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Abstract

This paper extends the Euler Equation (EE) representation of dynamic decision problems to
a general class of discrete choice models and shows that the advantages of this approach apply
not only to the estimation of structural parameters but also to the computation of a solution and
to the evaluation of counterfactual experiments. We use a choice probabilities representation
of the discrete decision problem to derive marginal conditions of optimality with the same
features as the standard EEs in continuous decision problems. These EEs imply a �xed point
mapping in the space of conditional choice values, that we denote the Euler equation-value
(EE-value) operator. We show that, in contrast to Euler equation operators in continuous
decision models, this operator is a contraction. We present numerical examples that illustrate
how solving the model by iterating in the EE-value mapping implies substantial computational
savings relative to iterating in the Bellman equation (that requires a much larger number of
iterations) or in the policy function (that involves a costly valuation step). We de�ne a sample
version of the EE-value operator and use it to construct a sequence of consistent estimators of the
structural parameters, and to evaluate counterfactual experiments. The computational cost of
evaluating this sample-based EE-value operator increases linearly with sample size, and provides
an unbiased (in �nite samples) and consistent estimator the counterfactual. As such there is
no curse of dimensionality in the consistent estimation of the model and in the evaluation of
counterfactual experiments. We illustrate the computational gains of our methods using several
Monte Carlo experiments.

Keywords: Dynamic programming discrete choice models; Euler equations; Policy iteration;
Estimation; Approximation bias.

JEL: C13; C35; C51; C61

Victor Aguirregabiria. Department of Economics. University of Toronto. 150 St. George Street.
Toronto, Ontario victor.aguirregabiria@utoronto.ca

Arvind Magesan. Department of Economics. University of Calgary. 2500 University Drive,
N.W. Calgary, Alberta arvindmagesan@gmail.com

�We would like to thank comments from Rob Bray, Thierry Magnac, Angelo Melino, Bob Miller, Pedro Mira, Jean
Marc Robin, John Rust, Bertel Schjerning, Kunio Tsuyuhara, and from seminar participants at Western University,
Calgary, the Barcelona GSE Summer Forum (Structural Microeconometrics), the Canadian Economic Association
conference, the Microeconometric Network Meeting in Copenhagen, the Society of Economic Dynamics conference
and The Ban¤ Empirical Microeconomics Conference 2015.



1 Introduction

The development of the Euler equation-GMM approach by Hansen and Singleton (1982) was a

primary methodological contribution to the literature on estimation of dynamic structural models.

One of the main advantages of this method over alternative approaches is that it avoids the curse

of dimensionality associated with the computation of present values. The computational cost of

estimating structural parameters from Euler equations increases with sample size but not with the

dimension of the state space.1 However, the Euler equation-GMM approach also has some well-

known limitations. First, the conventional wisdom in the literature is that this method cannot be

applied to models of discrete choice because optimal decisions cannot be characterized in terms

of marginal conditions in these models.2 Second, while the Euler equation-GMM signi�cantly

reduces the computational burden associated with estimating structural parameters by avoiding

full solution of the dynamic model, the end goal of structural work is typically to use an estimated

model to study the e¤ect of policies that have never occurred. The methods available for the

estimation of the e¤ect of such counterfactual experiments require the full solution of, or at least

an approximation to, the solution to the dynamic programming problem. In other words, even

if the researcher can avoid full solution in estimating the structural parameters, full solution will

be required when using the estimated model to study counterfactual policies in any case, and in

principle, Euler Equations do not help with this step. Though it is possible to use Euler equations

to construct a �xed point operator in the space of the policy function (see Coleman, 1990, 1991), in

general this operator is not a contraction such that convergence of this method is not guaranteed.

Given that the Hansen-Singleton method was believed to be inapplicable to the estimation of

discrete choice models, the development of Conditional Choice Probability (CCP) methods for the

estimation of these models, pioneered by Hotz and Miller (1993) and Hotz et al. (1994), represented

a substantial methodological contribution in this literature. By avoiding the solution of the dynamic

programming (DP) problem, these methods facilitate the estimation of speci�cations with larger

1Another nice feature of the Euler equation-GMM approach when applied to panel data is that it can deal with
di¤erent forms of non-stationarity of exogenous state variables without having to specify the stochastic process that
governs the future evolution of these variables, e.g., evolution of future aggregate shocks, business cycle, regulatory
changes, etc.

2For instance, this conventional wisdom is clearly ennunciated in Rust (1988, page 1008): "In an important
contribution, Hansen and Singleton (1982) have developed a practical technique for estimating structural parameters of
a class of discrete-time, continuous control processes. Their method uses the generalized method of moments technique
to estimate �rst-order necessary conditions of the agent�s stochastic control problem (stochastic Euler equations),
avoiding the need for an explicit solution for the optimal decision rule. The Hansen-Singleton method depends critically
on the assumption that the agent�s control variable is continuous in order to derive the �rst-order necessary conditions
by the usual variational methods."
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state spaces and richer sources of individual speci�c heterogeneity. Nevertheless, in contrast to the

Euler equations approach, the implementation of CCP or Hotz-Miller methods still requires the

computation of present values de�ned as integrals or summations over the space of future state

variables. In applications with continuous state variables or with very large state spaces, the exact

solution of these present values is an intractable problem.3

In this context, the main contribution of this paper is to extend the Euler Equation (EE)

representation of dynamic decision problems to a general class of discrete choice models and to show

that the advantages of this approach apply not only to the estimation of structural parameters but

also to the computation of a solution and to the evaluation of counterfactual experiments.

First, we derive a representation of the discrete choice model as a continuous decision problem

where the decision variables are choice probabilities. Using this equivalent representation, we de-

rive marginal conditions of optimality similar in nature to the EEs in standard continuous decision

problems. Second, we show that these EEs imply a �xed point mapping in the space of conditional

choice values, that we denote as the Euler Equation-value (EE-value) operator. We show that, in

contrast to Euler equation operators in continuous decision models, this operator is a contraction,

such that successive iterations in this mapping can be used to obtain the unique solution of the

DP problem. Furthermore, in contrast to the standard policy-iteration mapping in DP problems,

iterating in the EE mapping does not involve the computation of in�nite-period-forward present

values, but only one-period-forward expectations. We present numerical examples that illustrate

how solving the model by iterating in this EE �xed point mapping implies very substantial com-

putational savings relative to iterating in the Bellman equation (that requires a larger number of

iterations because it is a weaker contraction) or in the policy function (that involves a costly in�nite-

periods-forward valuation step). These computational savings increase more than proportionally

with the dimension of the state space.

Second, we de�ne a sample version of the EE-value operator and use it to construct a sequence of

consistent estimators of the structural parameters, and to evaluate counterfactual experiments. This

sample-based EE-value operator is de�ned only at sample points of the exogenous state variables,

and thus its dimensionality is relatively small and does not increase with the dimension of the state

space. We show that this sample-based EE-value operator is also a contraction and the unique �xed

3Applied researchers have used di¤erent approximation techniques such as discretization, Monte Carlo simulation,
sieves, neural networks, etc. However, replacing true expected values with approximations introduces an approxi-
mation error, and this error typically induces a statistical bias in the estimation of the parameters of interest. In
general, this bias does not go to zero as sample size increases and the level of approximation (e.g., number of Monte
Carlo simulations) is constant.
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point of this mapping is a root-N consistent estimator of the true solution. The sample operator

can be used to de�ne an estimator of the structural parameters. In contrast to most estimation

methods of dynamic structural models, the computational cost to obtain this estimator does not

depend on the dimension of the state space. This is because the evaluation of the EE operator does

not involve the computation of present values, only sample averages of next period�s payo¤s.

We illustrate the computational gains of our methods using several numerical experiments in

the context of a dynamic model of market entry and exit. In a �rst experiment, we compare the

computation time of alternative methods for the exact solution of the model. For a moderately

sized state space (relative to what is commonly found in applications), the standard method of

policy function iterations takes over 200 times as long as the method of iterating in the EE-value

mapping, and this di¤erence increases with the dimensionality of the state space. This implies that

many models that are computationally infeasible for all practical purposes using standard methods,

are feasible using the method we propose. We also use this �rst set of experiments to study the

source of the di¤erence in total computation time across the two methods. In particular, we show

that although the standard policy iteration mapping needs fewer iterations to obtain a �xed point,4

each iteration of the EE mapping is so relatively inexpensive that it ends up being considerably

faster in total time to convergence.

In a second experiment, we study the �nite sample properties and the computational cost of

estimators of the structural parameters using standard methods in this literature and using the

method based on the EE-value mapping. More speci�cally, we compare two-step Hotz-Miller (Hotz

and Miller, 1993) and Maximum Likelihood Estimator (MLE) estimators with the two-step and

K-step Pseudo Maximum Likelihood (PML) estimators based on our Euler equation representation.

We �nd that the two-step Euler equation estimator has about 33% higher root mean squared error

than the MLE. However, the K-step Euler equations estimator is statistically superior to the two-

step Hotz-Miller estimator and statistically indistinguishable from the MLE. Very importantly, the

main di¤erence between the two approaches is their computational cost. The two-step Hotz-Miller

estimator takes almost 5000 times as long as the two-step Euler Equations estimator, and the K-

step Euler equations estimator is over 2000 times faster than the MLE. Ultimately then, there is

no trade-o¤ (at least in the context of our dynamic entry/exit model), as researchers can obtain

estimates close to the MLE with a small fraction of the computation time.

In our third and �nal set of experiments, we compare standard value function and policy function

4Policy iterations are composite mappings which involve solution of in�nite period forward expected values as an
intermediate step. Each iteration is a larger step to convergence than is the case with value iterations.

3



methods and Euler equations methods for the estimation of an equilibrium of the model associated

to counterfactual policy. We study how these methods perform in predicting �rm behavior in

response to a counterfactual increase in the cost of entry, holding the computation time of the

di¤erent methods �xed. We show that the �nite sample properties of the Euler equation estimator

that are substantially better than those of the standard methods, i.e., mean absolute bias and

squared error are between 35 and 60 percentage points smaller in the Euler equation method.

This paper is related to a literature that exploits properties of dynamic discrete decision prob-

lems to obtain a representation of the model that does not involve the calculation of present

discounted values of the stream of payo¤s over in�nite future periods. Key contributions in this

literature are Hotz and Miller (1993) and Arcidiacono and Miller (2011, 2015) who show that

models that possess a �nite dependence property permit a representation whereby the choice prob-

abilities can be expressed as a function of expected payo¤s at a �nite number of states, meaning

that a researcher does not need to compute present values to estimate the structural parameters

of the model.5 Our sample-based EE operator is also related to the random grid method of Rust

(1997), though Rust de�nes and applies this method to standard value function and policy function

operators, and not to Euler equations.

The rest of the paper is organized as follows. Section 2 presents the model and fundamental

results in the literature. Section 3 describes our derivation of Euler equations in discrete choice

models, de�nes the EE-value mapping, and shows that it is a contraction. Section 4 de�nes the

sample version of the EE-value mapping and uses this operator to de�ne a family of estimators

of structural parameters and a method to consistently estimate counterfactuals. We derive the

statistical and computational properties of these methods, and compare them with those from

previous methods in the literature. In section 5, we present results from Monte Carlo experiments

where we illustrate the advantages of our proposed methods. We summarize and conclude in section

6. Proofs of Propositions are in the Appendix.

5Following Arcidiacono and Miller (2011), a dynamic decision problem has the �nite dependence property if,
beginning at some state X, two di¤erent decisions a and a0 arrive at the same state X 0 in �nite time with probability
one.
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2 Model

2.1 Basic framework

This section presents a general class of dynamic programing (DP) models in discrete time with

discrete actions and state variables. This framework follows Rust (1987, 1994) and it is standard

in the structural microeconometrics literature. We describe some properties of the model that will

be useful in the derivation of our main results.

Every period t, an agent takes a decision at to maximize his expected intertemporal payo¤

Et[
PT�t
j=0 �

j �t(at+j ; st+j)], where � 2 (0; 1) is the discount factor, T is the time horizon, which

may be �nite or in�nite, �t(:) is the one-period payo¤ function at period t, and st 2 S is the vector

of state variables at period t, which we assume follows a controlled Markov process with transition

probability function ft(st+1jat; st). The decision variable at belongs to the discrete and �nite set

A = f0; 1; :::; Jg. The sequence of value functions fVt(:) : t � 1g can be obtained recursively using

the Bellman equation:

Vt(st) = max
at2A

�
�t(at; st) + �

Z
Vt+1(st+1) ft(st+1jat; st) dst+1

�
(1)

The optimal decision rule, �t(:) : S ! A, is obtained as the arg-max of the expression in brackets.

This framework allows for both stationary and non-stationary models. In the stationary case, the

time horizon T is in�nite, and the payo¤ and transition probability functions are time-homogenous,

which implies that the value function and the optimal decision rule are also invariant over time.

Following the standard model in this literature (Rust, 1994), we distinguish between two sets of

state variables: st = (xt; "t), where xt is the vector of state variables observable to the researcher,

and "t represents the unobservables for the researcher. The vector xt itself is comprised by two types

of state variables, exogenous variables zt and endogenous variables yt. They are distinguished by the

fact that the transition probability of the endogenous variables depends on the action at, while the

transition probability of the exogenous variables does not depend on at. The vector of unobservables

satis�es the standard assumptions of additive separability (AS), conditional independence (CI),

and discrete support of the observable state variables. Speci�cally, the one-period payo¤ function is

additively separable in the unobservables: �t(at; st) = �t(at;xt)+"t(at), where "t � f"t(a) : a 2 Ag

is a vector of unobservable random variables, and the transition probability (density) function of

the state variables factors as: f(st+1jat; st) = fx (xt+1jat,xt) dG ("t+1), where G (:) is the CDF

of "t which is absolutely continuous with respect to Lebesgue measure, strictly increasing and

continuously di¤erentiable in all its arguments, and with �nite means. The vector of state variables
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xt belongs to a discrete set X . For notational convenience, unless necessary, we omit the exogenous

state variables zt and treat the whole vector xt as endogenous.

In this dynamic discrete choice problem, the value of choosing alternative a can be represented

as vt(a;xt) + "t(a), where vt(a;xt) is the conditional choice value function,

vt(a;xt) � �t(a;xt) + �
X

xt+12X

Z
Vt+1(xt+1; "t+1) dG ("t+1) fx (xt+1jat,xt) (2)

Taking choice alternative at = 0 as a benchmark (without loss of generality), we can de�ne the

value di¤erences evt(a;xt) � vt(a;xt) � vt(0;xt), and the optimal decision rule �t(xt; "t) can be

described as follows:

f�t(xt; "t) = ag if and only if fevt(a;xt) + "t(a) � evt(j;xt) + "t(j) for any jg (3)

Let evt(xt) be the vector of J value di¤erences at period t, i.e., evt(xt) = fevt(a;xt) : a 6= 0g.

The optimal choice probability (OCP) mapping, � (evt(x)) � f� (a; evt(x)) : a 6= 0g, is de�ned as a
mapping from RJ into [0; 1]J . It is the probability that given the observable state x the optimal

choice at period t is alternative a. Given the form of the optimal decision rule in equation (3), the

OCP function is:

� (a; evt(x)) �
Z
1 fevt(a;xt) + "t(a) � evt(j;xt) + "t(j) for any jg dG ("t) (4)

where 1f:g is the indicator function. In vector form, the OCP mapping is de�ned as � (evt(x)) �
f� (a; evt(x)) : a 6= 0g. Given a vector of choice probabilities Pt � fPt(a) : a = 0; 1; :::; Jg, we say
that this vector is optimal at period t given state x if and only if Pt = � (evt(x)) where evt(x) is
the vector value di¤erences as de�ned in (2), and the value function solves the Bellman equation

in (1).

Proposition 1 establishes that the OCP mapping is invertible.

PROPOSITION 1 [Hotz-Miller Inversion]. The mapping � (ev) is invertible such that there is a
one-to-one relationship between the vector of value di¤erences evt(x) and the vector of optimal choice
probabilities Pt(x) for a given value of x, i.e., evt(x) = ��1(Pt(x)). �
Proof: Proposition 1 in Hotz and Miller (1993).

2.2 Dynamic decision problem in probability space

This dynamic discrete choice problem can be described in terms of the primitive or structural func-

tions f�t; fx; G; �gTt=1. We now de�ne a dynamic programming problem with the same primitives
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but where the agent does not choose a discrete action at 2 f0; 1; :::; Jg but a probability distribution

over the space of possible actions, i.e., a vector of choice probabilities Pt � fPt(a) : at = 0; 1; :::; Jg.

We denote this problem as the dynamic probability-choice problem. We show below that there is

a close relationship between optimal decision rules (and value functions) in the original discrete

choice problem and in the probability-choice problem.

Given an arbitrary vector of choice probabilities, Pt, we de�ne the following expected payo¤

function,

�Pt (Pt;xt) �
XJ

a=0
Pt(a) [�t (a;xt) + et(a;Pt)], (5)

where et(a;Pt) is the expected value of "t(a) conditional on: (i) alternative a being the optimal

choice; and (ii) Pt being the vector of optimal choice probabilities. Condition (i) implies that

et(a;Pt) is the expectation Et["t(a) j evt(a) + "t(a) � evt(j) + "t(j) for any j]. By Hotz-Miller

Inversion Theorem, condition (ii) implies that evt(a) = ��1 (a;Pt). Therefore,6
et(a;Pt) = E

�
"t(a) j ��1 (a;Pt) + "t(a) � ��1 (j;Pt) + "t(j) for any j

�
(6)

We also de�ne the expected transition probability of the state variables,

fP (xt+1jPt;xt) �
XJ

a=0
Pt(a) f(xt+1ja;xt). (7)

Now, we de�ne a dynamic programming problem where the decision at period t is the vector of

choice probabilities Pt, the current payo¤ function is �Pt (Pt; xt), and the transition probability of

the state variables is fP (xt+1 j Pt; xt). By de�nition, the Bellman equation of this problem is:

V Pt (xt) = max
Pt2[0;1]J

8<:�Pt (Pt;xt) + � X
xt+12X

V Pt+1(xt+1) f
P (xt+1jPt;xt)

9=; (8)

This is the dynamic probability-choice problem associated to the original dynamic discrete choice

model. The solution of this DP problem can be described in terms of the sequence of value functions

fV Pt (xt)gTt=1 and optimal decision rules fP�t (xt)gTt=1. Proposition 2 presents several properties of

this solution of the dynamic probability-choice problem. These properties play an important role

in our derivation of Euler equations. These properties build on previous results but, as far as we

know, they are new in the literature.

Let Wt(Pt;xt) be the intertemporal payo¤ function of the dynamic probability-choice problem,

i.e., Wt(Pt;xt) � �Pt (Pt;xt)+ �
P
xt+1

V Pt+1(xt+1) f
P (xt+1jPt;xt).

6For some distributions of the unobservables "t, this function has a simple closed form expression. For instance,
if the unobservables are extreme value type 1, then et(a;Pt) = 
 � ln(Pt(a)). And if the model is binary choice and
the unobservables are independent standard normal, then et(a;Pt) = �(��1[Pt(a)])=Pt(a).
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PROPOSITION 2. For any dynamic discrete choice problem that satis�es the assumptions of

Additive Separability (AS) and Conditional Independence (CI), the associated dynamic probability-

choice problem is such that:

(A) the intertemporal payo¤ function Wt(Pt;xt) is twice continuously di¤erentiable and

globally concave in Pt such that the optimal decision rule P�t (xt) is uniquely character-

ized by the �rst order condition @Wt(P
�
t ;xt)=@Pt = 0;

(B) for any vector Pt in the J-dimension Simplex, the gradient vector @Wt(Pt;xt)=@Pt

is equal to evt(xt)���1 (Pt);
(C) the optimal decision rule in the probability-choice problem is equal to the optimal

choice probability (OCP) function of the original discrete choice problem, i.e., P�t (xt) =

� (evt(xt)). �

Proof: In the Appendix.

Proposition 2 establishes a representation property of this class of discrete choice models. The

dynamic discrete-choice model has a representation as a dynamic probability-choice problem with

the particular de�nitions of expected payo¤ and expected transition probability functions presented

in equations (5)-(7) above. In section 3, we show that we can exploit this representation to derive

Euler equations (EEs) for discrete choice DP models. Proposition 3 plays also an important role

in our derivation of Euler equations.

PROPOSITION 3. For any vector of choice probabilities Pt in the J-dimensional simplex,

@�Pt (Pt;xt)

@Pt(a)
= e�t (a;xt)� ��1 (a;Pt) (9)

where e�t (a;xt) � �t (a;xt)� �t (0;xt). �
Proof: In the Appendix.

3 Euler Equations and �xed point mappings

3.1 Deriving Euler Equations

In DP models where both decision and state variables are continuous, the standard approach to

obtain EEs is based on the combination of marginal conditions of optimality at two consecutive

periods together with an envelope condition for the value function. This standard approach, though

very convenient for its simplicity, imposes strong restrictions on the model: the endogenous state
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variables should be continuous and follow transition rules where the stochastic component (inno-

vation) is additively separable, e.g., xt+1 = f(xt; at)+ �t+1. The dynamic probability-choice model

de�ned by Bellman equation (8) does not necessarily satisfy these conditions. However, these re-

strictions are far from being necessary for the existence of Euler equations. Here we apply a more

general method to obtain these equations.

We follow an approach that builds on and extends the one in Pakes (1994). The method is

based on a two-period deviation principle that should be satis�ed by the optimal solution of any

DP problem. Consider a constrained optimization problem where the agent chooses the vector of

probabilities at periods t and t+1, Pt and Pt+1, to maximize the sum of expected and discounted

payo¤s at these two consecutive periods subject to the constraint that the distribution of the state

variables at period t + 2 stays the same as under the optimal solution of the DP problem. This

constrained optimization problem is formally given by:

max
fPt;Pt+1g

�Pt (Pt;xt) + �
X

xt+12X
�Pt+1(Pt+1;xt+1) f

P (xt+1jPt;xt)

subject to: fP(2)(xt+2 j Pt;Pt+1;xt) = f
P
(2)(xt+2 j P

�
t ;P

�
t+1;xt) for any xt+2

(10)

where fP(2) represents the two-period-forward transition probability of the state variables, that by

de�nition is a convolution of the one-period transitions at periods t and t+ 1:

fP(2)(xt+2 j Pt;Pt+1;xt) �
X

xt+12X
fP (xt+2 j Pt+1;xt+1) fP (xt+1 j Pt;xt) (11)

The two-period deviation principle establishes that the unique solution to this problem is given by

the choice probability functions P�t (xt) and P
�
t+1(xt+1) that solve the DP problem (8) at periods

t and t + 1.7 Note that for each value of xt there is a di¤erent constrained optimization problem,

and therefore a di¤erent solution. We can solve this problem using Lagrange method. Under some

additional conditions, we can operate in the Lagrange conditions of optimality to obtain equations

that do not include Lagrange multipliers but only marginal payo¤s at periods t and t+ 1.

For the description of these Euler equations, it is convenient to incorporate some additional

notation. Let X be the (unconditional) support set of the vector of endogenous state variables xt.

For a given vector xt, let X(1)(xt) � X be the support of xt+1 conditional on xt. That is, xt+1 2

X(1)(xt) if and only if f(xt+1jat;xt) > 0 for some value of at. Similarly, for given xt, let X(2)(xt) � X

be the set with all the vectors xt+2 with Pr(xt+2jat; at+1;xt) > 0 for some value of at and at+1.

Let ef(xt+1jat;xt) be the di¤erence transition probability f(xt+1jat;xt)�f(xt+1j0;xt), where using
7 If the DP problem is stationary, then this solution will be such that P�t = P

�
t+1.
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choice alternative 0 as the baseline is without loss of generality. Let eFt+1(xt) be a matrix with
elements ef(xt+2jat+1;xt+1) where the columns correspond to all the values xt+2 2 X(2)(xt) leaving
out one value, and the rows correspond to all the values (at+1;xt+1) 2 [A � f0g] � X(1)(xt). For

notational simplicity we omit the state at period t, xt, as an argument in the expressions below,

though we should keep in mind that there is a system of Euler equations for each value of xt.

There are two sets of Lagrange marginal conditions of optimality. The �rst set of Lagrange

conditions is a system of J equations, one for each probability Pt(a) with a > 0,

@�Pt
@Pt(a)

+ �
P
xt+1

"
�Pt+1 �

P
xt+2

�(xt+2) f
P (xt+2jPt+1;xt+1)

# ef(xt+1ja) = 0; (12)

where �(xt+2) is the Lagrange multiplier associated to the constraint for state xt+2.8 The second

set of Lagrange conditions is a system of J � jX(1)j equations, one for each probability Pt+1(ajxt+1)

with a > 0 and xt+1 2 X(1),

�
@�Pt+1

@Pt+1(ajxt+1)
�
P
xt+2

�(xt+2) ef(xt+2ja;xt+1) = 0; (13)

where we have taken into account that @fPt+2=@Pt+1(ajxt+1) = ef(xt+2ja;xt+1).
Our derivation of Euler equations consists of using the system of J � jX(1)j equations in (13)

to solve for the vector of jX(2)j � 1 Lagrange multipliers, and then plug-in this solution into the

system of equations (12). The key condition for the existence of Euler equations comes from the

existence of a unique solution for the Lagrange multipliers in the system of equations (13). Using

the de�nition of the matrix eFt+1 above, we can represent the system of equations (13) in vector

form as:

�
@�P

t+1

@Pt+1
= eFt+1 � (14)

where � is the vector of Lagrange multipliers, and @�P
t+1=@Pt+1 is a vector with dimension J �jX(1)j

that contains the marginal expected pro�ts @�Pt+1=@Pt+1(ajxt+1). Proposition 4 establishes the

conditions for existence of Euler equations and presents the general formula.

PROPOSITION 4. Suppose that matrix eFt+1 is full column rank. Then, the marginal conditions
of optimality for the constrained optimization problem (10) imply the following solution for the

Lagrange multipliers, � = � Mt+1
@�P

t+1

@Pt+1
, where Mt+1 is the matrix [eFt+1�eFt+1]�1 eFt+1�, and the

8For the derivation of this condition, note that fP (xt+1jPt) = [1�
P

a>0Pt(a)] f(xt+1j0)+
P

a>0Pt(a) f(xt+1ja)
, such that @fPt+1=@Pt(a) = f(xt+1ja)� f(xt+1j0) = ef(xt+1ja).

10



following system of Euler equations,

@�Pt
@Pt(a)

+ �
P
xt+1

"
�Pt (Pt+1;xt+1)� �

P
xt+2

�
Mt+1(xt+2)

@�P
t+1

@Pt+1

�
fP (xt+2jPt+1;xt+1)

# ef(xt+1ja) = 0

(15)

where Mt+1(x) is the row vector in matrix Mt+1 associated to xt+2 = x. �

Note that the dimension of matrix [eFt+1�eFt+1] is the number of values (minus one) that the
endogenous state variables can take two periods forward. In most applications, this is a small

number. In particular, the dimension of this matrix does not depend on the dimension of the state

space of the exogenous state variables. This is a feature of the Euler equation that is key for the

substantial computational savings that show in this paper.

We now provide some examples to illustrate the derivation of these Euler equations and to

present the simple form of these equations in some models that have received substantial attention

in empirical applications.

3.1.1 Example 1: Multi-armed bandit models

Dynamic discrete choice models of occupational choice, portfolio choice, or market entry-exit,

among many other economic models, can be seen as examples of a general class of dynamic decision

models called Multi-Armed Bandit problems (Gittins, 1979; Gittins, Glazebrook, and Weber, 2011).

Every period t the agent chooses an occupation (or an asset; or a market to enter) among J + 1

possible choices, at 2 f0; 1; :::; Jg. There are costs of changing occupations such that the choice of

occupation in the previous period is a state variable. Suppose that the previous period�s occupation

is the only endogenous state variable of the model. Then, the state space is X = f0; 1; :::; Jg, and

the transition function is given by xt+1 = at such that f(xt+1jat; xt) = 1fxt+1 = atg. This implies

that fP (xt+1 = ajPt; xt) = Pt(ajxt), and the two-periods forward transition is fP(2)(xt+2 = a0 j

Pt;Pt+1; xt) =
XJ

a=0
Pt(ajxt) Pt+1(a0ja). The constrained optimization problem is:

max
fPt;Pt+1g

�Pt (Pt; xt) + �
XJ

a=0
Pt(ajxt) �Pt+1(Pt+1; a)

subject to:
XJ

a=0
Pt(ajxt) Pt+1(a0ja) = constant for any a0

(16)

Taking into account that there are only J free probabilities such that Pt(0jxt) = 1�
PJ
a=1Pt(ajxt),

the Lagrange condition with respect to Pt(ajxt) is:

@�Pt
@Pt(ajxt)

+ �
�
�Pt+1(Pt+1; a)��Pt+1(Pt+1; 0)

�
�

JX
a0=1

�(a0)
�
Pt+1(a

0ja)� Pt+1(a0j0)
�
= 0 (17)

11



The Lagrange condition with respect to Pt+1(a0ja) is,

�
@�Pt+1(Pt+1; a)

@Pt+1(a0ja)
= �(a0) (18)

Combining these two sets of conditions we get the following system of Euler equations: for any

a > 1,
@�Pt

@Pt(ajxt)
+ �

�
�Pt+1(Pt+1; a)��Pt+1(Pt+1; 0)

�

��
XJ

a0=1

"
@�Pt+1(Pt+1; a)

@Pt+1(a0ja)
Pt+1(a

0ja)�
@�Pt+1(Pt+1; 0)

@Pt+1(a0j0)
Pt+1(a

0j0)
#
= 0

(19)

We can simplify further this expression. Using Proposition 3 and after some operations we can

obtain:
�t (a; xt) + e(a;Pt(xt)) + � [�t+1 (0; a) + e(0;Pt+1(a))] =

�t (0; xt) + e(0;Pt(xt)) + � [�t+1 (0; 0) + e(0;Pt+1(0))]
(20)

For instance, when the unobservables are i.i.d. extreme value distributed, we have that et(a;Pt(xt)) =


 � lnPt(ajxt) and this Euler equation becomes:

�t (a; xt)� lnPt(ajxt) + � [�t+1 (0; a)� lnPt+1(0ja)] =

�t (0; xt)� lnPt(0jxt) + � [�t+1 (0; 0)� lnPt+1(0j0)]
(21)

Euler equation (20) has a clear economic interpretation. There are two possible decision paths

from state xt at period t to state xt+2 = 0 at period t + 2: the decision path (at = 1; at+1 = 0),

and the decision path (at = 0; at+1 = 0). Euler equation (20) establishes that, at the optimal

solution the discounted expected payo¤ at periods t and t + 1 should be the same for the two

decision paths. This is an arbitrage condition. If this condition does not hold, then the agent can

increase his expected intertemporal payo¤ by increasing the probability of the choice path with

higher two-period expected payo¤.

The Euler equation implied by equation (21) is associated with the value xt+2 = 0. We note

here as well that one can obtain a di¤erent expression using the Euler Equation associated with

the state value xt+2 = a > 0, as in general, there are as many Euler Equations as there are possible

values of xt+2.

3.1.2 Example 2: Machine replacement model

Consider the bus engine replacement problem in Rust (1987). In this example, the endogenous state

variable xt is the mileage on the bus engine. Suppose that the space of possible mileages is given by

the discrete set X = f0; 1; 2; :::g, and that mileage follows a transition rule xt+1 = (1� at)(xt + 1),

12



where at 2 f0; 1g represents the machine replacement decision. Given that the state at period t is

xt = x, the set of possible states one period forward is X(1)(x) = f0; x+ 1g, and the set of possible

states two periods forward is X(2)(x) = f0; 1; x + 2g. The transition probability induced by the

choice probability is fP (xt+1 = 0jPt; xt) = Pt(1jxt) and fP (xt+1 = xt + 1jPt; xt) = 1 � Pt(1jxt),

and the two-periods forward transitions are fP(2)(xt+2 = 1 j Pt;Pt+1; xt) = Pt(1jxt) Pt+1(0j0)

and fP(2)(xt+2 = x + 2 j Pt;Pt+1; x) = Pt(0jx) Pt+1(0jx + 1). The restrictions in the constraint

optimization problem are:

Pt(1jxt) Pt+1(0j0) = constant

Pt(0jxt) Pt+1(0jxt + 1) = constant
(22)

The Lagrange condition with respect to Pt(1jx) is:
@�Pt

@Pt(1jx)
+�

�
�Pt+1(Pt+1; 0)��Pt+1(Pt+1; x+ 1)

�
+�(1) Pt+1(0j0)+�(x+2) Pt+1(0jx+1) = 0 (23)

The Lagrange conditions with respect to Pt+1(1j0) and Pt+1(1jx+ 1) are,

�
@�Pt+1(Pt+1; 0)

@Pt+1(1j0)
= �(1) and �

@�Pt+1(Pt+1; x+ 1)

@Pt+1(1jx+ 1)
= �(x+ 2) (24)

Combining these conditions, we get the following system of Euler equations: for any a > 1,

@�Pt
@Pt(ajxt)

+ �
�
�Pt+1(Pt+1; 0)��Pt+1(Pt+1; x+ 1)

�

��
"
@�Pt+1(Pt+1; 0)

@Pt+1(1j0)
Pt+1(0j0)�

@�Pt+1(Pt+1; x+ 1)

@Pt+1(1jx+ 1)
Pt+1(0jx+ 1)

#
= 0

(25)

We can simplify further this expression. Using Proposition 3, we obtain that:

�t(1; xt) + e(1;Pt(xt)) + � [�t+1(1; 0) + e(1;Pt+1(0))] =

�t(0; xt) + e(0;Pt(xt)) + � [�t+1(1; xt + 1) + e(1;Pt+1(xt + 1))]
(26)

Again, there is a clear economic interpretation of this Euler equation. There are two possible

decision paths from state xt at period t to state xt+2 = 0 at period t + 2: decision path (at =

1; at+1 = 1), and decision path (at = 0; at+1 = 1). Euler equation (26) establishes that the

discounted expected payo¤ at periods t and t+ 1 should be the same for the two decision paths.

3.2 Euler Equation �xed point mappings

In this section, we show that the system of Euler equations derived above imply two di¤erent �xed

point mappings: (i) a mapping in the space of conditional choice probabilities, that we denote as

the Euler Equation - Probability (EE-p) mapping ; and (ii) a mapping in the space of conditional

choice values, that we denote as the Euler Equation - Value (EE-v) mapping. We show that the

Euler Equation-Value mapping is a contraction.

13



3.2.1 Euler Equation-Probability mapping

Consider the system of Euler equations in (21). Solving for Pt(ajxt) we have that:

Pt(ajxt) =
exp

n
� (a;xt)� � (0;xt) + � Et

h
� (0; a; zt+1)� � (0; 0; zt+1)� ln

�
Pt+1(0ja;zt+1)
Pt+1(0j0;zt+1)

�io
JX
j=0

exp
n
� (j;xt)� � (0;xt) + � Et

h
� (0; j; zt+1)� � (0; 0; zt+1)� ln

�
Pt+1(0jj;zt+1)
Pt+1(0j0;zt+1)

�io
(27)

The right-hand-side of this equation describes a mapping �EE;p(a;xt;Pt+1) from the vector of

choice probabilities at period t + 1, Pt+1, into the probability space, such that �EE;p(a;xt; :) :

[0; 1]jX jJ ! [0; 1]. Let �EE;p(P) be the vector-valued function that consists of the collection of the

functions �EE;p(a;xt; :) for every value of (a;xt) in the space (A� f0g)�X :

�EE;p(P) � f�EE;p(a;xt;P) : for any (a;xt) 2 (A� f0g)�Xg (28)

By de�nition, �EE;p(P) is a �xed point mapping in the probability space [0; 1]jX jJ . Using this

mapping we can represent the relationship between choice probabilities at periods t and t + 1

implied by the Euler Equations as follows:

Pt = �EE;p(Pt+1) (29)

In the stationary version of the model (i.e., in�nite horizon and time-homogeneous payo¤ function),

the optimal choice probabilities are time invariant: Pt = Pt+1. Therefore, expression (29) describes

the optimal choice probabilities as a �xed point of the mapping �EE;p. We denote �EE;p as the

Euler Equation - Probability (EE-p) mapping.

We can use this mapping to solve the DP problem. A computational advantage of solving the

model using �xed-point iterations in the EE-p mapping is that each iteration does not involve calcu-

lating present values, as in the standard policy iteration or Newton-Kantorovich method (Puterman

and Brumelle, 1979, and Puterman, 1994). Unfortunately, the EE-P mapping is not a contraction

such that an algorithm that applies �xed-point iterations in this mapping may not converge to the

solution of the DP problem. The following example illustrates this issue.

EXAMPLE (Entry-Exit model). Consider a binary-choice version of the multi-armed bandit model.

The model is stationary and so we omit the time subindex. There are only two free conditional

choice probabilities: P = (P (1j0); P (1j1)), where P (1j0) is the probability of moving from state 0

to state 1 (i.e., market entry), and P (1j1) is the probability of staying in state 1 (i.e., staying active

in the market). Here we use the more compact notation P0 � P (1j0) and P1 � P (1j1). The Euler

14



equation (21) takes the following form: �(1; x)� lnPx + � [�(0; 1)� ln(1� P1)] = �(0; x)� ln(1�

Px) + � [�(0; 0)� ln(1� P0)]. The EE-p mapping is �EE;p(P) = f�EE;p(x;P) : x = 0; 1g with

�EE;p(x;P) =
exp fc (x) + � [� ln(1� P1) + ln(1� P0)]g

1 + exp fc (x) + � [� ln(1� P1) + ln(1� P0)]g
(30)

and c (x) � [�(1; x)� �(0; x)]+�[�(0; 1)��(0; 0)]. For vectors P andQ with the set [0; 1]2, consider

the ratio r(P;Q) = k�EE;p(P)� �EE;p(Q)k = kP�Qk. The mapping �EE;p is a contraction if and

only if the ratio r(P;Q) is strictly smaller than one for any P and Q in the set [0; 1]2. Figure 1

presents an example where this condition is not satis�ed. This �gure presents the ratio r(P;Q)

as a function of P1 for �xed P0 = 0:1 and Q = (0:5; 0:5), in a model with c (0) = �1, c (1) = 1,

and � = 0:95. We see that the ratio becomes strictly greater than one for values of P1 close to 1.

Therefore, in this example the mapping �EE;p(P) is not a contraction. Note also that,

@�EE;p(1;P)

@P1
= �

�EE;p(1;P) [1� �EE;p(1;P)]
1� P1

The value of this derivative is greater than one for values of P1 that are close enough to one. It

is also possible to show that the spectral radius of the Jacobian matrix @�EE;p(P)=@P0 is equal

to �

�����EE;p(1;P) [1��EE;p(1;P)]1�P1 � �EE;p(0;P) [1��EE;p(0;P)]
1�P0

����, and it is greater than one for values of P1
close enough to one. �

Figure 1. Ratio k�EE;p(P)� �EE;p(Q)k = kP�Qk as a function of P1
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3.2.2 Euler Equation-Value mapping

Let vt(a;xt) be the conditional choice value function, and let evt(a; xt) be the di¤erential conditional
choice value function, i.e., evt(a;xt) � vt(a;xt) � vt(0;xt). Hotz-Miller (1993) inversion theorem

(Proposition 1 above) establishes that there is a one-to-one mapping between value di¤erences and

choice probabilities. In the logit model, this mapping is such that Pt(ajxt) = expfevt(a;xt)g=[1 +PJ
j=1 expfevt(j;xt)g], and the inverse of this mapping is evt(a;xt) = lnPt(ajxt)� lnPt(0jxt). Solving

these expressions into the Euler equation (21), we obtain the following equation in terms of value

di¤erences:

evt(a;xt) = [�(a;xt)� �(0;xt)] + � Et [� (0; a; zt+1)� � (0; 0; zt+1)]

+ � Et
h
� ln

�
1 +

PJ
j=1 expfevt+1(j; a; zt+1)g�+ ln�1 +PJ

j=1 expfevt+1(j; 0; zt+1)g�i
(31)

Let V be the space of the vector of value di¤erences ev � fv(a;x) : (a;x) 2 (A � f0g) � Xg,

such that V � RjX jJ . Given that the payo¤ function �(a;x) is bounded on A�X , value di¤erences

are also bounded and the space V is a bounded and compact subspace within the Euclidean space

RjX jJ . The right-hand-side of equation (31) de�nes a function �EE;v(a;xt; evt+1) from the vector

of value di¤erences at period t + 1, evt+1 2 V, into the space of values V. Let �EE;v(ev) be the
vector-valued function that consists of the collection of the functions �EE;v(a;x; :) for every value

of (a;x) in the space (A� f0g)�X :

�EE;v(ev) � f�EE;v(a;x; ev) : for any (a;x) 2 (A� f0g)�Xg (32)

By de�nition, �EE;v(v) is a �xed point mapping in the value space V. Using this mapping we can

represent the relationship between value di¤erences at periods t and t + 1 implied by the Euler

Equations as follows: evt = �EE;v(evt+1) (33)

In the stationary version of the model, the optimal value di¤erences are time invariant: evt = evt+1.
Therefore, expression (33) describes the vector of optimal value di¤erences as a �xed point of the

mapping �EE;v. We denote �EE;v as the Euler Equation - value (EE-v) mapping.

Proposition 5 establishes that the Euler Equation-value mapping is a contraction.

PROPOSITION 5. The Euler Equation - value mapping �EE;v is a contraction in the complete

metric space (V; k:k1), where k:k1 is the in�nity norm, i.e., there is a constant � 2 (0; 1) such

that for any pair ev and ew in V, we have that k�EE;v(ev)� �EE;v(ew)k1 � � kev � ewk1.
16



Proof: In the Appendix.

A corollary of Proposition 5 is that successive iterations in the EE-v operator is a method to solve

this discrete choice dynamic programming problem. Below we compare this method to the most

commonly used methods for solving DP problems: successive approximation to the value function

(i.e., iterations in the Bellman equation), policy function (or Newton-Kantorovich) iterations, and

hybrids versions of these methods.

4 Estimation

Suppose that the researcher�s dataset consists of panel data of N agents, indexed by i, over T

periods of time with information on agents�actions and state variables, f ait ; xit : i = 1; 2; :::; N ;

t = 1; 2; :::; Tg. Here we consider a sample where the number of agents N is large and the number

of time periods T is small, i.e., asymptotic results are for N ! 1 with T �xed. The researcher

is interested in using this sample to estimate the structural parameters in the payo¤ function.

We assume that the payo¤ function is known to the researcher up to a �nite vector of structural

parameters �. The researcher is also interested in using the estimated model to make predictions

about how a change in some structural parameters a¤ects agents�behavior. This type of prediction

exercise is described in the literature as a counterfactual experiment. In this section, we present

estimation methods for structural parameters and counterfactual experiments that use our Euler

equation �xed points mappings.

4.1 Empirical Euler-Equation mapping

Given a sample, the researcher can construct an empirical counterpart of the EE mappings de�ned

in Section 3. This empirical EE mapping plays a fundamental role in the estimation of structural

parameters and counterfactual experiments that we de�ne below. Here we de�ne the empirical EE

mappings and prove some important properties.

Let fzit : i = 1; 2; :::; N ; t = 1; 2; :::; Tg be the sample observations of the vector of exogenous

state variables. Let Z be the set of possible values of z in the population. De�ne the empirical

set ZN = fz 2 Z : there is a sample observation (i; t) with zit = zg, and the empirical transi-

tion probability function f(N)(z0jz0) de�ned on ZN � ZN into [0; 1], such that for any z0 2 ZN ,

f(N)(z
0jz0) =

PN
i=1 1fzit+1 = z0 and zit = z0g=

PN
i=1 1fzit = z0g. Stationarity of the transition

probability fz(zt+1jzt) implies that: the set ZN is a random sample from the ergodic set Z; ZN
converges to Z; and f(N)(z0jz0) converges uniformly to fz(z0jz0). Let E

(N)
fz0jzg[:] be a sample con-
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ditional mean operator from R into R such that for any real-valued function h(z0) the operator is

de�ned as:

E(N)fz0jz0g
�
h(z0)

�
�
X
z02ZN

f(N)(z
0jz0) h(z0) (34)

The Empirical EE-value mapping �(N)EE;v(ev) is de�ned as the sample counterpart of the EE-value
mapping in equation (31) where we replace the conditional expectation at the population level with

its empirical counterpart E(N)fz0jz0g. That is, �
(N)
EE;v(ev) = f�(N)EE;v(a; y; z;ev) : (a; y; z) 2 A � Y � ZNg

where:

�
(N)
EE;v(a; y; z;ev) = [�(a; y; z)� �(0; y; z)] + � E(N)fz0jz0g [� (0; a; z

0)� � (0; 0; z0) ]

+ � E(N)fz0jzg

"
� ln

 
1 +

JP
j=1

expfevt+1(j; a; z0)g!+ ln 1 + JP
j=1

expfevt+1(j; 0; z0)g!#
(35)

�
(N)
EE;v(ev) is a �xed point mapping in the space of value di¤erences such that we can obtain a
sample-based solution to the DP problem by solving the �xed point problem:

ev = �(N)EE;v(ev) (36)

Importantly, the dimension of this �xed point mapping is J � jYj � ZN , which can be many orders

of magnitude smaller than the dimension of �EE;v when the dimension of Z is large relative to the

sample size.

Proposition 6 establishes that the Empirical EE-value mapping is a contraction and it converges

uniformly in probability to the true EE-value mapping. We now include explicitly the vector of

structural parameters � as an argument in this mapping.

PROPOSITION 6. The Empirical EE-value mapping �(N)EE;v(ev; �) is a contraction mapping and it
converges uniformly in probability to the population EE-value mapping �EE;v(ev; �).
Proof: In the Appendix.

We also de�ne the Empirical EE-probability mapping �(N)EE;p(P) as the sample counterpart of the

EE-prob mapping in equation (28). That is, �(N)EE;p(P) = f�
(N)
EE;p(a; y; z;P) : (a; y; z) 2 A�Y�ZNg

where:

�
(N)
EE;p(a;x;P) =

exp
n
� (a;x)� � (0;x) + � E(N)fz0jzg

h
� (0; a; z0)� � (0; 0; z0)� ln

�
P (0ja;z0)
P (0j0;z0)

�io
JX
j=0

exp
n
� (j;x)� � (0;x) + � E(N)fz0jzg

h
� (0; j; z0)� � (0; 0; z0)� ln

�
P (0jj;z0)
P (0j0;z0)

�io
(37)
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Using the same approach as in the proof of Proposition 6, it is straightforward to show that

�
(N)
EE;p(P; �) converges uniformly in probability to the population EE-prob mapping �EE;p(P; �).

Since the population EE-prob operator is not necessarily a contraction, this is also the case for its

sample counterpart.

4.2 Estimation of structural parameters using Euler equations

Given the empirical EE-prob operator, de�ne the Pseudo Likelihood function:

QN (�;P) =

NX
i=1

TX
t=1

ln �
(N)
EE;p(ait;xit; �;P) (38)

We can construct a root-N consistent and asymptotically normal estimator of � using a two-

step Pseudo Maximum Likelihood (PML) estimator. The �rst step consists in the nonpara-

metric estimation of the conditional choice probabilities Pt(ajx) � Pr(ait = a j xit = x). LetbPN � f bPt(ajx) : t = 1; 2; :::; Tg be a vector of nonparametric estimates of choice probabilities for
any choice alternative a and any value of x observed in the sample. For instance, bPt(ajx) can be
a kernel (Nadaraya-Watson) estimator of the regression of 1fai = ag on xit. Note that we do not

need to estimate conditional choice probabilities at states which are not observed in the sample. In

the second step, the PML estimator of � is:

b�N = argmax
�2�

QN

�
�; bPN� (39)

This two-step semiparametric estimator is root-N consistent and asymptotically normal under mild

regularity conditions (see Theorems 8.1 and 8.2 in Newey and McFadden, 1994). The variance

matrix of this estimator can be estimated using the semiparametric method in Newey (1994), or as

recently shown by Ackerberg, Chen, and Hahn (2012) using a computationally simpler parametric-

like method as in Newey (1984).9

This PML estimator based on the Euler equation Pseudo Likelihood function implies an e¢ -

ciency loss relative to the PML estimator based on a pseudo likelihood where the mapping � is the

standard policy-iterations operator (or Newton-Kantorovich operator). As shown in Aguirregabiria

and Mira (2002, Proposition 4), the two-step pseudo maximum likelihood estimator based on the

policy-iteration operator is asymptotically equivalent to the maximum likelihood estimator. This

e¢ ciency property is not shared by other Hotz-Miller type of two-step estimators. However, there

is a trade-o¤ in the choice between the PML estimator based on Euler equations and the one based

on the policy-iteration operator. While the later is asymptotically e¢ cient, its computational cost

9We can also use the Empirical operators �(N)EE;p or �
(N)
EE;v to de�ne GMM estimators of the structural parameters.

19



can be many orders of magnitude larger than the computational cost for the estimator based on

Euler equations (see Section 5). In models with large state spaces the implementation of the asymp-

totically optimal PML estimator may require approximation methods. In that case, the EE-based

estimator can provide more precise estimates because it avoids approximation biases. We illustrate

these trade-o¤s in our Monte Carlo experiments in Section 5.

4.3 Estimation of counterfactuals

Given a sample and an estimate of the structural parameters, b�, the researcher is interested in
estimating the behavioral e¤ects of a change in the structural parameters from the estimate b� to an
alternative vector ��. To estimate the e¤ects of this counterfactual experiment on agents�behavior

and payo¤s, the researcher needs to solve the DP problem under the structural parameters ��. We

can represent this solution either in terms of the vector of conditional choice probabilities P� or in

terms of the vector of value di¤erences ev�. The vector ev� is de�ned as the unique �xed point of
the contraction mapping �EE;v(:; ��), i.e., ev� =�EE;v(ev�; ��).

In most empirical applications, the dimension of the state space, and in particular the dimension

of Z, is very large such that the exact computation of ev� is computationally unfeasible. Here we
propose an approximation to the solution using the Empirical EE-value mapping. We approximateev� using ev�N . This approximate solution is de�ned as the unique �xed point of the Empirical
EE-value mapping,

ev�N = �(N)EE;v(ev�N ; ��) � n�(N)EE;v(a; y; z;ev) : (a; y; z) 2 A� Y � ZNo (40)

And the corresponding vector of conditional choice probabilities is P�N = �(ev�N ). This approximate
solution has several interesting properties that we describe now.

(a) Consistency. ev�N and P�N are consistent estimators of the true counterfactuals ev� and P�.
PROPOSITION 7. The vector of value di¤erences ev�N that is de�ned as the �xed point ev�N =

�
(N)
EE;v(ev�N ; ��) is a root-N consistent and asymptotically normal estimator of ev�.
Proof: In the Appendix.

(b) Low computational cost and no curse of dimensionality. The dimension of the vector ev�N and

the mapping �(N)EE;v is of the same order as the sample size. In most empirical applications, this

dimension is several orders of magnitude smaller than the dimension of the state space and the

true ev�. This substantial reduction in the dimension of the �xed point problem together with the

other important computational properties of the EE-value operator (i.e., its contraction property
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and the no need to compute present values) imply very substantial computational savings. From a

practical point of view, the dimension of the operator does not depend on the dimension of the state

space Z but on sample size. Furthermore, our Empirical EE-value mapping is an Euler equation

version of the random operators de�ned in Rust (1997). Rust shows that these operators succeed

in breaking the curse of dimensionality for Markov dynamic decision models with discrete choices

and continuous state variables. This property also applies to our dynamic decision model when the

endogenous state variables are discrete and exogenous state variables are continuous.

5 Monte Carlo experiments

In this section we present Monte Carlo experiments to illustrate the performance of the Euler

equation methods in terms of computational savings and statistical precision in three problems: the

exact solution of the DP problem; the estimation of structural parameters; and the estimation of

counterfactual experiments. We evaluate our solution and estimation methods in the context of a

dynamic model of market entry and exit.

First we examine the di¤erences in the computational burdens of four candidate solution algo-

rithms: our EE-value mapping iteration method, the associated EE-policy iteration method, and

the standard methods of value function iterations and policy function iterations.10 Generally speak-

ing, the total time required to obtain a model solution is comprised by two factors, the amount

of time per iteration and the number of iterations. These four iterative methods trade these two

factors o¤ in di¤erent ways. The standard policy iteration mapping is a composite mapping, as

the policies are expressed in terms of value functions, which are themselves expressed in terms of

the policies. As such, the policy iteration method is very costly per iteration, but the improvement

at each iteration is relatively large, so fewer steps are needed. The other three algorithms are not

composite mappings, and therefore they are much faster per iteration as there is no intermediate

valuation step involved, but they require more steps to convergence. We use the experiments to

compare the time per iteration and the number of iterations each method takes to convergence to

obtain a better understanding of the computational costs.

Second, we present Monte Carlo experiments to evaluate the �nite sample properties and com-

putational costs of four estimators: two-step PML-EE estimator; sequential PML-EE estimator;

two-step PML-policy function estimator (a variant of the Hotz-Miller CCP estimator); and the

Maximum Likelihood estimator computed using the sequential method in Aguirregabiria and Mira

10For a description of the algorithms of value function iteration and policy function iteration, and their properties,
see sections 6.3 and 6.4 in Puterman (1994), and section 5.2 in Rust (1996).
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(2002).

Third, given an estimated model and a counterfactual experiment that consists of an increase

in the parameter that represents the sunk cost of entry, we present Monte Carlo experiments to

evaluate the �nite sample properties of four methods to estimate counterfactual choice probabilities.

These four methods consist in �nding a �xed point of the corresponding empirical operator: EE-

value mapping, EE-prob mapping, and empirical versions of value function and policy function

operators.

5.1 Design of the experiments

We consider a dynamic model of �rm entry and exit decisions in a market. The decision variable

at is the indicator of being active in a market, such that the action space is A = f0; 1g. The

endogenous state variable yt is the lagged value of the decision variable, yt = at�1, and it represents

whether the �rm has to pay an entry cost or not. The vector zt of exogenous state variables includes

�rm productivity, and market and �rm characteristics that a¤ect variable pro�t, �xed cost, and

entry cost.11 We specify each of these components in turn.

An active �rm earns a pro�t �(1;xt)+ "t(1) where �(1;xt) is equal to the variable pro�t (V P t)

minus �xed cost (FCt), and minus entry cost (ECt). The payo¤ to being inactive is �(0;xt)+"t(0),

where we make the normalization �(0;xt) = 0 for all possible values of xt. We assume that "t(0)

and "t(1) are extreme value type 1 distributed with dispersion parameter �" = 1. The variable

pro�t function is V Pt = [�V P0 +�V P1 z1t+�
V P
2 z2t] exp (!t) where: !t is the �rm�s productivity shock

that varies across �rms in the same market; z1t and z2t are exogenous state variables that a¤ect

the �rm�s price-cost margin in the market; and �V P0 , �V P1 , and �V P2 are parameters. The �xed

cost is, FCt = �FC0 + �FC1 z3t, and the entry cost is, ECt = (1 � yt) [�EC0 + �EC1 z4t], where the

term (1� yt) indicates that the entry cost is paid only if the �rm was not active in the market at

previous period, z3t and z4t are exogenous state variables, and and ��s are parameters. The vector

of structural parameters in the payo¤ function is � = (�V P0 ; �V P1 ; �V P2 ; �FC0 ; �FC1 ; �EC0 ; �EC1 )0.

The vector of exogenous state variables z = (z1; z2; z3; z4; !) has discrete and �nite support.

Each of the exogenous state variables takes K values. The dimension of the state space jX j is

then 2 �K5. Each exogenous state variable follows a discrete-AR(1) process, and we use Tauchen�s

method to construct the transition probabilities of these discrete state variables (Tauchen, 1986).12

11We treat productivity as observable. For instance, using data on �rms�output and inputs the researcher can esti-
mate production function parameters and productivity taking into account the selection problem due to endogenous
entry and exit decisions, e.g., Olley and Pakes (1996), and Ackerberg, Caves, and Frazer (2015).
12Let fz(1)j ; z

(2)
j ; :::; z

(K)
j g be the support of the state variable zj , and de�ne the width values w(k)j �
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According to the model, the transition of the endogenous state variable induced by the choice

probability is the choice probability itself, i.e., fP (yt+1jxt; P ) = P (xt) = Pr(at = 1jxt). The DGP

used in our numerical and Monte Carlo experiments is summarized in table 1.

Table 1
Parameters in the DGP

Payo¤ Parameters: �V P0 = 0:5; �V P1 = 1:0; �V P2 = �1:0
�FC0 = 0:5; �FC1 = 1:0
�EC0 = 1:0; �EC1 = 1:0

Each zj state variable: zjt is AR(1), 

j
0 = 0:0; 
j1 = 0:6; �e = 1

Productivity : !t is AR(1), 
!0 = 0:2; 

!
1 = 0:9; �

!
e = 1

Discount factor � = 0:95

This model is a binary choice version of the Multi-armed bandit problem in Example 1. There-

fore, taking into account that � (0;xt) = 0, the Euler equation of this model is:

Efzt+1jztg
�
� (1;xt)� ln

�
P (xt)

1� P (xt)

�
� � ln

�
1� P (1; zt+1)
1� P (0; zt+1)

��
= 0 (41)

where Efzt+1jztg denotes the expectation operator over the distribution of zt+1 conditional on zt.

This EE implies the following EE-value mapping: ev = �EE;v(ev) with
�EE;v(xt; ev) = � (1;xt) + � Efzt+1jztg [ln (1 + exp fev(1; zt+1)g)� ln (1 + exp fev(0; zt+1)g)] (42)

ev(yt; zt) represents the value di¤erence v(1; yt; zt) � v(0; yt; zt) where we have omitted the action
at = 1 as an argument for notational simplicity given that this is a binary choice model. The EE

also implies the following EE-probability mapping: P = �EE;p(P) with

�EE;p(xt;P) =
exp

�
� (1;xt)� � Efzt+1jztg [ln (1� P (1; zt+1))� ln (1� P (0; zt+1))]

	
1 + exp

�
� (1;xt)� � Efzt+1jztg [ln (1� P (1; zt+1))� ln (1� P (0; zt+1))]

	 (43)

The standard value function mapping is V = �V F (V), where

�V F (xt;V) = ln
�
exp

�
� Efzt+1jztg[V (0; zt+1)]

	
+ exp

�
� (1;xt) + � Efzt+1jztg[V (1; zt+1)]

	�
(44)

z
(k+1)
j � z

(k)
j for k = 1; 2; :::;K � 1. Let ~zjt be a continuous �latent� variable that follows the AR(1)

process ~zjt = 
j0 + 
j1 ~zjt�1 + ejt, where ejt � i.i.d. N(0; �2j ). Then, the transition probability for

the discrete state variable zjt, fzj (z
0jz), is given by: �

�
[z
(1)
j + (w

(1)
j =2)� 
j0 � 


j
1z]=�j

�
for z0 = z

(1)
j ;

�
�
[z
(k)
j + (w

(k)
j =2)� 
j0 � 


j
1z]=�j

�
� �

�
[z
(k�1)
j + (w

(k�1)
j =2)� 
j0 � 


j
1z]=�j

�
for z0 = z

(k)
j with 2 � k � K � 1;

and 1� �
�
[z
(K�1)
j + (w

(K�1)
j =2)� 
j0 � 


j
1z]=�j

�
for z0 = z(K)j .
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And the standard policy function iteration mapping is P = �PF (P), where

�PF (xt;P) =
exp

�
� (1;xt) + � Efzt+1jztg [W (1; zt+1;P)]

	
exp

�
� Efzt+1jztg [W (0; zt+1;P)]

	
+ exp

�
� (1;xt) + � Efzt+1jztg [W (1; zt+1;P)]

	
(45)

andW (xt;P) is the valuation operator of policyP. The vector of valuationsW(P) � fW(x;P) : x 2Xg

is de�ned as the solution to the linear system of equations:�
I� � FP (P)

�
W(P) = �P (P) (46)

where I is the identity matrix; FP (P) is the transition probability matrix for xt induced by the

vector of choice probabilities P; and �P (P) is the vector of expected payo¤s associated to P such

that an element of this vector is (1�P (xt)) [� ln(1�P (xt))]+ P (xt) [� (1;xt)� lnP (xt)]. To solve

for this system of linear equation we use the QR algorithm based on a QR decomposition of matrix

I� � FP (P).

5.2 Comparing solution methods

We compare the computing times of four methods for the exact solution of the model: (a) successive

iterations in the value function (Bellman equation); (b) policy function iterations; (c) iterations

in the EE-value operator; and (d) iterations in the EE-probability operator. Methods (a) and (b)

are the most standard algorithms for the solution of DP problems. Methods (c) and (d) are new

algorithms that we propose in this paper. We compare these methods for six di¤erent dimensions

of the state space jX j: 64, 486, 2048, 6250, 15552, and 200; 000 that correspond to values 2, 3, 4,

5, 6, and 10, respectively, for the number of points in the support of each exogenous state variable.

Table 2 presents the time per iteration, number of iterations, and total computation time as a

function of the state space dimensionality. Despite we use the same starting values to initialize the

di¤erent algorithms, it might be the case that the relative performance of these methods depends

on the initial value. To check for this possibility, we have implemented this experiment using ten

di¤erent initial values, the same for all the algorithms. We �nd very small di¤erences in the relative

performance of the algorithms across the di¤erent initial values. The numbers in table 2 are the

average over these initial values.

For every dimension of the state space, iterating in the EE-value mapping is always the most

e¢ cient algorithm, followed closely by iterating in the EE-probability mapping. The computational

gains relative to the standard methods are very substantial, as shown in the last column of the table

that reports the ratio between the computing times of the policy iteration and EE-value methods.

These gains increase with the dimension of the state space.
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Table 2
Comparison of Standard and EE Solution Methods

# Number Seconds Total Time
states Iterations Per Iteration Time (seconds) Ratios
jX j EE-v EE-p PF VF EE-v EE-p PF VF EE-v EE-p PF VF PF

EE-v
VF
EE-v

64 13 12.8 4.9 310.2 6*10-4 5*10-4 0.011 2*10-4 0.008 0.006 0.053 0.069 7.0 8.6

486 13 12.2 5 276.5 0.005 0.007 0.604 0.003 0.060 0.081 3.018 0.800 50.3 13.3

2048 13 12 5 280.8 0.031 0.051 16.28 0.032 0.406 0.609 81.44 8.852 200.6 21.8

6250 13 12 5 288.8 0.270 0.477 150.0 0.318 3.515 5.723 750.0 91.79 213.4 26.1

15552 13 12 5 291.3 1.347 2.730 916.3 1.660 17.50 32.72 4581 483.66 261.7 27.6

2*105 13 13 5 298 21.8 22.0 - 22.1 284 290 6.5*105 1.5*104 2302 54.4

Note: EE-v = EE-value mapping iterations; EE-p = EE-probability mapping iterations; PF = Policy iterations;

VF = Value function (Bellman equation) iterations.

The comparison of the EE-value and the policy iteration methods illustrates that the compu-

tational gains come from the fact that a single iteration in the EE-value operator is much cheaper

than one iteration in the policy iteration method. In fact, for larger state spaces, the total time

required to solve the model using the EE-value operator is smaller than the time required for one

iteration of the standard policy operator. The computational saving, per iteration, of EE-value

relative to policy iteration comes from avoiding the computation of in�nite-period forward present

values. This computational saving, in CPU time, increases in a convex way with the dimension

of the state space, and it becomes very substantial for large state spaces. For a state space with

jX j = 15; 552 points, the CPU seconds for one EE-value iteration is 1:35 seconds, while one policy

iteration requires 916:36 seconds. Note that this dimension of the state space is still quite small

relative to the dimensions that we �nd in actual applications.

The EE-value and EE-prob methods share a well-known property of the standard policy iteration

method (see Rust, 1996): the number of iterations to convergence is very stable with respect to the

dimension of the state space. In this numerical example, the number of iterations of the PF, EE-

value, and EE-prob methods remain roughly constant at 5, 13, and 12 iterations, respectively. This

property has two important implications. First, for a large enough state space, the EE methods

are computationally more e¢ cient than the policy iteration method: their respective number of
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iterations stay constant but the cost per iteration in the policy iteration method increases faster

with jX j than the cost per iteration of the EE methods. A second implication has to do with the

comparison between EE and value function (or Bellman equation) iteration methods. The cost per

iteration of the EE methods is very similar to value function iterations because they do not compute

present values but only one-period forward expectations. However, a key di¤erence between EE

and value function iterations is in the behavior of the number of iterations to convergence when

the state space increases. For the method of value function iterations, it is well known that the

number of iterations monotonically increases with the dimension of the state space. Given that the

strength of the contraction stays �xed, for large state space value function iteration is substantially

more expensive than the EE solution methods.

The number of iterations that a method needs to achieve convergence is closely related to the

degree of contraction of the mapping. To compare the degree of contraction, we calculate an

approximation to the Lipschitz constants of the mappings. By de�nition, a �xed-point operator

�(:) is a contraction if there is some constant c < 1 such that, for any two points V andW in the

domain of the operator, we have that k�(V)� �(W)k/kV �Wk � c for some distance function

k:k. The Lipschitz constant of mapping � is de�ned as the smallest constant c that satis�es this

condition for any pair V andW in the domain of �. For instance, for the value function mapping

�V F and using the sup-norm (or uniform norm), the Lipschitz constant is de�ned as:

L(�V F ) � sup
V;W2RjXj

�
supx2X j�V F (x;V)� �V F (x;W)j

supx2X jV (x)�W (x)j

�
(47)

Calculating the exact value of the Lipschitz constant for any of the mappings we consider is not

a practical option because the dominion of all these mappings is in�nite. As such we obtain the

following approximation. Let fVk : k = 0; 1; :::; IV0g be the sequence of values that we obtain by

applying successive iterations in the mapping � given an initial value V0, where IV0 is the number

of iterations to reach convergence. Then, we obtain an approximation (i.e., a lower bound) to the

Lipschitz constant of this mapping by considering the ratios k�(V)� �(W)k/kV �Wk only at the

pair of values Vk and Vk+1 generated in the sequence. That is, the approximation to the Lipschitz

constant of mapping � is:

eLV0(�) � max
k2f0;1;:::;IV0g

k�(Vk+1)� �(Vk)k
kVk+1 �Vkk

(48)

To obtain a better approximation, we generate sequences from many initial guesses, and take as

our approximation to the Lipschitz constant the maximum over all these sequences.
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Table 3 reports the Lipschitz constants of the four mappings for the di¤erent dimensions of the

state space. There are four results that we want to underline. First, the Lipschitz constants are

very stable across the di¤erent dimensions of the state space. Second, there is a very substantial

di¤erence in the degree of contraction of the VF operator and the other three mappings. As shown

in table 2, the weaker contraction property of the VF mapping is the reason why this method

requires much larger number of iterations than the other methods. Third, the PF mapping has

the smallest Lipschitz constant (i.e., stronger contraction). Again, this property is also re�ected

in table 2 in the small number of iterations that this method needs for convergence. Finally, it

is worth to note that the Lipschitz constant for the EE-prob mapping is smaller than one, and in

fact quite small. This result contrasts with our example in section 3.2.1 where we show that this

mapping is not necessarily a contraction. Note there may be models and parameterizations where

the EE-prob is a contraction mapping, and this seems the case of our entry-exit model. But note

also that the EE-value operator is always a stronger contraction than the EE-prob.

Table 3
Lipschitz Constants of the mappings

Dimension jX j EE-value EE-prob Policy iter Value iter

64 0.198 0.418 0.137 0.950

486 0.182 0.307 0.128 0.950

2032 0.181 0.240 0.107 0.950

6250 0.180 0.236 0.103 0.950

15552 0.180 0.248 0.094 0.950

Rust (1987, 1988), Powell (2007), and Bertsekas (2011) advocate using a hybrid value-policy

iteration method. The algorithm starts with value function iterations until a loose convergence

criterion is reached. Then, the algorithm switches to policy function iterations. When the switching

point is appropriately tuned, this algorithm can be faster than both value function and policy

function iterations. We have not reported results from this hybrid method in this experiment. The

main reason is that, even for the moderate dimensions of the state space in table 2 (e.g., 15552

points), one single policy iteration takes almost one hundred times longer than the whole time

to convergence of the EE-value method. In other words, even for this moderate dimension, the
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optimal �hybrid�algorithm is the pure value function iteration method.13

5.3 Estimation of structural parameters

For the Monte Carlo experiments that deal with the estimation of the structural parameters, we

consider the DGP described in table 1 with a state space with size jX j = 6250. We generate 1; 000

samples with a sample size of N = 1; 000 �rms and T = 2 time periods. For the �rst sample period,

the value of the vector of state variables is drawn from its ergodic or steady-state distribution.

We compute four estimators: (a) two-step PML-EE, as de�ned in equations (38) and (39); (b)

sequential or K-step PML-EE, that consists in applying recursively the two-step estimator using

updated choice probabilities, bP(K)N = �
(N)
EE;p(

b�(K); bP(K�1)N ); (c) two-step PML-PF; and (d) MLE.

Following Aguirregabiria and Mira (2002), we compute the MLE using the sequential (K-step)

PML-PF algorithm. As shown in that paper, upon convergence the K-step estimator provides the

Maximum Likelihood estimator. For the computation of the MLE, this algorithm is several orders

of magnitude more e¢ cient that the nested �xed point algorithm.14

First-step choice probabilities were estimated using a simple raw frequency estimator. For the

number of steps of the recursive estimators, we setK = 15 , but in almost all the 1; 000Monte Carlo

simulations we achieved convergence of the estimators with less that 15 iterations. By de�nition

of the PML-EE estimators, the expectation of Efzt+1jztg is replaced by its sample counterpart at

the observed states in the sample. In contrast, the implementation of the two-step PML-PF and

MLE require the transition probabilities at every possible value of the state variables. For these

two estimators, we have used the true values of the transition probabilities. Note that this aspect

of our experiment contributes to increase the estimation error of the EE estimator relative to the

policy iteration estimator, as the second uses the true transition probabilities.

Table 4 presents the results of these Monte Carlo experiments. We report the mean (over

simulations) absolute bias of the parameter estimates, and the root-mean squared error, and these

statistics as percentages of the true parameter value. We also report the average (over simulations)

computing time to implement each estimator. These experiments provide several interesting results.

First, the two-step PML-PF estimator performs extremely well. As shown in Aguirregabiria and

13For instance, note that when the state space has 15552 points, the VF method takes 483 seconds to converge
while one single iteration of PF takes 916 seconds.
14The estimation results for the PML-EE estimators are based on the Euler equation for yt+2 = 0. We have also

computed PML-EE estimators the Euler equation for yt+2 = 1. Although these two Euler equations are equivalent
at the population level, in �nite samples they generate di¤erent estimates. The reason is that �rst-step choice
probabilities and structural parameters appear di¤erently in these equations. Our Monte Carlo experiments show
that the biased and mean square error of the two estimators are very similar. Here we report results only for the
estimators that uses the Euler equation for yt+2 = 0.
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Mira (2002), this estimator is asymptotically e¢ cient (i.e., asymptotically equivalent to the MLE),

but there is a well-known potential for �nite sample bias with this class of two-step estimators

due to the fact that it relies on potentially imprecise �rst step estimates of the conditional choice

probabilities. However, for this Monte Carlo experiment, there are only marginal improvements

from recursively updating the conditional choice probabilities with new estimates of the parameters.

Most of the improvement from this iterative procedure concentrates on the estimate of the entry

cost parameter �EC1 : as percentage of the true parameter, the Mean Absolute Bias goes from 11:4%

to 10:9%, and the Root Mean Square Error declines from 14:2% to 13:6%. The average computing

times of the two-step PML-PF and the ML estimators are 1067 and 7345 seconds, respectively. In

this experiment, given that the two-step PML-PF estimator is already quite precise, the additional

computational cost of the MLE (seven times the cost of the two-step estimator) has low returns

in terms of statistical properties, i.e., a reduction in the RMSE of 0:6 percentage points at a cost

of 6378 CPU seconds. Therefore, in this experiment and within the class of PF pseudo maximum

likelihood estimators, the two-step method seems the best estimator as we value both statistical

and computational e¢ ciency.

Second, compared to the (asymptotically e¢ cient) two-step PML-PF estimator, the two-step

Euler Equations estimator has more MAB (i.e., 26% greater) and RMSE (i.e., 25% greater). One

could potentially ask, if the two-step PML-PF estimator is so close the MLE and also works so

well relative to the two-step EE estimator, then why bothering with Euler Equation estimators?

The answer lies in: (a) the relative CPU time of the two methods; and (b) the fact that when

we consider the K-step estimators, the statistical di¤erences between the EE estimators and the

PF estimator all but vanish. First, note that the two-step PML-EE estimator requires less than a

quarter of a second (0:218 seconds) while the two-step PML-PF estimator requires more than 17

minutes (1067 seconds), almost 5000 times longer. This is the trade-o¤ for the two-step estimator

- 25% better statistical properties in exchange for about 5000 times longer computation time. This

trade-o¤ becomes even more stark when we compare the K-step Euler Equations estimator with

either the two-step PML-PF or the ML estimators. As we see in the table, in terms of MAB and

RMSE, the K-step EE estimator is superior to the two-step PML-PF estimator and it is essentially

indistinguishable from the MLE. However the K-step EE estimator is thousands of times faster

than either the two-step PML-PF or ML estimators, and there is no real trade-o¤ to be made. The

K-step EE estimator is statistically as good as the PF estimators, but more than 2000 times faster.
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Table 4
Monte Carlo Experiments. Estimation of Structural Parameters

Sample size: N = 1; 000 & T = 2; Monte Carlo samples = 1; 000
Mean Absolute Bias Root Mean Squared Error

Parameter 2-step 2-step K-step 2-step 2-step K-step
(True value) PF EE MLE EE PF EE MLE EE

�V P0 (0.5) 0.061 0.073 0.057 0.057 0.078 0.095 0.073 0.073
(12.3 %) (14.6 %) (11.3 %) (11.4 %) (15.6 %) (18.9 %) (14.6 %) (14.6 %)

�V P1 (1) 0.062 0.078 0.062 0.062 0.077 0.100 0.077 0.078
(6.2 %) (7.8 %) (6.2 %) (6.2 %) (7.7 %) (10.0 %) (7.7 %) (7.8 %)

�V P2 (-1) 0.057 0.074 0.058 0.058 0.073 0.093 0.073 0.074
(5.7 %) (7.4 %) (5.8 %) (5.8 %) (7.3 %) (9.3 %) (7.3 %) (7.4 %)

�FC0 (1.5) 0.108 0.206 0.096 0.097 0.140 0.247 0.125 0.127
(7.2 %) (13.7 %) (6.4 %) (6.5 %) (9.3 %) (16.5 %) (8.3 %) (8.5 %)

�FC1 (1) 0.058 0.093 0.060 0.059 0.072 0.118 0.075 0.074
(5.8 %) (9.3 %) (6.0 %) (5.9 %) (7.2 %) (11.8 %) (7.5 %) (7.4 %)

�EC0 (1) 0.096 0.096 0.095 0.096 0.121 0.122 0.121 0.121
(9.6 %) (9.6 %) (9.5 %) (9.6 %) (12.1 %) (12.2 %) (12.1 %) (12.1 %)

�EC1 (1) 0.114 0.130 0.109 0.111 0.142 0.160 0.136 0.138
(11.4 %) (13.0 %) (10.9 %) (11.1 %) (14.2 %) (16.0 %) (13.6 %) (13.8 %)

Total MAB 0.557 0.751 0.535 0.540
Ratio MAB PF

MAB EE 74.1 % 99.1 %

Total RMSE 0.703 0.935 0.680 0.684
Ratio RMSE PF

RMSE EE 75.1 % 99.4 %

Time (in secs) 1067.80 0.218 7345.79 3.261 1067.80 0.218 7345.79 3.261
Ratio Time PF

Time EE 4898 % 2252 % 4898 % 2252 %

Note: In parentheses, the statistic as percentage of the true parameter value.
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Overall, the experiment illustrates that the limit/K-step EE estimator performs very well rela-

tive to the best possible estimator, the MLE. There is no substantial di¤erence in MAB or RMSE

between the K-step EE estimator and the MLE estimator, and K-step EE estimator has better

statistical properties than the two-step estimators. That is, iterations (or sequential estimation)

tend to improve the EE estimators more than the PF estimators. This is intuitive. The two-step

PML-PF estimator is asymptotically equivalent to the MLE, so that all the improvements are in

terms of �nite sample bias, while for the EE estimators the improvements are both �nite sample and

asymptotic (i.e., the zero Jacobian property does not hold for the EE and therefore the sequence

of EE K-step are not asymptotically equivalent). This experiment indicates that the massive com-

putational savings associated with using the EE K-step estimator seems to justify its application,

given there is little statistical cost relative to the MLE.

5.4 Estimation of counterfactuals

We now study how standard methods and Euler Equation-based methods perform in answering an

economically relevant counterfactual policy question. Given the large dimension of the state space

in actual applications, the exact computation of a solution of the model (under the factual and

counterfactual scenarios) is computationally unfeasible, at least using standard solution methods

of value function or policy function iterations. The purpose of this section is twofold. First, we

show that the Euler Equation solution method makes it feasible solving the model exactly when the

dimension of the state space is relatively large, i.e., of the order of a few million values. We show

that for this dimension, and using standard computing equipment, the Euler Equation method

solves the model in a few hours while standard methods would require from a few weeks (for value

function iterations) to more than one year (for policy function iterations) of computing time. A

second purpose of this section is to study the relative performance of the Euler Equation and the

standard methods in empirical applications where the model cannot be solved exactly and we need

to use approximation methods such as the Empirical EE-value mapping.

5.4.1 Counterfactual question

The counterfactual policy we consider is an increase in the cost of entry in the context of the

dynamic entry-exit model presented above. The presence of entry costs can generate misallocation

in an industry. There may be potential entrants that are more productive than incumbent �rms

but are not willing to enter in the market and replace the less e¢ cient �rms because the entry

cost makes this unpro�table. Furthermore, the presence of entry costs makes exit less attractive
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to incumbent �rms, because re-entry is more expensive, and in this way higher entry costs may

discourage low productivity incumbents from exiting. We are interested in the quanti�cation of the

net e¤ect of entry cost on total industry productivity.

To formalize the argument, suppose that the industry consists of N potential entrants, indexed

by i. Competition in this industry is characterized by monopolistic competition, i.e., a single-agent

model. The expected value of the total output produced by �rms active in the industry, is:

Q� = E

 
NX
i=1

ait exp (!it)

!
= N

X
z;!

q(z; !) exp (!) f�(z; !) (49)

where f�(z; !) represents the steady-state or ergodic distribution of the exogenous variables, and

q(z; !) is the probability that a �rm is active when the exogenous state variables take the values

(z; !), i.e., q(z; !) � Pr(ait = 1jzt = z; !it = !). Note that q(z; !) is di¤erent from the conditional

choice probability function because the probability q(z; !) is not conditional on the �rm�s incumbent

status at previous period. However, by de�nition, the steady-state condition implies the following

relationship between q(z; !) and the conditional choice probabilities P (0; z; !) and P (1; z; !):

q(z; !) = (1� q(z; !)) P (0; z; !) + q(z; !) P (1; z; !) (50)

Rearranging we get, q(z; !) = P (0; z; !)=[1 � P (1; z; !) + P (0; z; !)]. The e¤ect of an increase in

the entry cost on q(z; !) is:

@q(z; !)

@EC
=

@P (0;z;!)
@EC (1� P (1; z; !)) + @P (1;z;!)

@EC P (0; z; !)

[1� P (1; z; !) + P (0; z; !)]2 (51)

The derivative @P (0; z; !)=@EC represents the e¤ect of entry cost on the probability of entry for a

potential entrant. This e¤ect is negative. The derivative @P (1; z; !)=@EC represents the e¤ect of

entry cost on the probability of staying in the market for an incumbent �rm. This e¤ect is positive.

Since these e¤ects are of opposite sign, the entry cost has an ambiguous net e¤ect on the steady-state

probability that a �rm is active, q(z; !). If increasing the entry cost causes disproportionately more

productive incumbents to stay in the market, higher entry cost may actually increase output.15

5.4.2 Exact solution of factual and counterfactual models

Suppose that a researcher has estimated this model and is interested in the e¤ect of the entry cost

on expected total industry output: i.e., the e¤ect of a change in EC on Q�. More speci�cally, the

15Speci�cally, the sign of @
2q(z;!)
@EC@!

is also ambiguous. That is, it is not clear if an increase in the entry cost e¤ects
the steady state probability of observing a low productivity �rms more than the steady state probability of observing
a high productivity �rm. In principle these e¤ects could have opposite sign. This makes it unclear how average
output depends on the entry cost. Although the number of �rms increases, the new �rms may be disproportionately
less productive.
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counterfactual experiment we consider is an increase in the entry cost parameter �EC0 from 1 to 2:5.

First, we show that when the dimension of the state space is relatively large (i.e., 200; 000 points),

the Euler Equation solution method can be used to solve the model exactly under the factual and

counterfactual scenarios, while standard solution methods are infeasible.

In this experiment, we consider a DGP with a state space with jZ1j = jZ2j = jZ3j = jZ4j = j
j =

10, such that the number of points in the complete state space is jX j = 2 � 105. The values of the

structural parameters are the ones given in table 1 above. We have solved the model, under

the factual and counterfactual scenarios, by iterating in the EE-value mapping. Using standard

computing equipment, the total computing time was: 284 seconds (less than �ve minutes) for the

EE-v method; 4:3 hours for the VF method; and 7:5 days for the PF method. Based on the ratios

of computing times that we report in table 2, we have also extrapolated the computing times of

these methods for a state space with jX j = 2 � 155 points (approximately 1:5 million points): 1:4

hours for the EE-v method; 5:2 days for the VF method; and 549 days for the PF method.16

Table 5 presents predictions from the exact solution of the model under the factual and counter-

factual scenarios. We calculate: (1) the probability of being active: q� =
P
z;! q(z; !) f

�(z; !); (2)

the probability of entry: P (0)� =
P
z;! P (0; z; !) f

�(z; !); (3) the probability of exit: 1� P (1)� =P
z;!(1 � P (1; z; !)) f�(z; !); (4) state persistence: Pr(at = yt) =

P
z;![q(z; !) P (1; z; !) + (1 �

q(z; !)) (1 � P (0; z; !))] f�(z; !); and (5) output per �rm: q� =
P
z;! q(z; !) exp (!) f

�(z; !).

Column (1) shows that, in this experiment, the e¤ect of an increase in �EC0 from 1 to 2.5 is a net

decrease in the probability of being active by 6:5 percentage points. The increase in entry cost

causes a decrease in entry, partially o¤set by a decrease in exit which we see in columns (2) and (3).

As non-incumbents are more likely to remain outside the market when the cost of entry rises, and

incumbents are less likely to exit, we expect an increase in the persistence of the activity decision,

which we see in column (4). Column (5) shows that the increase in the entry cost implies an 20%

reduction in output, from 0:529 to 0:423 units.

16We estimate this computing times by running a regression between the logarithm of the ratio of CPU time and
the logarithm of the size of the state space using the numbers reported in Table 2. Then, we use the estimated
regressions to predict CPU times for a state space with 2 � 155 points. The estimated regression of log(CPU time
PF/ CPU EE-v) on log(size) has intercept �0:4792 (s.e. = 0:9067) slope 0:6735 (s.e. = 0:1240), and R-square 0:912.
The estimated regression of log(CPU time VF/ CPU EE-v) on log(size) has intercept 1:2343 (s.e. = 0:1742) slope
0:2263 (s.e. = 0:0231), and R-square 0:970.
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Table 5
Properties of Factual and Counterfactual Scenarios in Steady-State

(1) (2) (3) (4) (5)
Probability Entry Exit State
Being Active Probability Probability Persistence Output

(A) Factual DGP 0.323 0.274 0.580 0.768 0.529

(B) Counterfactual DGP 0.258 0.157 0.513 0.884 0.423

Policy E¤ect: (B) - (A) -0.065 -0.117 -0.068 +0.116 -0.106
(Percentage change) (-20.1%) (-42.7%) (-11.7%) (15.1%) (-20.0%)

5.4.3 Estimation of counterfactuals

The dimension of the state space in this experiment, with 200; 000 points, is still small relative to

the dimensions that we �nd in actual applications. For instance, in an empirical application of this

model the �ve exogenous state variables can be continuous variables with substantial variability

across �rms and over time. Even if the researcher is willing to discretize each of these continuous

variables, an accurate representation of the distribution of these variables and their variation over

time may require around one hundred grid points per variable. In our model, this implies a state

space with approximately 20 billion points. We would like to compare the performance of the

di¤erent approximation methods in this type of realistic scenario. However, that model cannot be

solved exactly, and therefore, we cannot calculate the true approximation errors of the di¤erent

methods. Instead, we consider the same model and state space as in previous section and compare

the performance of di¤erent approximation methods by �xing the computational time that the

researcher is willing to pay in order to obtain an approximate solution of the model.

To study the statistical properties of the di¤erent mappings, we simulate many sets of data,

and compare the average (over the samples) answer to the counterfactual question delivered by

each method. To make a fair comparison, we keep the time required to solve the �xed points

roughly equal. As de�ned above, Z and ZN denote the true set and the sample set of values of

the exogenous state variables. Let NEE , NPF , and NV F be three integers smaller than N . De�ne

ZNEE , ZNPF , and ZNV F as the sets of sample values of the exogenous state variables for the �rst

NEE , NPF , and NV F �rms in the sample, respectively, and over the T sample periods. In the Monte

Carlo experiments we solve the model by iterating in the empirical EE-value mapping de�ned on

34



the space ZNEE , and by iterating in the PF and VF mappings de�ned on the spaces ZNPF and

ZNV F . In order to keep the computation time roughly the same across the three methods, we choose

NPF < NEE and NV F < NEE . That is, we use a smaller space of the exogenous state variables

when we solve the model using PF and VF iterations than when we use EE-value iterations. This

is a practical approach for the PF and VF algorithms, as the researcher would likely need to use

some type of approximation method with a large state space. To solve the mappings on these

reduced spaces, we must de�ne the transition probabilities of the exogenous variables in each case.

As in the case of the parameter estimates in the previous subsection, we use the true transition

probabilities, normalized to the reduced space.

Table 6 presents the number of points in the spaces ZNEE and ZNPF and the average (across

the Monte Carlo simulations) computing times of the di¤erent methods.

Table 6
Monte Carlo Results: Average Computation Times

VF PF EE-prob EE-value

# Points in spaces ZNmethod 100 100 1,735 1,735

Number of Iterations 350 5 13.4 12.7
Time Per Iteration 0.001 0.007 0.002 0.002
Total Time 0.062 0.036 0.024 0.026

5.4.4 Monte Carlo results

We estimate the policy e¤ects (1) to (5) that we describe in Table 5. We implement four di¤erent

iterative methods: EE-prob, EE-value, Value function iterations, and Policy function iterations. We

use 500 Monte Carlo simulations from the DGP. Table 7 presents the Root Mean Squared Error

(RMSE) and the Mean Absolute Bias (MAB) based on the 500 Monte Carlo simulations. The

statistical properties of the approximation methods based on the EE-prob and EE-value mappings

are essentially equivalent. The results clearly indicate that the EE-methods have considerably lower

bias and RMSE than both the VF and the PF approximation methods for all the �ve statistics.

Systematically over the di¤erent parameters, the RMSE of the VF and PF methods are twice as

large than these statistics for the EE methods.
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Table 7
Monte Carlo Results: Counterfactual Estimates

E¤ect of Entry Cost on Number of �rms, Entry, Exit, and Output
(1) (2) (3) (4) (5)

Probability Entry Exit State Total
Being Active Probability Probability Persistence Output

True Policy E¤ect -0.065 -0.117 -0.068 +0.116 -0.106

Mean Absolute Bias(1)

VF iterations 0.036 (55.9%) 0.016 (13.7%) 0.016 (24.2%) 0.011 (9.4%) 0.070 (66.3%)
PF iterations 0.036 (55.9%) 0.016 (13.7%) 0.016 (24.2%) 0.011 (9.4%) 0.070 (66.3%)

EE-value iterations 0.024 (36.8%) 0.007 (6.2%) 0.010 (14.4%) 0.008 (7.1%) 0.040 (38.1%)
EE-prob iterations 0.024 (36.8%) 0.007 (6.2%) 0.010 (14.4%) 0.008 (7.1%) 0.040 (38.1%)

Root Mean Square Error(1)

VF iterations 0.044 (67.5%) 0.020 (17.1%) 0.020 (30.1%) 0.014 (11.8%) 0.088 (82.8%)
PF iterations 0.044 (67.5%) 0.020 (17.1%) 0.020 (30.1%) 0.014 (11.8%) 0.088 (82.8%)

EE-value iterations 0.024 (37.1%) 0.007 (6.3%) 0.010 (14.8%) 0.008 (7.2%) 0.041 (38.6%)
EE-prob iterations 0.024 (37.1%) 0.007 (6.3%) 0.010 (14.8%) 0.008 (7.2%) 0.041 (38.6%)

Note: In parenthesis, the statistic in percentage over the true value of the parameter.

6 Conclusion

In the context of dynamic discrete choice models, this paper derives optimality conditions that

involve payo¤s at only two consecutive periods. We describe these conditions as Euler equations.

We show that these Euler Equations (EE) imply a �xed point mapping in the space of conditional

choice value functions, that we denote as the EE-value operator. We show that this operator is a

contraction. Based on these results, we propose new methods for solving dynamic discrete choice

models and for estimating structural parameters and the e¤ects of counterfactual policies in these

models. The EE-value mapping only involves one period forward expectations and has strong

contraction properties. These two properties imply very substantial computational savings relative

to the standard methods for solving these models, i.e., value function iterations and policy function

iterations.

We use Monte Carlo experiments to illustrate the relative computational gains associated with

our approach. In the context of a dynamic model of entry and exit, computing the exact solution

on a moderately sized state space using the standard policy iteration can take thousands of times
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as long as computing the exact solution using the EE-value mapping, implying that models that

are computationally infeasible for all practical purposes using standard methods, are feasible using

the method we propose. We then illustrate using Monte Carlo experiments that the �nite sample

properties of (pseudo) likelihood estimates using the Euler equations representation are statistically

indistinguishable from the Maximum Likelihood estimates, but at signi�cant computational savings

- the maximum likelihood estimator requires thousands of times as much CPU time as the EE-based

pseudo likelihood estimator. Finally, we study the methods�relative ability to estimate the e¤ect

of counterfactual increase in the cost of entry. We show that, for a �xed computation time the

�nite sample properties of the EE-value mapping are better than those of the estimator associated

with policy iterations in terms of both root mean squared error and mean absolute bias.
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APPENDIX. PROOFS OF PROPOSITIONS

Our proofs of Propositions 2 to 4 apply Lemmas 1, 2, and 3 below. Therefore, we �rst present

and prove these Lemmas. For the sake of completeness, we also present a proof of Williams-Daly-

Zachary (WDZ) Theorem.

For Lemmas 1 to 3 and WDZ, we consider the following general Random Utility Model that

includes our framework as a particular case. Given a vector of values v � (v0; v1; :::; vJ), and a vector

of random variables " � ("0; "1; :::; "J) with joint CDF G(") that is continuously di¤erentiable,

consider the discrete choice problem maxa2f0;1;:::;Jg [va + "a]. Without loss of generality, we can

represent this discrete choice problem asmaxa2f0;1;:::;Jg [eva + e"a] where eva � va�v0 and e"a � "a�"0.
Let ev be the vector of value di¤erences (ev1; ev2; :::; evJ), and let P = (P1; P2; :::; PJ)

0 be a vector of

probabilities in the J dimensional simplex. Given this problem, we de�ne the following functions:

(i) the Optimal Choice Probability (OCP) mapping, �(ev) � f�(a; ev) : a = 1; 2; :::; Jg with

�(a; ev) = Z 1feva + e"a � evj + e"j for any jg dG(");
(ii) the inverse of the OCP mapping, ev = ��1(P);
(iii) McFadden�s Social Surplus function, S (ev) � Z maxj2f0;1;:::;Jg [evj + e"j ] dG(");
(iv) the expectation function, e(v)(a; ev) � E[e"a j eva + e"a � evj + e"j for any j];
(v) the expectation function e(a;P) � e(v)(a;��1(P)) = E[e"a j ��1(a;P)+ e"a � ��1(j;P)+ e"j

for any j].

(vi) the expected payo¤ function, W (P) �
PJ
j=1 Pj [evj + e(j;P)] = P0[ev + e(P)].

Williams-Daly-Zachary (WDZ) Theorem. For any choice alternative a,

@S (ev)
@eva = �(a; ev) (A.1)

Proof. De�ne the function m(ev+ e") = maxj2f0;1;:::;Jg [evj + e"j ], such that S (v) = Rm(ev+ e") dG(").
It is clear that @m(ev + e")=@eva = 1feva + e"a � evj + e"j for any jg. Note that @S (ev) =@eva is equal toR
@m(ev + e")=@eva dG("). Therefore,

@S (ev)
@eva =

Z
1feva + e"a � evj + e"j for any jg dG(") = �(a; ev) (A.2)

Lemma 1. For any vector of value di¤erences ev = (ev1; ev2; :::; evJ)0,�
@� (ev)0
@ev

��1
@e(v)(ev)0
@ev � (ev) = �ev � e(v)(ev) (A.3)

Proof. Using the de�nitions of Social Surplus and optimal choice probability functions, we have

that:

S (ev) = JX
j=1

�(j; ev) hevj + e(v)(j; ev)i (A.4)
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Therefore,

@S (ev)
@eva =

JX
j=1

@�(j; ev)
@eva

hevj + e(v)(j; ev)i+ �(a; ev) + JX
j=1

�(j; ev)@e(v)(j; ev)
@eva (A.5)

In vector form,
@S (ev)
@ev =

@�(ev)0
@ev hev + e(v)(ev)i+ �(ev) + @e(v)(ev)0

@ev �(ev) (A.6)

By WDZ Theorem, we have that @S (ev) =@ev = �(ev). Plugging this result into the expression for
@S (ev) =@ev above, we have that:

@�(ev)0
@ev hev + e(v)(ev)i+ @e(v)(ev)0

@ev �(ev) = 0 (A.7)

Hotz-Miller inversion theorem, together with the inverse function theorem, implies that for any

value of the vector ev the matrix @�(ev)0=@ev is invertible. Therefore,�
@� (ev)0
@ev

��1
@e(v)(ev)0
@ev � (ev) = �ev � e(v)(ev) � (A.8)

Lemma 2. For any vector of probabilities in the J-dimension Simplex, P = (P1; P2; :::; PJ)0, and

any choice alternative a,
@W (P)

@Pa
= eva � ��1(a;P) (A.9)

Proof. By de�nition of �P (P) as
PJ
j=1 Pj [evj + e(j;P)] and taking into account that e(j;P) =

e(v)(j;��1(P)), we have that:

@W (P)

@Pa
= eva + e(a;P) + JX

j=1

Pj
@e(j;P)

@Pa

= eva + e(a;P) + JX
j=1

Pj

24 @e(v)(j; ev)
@ev0

�����ev=��1(P)
35 @��1(P)

@Pa

= eva + e(a;P) +P0
24 @e(v)(ev)

@ev0
�����ev=��1(P)

35 @��1(P)
@Pa

(A.10)

where e(v)(ev) � (e(v)(1; ev); e(v)(2; ev), :::; e(v)(J; ev))0. In vector form,
@W (P)

@P
= ev + e(P) + @��1(P)0

@P

24 @e(v)(ev)0
@ev

�����ev=��1(P)
35P (A.11)
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Given that ��1 (P) is the inverse of the mapping � (ev), the inverse function theorem implies that

@��1 (P)0 =@P =
h
@� (ev) =@ev0jev=��1(P)i�1, such that:

@W (P)

@P
= ev + e(P) + " @� (ev)

@ev0
����ev=��1(P)

#�1 24 @ee(v)(ev)0
@ev

�����ev=��1(P)
35P (A.12)

Lemma 1 implies that for ev = ��1 (P),"
@� (ev)
@ev0

����ev=��1(P)
#�1 24 @ee(v)(ev)0

@ev
�����ev=��1(P)

35P = ���1 (P)� e(P) (A.13)

And solving this expression into the equation for @W (P)=@P above, we have that:

@W (P)

@P
= ev ���1 (P) (A.14)

or @W (P)=@Pa = eva � ��1 (a;P). �

Lemma 3. The Social Surplus function S (v) is a weak contraction (i.e., non-expansive mapping)

in the complete metric space (V; k:k1). That is, for any v, w 2V, we have that:

jS(v)� S(w)j � kv �wk1 (A.15)

Proof: For any v, w 2V we have that:

jS(v)� S(w)j =

����Z max
j
[vj + "j ] dG(")�

Z
max
j
[wj + "j ] dG(")

����
�

����Z max
j
jvj + "j � wj � "j j dG(")

����
= max

j
jvj � wj j = kv �wk1 �

(A.16)

Proof of Proposition 2. Given the model assumptions, it is clear that the function Wt(Pt;xt) is

twice continuously di¤erentiable in Pt. By de�nition, the intertemporal payo¤ function Wt(Pt;xt)

is equal to vt(0;xt) +
PJ
j=1 Pt(j) [evt(j;xt) + e(j;Pt)]. Therefore, Wt(Pt;xt) belongs to the class of

expected payo¤ functions in Lemma 2. Applying Lemma 2 to function Wt(Pt;xt), we have that:

@Wt(Pt;xt)

@Pt
= evt(xt)���1 (Pt) (A.17)

Suppose for the moment thatWt(Pt;xt) is globally concave in Pt. Under this condition, the optimal

decision rule P�t (xt) is uniquely characterized by the �rst order condition @Wt(P
�
t ;xt)=@Pt =
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evt(xt) � ��1 (P�t ) = 0. By de�nition of the inverse mapping ��1 (Pt), we have that P�t (xt) =

� (evt(xt)).
Now, we prove that Wt(Pt;xt) is globally concave in Pt. Using the expression above for the

�rst derivative @Wt(Pt;xt)=@Pt, and applying the inverse function theorem, we have that:

@2Wt(Pt;xt)

@Pt@P0t
= �@�

�1 (Pt)

@P0t
= �

"
@� (ev)
@ev0

����ev=��1(P)
#�1

(A.18)

The Jacobian matrix @� (ev) =ev0 is symmetric and has all principal minors positive. Theorem 29 in

Chapter 1 of Magnus and Neudecker (1988) establishes that this is equivalent to being positive def-

inite. This implies that the Hessian matrix @2Wt(Pt;xt)=@Pt@P
0
t is negative de�nite and therefore

Wt(Pt;xt) is globally concave in Pt. �

Proof of Proposition 3. The intertemporal payo¤ function of the probability-choice model is

de�ned as Wt(Pt;xt) � �Pt (Pt;xt)+ �
P
xt+1

V Pt+1(xt+1) f
P (xt+1jPt;xt). Then, for any arbitrary

vector Pt in the Simplex, we have that:

@Wt(Pt;xt)

@Pt(a)
=
@�Pt (Pt;xt)

@Pt(a)
+ �

X
xt+1

V Pt+1(xt+1)
ef(xt+1ja;xt) (A.19)

where ef(xt+1ja;xt) � fx(xt+1ja;xt)� fx(xt+1j0;xt). From Proposition 2, we have that:

@Wt(Pt;xt)

@Pt(a)
= evt(a;xt)� ��1 (a;Pt) (A.20)

Combining equations (A.19) and (A.20), we have that:

@�Pt (Pt;xt)

@Pt(a)
= evt(a;xt)� ��1 (a;Pt)� �X

xt+1

V Pt+1(xt+1)
ef(xt+1ja;xt) (A.21)

Now, by de�nition of the value di¤erence evt(a;xt) = vt(a;xt)� vt(0;xt), we have that:
evt(a;xt) = �t (a;xt)� �t (0;xt) + �X

xt+1

V Pt+1(xt+1)
ef(xt+1ja;xt) (A.22)

Then, combining equations (A.21) and (A.22), we obtain that:

@�Pt (Pt;xt)

@Pt(a)
= �t (a;xt)� �t (0;xt)� ��1 (a;Pt) �

Proof of Proposition 5. Using the de�nition of the Social Surplus function, we can represent

the Euler Equation-Value mapping using the following expression:

�EE;v(a;x;ev) = c(a;x) + � ��P
x0
S
�ev(x0)� �f(x0ja;x)� f(x0j0;x)�� (A.23)
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Using this expression and the weak contraction property of the Social Surplus function in Lemma

3, we can show the contraction property of the EE-V mapping �EE;v. For any ev and ew in V,

k�EE;v(ev)� �EE;v(ew)k1 = max
a;x

j�EE;v(a;x;ev)� �EE;v(a;x;ew)j
= � max

a;x

����P
x0
[S (ew(x0))� S (ev(x0))] [f(x0ja;x)� f(x0j0;x)]����

� � max
x0
jS (ev(x0))� S (ew(x0))j

� � max
x0
kev(x0)� ew(x0)k1

= � kev � ewk1 �
(A.24)

Proof of Proposition 6.

(A) �(N)EE;v(ev; �) is a contraction. This proof is a straightforward extension of the proof of

proposition 5. For a given sample with N cross sectional observations, denote the space in which the

value di¤erences live to be VN . Additionally, let bfN (x0ja;x) be the estimated transition probabilities
for a given action a. For any ~v and ~w in VN , using the same inequalities as in (A.24) but replacing

�EE;v with �
(N)
EE;v, and f with fN , we have that:


�(N)EE;v(ev; �)� �(N)EE;v(ew; �)


1 = max

a;x

����(N)EE;v(a;x;ev)� �(N)EE;v(a;x;ew)���
= � max

a;x

����P
x0
[S (ew(x0))� S (ev(x0))] [fN (x0ja;x)� fN (x0j0;x)]����

� � kev � ewk1 �
(A.25)

(B) �(N)EE;v(ev; �) converges uniformly to �EE;v(ev; �). We need to show that, for any value of

(a;x), supev;�
����(N)EE;v(a;x; ev; �)� �EE;v(a;x; ev; �)��� �!p 0. Or equivalently, for any " > 0 and any

� > 0, there is an integer N0("; �) such that for every value of (ev; �) and any N > N0("; �) we have

that,

Pr
�����(N)EE;v(a;x; ev; �)� �EE;v(a;x; ev; �)��� > "� < � (A.26)

For the rest of this proof and for the sake of notational simplicity, we omit the arguments (a;x)

and use 
 to represent the vector of parameters (ev; �). By de�nition, we have that �EE;v(
) =P
z02Z h(z

0; 
) f(z0) and �(N)EE;v(
) =
P
z02ZN h(z

0; 
) f(N)(z
0), where: (a) h(z0; 
) is a function

of payo¤s and choice probabilities that comes from the Euler equation; (b) h(z0; 
) is a bounded
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function such that h� � supz0;
 jh(z0; 
)j <1; (c) f is the true population distribution (transition

probability) of z0, and f(N) is the empirical distribution based on the sample; (d) for convenience,

and without loss of generality, we consider that f(N)(z0) = 0 for values z0 outside the sample set ZN ,

such that we can write �(N)EE;v(
) =
P
z02Z h(z

0; 
) f(N)(z
0); and (e) f(N) is a uniformly consistent

estimator of f and this implies that, for any "f > 0 and any �f > 0, there is an integer Nf ("f ; �f )

such that for any N > Nf ("f ; �f ) we have that,

Pr

�
sup
z02Z

��f(N)(z0)� f(z0)�� > "f� < �f (A.27)

Given points (a) to (e), we now prove uniform convergence of �(N)EE;v to �EE;v. Note that for any

N and 
, ����(N)EE;v(
)� �EE;v(
)
��� =

���� P
z02Z

�
f(N)(z

0)� f(z0)
�
h(z0; 
)

����
� h�

P
z02Z

��f(N)(z0)� f(z0)��
� h� sup

z02Z

��f(N)(z0)� f(z0)��
(A.28)

This implies that, for any " > 0,

Pr
�����(N)EE;v(
)� �EE;v(
)

��� > "� � Pr

�
h� sup

z02Z

��f(N)(z0)� f(z0)�� > "�

= Pr

�
sup
z02Z

��f(N)(z0)� f(z0)�� > "

h�

� (A.29)

Therefore, for any " > 0 and � > 0, we can �x "f = "=h�, �f = �, and N0("; �) = Nf ("f ; �f ), such

that for any N > N0("; �) we have that Pr
�����(N)EE;v(
)� �EE;v(
)

��� > "� < �. �

Proof of Proposition 7

(A) Consistency. For notational simplicity, we omit now �� as an argument in functions

�EE;v(ev; ��) and �(N)EE;v(ev; ��). The true ev� is de�ned as the unique �xed point ev� = �EE;v(ev�), andev�N is de�ned as the unique �xed point ev�N = �(N)EE;v(ev�N ). Given that, (a) �EE;v(:) is a continuous
function, and (b) �(N)EE;v converges uniformly in probability to �EE;v, we have by Slutsky�s that ev�N
converges in probability to ev�.
(B) Asymptotic Normality. By the �xed point conditions that de�ne the value vectors ev�N andev�, we have that:

ev�N � ev� = �
(N)
EE;v(ev�N )� �EE;v(ev�)

=
P
z2Z

h(z; ev�N ) f(N)(z)� P
z2Z

h(z; ev�) f(z) (A.30)
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Applying the Mean Value Theorem to the vector function h(z; ev�N ) at ev = ev�, and using the
consistency of ev�N (i.e., ev�N = ev� + op(1)), we have that:

h(z; ev�N ) = h(z; ev�) + @h(z; ev�)@ev0 (ev�N � ev�) + op(1) (A.31)

Solving this expression into (A.30) and using the consistency of f(N) (i.e., f(N)(z) = f(N)(z)+op(1)),

we obtain:

ev�N � ev� =
P
z2Z

h(z; ev�) �f(N)(z)� f(z)�+ � P
z2Z

f(z)
@h(z; ev�)
@ev0

�
(ev�N � ev�) + op(1) (A.32)

Solving for ev�N � ev�,
ev�N � ev� = [I�D]�1H

�
f(N) � f

�
+ op(1) (A.33)

where: I is the identity matrix; D is the matrix
P
z2Zf(z) @h(z; ev�)=@ev0; f(N) and f are the

column vectors that contain the probabilities f(N)(z) and f(z), respectively, for every value of z;

and H is the matrix with columns [h(z(1); ev�), h(z(2); ev�), ..., h(z(jZj); ev�)]. Under mild regularity
conditions, a standard Central Limit Theorem implies that the frequency estimator f(N) is such that
p
N
�
f(N) � f

�
converges in distribution to N(0;Vf ). Then, applying the Mann-Wald Theorem we

have that:
p
N
�
f(N) � f

�
!d N

�
0; [I�D]�1H Vf H

0 �I�D0��1� � (A.34)
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