 , T). ♦

The existence of a second zero is not guaranteed; in particular, there exists some n ∈ [0, T
2 ) with

∆n,γ = 0 if, and only if, ∆0,γ ≥ 0. (Note that n = 0 in the boundary case where ∆0,γ = 0.) Again,
the convexity argument above implies that this is the unique zero below T

2 .

CLAIM. Suppose there exists some n < T
2 with ∆n,γ = 0. Then n < T − n.

PROOF OF CLAIM. We can write

∆n,γ = γ∆n,1 + (1− γ)∆T−n,1, where ∆n,1 =
[
αn(1− α)T−n

]αg

αb
.

Note, however, that

∂

∂α

[
αn(1− α)T−n

]
= nαn−1(1− α)T−n − (T − n)αn(1− α)T−n−1 = (n− αT)αn−1(1− α)T−n−1.

Since n < T
2 , this expression is strictly negative whenever α ∈ ( 1

2 , 1); since 1 > αg > αb > 1
2 , this

implies that ∆n,1 < 0.
Thus, ∆T−n,1 > 0 since ∆n,γ = γ∆n,1 + (1− γ)∆T−n,1 = 0. But since γ ∈ [ 1

2 , 1], this implies that
∆T−n,γ = γ∆T−n,1 + (1− γ)∆n,1 > 0, which is only possible if T − n > n. ♦

Thus, there exist n ∈ ( T
2 , T) and n < T − n (where n < 0 if ∆0,γ < 0) such that, for all n ∈ [0, T],

∆n,γ


> 0 if n > n or n < n,

= 0 if n = n or n = n,

< 0 if n > n > n.

The first-best policy xFB described in the theorem follows immediately. �

PROOF OF THEOREM 2. When the principal uses a period-t prediction mechanism, her payoff is
simply the difference in prediction-matching probabilities between the type-g and type-b agents.
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To that end, recall the following notation:

βm,n,θ := γαm
θ (1− αθ)

n−m + (1− γ)αn−m
θ (1− αθ)

m and ∆m,n := βm,n,g − βm,n,b.

Note that (n
m)βm,n,θ is the probability that exactly m out of n signals with precision αθ match the

public precision-γ outcome. Thus, for any k ≥ 0, we can write the principal’s payoff from using a
period-2k or -(2k + 1) prediction mechanism as

Π(2k) :=
1
2

(
2k
k

)
∆k,2k +

2k

∑
j=k+1

(
2k
j

)
∆j,2k and Π(2k + 1) :=

2k+1

∑
j=k+1

(
2k + 1

j

)
∆j,2k+1,

respectively. Finally, define δ(n) := Π(n)−Π(n− 1). Note that since Π(0) = 0 and Π(1) > 0, we
know that δ(1) > 0.

CLAIM. For any k ≥ 1, both the principal and agent (of either type) are indifferent between the (2k− 1)-
period and 2k-period prediction mechanisms.

PROOF OF CLAIM. In the (2k − 1)-period prediction mechanism, a type-θ agent is hired if k or
more signals match the outcome. Partitioning that event into the case where exactly k signals
match and the case where at least k + 1 signals match, we can write the probability of hiring a
type-θ agent in the (2k− 1)-period prediction mechanism as(

2k− 1
k

)
βk,2k−1,θ +

2k−1

∑
j=k+1

(
2k− 1

j

)
β j,2k−1,θ .

In the 2k-period prediction mechanism, on the other hand, a type-θ agent is hired with proba-
bility 1

2 if exactly k signals match the principal’s, and with certainty if k + 1 or more signals match.
Focusing on the first 2k − 1 periods, this implies that three events may lead to the agent being
hired:

• at least k + 1 of the first 2k− 1 signals match the public outcome, in which case the agent
is hired regardless of the realization of the 2kth signal;
• exactly k of the first 2k− 1 signals match, in which case the agent is hired with probability

1 if the 2kth signal matches, and with probability 1
2 if it does not; and

• exactly k− 1 of the first 2k− 1 signals match, in which case the agent is hired with proba-
bility 1

2 if the 2kth signal matches, and is not hired otherwise.

Therefore, the probability of hiring a type-θ agent in the 2k-period prediction mechanism is

2k−1

∑
j=k+1

(
2k− 1

j

)
β j,2k−1,θ +

(
2k− 1

k

)(
1
2

βk,2k,θ + βk+1,2k,θ

)
+

(
2k− 1
k− 1

)(
1
2

βk,2k,θ

)

=
2k−1

∑
j=k+1

(
2k− 1

j

)
β j,2k−1,θ +

(
2k− 1

k

)
(βk,2k,θ + βk+1,2k,θ)

=
2k−1

∑
j=k+1

(
2k− 1

j

)
β j,2k−1,θ +

(
2k− 1

k

)
βk,2k−1,θ ,

where the first equality follows from the fact that (2k−1
k ) = (2k−1

k−1 ), and the second from the obser-
vation that βk,2k,θ + βk+1,2k,θ = βk−1,2k,θ .
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Thus, a type-θ agent is hired with exactly the same probability in the 2k- and (2k − 1)-period
prediction mechanisms, and so is indifferent between the two; this also implies that δ(2k) = 0. ♦

CLAIM. For any k > 0, δ(2k + 1) = (2k
k )
[
αk(1− α)k(γα + (1− γ)(1− α)− 1

2 )
]αg

αb
.

PROOF OF CLAIM. In the (2k + 1)-period prediction mechanism, a type-θ agent is hired if k + 1
or more signals match the public outcome. Focusing on the first 2k periods, this implies that two
events may lead to the agent being hired:

• at least k + 1 of the first 2k signals match the outcome, in which case the agent is hired
regardless of the realization of the (2k + 1)th signal; or
• exactly k of the first 2k signals match, in which case the agent is hired with probability 1 if

the (2k + 1)th signal matches, and is not hired otherwise.

Therefore, the probability of hiring a type-θ agent in the (2k + 1)-period prediction mechanism is

2k

∑
j=k+1

(
2k
j

)
β j,2k,θ +

(
2k
k

)
βk+1,2k+1,θ .

In the 2k-period prediction mechanism, an agent is hired with probability 1
2 if exactly k signals

match the outcome, and with certainty if at least k + 1 match, so the probability of hiring type θ is

1
2

(
2k
k

)
βk,2k,θ +

2k

∑
j=k+1

(
2k
j

)
β j,2k,θ .

Thus, the difference between these two probabilities is(
2k
k

)
βk+1,2k+1,θ −

1
2

(
2k
k

)
βk,2k,θ =

(
2k
k

)
αk

θ(1− αθ)
k
(

γαθ + (1− γ)(1− αθ)−
1
2

)
.

Since the principal’s payoff is the difference between the type-g and type-b agents’ payoffs, this
yields the desired result. ♦

The result above therefore implies that δ(2k + 1) is proportional to

z(k) :=
[

αk(1− α)k(γα + (1− γ)(1− α)− 1
2
)

]αg

αb

=

[
1
2

αk(1− α)k(2γ− 1) (2α− 1)
]αg

αb

.

There is a unique k∗ such that z(k∗) = 0; expanding the expression above and taking logs yields

k∗ = ln
(

2αb − 1
2αg − 1

)/
ln
(

αg(1− αg)

αb(1− αb)

)
.

Furthermore, note that

z′(k) =
[

1
2

αk(1− α)k ln(α(1− α))(2γ− 1) (2α− 1)
]αg

αb

.

Since αg > αb >
1
2 , we must have αg(1− αg) < αb(1− αb), implying that z′(k∗) < 0. By continuity

and the fact that z(·) has a unique root, we must have z(k) > 0 for all k < k∗ and z(k) < 0 for all
k > k∗. Of course, this implies that δ(2k + 1) > 0 for all k < k∗ and δ(2k + 1) < 0 for all k > k∗. �
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PROOF OF LEMMA 1. Fix any incentive compatible direct mechanism {χh(θ, sT), χl(θ, sT)} with
payoff Π, and define the alternative mechanism {xh(sT), xl(sT)} by

xr(sT) := χr(g, sT) for all r ∈ {h, l} and all sT ∈ {h, l}T.

Denote by µ(s̃T|sT, σ) the probability that an agent who observes signals sT and follows strategy
σ ∈ Σ reports the sequence s̃T, where Σ is the set of all dynamic reporting strategies adapted to
the signal process (as defined in Section 1.2). The principal’s payoff from {xh(·), xl(·)} is then

Π′ =
1
2

sup
σg∈Σ

 ∑
(r,sT)

Pr(r, sT|g)∑
s̃T

µ(s̃T|sT, σg)χr(g, s̃T)


− 1

2
sup
σb∈Σ

 ∑
(r,sT)

Pr(r, sT|b)∑
s̃T

µ(s̃T|sT, σb)χr(g, s̃T)

 .

Note, however, that incentive compatibility of the original mechanism implies that the type-g
agent finds truthful reporting of signals to be optimal, implying that

Π′ =
1
2 ∑

(r,sT)

Pr(r, sT|g)χr(g, sT)− 1
2

sup
σb∈Σ

 ∑
(r,sT)

Pr(r, sT|b)∑
s̃T

µ(s̃T|sT, σb)χr(g, s̃T)

 .

In addition, incentive compatibility of the original mechanism implies that forcing the type-b agent
to misreport his initial type and then re-optimize reduces his expected utility; this implies that

Π′ ≥ 1
2 ∑

(r,sT)

Pr(r, sT|g)χr(g, sT)− 1
2 ∑

(r,sT)

Pr(r, sT|b)χr(b, sT) =: Π.

Thus, since the principal’s objective is decreasing in the utility of the type-b agent, the new mech-
anism {xh(·), xl(·)} improves the principal’s payoff. As {χh(θ, ·), χl(θ, ·)} was an arbitrary incen-
tive compatible mechanism, it is without loss to restrict attention to mechanisms that solicit only
the agent’s signals and in which the type-g agent is incentivized to report truthfully. �

PROOF OF LEMMA 2. Trivial contracts are trivially incentive compatible: if the hiring decision
does not depend on the agent’s reports, then there is no incentive for the agent (of either type) to
misreport any of his signals.

So fix any nontrivial deterministic and incentive-compatible contract xh, xl : {h, l}T → {0, 1}.
Incentive-compatibility and nontriviality of this contract imply that there is no sequence of signals
sT ∈ {h, l}T such that xh(sT) = xl(sT) = 1; if there were such a sequence, then the agent would
always have an incentive to report it and guarantee his hiring (unless the contract were an “always
hire” trivial contract). Similarly, there is no sequence sT ∈ {h, l}T such that xh(sT) = xl(sT) = 0;
if there were such a sequence, then agent would never be willing to report it truthfully (unless the
contract were a “never hire” trivial contract).

Note that, by backward induction, there must be some latest period T′ ≤ T and history of
reports ŝT′−1 ∈ {h, l}T′−1 such that the agent’s period-T′ report is pivotal; that is,

(xh(ŝT′−1, h, ·), xl(ŝT′−1, h, ·)) 6= (xh(ŝT′−1, l, ·), xl(ŝT′−1, l, ·)).
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To see this, start in the period T. If there is no such ŝT−1, then the final-period report never affects
the principal’s hiring decision, which must then depend only on the reports from the first T − 1
periods. Proceeding in this manner yields T′ and a ŝT′−1. (Note that T′ ≥ 1 since otherwise the
contract does not depend on the agent’s report, contradicting the assumption that it is nontrivial.)
Since periods T′ + 1 through T do not affect the hiring decision, we can without loss overload
notation and describe the contract as two functions xh, xl : {h, l}T′ → {0, 1}.

As argued above, nontriviality and incentive compatibility imply that

(xh(ŝT′−1, h), xl(ŝT′−1, h)), (xh(ŝT′−1, l), xl(ŝT′−1, l)) ∈ {(1, 0), (0, 1)}.

Since, by construction, we know that (xh(ŝT′−1, h), xl(ŝT′−1, h)) 6= (xh(ŝT′−1, l), xl(ŝT′−1, l)), it must
then be the case that

(xh(ŝT′−1, h), xl(ŝT′−1, h)) = (1, 0) and (xh(ŝT′−1, l), xl(ŝT′−1, l)) = (0, 1).

This follows from incentive compatibility, and the fact that the agent’s posterior beliefs are such
that Pr(r = h|ŝT′−1, h) > Pr(r = h|ŝT′−1, l). Further, these beliefs must be such that

Pr(r = h|ŝT′−1, h) ≥ 1
2

and Pr(r = h|ŝT′−1, h) ≤ 1
2

,

as otherwise the pivotality of the period-T′ report following history ŝT′−1 would lead to a violation
of incentive compatibility.

Now consider any other history s̃T′ ∈ {h, l}T′ . Non-triviality and incentive compatibility again
imply that (xh(s̃T′), xl(s̃T′)) ∈ {(1, 0), (0, 1)}. We claim that we must have (xh(s̃T′), xl(s̃T′)) = (1, 0)
whenever Pr(r = h|s̃T′) > 1

2 and (xh(s̃T′), xl(s̃T′)) = (0, 1) whenever Pr(r = h|s̃T′) < 1
2 . To see

why this must be true, suppose the contrary and note that this must yield a violation of incentive
compatibility. In particular, consider the alternative agent strategy of always reporting ŝT′−1 in
the first T′ − 1 periods regardless of his true signals, and then choosing a period-t report that
matches his posterior belief; that is, he reports h if Pr(r = h|s̃T′) > 1

2 , l if Pr(r = h|s̃T′) < 1
2 , and

chooses arbitrarily if Pr(r = h|s̃T′) = 1
2 . Such a strategy increases the agent’s payoff over truthful

reporting as it guarantees that the agent is hired precisely at the outcome he thinks more likely
(whereas truthful reporting may lead to being hired only in the less likely state).

Finally, note that Pr(r = h|s̃T′) > 1
2 if, and only if, ∑τ≤T′ 1h(sτ) > T′

2 . Thus, the (arbitrarily-
chosen) nontrivial deterministic and incentive-compatible contract xh, xl is equivalent to a period-
T′ prediction mechanism. Therefore, any deterministic nontrivial and incentive-compatible con-
tract is a period-t prediction mechanism for some 1 ≤ t ≤ T. �

PROOF OF THEOREM 3. Recall that Lemma 1 establishes that it is without loss to consider only
mechanisms that induce the type-g agent to report her signals truthfully (and allowing the type-
b agent to optimally misreport). Therefore, Lemma 2 greatly simplifies the class of mechanisms
over which the principal must optimize. In particular, the principal must either abandon screening
entirely (that is, employ a trivial mechanism, which yields a payoff of zero) or employ a period-t
prediction mechanism for some 1 ≤ t ≤ T.
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Of course, Theorem 2 showed that the principal’s payoff, within this class of mechanisms, is
increasing in t until reaching a maximum at some T. Therefore, the optimal deterministic mecha-
nism is a period-T̃ prediction mechanism, where T̃ := min{T, T}. �

PROOF OF THEOREM 4. The result follows immediately from the argument in the main text. �

PROOF OF LEMMA 3. Recall from the proof of Theorem 1 that we can write the principal’s prob-
lem when the agent’s signals are observable as

max
x(·)

{
1
2

T

∑
k=0

(
T
k

)
∆k,Tx(k)

}
,

where x(k) denote the principal’s hiring decision when she observes k signals that match the
public outcome, and where

∆k,T :=
[
γαk(1− α)T−k + (1− γ)αT−k(1− α)k

]αg

αb
.

The solution to this linear program depends entirely on the signs of ∆k,T. We now focus on signing
these terms when T = 3:

• ∆0,3|γ=1 =
[
(1− α)3]αg

αb
< 0 and ∆0,3|γ= 1

2
=
[ 1

2 (α
3 + (1− α)3)

]αg

αb
> 0;

• ∆1,3|γ=1 =
[
α(1− α)2]αg

αb
< 0 and ∆1,3|γ= 1

2
=
[ 1

2 α(1− α)
]αg

αb
< 0;

• ∆2,3|γ=1 =
[
α2(1− α)

]αg

αb
is ambiguously signed (it may be positive or negative), while

∆2,3|γ= 1
2
=
[ 1

2 α(1− α)
]αg

αb
< 0; and

• ∆3,3|γ=1 =
[
α3]αg

αb
> 0 and ∆3,3|γ= 1

2
=
[ 1

2 (α
3 + (1− α)3)

]αg

αb
> 0.

Since ∆k,T is linear in γ, we can unambiguously sign ∆1,3 < 0 and ∆3,3 > 0; therefore, we must
have xFB(3) = 1 and xFB(1) = 0; the principal always hires the agent when all three of his signals
match the realized outcome, and never hires the agent when only one of his signals match the
realized outcome.

By the same logic, it is not possible to unambiguously sign ∆0,3 and ∆2,3; however, we can
characterize the solution xFB for the various feasible sign combinations:

• If ∆0,3 < 0 and ∆2,3 < 0, then the solution must be such that xFB(0) = xFB(1) = xFB(2) = 0
and xFB(3) = 1; that is, the principal hires the agent if, and only if, all three of her signals
are accurate (so n = 3 and n = −1).
• If ∆0,3 ≥ 0 and ∆2,3 < 0, then the solution must be such that xFB(0) = xFB(3) = 1 and

xFB(1) = xFB(2) = 0; that is, the principal hires the agent if, and only if, all three of her
signals are consistent (so n = 3 and n = 0).
• If ∆0,3 < 0 and ∆2,3 ≥ 0, then the solution must be such that xFB(0) = xFB(1) = 0 and

xFB(2) = xFB(3) = 1; that is, the principal hires the agent if, and only if, a majority (at least
two out of three) of her signals are accurate (so n = 2 and n = −1).

Note that the fourth possible sign combination (both ∆0,3 ≥ 0 and ∆2,3 ≥ 0) is not feasible. To
see why, suppose that αg and αb are such that ∆2,3|γ=1 ≥ 0 (otherwise, ∆2,3 < 0 for all γ and we
are done). Thus, as γ goes from 1

2 to 1, ∆0,3 crosses from positive to negative while ∆2,3 goes from
29



DEB, PAI, AND SAID

negative to positive. Let γ∗ be such that ∆0,3|γ=γ∗ = 0; that is,

γ∗ =

[
α3]αg

αb

[(α3 − (1− α)3)]αg
αb

.

Then

∆2,3|γ=γ∗ = γ∗
[
α2(1− α)

]αg

αb
+ (1− γ∗)

[
α(1− α)2]αg

αb

= −
(αg − αb)(αg + αb − 1)[(2αg − 1)2 + (2αb − 1)2 + (2αg − 1)(2αb − 1)]

(αg + αb − 1)2 + (1− αg)2 + (1− αb)2 + αg + αb
< 0,

where the inequality follows from the fact that 1 > αg > αb > 1
2 . Therefore, whenever ∆0,3 ≥ 0

(that is, whenever γ ≤ γ∗), we must have ∆2,3 < 0.
Thus, the first-best mechanism when T = 3 takes on one of the three desired forms. �

PROOF OF THEOREM 5. We begin by recalling that Lemma 1 shows that it is without loss of gen-
erality for the principal to offer a contract of the form xr : {h, l}T → [0, 1], r ∈ {h, l}, such that
the type-g agent is incentivized to report her signals truthfully while the type-b agent is free to
misreport optimally. Therefore, letting Σ denote the set of all dynamic reporting strategies that are
adapted to the signal process and µ(s̃T|sT, σ) the probability that an agent who observes signals
sT and follows strategy σ ∈ Σ reports the sequence s̃T, we can write the principal’s problem as

max
xh,xl

1
2 ∑

(r,sT)

Pr(r, sT|θ = g)xr(sT)− 1
2

sup
σb∈Σ

 ∑
(r,sT)

Pr(r, sT|θ = b)∑
s̃T

µ(s̃T|sT, σb)xr(s̃T)




s.t. ∑
(r,sT)

Pr(r, sT|θ = g)xr(sT) ≥ ∑
(r,sT)

Pr(r, sT|θ = g)∑
s̃T

µ(s̃T|sT, σ′)xr(s̃T) for all σ′ ∈ Σ.
(P)

Note that the constraint is simply the type-g agent’s incentive compatibility condition, whereas
the type-b agent’s optimal reporting strategy has been incorporated into the objective function.

We will proceed to the solution of problem (P) as follows:

• We define a relaxed problem with a restricted set of strategies available to the type-b agent.
• We will then argue that the solution to this relaxed problem features truthful reporting at

certain histories by the type-b agent.
• We then incorporate the corresponding incentive compatibility constraints into a further

relaxation of the problem, which we then solve.
• Finally, we demonstrate that our proposed solution is indeed feasible in the original prob-

lem, in the sense that the strategy we impose on the type-b agent’s behavior in the relaxed
problem is optimal given the identified solution.

We begin by restricting the set of possible misreports of the type-b agent. Denote by Σ̂ ⊂ Σ the
set of strategies where, for all s3 ∈ {h, l}3 and any s′2, s′3 ∈ {h, l},

µ(s̃3|s3, σ) > 0 if, and only if


s̃T = (s1, s2, s3) and s1 = s2 = s3,

s̃T = (s1, s2, s′3) and s1 = s2 6= s3, or

s̃T = (s1, s′2, s3) and s1 6= s2.
30



EVALUATING STRATEGIC FORECASTERS

Thus, any strategy σ ∈ Σ̂ reports truthfully at all histories except possibly those where the agent
first observes a contradictory signal. With this in hand, define the relaxed problem

max
xh,xl

1
2 ∑

(r,sT)

Pr(r, sT|θ = g)xr(sT)− 1
2

sup
σb∈Σ̂

 ∑
(r,sT)

Pr(r, sT|θ = b)∑
s̃T

µ(s̃T|sT, σb)xr(s̃T)




s.t. ∑
(r,sT)

Pr(r, sT|θ = g)xr(sT) ≥ ∑
(r,sT)

Pr(r, sT|θ = g)∑
s̃T

µ(s̃T|sT, σ′)xr(s̃T) for all σ′ ∈ Σ.
(R)

CLAIM. The solution to the relaxed problem (R) yields the principal a higher payoff than the original
problem (P).

PROOF OF CLAIM. Consider any solution x∗r to problem (P). Since Σ̂ ⊂ Σ, we must have

sup
σb∈Σ̂

 ∑
(r,sT)

Pr(r, sT|θ = b)∑
s̃T

µ(s̃T|sT, σb)x∗r (s̃
T)


≤ sup

σb∈Σ

 ∑
(r,sT)

Pr(r, sT|θ = b)∑
s̃T

µ(s̃T|sT, σb)x∗r (s̃
T)

 ,

which implies that the maximal payoff from (P) is achievable in (R). ♦

Now further relax the problem by dropping the incentive compatibility constraints for the type-
g agent; that is, consider the problem

max
xh,xl

1
2 ∑

(r,sT)

Pr(r, sT|θ = g)xr(sT)− 1
2

sup
σb∈Σ̂

 ∑
(r,sT)

Pr(r, sT|θ = b)∑
s̃T

µ(s̃T|sT, σb)xr(s̃T)


 (R′)

and note that (since it is less constrained) the solution to (R′) yields the principal a higher payoff
than that of (R).

CLAIM. There is a solution to (R′) such that the type-b agent reports his signals truthfully at all histories.

PROOF OF CLAIM. Suppose, by way of contradiction, that there is a solution x∗r to (R′) in which
the type-b agent who has observed s2 = (i, j) strictly prefers to misreport s2 = j as s̃2 = i for some
i, j ∈ {h, l} with i 6= j.

Since the preference is strict, it must be the case that the expected probability of being hired
after reporting one of the sequences (i, j, i) or (i, j, j) is strictly less than one (otherwise, the agent
would optimally report the second signal j truthfully). This implies, however, that only the type-g
agent (who always reports truthfully in (R′)) ever reports sequences (i, j, i) and (i, j, j). Therefore,
the alternative hiring rule x∗∗r defined by

x∗∗r (ŝT) := min
{

x∗r (ŝ
T) + ε1{(i,j,i),(i,j,j)}(ŝ

T), 1
}

for sufficiently small ε > 0 strictly increases the probability that the principal hires the type-g
agent without influencing the strategy of the type-b agent. This, of course, increases the principal’s
payoff, contradicting the assumption that x∗r solves (R′).
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An identical argument applies when s3 = (i, i, j). (Note that this argument can be applied
separately across these two types of sequences since compound misreports are ruled out in Σ̂.) ♦

This argument implies that, instead of incorporating the type-b agent’s problem into the objec-
tive function as in (R′), we can instead incorporate the solution (truthful reporting) to that problem
while also imposing the requisite incentive compatibility constraints. Thus, (R′) is equivalent to

max
xh,xl

1
2 ∑

(r,sT)

Pr(r, sT|θ = g)xr(sT)− 1
2 ∑

(r,sT)

Pr(r, sT|θ = b)xr(sT)


s.t. ∑

(r,sT)

Pr(r, sT|θ = g)xr(sT) ≥ ∑
(r,sT)

Pr(r, sT|θ = b)∑
s̃T

µ(s̃T|sT, σ′)xr(s̃T) for all σ′ ∈ Σ̂.

(R′′)

Since this relaxed problem is separable in histories conditioned on the agent’s first signal (as we
have assumed truthful reporting of the first signal), we can solve the problem separately for each
of the two cases s1 ∈ {h, l}. Formally, when the first signal is s1 = h, we can write (R′′) as

max
xr

{
∆3,3xh(h, h, h) + ∆2,3[xh(h, h, l) + xh(h, l, h) + xl(h, l, l)]

+ ∆1,3[xh(h, l, l) + xl(h, h, l) + xl(h, l, h)] + ∆0,3xl(h, h, h)

}
s.t. β2,3,bxh(h, l, h) + β1,3,bxl(h, l, h) + β1,3,bxh(h, l, l) + β2,3,bxl(h, l, l)

≥ β2,3,bxh(h, h, h) + β1,3,bxl(h, h, h) + β1,3,bxh(h, h, l) + β2,3,bxl(h, h, l),

β2,3,bxh(h, h, l) + β1,3,bxl(h, h, l) ≥ β2,3,bxh(h, h, h) + β1,3,bxl(h, h, h).

(R′′h )

CLAIM. Suppose ∆2,3 ≥ 0. Then the solution to (R′′h ) is given by

xh(h, h, h) = xh(h, h, l) = 1, xl(h, h, h) = xl(h, h, l) = 0,

xh(h, l, h) = xl(h, l, l) = 1, xl(h, l, h) = xh(h, l, l) = 0.
(A.1)

PROOF OF CLAIM. We will proceed by showing that there exist multipliers λ and µ corresponding
to the two incentive compatibility constraints in (R′′h ) such that the conjectured solution (A.1)
satisfies the Karush-Kuhn-Tucker conditions. These conditions may be written as:

xh(h, h, h) : ∆3,3 − λβ2,3,b − µβ2,3,b ≥ 0 (A.2)

xh(h, h, l) : ∆2,3 − λβ1,3,b + µβ2,3,b ≥ 0 (A.3)

xl(h, h, h) : ∆0,3 − λβ1,3,b − µβ1,3,b ≤ 0 (A.4)

xl(h, h, l) : ∆1,3 − λβ2,3,b + µβ1,3,b ≤ 0 (A.5)

xh(h, l, h), xl(h, l, l) : ∆2,3 + λβ2,3,b ≥ 0 (A.6)

xl(h, l, h), xh(h, l, l) : ∆1,3 + λβ1,3,b ≤ 0 (A.7)

The directions of the inequalities above are determined by the feasibility constraint that each vari-
able xr(·) lies between 0 and 1.

Note that, at the conjectured solution, the first constraint (corresponding to period-two incen-
tive compatibility) reduces to

β2,3,b ≥ β1,3,b.
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Of course, this inequality holds strictly, and so the constraint is slack. Therefore, we must have

λ = 0.

In addition, recall (from the proof of Lemma 3), that ∆3,3 > 0 > ∆1,3 and that ∆0,3 < 0 whenever
∆2,3 ≥ 0 (as was assumed). Therefore, it is easy to see that choosing

µ = 0

leads to the satisfaction of all the KKT conditions above—which are, of course, both necessary and
sufficient for the linear program (R′′h ). ♦

CLAIM. Suppose ∆2,3 < 0. Then the solution to (R′′h ) is given by

xh(h, h, h) = xh(h, h, l) = 1, xl(h, h, h) = xl(h, h, l) = 0,

xh(h, l, h) = xl(h, l, l) =
β1,3,b + β2,3,b

2β2,3,b
, xl(h, l, h) = xh(h, l, l) = 0.

(A.8)

PROOF OF CLAIM. We will proceed by showing that there exist multipliers λ and µ corresponding
to the two incentive compatibility constraints in (R′′h ) such that the conjectured solution (A.8)
satisfies the Karush-Kuhn-Tucker conditions. These conditions may be written as:

xh(h, h, h) : ∆3,3 − λβ2,3,b − µβ2,3,b ≥ 0 (A.9)

xh(h, h, l) : ∆2,3 − λβ1,3,b + µβ2,3,b ≥ 0 (A.10)

xl(h, h, h) : ∆0,3 − λβ1,3,b − µβ1,3,b ≤ 0 (A.11)

xl(h, h, l) : ∆1,3 − λβ2,3,b + µβ1,3,b ≤ 0 (A.12)

xh(h, l, h), xl(h, l, l) : ∆2,3 + λβ2,3,b = 0 (A.13)

xl(h, l, h), xh(h, l, l) : ∆1,3 + λβ1,3,b ≤ 0 (A.14)

The directions of the inequalities above are determined by the feasibility constraint that each vari-
able xr(·) lies between 0 and 1.

Note first that (A.13) implies that (since ∆2,3 < 0) we must have

λ = − ∆2,3

β2,3,b
> 0.

Substituting this value into (A.14) yields

β2,3,b∆1,3 ≤ β1,3,b∆2,3,

which is easily verified to hold. In addition, we can rewrite (A.9) and (A.12) as

µ ≤ ∆3,3 + ∆2,3

β2,3,b
and µ ≤ −∆2,3 + ∆1,3

β1,3,b
,

respectively. Clearly, choosing

µ = min
{

∆3,3 + ∆2,3

β2,3,b
,−∆2,3 + ∆1,3

β1,3,b

}
satisfies both of these conditions. It remains to be shown that this choice of µ satisfies (A.10)
and (A.11).
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So suppose first that µ = ∆3,3+∆2,3
β2,3,b

≤ −∆2,3+∆1,3
β1,3,b

. Then we can rewrite (A.10) as

0 ≤ ∆2,3 +
∆2,3

β2,3,b
β1,3,b +

∆3,3 + ∆2,3

β2,3,b
β2,3,b =

(αg − αb)(2γ− 1)(1− γ + (2γ− 1)αb + αg(1− αg))

1− γ + (2γ− 1)αb
,

and likewise rewrite (A.11) as

0 ≥ ∆0,3 +
∆2,3

β2,3,b
β1,3,b −

∆3,3 + ∆2,3

β2,3,b
β1,3,b = −

(αg − αb)(2γ− 1)((αg − αb)
2 + 3αb(1− αb))

1− γ + (2γ− 1)αb
.

It is straightforward to see that both of these inequalities hold 1 ≥ αg > αb ≥ 1
2 and 1 > γ > 1

2 .
On the other hand, suppose that µ = −∆2,3+∆1,3

β1,3,b
≤ ∆3,3+∆2,3

β2,3,b
. Then we can rewrite (A.10) as

−
∆2,3 +

β1,3,b
β2,3,b

∆2,3

β2,3,b
≤ ∆2,3 + ∆1,3

β1,3,b
.

Note, however, that (A.14) implies that− β1,3,b
β2,3,b

∆2,3 ≤ −∆1,3. Therefore, since (as is simple to verify)
β1,3,b < β2,3,b, this inequality is satisfied. Finally, we can write (A.11) as

0 ≥ ∆0,3 +
∆2,3

β2,3,b
β1,3,b +

∆2,3 + ∆1,3

β1,3,b
β1,3,b =

(αb − αg)(2γ− 1)((1− αg)2 + (αg − αb) + γ(2αb − 1))
1− γ + (2γ− 1)αb

.

Again, the inequality is satisfied since 1 > αg > αb >
1
2 and 1 > γ > 1

2 .
Thus, the conjectured solution, along with λ and µ as defined above, satisfy the KKT conditions.

Of course, these conditions are both necessary and sufficient for the linear program (R′′h ). ♦

Finally, it remains to be shown that the conjectured solutions to (R′′h ) above solve the unrelaxed
problem (P). Note that the original problem (P) imposes incentive compatibility constraints on
the type-g agent while the relaxed problem assumed truthful reporting; likewise, the original
problem allowed the type-b agent to optimally misreport while the relaxed problem imposed in-
centive compatibility constraints on two histories and assumed truthful reporting at the others.
Therefore, it suffices to show that the conjectured behavior in the relaxed problem is indeed opti-
mal in the unrelaxed one.

CLAIM. Suppose the principal chooses the either of the mechanisms described in (A.1) or (A.8). Then it is
optimal for the agent to always report her private signals truthfully.

PROOF OF CLAIM. We begin by noting that the solution in (A.1) corresponds to a period-3 predic-
tion mechanism, as it deterministically hires the agent if a majority of his reported signals match
the eventual outcome. Lemma 2 then immediately implies that this mechanism induces truthful
reporting for both the type-g and type-b agents.

We now turn to the solution in (A.8), which can be implemented by offering the agent the
option in period two to either make a prediction immediately (and be hired, if correct, with
probability 1) or to make a prediction in period three (and be hired, if correct, with probability
ρ := β1,3,b+β2,3,b

2β2,3,b
< 1). Note that there is an onto mapping from the set of signal-reporting strategies

to the set of prediction strategies in this option implementation. In particular, truthful reporting
of signals in (A.8) corresponds to making a sincere prediction in period two if both signals match,
and otherwise making a sincere prediction in period three. Hence, showing that this conjectured
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behavior is optimal for the agent is sufficient for showing the optimality of truthful signal signal
reporting in (A.8).

To see why this behavior is optimal for the agent, note first that observing two matching signals
in periods one and two yields the agent enough information to make a prediction in period three:
regardless of whether the third signal matches or not, he will make the same prediction. Since
ρ < 1, a period-2 prediction yields the agent a strictly higher payoff than postponing. On the
other hand, suppose that the agent has observed a pair of mismatched signals in the first two
periods, leaving him with a uniform posterior over states. This implies that an early prediction (of
either h or l) yields the type-θ agent an expected payoff of

1
2

γ +
1
2
(1− γ) =

1
2

.

Postponing the prediction to period three (and then making a sincere prediction that follows the
third private signal) yields the type-θ agent an expected payoff of

(γαθ + (1− γ)(1− αθ)) ρ =
1
2

(
γαθ + (1− γ)(1− αθ)

γαb + (1− γ)(1− αb)

)
.

Clearly, a type-b agent with mixed signals in period two is indifferent about delay, whereas a type-
g agent with mixed signals in period two strictly prefers to delay his prediction since αg > αb. This
implies that the mechanism in (A.8) is incentive compatible for both types of the agent.18 ♦

Thus, the assumed behavior for the agent in the relaxed problem (R′′) is in fact a best response
to the principal’s proposed mechanism. This implies that the conjectured solution indeed solves
the original problem (P). �

PROOF OF THEOREM 6. Recall from the proof of Theorem 2 that both the principal and agent
(of either type) are indifferent between the (2k− 1)-period and 2k-period prediction mechanisms;
therefore, assume without loss that T is odd, and let k̄ be such that T = 2k̄ + 1 (and therefore, since
T > T + 1, we have T ≥ 2k̄ + 3).19

CLAIM. ∆k̄+2,2k̄+3 < 0.

PROOF OF CLAIM. Recall from the proof of Theorem 2 that we defined δ(n) to be the differ-
ence between the principal’s expected payoff from an n-period and an (n− 1)-period prediction
mechanism. Since T is the optimal length for a prediction mechanism, Theorem 2 implies that
0 > δ(T + 2) = δ(2k̄ + 3) = δ(2(k̄ + 1) + 1).

However, the second claim in that proof showed that

δ(2(k̄ + 1) + 1) =
(

2(k̄ + 1)
k̄ + 1

) [
αk̄+1(1− α)k̄+1

(
γα + (1− γ)(1− α)− 1

2

)]αg

αb

=

(
2(k̄ + 1)

k̄ + 1

) [
γαk̄+2(1− α)k̄+1 + (1− γ)αk̄+1(1− α)k̄+2

]αg

αb

18Since the private signals and the public outcome are (positively) correlated with the underlying state, insincere pre-
dictions (that is, those that contradict the agent’s private signals) are clearly dominated.
19Note that the argument that follows applies immediately to T even, so the proposed bound T > T + 1 continues to
be sufficient for the optimality of randomization in that case.
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−
(

2(k̄ + 1)
k̄ + 1

)
1
2

[
γαk̄+1(1− α)k̄+1 + (1− γ)αk̄+1(1− α)k̄+1

]αg

αb

=

(
2(k̄ + 1)

k̄ + 1

)(
∆k̄+2,2k̄+3 −

1
2

∆k̄+1,2k̄+2

)
.

But ∆k̄+1,2k̄+2 = (αg(1− αg))k̄+1 − (αb(1− αb))
k̄+1 < 0 since αg > αb > 1

2 . Therefore, to avoid
contradicting the fact that δ(T + 2) < 0, we must have ∆k̄+2,2k̄+3 < 0. ♦

Now consider the alternative mechanism defined by

x̂r(sT) :=


1 if ∑2k̄+2

τ=1 1r(sτ) ≥ k̄ + 2,

ρ if ∑2k̄+2
τ=1 1r(sτ) = k̄ + 1 and s2k̄+3 = r,

0 otherwise,

where
ρ :=

β1,3,b + β2,3,b

2β2,3,b
=

1
2(γαb + (1− γ)(1− αb))

is the same probability as in the 3-period optimal stochastic mechanism described in Theorem 5.
Essentially, x̂r(·) does not solicit any information from the agent until period 2k̄ + 2. At that point,
it offers the agent the option of either making an immediate prediction in period 2k̄ + 2 or waiting
one period until 2k̄ + 3 to make a prediction. The agent is hired with probability 1 if his early
prediction is correct, with probability ρ if the late prediction is correct, and with probability 0 if
his prediction is incorrect.

Clearly, if the agent has at least k̄ + 2 identical signals in the first 2k̄ + 2 periods, he will continue
to have a strict majority of that signal in period 2k̄ + 3; therefore, his recommendation will be the
same in both periods, but delaying lowers the probability of being hired if the recommendation is
correct. Therefore, such an agent will choose to make an immediate prediction in period 2k̄ + 2.

On the other hand, an agent with exactly k̄ + 1 of each signal in period 2k̄ + 2 would prefer to
wait until the next period before making a prediction. Notice that ρ is chosen to leave the type-
b agent indifferent between guessing immediately and waiting for one additional signal, while
(since αg > αb) the type-g agent’s more informative signal gives him a strict incentive to delay.

Thus, it remains to be shown that the stochastic mechanism x̂r(·) defined above yields the prin-
cipal a higher payoff than the period-T prediction mechanism.

As shown in the proof of Theorem 2, the principal’s payoff of the period-T prediction mecha-
nism (for T = 2k̄ + 1) equals that of the period-(2k̄ + 2) prediction mechanism. In that latter mech-
anism, the agent is hired with probability 1 when he observes at least k̄ + 2 signals that match the
outcome, with probability 1

2 when he observes exactly k̄ + 1 signals that match the outcome, and
with probability 0 otherwise.

Therefore, the difference in the principal’s payoff between x̂r and the period-T prediction mech-
anism arises precisely from the situation where the agent has observed exactly k̄ + 1 of each signal
by period 2k̄ + 2, and therefore chooses to postpone predicting under x̂r. This leads to a payoff
differential of (

2k̄ + 2
k̄ + 1

)(
ρ∆k̄+2,2k̄+3 −

1
2

∆k̄+1,2k̄+2

)
,
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since there are exactly (2k̄+2
k̄+1 ) signal sequences that lead the agent to be exactly tied in 2k̄ + 2 peri-

ods. The deterministic prediction mechanism will hire the agent with probability 1
2 if he is exactly

tied (due to the agent mixing when indifferent), whereas x̂r hires the agent with probability ρ if
the final signal matches (yielding a net payoff of ρ∆k̄+2,2k̄+3).

Note, however, that

ρ∆k̄+2,2k̄+3 −
1
2

∆k̄+1,2k̄+2 =
∆k̄+2,2k̄+3

2(γαb + (1− γ)(1− αb))
− 1

2
∆k̄+1,2k̄+2

=
[γαk̄+2(1− α)k̄+1 + (1− γ)αk̄+1(1− α)k̄+2]

αg
αb

2(γαb + (1− γ)(1− αb))
− 1

2
∆k̄+1,2k̄+2

=

[
(α(1− α))k̄+1(γα + (1− γ)(1− α))

]αg

αb

2(γαb + (1− γ)(1− αb))
− 1

2

[
(α(1− α))k̄+1

]αg

αb

=
1
2
(αg(1− αg))

k̄+1
(

γαg + (1− γ)(1− αg)

γαb + (1− γ)(1− αb)
− 1
)
> 0.

Therefore, the mechanism x̂r defined above, which nontrivially randomizes in 2k̄ + 3 periods,
achieves a strictly higher revenue than the optimal deterministic mechanism, a period-(2k̄ + 1)
recommendation mechanism. �

PROOF OF THEOREM 7. Note first that the revelation principle (see Lemma B.1 in our supplemen-
tary Appendix B.1) implies that—when the principal has commitment power—it is without loss
of generality to restrict attention to incentive compatible direct mechanisms χ : Λ× ST → {0, 1}2,
where we write χ(·) = (χh(·), χl(·)) ∈ {0, 1}2 for the principal’s hiring decision given outcomes
h and l, respectively.

So fix any nontrivial and incentive compatible direct mechanism χ, and note that we must
have χ(λ, sT) ∈ {(1, 0), (0, 1)} for all (λ, sT) ∈ Λ × ST. Note that if χ(λ̂, ŝT) = (1, 1) for some
reports λ̂, ŝT , then incentive compatibility requires that the agent is always hired, regardless reports
(otherwise he would deviate by always reporting λ̂, ŝT). Similarly, if χ(λ̂, ŝT) = (0, 0) for some
(λ̂, ŝT), then incentive compatibility requires that the agent is never hired, regardless of his reports
(otherwise he would deviate by never reporting λ̂, ŝT).

Now fix any λ ∈ Λ, and let tλ be the largest period such that χ(λ, ·) is measurable with
respect to the first tλ reports; that is, χ(λ, sT) = χ(λ, ŝT) for all sT = (stλ , stλ+1, . . . , sT) and
ŝT = (stλ , ŝtλ+1, . . . , ŝT) that coincide in their first tλ periods. Since periods tλ + 1 through T do
not affect the hiring decision given an initial period report of λ, we abuse notation somewhat and
write χ(λ, stλ) to denote the principal’s hiring rule.

The definition of tλ as the final period in which the agent’s reported signal potentially changes
the hiring decision as a function of the ultimate outcomes implies the existence of ŝ, ŝ′ ∈ Stλ

and
ŝtλ−1 ∈ ∏tλ

τ=1 Sτ such that

χ(λ, ŝtλ−1, ŝ) = (1, 0) 6= (0, 1) = χ(λ, ŝtλ−1, ŝ′).

Moreover, we must have

Pr(r = h|λ, ŝtλ−1, ŝ) ≥ 1
2
≥ Pr(r = h|λ, ŝtλ−1, ŝ′);

37



DEB, PAI, AND SAID

if this did not hold, the pivotality of the period-tλ report following history (λ, ŝtλ−1) would lead
to a violation of incentive compatibility.

This implies that the agent who initially observes signal λ ∈ Λ has a strategy which guarantees
that he is always hired at the outcome he thinks more likely in period tλ: simply report ŝtλ−1

regardless of signals seen in the first tλ− 1 periods, and then report either ŝ or ŝ′ in period tλ based
on his true signals and his posterior expectation of the most likely outcome. Therefore, incentive
compatibility implies that the continuation mechanism χ(λ, ·) must be payoff equivalent (for an
agent who initially observes signal λ ∈ Λ) to making a prediction at period tλ.

Finally, note that the signal structure is such that the agent, regardless of his initial private sig-
nal, weakly prefers to make a prediction as late as possible. Therefore, by incentive compatibility
of the initial signal report, it must be the case that the agent observing λ ∈ Λ is always ex ante
indifferent between being asked to make a prediction in tλ or in t∗ := maxλ′∈Λ{tλ′}. As a re-
sult, the principal is indifferent between offering the direct mechanism χ or a period-t∗ prediction
mechanism.

To see that this outcome (and hence payoffs) remains implementable in the game without com-
mitment, note that if the principal ignores all reports of the agent except that in period t∗ (hiring
if, and only if, the period-t∗ prediction matches the ultimate outcome), it is a best response by the
agent to babble in all periods except t∗. Of course, this babbling justifies the principal ignoring
the reports in those periods. Meanwhile, hiring the agent after a correct period-t∗ prediction is
also sequentially rational for the principal; if it were not, then the mechanism’s payoff in the full
commitment model would be negative, contradicting its optimality. Thus, as in Theorem 4 for the
baseline model, the lack of commitment does not change the outcomes or payoffs. �
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APPENDIX B. SUPPLEMENTARY PROOFS FOR ONLINE PUBLICATION

B.1. A Revelation Principle for Deterministic Dynamic Mechanisms

A deterministic mechanism M in our environment is simply a sequence of message spaces
M0, M1, . . . , MT (where we will let Mt := ×t

τ=0Mτ denote the set of period-t sequences of mes-
sages) and a decision rule x : MT × {h, l} → {0, 1}.

Given a mechanismM = (MT, x), the agent’s reporting strategy µ is a sequence of rules

µt : θ × St ×Mt−1 → ∆(Mt),

where we write
µt(mt|θ, s1, . . . , st, m0, m1, . . . , mt−1)

to denote the probability of sending message mt ∈ Mt when the agent’s private information is
(θ, st) and she has already sent messages mt−1. (Note that, as in any sequential game, the agent’s
strategy must specify the messages that she sends in some period t even after sequences of mes-
sages mt−1 that are not in the support of her strategy.)

A mechanism is a direct mechanism if M0 = Θ and Mt = S for all t = 1, . . . , T.

LEMMA B.1. Consider an equilibrium µ of a game induced by a deterministic mechanismM = (MT, x).
Then there exists a deterministic direct mechanism M̂ = (θ × ST, χ) that induces an equilibrium µ̂ with
truthful revelation. Moreover, the principal’s expected payoff under µ̂ in M̂ is (weakly) greater than her
expected payoff under µ inM.20

PROOF. Consider a deterministic mechanismM = (MT, x) and equilibrium reporting strategy µ.
Fix an arbitrary period t ∈ {0, 1, . . . , T}, and let λt := (θ, st) denote the agent’s period-t (private)

history of type and signals. For each λt ∈ Λt := Θ× St and each mt−1 ∈ Mt−1, define

Mλt,mt−1

t :=
{

m ∈ MT|µt(mt|λt, mt−1) > 0
}

to be the set of equilibrium period-t messages sent by the agent with positive probability when
her private type is λt and she has already reported messages mt−1. Note that, by definition of
equilibrium, it must therefore be the case that

∑
r∈{h,l}

sT
t+1∈ST−t

mT
t+1∈Mt+1×···×MT

Pr(r, sT
t+1|λt)


µt+1(mt+1|(λt, st+1), (mt−1, mt))

× · · · ×

µT(mT|(λt, sT
t+1), (m

t−1, mt, mT
t+1))

 x(mt−1, mt, mT
t+1, r)

≥ ∑
r∈{h,l}

sT
t+1∈ST−t

mT
t+1∈Mt+1×···×MT

Pr(r, sT
t+1|λt)


µt+1(mt+1|(λt, st+1), (mt−1, m′t))

× · · · ×

µT(mT|(λt, sT
t+1), (m

t−1, m′t, mT
t+1))

 x(mt−1, m′t, mT
t+1, r)

20This result extends Strausz’s (2003) deterministic revelation principle (in terms of payoffs) for a single agent to our
dynamic environment.
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for all mt ∈ Mλt,mt−1

t and m′t ∈ Mt, and where the above holds with equality when m′t ∈ Mλt,mt−1

t .
So define M̂λt,mt−1

t to be the set of all messages that yield the principal her highest payoff from
type λt among the messages that are sent with positive probability in equilibrium; that is,

M̂λt,mt−1

t := argmax
m′t∈Mλt ,mt−1

t


∑

r∈{h,l}
sT

t+1∈ST−t

mT
t+1∈Mt+1×···×MT

Pr(r, sT
t+1|λt)


µt+1(mt+1|(λt, st+1), (mt−1, m′t))

× · · · ×

µT(mT|(λt, sT
t+1), (m

t−1, m′t, mT
t+1))


x(mt−1, m′t, mT

t+1, r)
[
1g(θ)− 1b(θ)

]


.

With this in hand, define the mechanismM′ := (M0, . . . , Mt−1, Λt, Mt+1, . . . , MT, x′), where for
all mt−1 ∈ Mt−1 and all λt ∈ Λt, we let

x′(mt−1, λt, mT
t+1, r) := x(mt−1, m̂λt,mt−1

t , mT
t+1, r) for an arbitrary m̂λt,mt−1

t ∈ M̂λt,mt−1

t .

Thus, the (also deterministic) mechanism M′ is identical to M in all periods except period t,
where the agent is asked to report her entire private history up to that point; the mechanism
then “translates” the reported private history into its corresponding principal-optimal period-t
message chosen by the equilibrium µ. Since µ is an equilibrium reporting strategy in mechanism
M, then the strategy µ′ defined by

µ′τ(mτ|θ, sτ, mτ−1) := µτ(mτ|θ, sτ, mτ−1) for all τ < t;

µ′t(λt|θ, st, mt−1) :=

1 if λt = (θ, st),

0 otherwise;
and

µ′τ(mτ|θ, sτ, (mt−1, λt, mτ
t+1)) := µτ(mτ|θ, sτ, (mt−1, m̂λt,mt−1

t , mτ
t+1)) for all τ > t,

is by construction an equilibrium reporting strategy in mechanismM′. (Note that µ′ is identical
to µ for all period τ < t; optimally reports the private history truthfully in period t, which cor-
responds to an optimal message from µ; and follows the equilibrium continuation play of µ after
any period-t report, truthful or otherwise.) Moreover, the agent’s expected payoff is unchanged,
while the principal’s payoff is (weakly) higher in the equilibrium µ′ of the new mechanismM′.

Note, however, that the period t that we chose above was entirely arbitrary. Therefore, we can
define a new (and still determinstic) mechanismM′′ := (Λ0, Λ1, . . . , ΛT, x′′) by iteratively apply-
ing the procedure above T + 1 times, starting in the final period T and working backwards until
we reach period 0. Note, however, that the message spaces induced by this iterative procedure
contain some redundancy, in that the agent is asked to re-report her entire private history each pe-
riod. However, the procedure above also generates a truthful equilibrium µ′′ in which the agent
truthfully re-reports that history in each period; this implies that (in equilibrium) misreports occur
with zero probability.

Thus, we define a dynamic direct mechanism M̂ := (Θ, S, . . . , S, x̂) in which the agent is asked
to report only her new private information in each period and the decision rule x̂ is defined by

x̂(θ, sT, r) := x′′((θ), (θ, s1), (θ, s2), . . . , (θ, sT), r) for all (θ, sT) ∈ Θ× ST and r ∈ {h, l}.
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Note that since the iterative procedure above preserves the deterministic nature of the decision
rule, M̂ is also deterministic; in addition, since the set of reporting strategies under M̂ is a subset
of those inM′′ (but still contains the equilibrium strategy of truthful reporting after all possible
histories), the new direct mechanism M̂ is incentive compatible. This also implies that the agent’s
payoff is the same as in the original mechanism M, while the principal’s payoff under M̂ is
(weakly) greater. �

B.2. Optimal Static Mechanism

PROOF OF THEOREM 8. Before proceeding, note that Lemma 1 applies immediately in this set-
ting with a single period-T report.

CLAIM. It is without loss of generality to consider contracts such that xr(sT) = xr(ŝT) for all sT, ŝT such
that ∑t 1h(st) = ∑t 1h(ŝt).

PROOF OF CLAIM. Suppose there exists some s̃T, ŝT ∈ {h, l}T with ∑t 1h(s̃t) = ∑t 1h(ŝt) but
xr(s̃T) 6= xr(ŝT) for some r ∈ {h, l}. Since signals are conditionally i.i.d., the agent has identi-
cal posterior beliefs qθ = Pr(ω = H|s̃T, θ) = Pr(ω = H|ŝT, θ) about the underlying state of the
world after observing s̃T or ŝT.

Since the contract must be incentive compatible for the type-g agent, he must prefer reporting
s̃T truthfully to misreporting s̃T as ŝT, implying

qg(γxh(s̃T) + (1− γ)xl(s̃T))

+ (1− qg)(γxl(s̃T) + (1− γ)xh(s̃T))
≥

qg(γxh(ŝT) + (1− γ)xl(ŝT))

+ (1− qg)(γxl(ŝT) + (1− γ)xh(ŝT)).

The agent must also prefer reporting ŝT truthfully to misreporting ŝT as s̃T, implying

qg(γxh(ŝT) + (1− γ)xl(ŝT))

+ (1− qg)(γxl(ŝT) + (1− γ)xh(ŝT))
≥

qg(γxh(s̃T) + (1− γ)xl(s̃T))

+ (1− qg)(γxl(s̃T) + (1− γ)xh(s̃T)).

Of course, these two inequalities jointly imply that the type-g agent with belief qg is indifferent
between reporting s̃T or ŝT.

So consider the alternative mechanism {x̂h(·), x̂l(·)} defined by, for r = h, l,

x̂r(sT) :=

xr(s̃T) if sT = ŝT

xr(sT) otherwise.

Thus, {x̂h(·), x̂l(·)} simply “deletes” the option of reporting as ŝT and replaces it by the report of
s̃T. Since the original mechanism {xh(·), xl(·)} was incentive compatible for the type-g agent and
the type-g agent who observed ŝT was indifferent between the two reports, {x̂h(·), x̂l(·)} is also
incentive compatible for the type-g agent. Moreover, {x̂h(·), x̂l(·)} leaves the ex ante expected
payoff of the type-g agent unchanged.

Meanwhile, the type-b agent’s ex ante expected payoff is (weakly) lower under {x̂h(·), x̂l(·)}
than under {xh(·), xl(·)} since there is one fewer potential report available to him. Since the prin-
cipal’s payoff is increasing in Ug and decreasing in Ub, this implies that {x̂h(·), x̂l(·)} (weakly)
raises the principal’s expected payoff. ♦
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With this property in hand, we abuse notation somewhat and write xr(n) to denote xr(sT),
where n = ∑t 1h(st). We also write qθ(n) to denote the associated posterior belief Pr(ω = H|sT, θ).

CLAIM. It is without loss of generality to consider symmetric contracts in which xh(n) = xl(T − n) for
all n = 0, 1, . . . , T.

PROOF OF CLAIM. Fix any contract {xh(·), xl(·)} that is incentive compatible for the type-g agent,
and define the alternative contract {x̂h(·), x̂l(·)} by

x̂h(n) := xl(T − n) and x̂l(n) := xh(T − n) for all n = 0, 1, . . . , T.

Then the expected utility of a type-θ agent who observes sT with ∑t 1h(st) = n but reports n′ is

Ûθ(n′|n) = qθ(n)(γx̂h(n′) + (1− γ)x̂l(n′)) + (1− qθ(n))(γx̂l(n′) + (1− γ)x̂h(n′))

= qθ(n)(γxl(T − n′) + (1− γ)xh(T − n′))

+ (1− qθ(n))(γxh(T − n′) + (1− γ)xl(T − n′))

= (1− qθ(T − n))(γxl(T − n′) + (1− γ)xh(T − n′))

+ qθ(T − n)(γxh(T − n′) + (1− γ)xl(T − n′))

= Uθ(T − n′|T − n).

Letting σθ(·) denote type-θ’s optimal strategy under the original mechanism {xh(·), xl(·)}, this
implies that type-θ’s optimal reporting strategy σ̂θ(·) under the new contract {x̂h(·), x̂l(·)} is

σ̂θ(n) = T − σθ(T − n).

In particular, the type-g incentive compatibility of the original mechanism (that is, σg(n) = n for
all n) implies that σ̂g(n) = n for all n. Moreover, the symmetry of the signal distributions implies
that the agent’s expected utility (conditional on quality) is the same across both mechanisms (that
is, Ûg = Ug and Ûb = Ub), so the principal’s expected payoff is

Π̂ :=
1
2

Ûg −
1
2

Ûb =
1
2

Ug −
1
2

Ub.

Now define the (symmetric) mechanism {xh(·), xl(·)} by

xr(n) :=
xr(n) + x̂r(n)

2
for all n.

Then the expected utility of a type-θ agent who observes sT with ∑t 1h(st) = n but reports n′ is

Uθ(n′|n) = qθ(n)(γxh(n′) + (1− γ)xl(n′)) + (1− qθ(n))(γxl(n′) + (1− γ)xh(n′))

=
1
2

Uθ(n′|n) +
1
2

Ûθ(n′|n).

Since Ug(n|n) ≥ Ug(n′|n) and Ûg(n|n) ≥ Ûg(n′|n) for all n, n′ ∈ {0, 1, . . . , T}, it must also be
the case that Ug(n|n) ≥ Ug(n′|n) for all n and n′; that is, this new symmetric mechanism is type-g
incentive compatible. This also implies that the type-g expected utility is unchanged, so Ug = Ug.
On the other hand, note that

Ub := ∑
n

Pr(n|θ = b) sup
n′

{
Ub(n′|n)

}
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= ∑
n

Pr(n|θ = b) sup
n′

{
1
2

Ub(n′|n) +
1
2

Ûb(n′|n)
}

≤∑
n

Pr(n|θ = b) sup
n′

{
1
2

Ub(n′|n)
}
+ ∑

n
Pr(n|θ = b) sup

n′

{
1
2

Ûb(n′|n)
}

=
1
2

Ub +
1
2

Ûb = Ub.

Thus, the new symmetric mechanism leaves the type-g agent’s expected utility unchanged while
decreasing that of the type-b agent, thereby increasing the principal’s payoff. ♦

We now move to an equivalent posterior-space setting where, instead of focusing on the signals
received by an agent, we consider the posterior beliefs induced by those signals. (Note that this is
equivalent due to the two lemmas above as well as the one-to-one mapping between the number
of h signals and the agent’s posterior belief.) We denote the agent’s posterior beliefs that the state
of the world is ω = H by q ∈ [0, 1], and let Fθ denote the distribution of type-θ’s posterior beliefs.

CLAIM. The distributions Fθ are symmetric about 1
2 ; that is, Fθ(q) = 1− Fθ(1− q) for all q ∈ [0, 1] and

θ ∈ {g, b}. In addition, the type-g agent puts more mass on extremal posteriors than the type-b agent, so
Fg(q) ≥ Fb(q) for all q ∈ (0, 1

2 ).

PROOF OF CLAIM. To see that the distributions are symmetric, note that the symmetry of the
signal-generating process implies that, for all n = 0, . . . , T, it is equally likely for the number
of h signals observed by the agent to equal n or to equal T − n; moreover, it is straightforward to
show that qθ(n) = 1− qθ(T − n).

To see that the second property holds, note that the probability an agent with signal precision α

observes signals sT with n ≤ ∑t 1h(st) ≤ T − n is

π(n, T, α) =
T−n

∑
k=n

(
T
k

) [
1
2

αk(1− α)T−k +
1
2

αT−k(1− α)k
]

=
1
2

T−n

∑
k=n

(
T
k

)
αk(1− α)T−k +

1
2

T−n

∑
k=n

(
T

T − k

)
αT−k(1− α)k =

T−n

∑
k=n

(
T
k

)
αk(1− α)T−k.

Note that

∂π(n, T, α)

α
=

T−n

∑
k=n

(
T
k

)
αk−1(1− α)T−k−1(k− Tα)

=
T−n

∑
k=n

(
T
k

)
kαk−1(1− α)T−k−1 −

T−n

∑
k=n

(
T
k

)
Tαk(1− α)T−k−1

=
T−n

∑
k=n

(
T − 1
k− 1

)
Tαk−1(1− α)T−k−1 −

T−n

∑
k=n

(
T
k

)
Tαk(1− α)T−k−1

=
T

1− α

(
T−n

∑
k=n

(
T − 1
k− 1

)
αk−1(1− α)T−k −

T−n

∑
k=n

(
T
k

)
αk(1− α)T−k

)

=
T

1− α

(
T−n−1

∑
k=n−1

(
T − 1

k

)
αk(1− α)T−k−1 − π(n, T, α)

)
.
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Now recall that π(n, T, α) is the probability of observing between n and T − n signals equal to h.
There are three possible ways in which this event can occur:

• ∑T−1
t=1 1h(st) = n− 1 and sT = h, occurring with probability α(T−1

n−1)α
n−1(1− α)T−n;

• n ≤ ∑T−1
t=1 1h(st) ≤ T − n− 1, occurring with probability ∑T−n−1

k=n (T−1
k )αk(1− α)T−k−1; or

• ∑T−1
t=1 1h(st) = T − n and sT = l, occurring with probability (1− α)(T−1

T−n)α
T−n(1− α)n−1.

Since π(n, T, α) is the sum of these three probabilities, we can rewrite the expression above as

∂π(n, T, α)

α
=

T
1− α

(
T−n−1

∑
k=n−1

(
T − 1

k

)
αk(1− α)T−k−1 − α

(
T − 1
n− 1

)
αn−1(1− α)T−n

−
T−n−1

∑
k=n

(
T − 1

k

)
αk(1− α)T−k−1 − (1− α)

(
T − 1
T − n

)
αT−n(1− α)n−1

)

=
T

1− α

(
(1− α)

(
T − 1
n− 1

)
αn−1(1− α)T−n − (1− α)

(
T − 1
T − n

)
αT−n(1− α)n−1

)
= T

(
T − 1
n− 1

)(
αn−1(1− α)T−n − αT−n(1− α)n−1

)
.

It is easy to see that this expression is negative whenever α ≥ 1
2 and n ≤ T

2 , thereby implying that
the type-g agent is less likely to observe an “intermediate” number of h signals than the type-b
agent; that is, since αg > αb, the type-g agent is more likely to observe extremal numbers of h
signals than the type-b agent.

Finally, note that qg(n) ≤ qb(n) for n ≤ T
2 and qg(n) ≥ qb(n) for n ≥ T

2 ; therefore, the posteriors
induced by these more extremal signals are themselves more extreme. This implies Fg(q) ≥ Fb(q)
for all q ∈ (0, 1

2 ) and Fg(q) ≤ Fb(q) for all q ∈ ( 1
2 , 1), as desired. ♦

So now consider the principal’s problem in this setting. Applying our results above and treating
the agent’s posterior as his type, the principal offers a mechanism {xh(q), xl(q)} that must be
incentive compatible for the type-g agent.

With this in mind, let Uθ(q′|q) denote the expected payoff of an agent who is of type θ, has
posterior q, and reports q′:

Uθ(q′|q) := (γq + (1− γ)(1− q))xh(q′) + ((1− γ)q + γ(1− q))xh(1− q′).

Note that Uθ is, in fact, independent of the agent’s type θ; this implies that whenever the mech-
anism is incentive compatible for the type-g agent, it will also be incentive compatible for the
type-b agent. Combining this observation with the symmetry property derived above (which im-
plies xh(q) = xl(1− q) for all q), we write the agent’s (type-independent) indirect utility as

U(q′|q) = (γq + (1− γ)(1− q))xh(q′) + ((1− γ)q + γ(1− q))xh(1− q′)

= ((2γ− 1)q + (1− γ))xh(q′) + (γ− (2γ− 1)q)xh(1− q′)

= ((2γ− 1)q− γ)(xh(q′)− xh(1− q′)) + xh(q′).

The principal’s problem is then to

max
xh

{∫ 1

0
U(q|q)d[Fg(q)− Fb(q)]

}
s.t. U(q|q) ≥ U(q′|q) for all q, q′ ∈ [0, 1].
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The incentive compatibility constraint implies that we must have both U(q|q) ≥ U(q′|q) and
U(q′|q′) ≥ U(q|q′) for all q, q′ ∈ [0, 1]. Summing these incentive constraints yields

(2γ− 1)(q− q′)
[
(xh(q)− xh(1− q))−

(
xh(q′)− xh(1− q′)

)]
≥ 0.

This implies that xh(q) − xh(1 − q) must be nondecreasing in q, which in addition implies that
xh(q)− xh(1− q) ≥ 0 for all q ≥ 1

2 .
The standard “sandwich” arguments can be used to further characterize incentive compatible

mechanisms. Letting U∗(q) := U(q|q) for all q, we have

U∗(q) ≥ U∗(q′) + (2γ− 1)(q− q′)(xh(q′)− xh(1− q′)).

Reversing the roles of q and q′ above and summing the resulting inequalities yields

(2γ− 1)(q− q′)(xh(q′)− xh(1− q′)) ≤ U∗(q)−U∗(q′) ≤ (2γ− 1)(q− q′)(xh(q)− xh(1− q)).

Since −1 ≤ xh(q)− xh(1− q) ≤ 1, U∗(q) is Lipschitz continuous. In addition, xh(q)− xh(1− q)
is monotone and therefore continuous almost everywhere, and so U∗(q) is differentiable almost
everywhere. Applying the Envelope Theorem,

dU∗(q)
dq

= (2γ− 1)(xh(q)− xh(1− q))

at every point of continuity of xh(q)− xh(1− q) (which is almost everywhere).
We now integrate the principal’s objective function by parts. (This is proper since U∗ is abso-

lutely continuous and the distribution functions Fθ are monotone.) Note that∫ 1

0
U∗(q)d[Fg(q)− Fb(q)] =

[
U∗(q)(Fg(q)− Fb(q))

]1
0 −

∫ 1

0

dU∗(q)
dq

(Fg(q)− Fb(q))dq

= −
∫ 1

0
(xh(q)− xh(1− q))(Fg(q)− Fb(q))dq

= −2
∫ 1

1
2

(xh(q)− xh(1− q))(Fg(q)− Fb(q))dq,

where the final step follows from the symmetry of the distributions about 1
2 .

Recall that Fg(q) − Fb(q) ≤ 0 for all q ≥ 1
2 ; therefore, since xh(q) − xh(1 − q) is constrained

by feasibility to lie within [−1, 1], the objective function is easily maximized pointwise by setting
xh(q)− xh(1− q) = 1 for all q > 1

2 , yielding the solution

x∗h(q) = x∗l (1− q) =


0 if q < 1

2 ,
1
2 if q = 1

2 ,

1 if q > 1
2 .

It is easy to see (by observation) that this mechanism does indeed satisfy the full set of incentive
compatibility constraints, implying that it is indeed optimal. Of course, this is precisely equivalent
to a period-T prediction mechanism: after observing all T signals, the agent reports to the principal
whether they view state H or state L as more likely, and the agent is hired if (and only if) their
prediction matches the principal’s signal r ∈ {h, l}. �
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