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Abstract

This paper studies the identification of players’preferences and beliefs in empirical applica-
tions of discrete choice games using experimental data. The experiment comprises a set of games
with similar features (e.g., two-player coordination games) where each game has different values
for the players’monetary payoffs. Each game can be interpreted as an experimental treatment
group. The researcher assigns randomly subjects to play these games and observes the outcome
of the game as described by the vector of players’actions. Data from this experiment can be
described in terms of the empirical distribution of players’actions conditional on the treatment
group. The researcher is interested in the nonparametric identification of players’preferences
(utility function of money) and players’beliefs about the expected behavior of other players,
without imposing restrictions such as unbiased or rational beliefs or a particular functional form
for the utility of money. We show that the hypothesis of unbiased/rational beliefs is testable
and propose a test of this null hypothesis. We apply our method to two sets of experiments con-
ducted by Goeree and Holt (2001) and Heinemann, Nagel and Ockenfels (2009). Our empirical
results suggest that in the matching pennies game, a player is able to correctly predict other
player’s behavior. In the public good coordination game, our test can reject the null hypothesis
of unbiased beliefs when the payoff of the non-cooperative action is relatively low.
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1 Introduction

In games of incomplete information, players’behavior depends on their preferences and on their

beliefs about the uncertain actions of other players. The empirical researcher is interested in the

identification of preferences and beliefs using data from the outcome of multiple realizations of

the game. In empirical applications of games using field data, researchers commonly assume that

players’actions come from an equilibrium outcome. Under this assumption, a player’s beliefs about

other players’behavior correspond to the true probability distribution of other players’actions given

the information available. Therefore, a player’s belief is directly identified by the other player’s

behavior, and the utility function is identified thereafter.1 In the experimental economics literature,

researchers design laboratory experiments and generate experimental data to study behavior in

games. From the point of view of identification, there are clear advantages of having data from a

controlled experiment. In particular, the design of the experiment determines players’monetary

payoffs such that these payoffs are perfectly known to the researcher. Most of the experimental

games literature has exploited this advantage using two alternative approaches. A first approach

imposes the restriction that the utility function is equal to the monetary payment (plus a mean-

zero private information variable, henceforth, linear utility assumption) and then identifies beliefs

using choice data. Examples of this approach include Cheung and Friedman (1997) who estimate

a belief-learning process in a repeated game and Nyarko and Schotter (2002) who compare beliefs

estimated in this way with elicited beliefs. A second approach assumes that players form equilibrium

(unbiased) beliefs and identifies the utility function of money using choice data. An example of

this approach is Goeree, Holt and Palfrey (2003) who estimate each player’s risk preference under

the Quantal Response Equilibrium framework (Mckelvey and Palfrey, 1995 and 1998).

This paper proposes an alternative approach to identify preferences and beliefs in discrete games

of incomplete information using data from a controlled experiment. Our approach relaxes the as-

sumption of unbiased or equilibrium beliefs, which is commonly imposed in applications using field

data, and it does not impose any parametric restriction on the functional form of the utility func-

tion nor needs information of elicited beliefs. Relaxing these restrictions is important in different

empirical applications. First, there are multiple reasons why players may have biased beliefs. For

instance, playing a Bayesian Nash Equilibrium strategy requires player to determine other players’

equilibrium strategy and to be able to integrate it over the other player’s private information. Such

1Two exceptions are Aradillas-Lopez and Tamer (2008) and Aguirregabiria and Magesan (2015) who relax the
assumption of equilibrium beliefs.
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calculation is burdensome, and human cognition limits may preclude the equilibrium behavior, par-

ticularly in one-shot experimental games. Even in the absence of cognition limits, in games with

multiple equilibria, players may have uncertainty about which equilibrium strategy will be chosen

by other players. A player may believe that the selected equilibrium is A, while other player may

think that it is B. This type of strategic uncertainty has been studied by Van Huyk, Battalio, and

Beil (1990), Crawford and Haller (1990), Morris and Shin (2002, 2004), and Heinemann, Nagel, and

Ockenfels (2009), among others. Second, assuming that a player’s utility is equal to the monetary

payoff places strong restrictions on subjects’preferences that are at odds with important empirical

findings in the experimental literature. Kahneman and Tversky (1979) note that individuals may

respond to loss more sensitively than to gains. Such loss aversion is also ruled out by linear utility

assumption. Harrison and Rutström (2008) show that risk aversion is prevalent even for the payoff

scale typically found in experimental data.2 Other relevant features of preferences ruled out by

the linear utility assumption include social preferences and heterogeneity across players in their

marginal utility of money.3 Our framework treats a player’s utility as an unknown unrestricted

function of her monetary payoff and is able to capture both risk preference and loss aversion. Third,

there is mixed evidence about the ability of some elicitation processes to reveal players’true beliefs.

Recent experimental studies have found a significant discrepancy between elicited beliefs and the

beliefs inferred from players’actions (see Costa-Gomes and Weizsäcker, 2008, and Rutström and

Wilcox, 2009).

To avoid the estimation biases and the misleading results associated with the failure of these

assumptions, we treat both utilities and beliefs as unrestricted (nonparametric) functions to be

estimated. Our identification results and tests are based on an exclusion restriction that can be

easily generated by the researcher in the design of the experiment. Suppose that the same group

of individuals must play K different two-player games such that the (monetary) payoff matrices in

these K games are the same for the row player, but they vary across games for the column player.

This variation across games in the payoff matrix is what we describe as our exclusion restriction

in the sense that it does not affect the payoff function of the row player although it can affect the

beliefs of this player about the behavior of the column player. Under this exclusion restriction, the

variation across the K games in the empirical distribution of the actions of the row player provides

information about this player’s beliefs in these games. Without further assumptions and following

2Harrison and Rutström (2008) also review different methods to elicit each subject’s risk preference.
3For examples of social preferences such as fairness, see Güth, Schmittberger and Schwartz (1982), Kahneman,

Knetsch and Thaler (1986) and Fehr and Schmidt (1999), among others.
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an argument and proof similar to Aguirregabiria and Magesan (2015), we show that this exclusion

restriction identifies a function of beliefs. This identification result can be used to test different

assumptions on beliefs such as (a) unbiased (equilibrium) beliefs, (b) the validity of elicited beliefs,

and (c) monotonicity of the beliefs function with respect to monetary payoff of the other player(s).

The complete identification of utility and beliefs functions requires some additional restrictions.

These restrictions are weaker than the ones that have been considered in the literature. In a

two-player binary choice game, the researcher needs to impose two restrictions on the beliefs or

payoffs. We discuss the different form that these restrictions can take and how the choice of these

restrictions can be informed by our tests on beliefs. For instance, the researcher may assume that

elicited beliefs are valid or that beliefs are unbiased at two of the K games. How to choose these

two games is also an important decision for the researcher, and in this paper, we discuss different

criteria that can guide the researcher’s decision.

There are several ways to address risk preference in the experimental literature. An influential

approach, proposed by Roth and Malouf (1979), involves linearizing the utility function by assigning

the payoff as the probability of winning a fixed reward. This mechanism has been applied by Ochs

(1995) and Feltovich (2000), among others. In contrast, using the experimental data in the paper by

Ochs (1995), Goeree, Holt and Palfrey (2003) shows that this mechanism fails to linearize the utility

function. The general validity of Roth and Malouf’s approach seems unknown in the literature.

Another common method consists in eliciting players’risk preference using a lottery choice with

a known objective probability distribution. Such a method is used in Heinemann, Nagel, and

Ockenfels (2009), among others. Elicitation introduces an additional cost in the implementation of

the experiment and, as mentioned above, there may be different sources of bias in the elicitation of

preferences and beliefs. The third approach involves estimating a common parametric function for

the utility of money, e.g., a CRRA utility function. This is the approach used by Goeree, Holt and

Palfrey (2003). As usual with parametric specification, the misspecification of utility function can

generate bias in estimates of beliefs such that, for instance, the researcher may spuriously conclude

that players’beliefs are biased (not in equilibrium). For these reasons, we consider a nonparametric

specification of both preferences and beliefs functions in this paper.

An alternative way to address biased beliefs is to elicit each player’s subjective beliefs. This ap-

proach was proposed by Nayarko and Schotter (2002) and applied by Costa-Gomes and Weizsäcker

(2008) and Palfrey and Wang (2009), among others. Recently, Karni (2009) and Hossain and Okui

(2013) have proposed two scoring rules that can correctly elicit players’beliefs regardless of their
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risk preference. Nevertheless, Rutström and Wilcox (2009) show that the beliefs elicitation before

playing the game can seriously affect players’behavior during the game. In contrast, our approach

does not require an additional eliciting process, which reduces the cost of the experiment and avoids

this endogeneity problem.

We apply our approach to estimate two types of games that have received substantial attention

in the experimental economics literature: the matching pennies game in Goeree and Holt (2001)

and the coordination game in Heinemann, Nagel, and Ockenfels (2009). In the matching pennies

game, our estimation results suggest that a player can correctly predict other players’behavior

when the monetary payoff for the other player varies. In coordination games, we find that the

Bayesian Nash Equilibrium cannot explain subjects’behaviors for every treatment of the exper-

iment. Specifically, subjects tend to over-predict the coordination probability when coordination

diffi culty is high and under-predict it when coordination diffi culty is low. In addition, our estimated

payoff function is convex when the monetary payoff is low and becomes concave as the monetary

payoff increases. This finding suggests that the commonly imposed globally concave utility func-

tions, such as CRRA or logarithmic functions, are not able to capture subject’s preference, and a

non-parametric specification of the payoff function is more appropriate in this application.

The remainder of this paper is organized as follows. Section 2 describes the model and the

experimental design that generates the exclusion restriction. Section 3 presents our identification

results. Section 4 describes the two experimental data sets that we use in our empirical analysis

and presents the estimation procedure and our empirical results. We summarize and conclude in

section 5.

2 Model

2.1 Basic model

For the sake of exposition, we present here a model with two players and binary choice. Our

identification result can be generalized to games with more than two players and two actions.4

There are two roles for players in the game: the “row”player (R) and the “column”player (C).

We index player roles by i, j ∈ {R,C}. Let aR ∈ {0, 1} and aC ∈ {0, 1} be the actions and choice

sets for the “row” player and for the “column” player, respectively. Players take their actions

4 In the empirical applications that we present in section 4, the games can be represented as two-player binary
choice games. The matching pennies game is clearly a two-player game. The coordination game in Heinemann, Nagel
and Ockenfels (2009) is a game with more than two players. We show inb section 3.4 how our identification approach
applies also to this class of games.
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simultaneously to maximize their respective expected payoffs. The payoff function of player i is:

Πi(ai, aj) = π (mi(ai, aj)) + εi(ai) (1)

mi(ai, aj) is the monetary payoff of player i when players take actions (ai, aj). π (·) is a real-valued

function that represents the utility of money. The matrix of monetary payoffs and the utility

function π (·) are common knowledge to all the players. εi(ai) represents player i’s deviation from

the average utility, and it is idiosyncratic for each individual player and is private information

of the individual; furthermore, it is independently distributed across subjects with a probability

distribution that is public information for all the players.5

The asymmetric or incomplete information introduced by variables εi(ai) implies that players

have uncertainty about the behavior of the other player. Each player has beliefs about the action

that the other player will take. LetBi represent the subjective belief of player i about the probability

that the other player chooses action aj = 1. Given her payoff function and beliefs, each player

chooses the action that maximizes her expected payoff. The expected payoff of player i for action

ai is:

Πe
i (ai, Bi) = [1−Bi] π (mi(ai, 0)) +Bi π (mi(ai, 1)) + εi(ai) (2)

Players maximize their expected payoffs. The best response of player i is alternative ai = 1 if

[1−Bi]π (mi(1, 0)) +Bi π (mi(1, 1)) + εi(1)

≥ [1−Bi]π (mi(0, 0)) +Bi π (mi(0, 1)) + εi(0)
(3)

Integrating this best response function over the private information variables, we obtain player i’s

best response probability function:

Qi (mi, Bi) = Fε̃ (απ(mi) + βπ(mi) Bi) (4)

where Fε̃ is the CDF of ε̃i ≡ εi(0) − εi(1), απ (mi) ≡ π (mi(1, 0)) − π (mi(0, 0)), and βπ(mi) ≡

[π
(
mi(1, 1)

)
−π
(
mi(0, 1)

)
]− [π

(
mi(1, 0)

)
−π
(
mi(0, 0)

)
]. The payoffmatrix and the utility function

are such that βπ(mi) 6= 0, i.e., the model is a game and not a single-agent decision problem.

This model includes the Bayesian Nash Equilibrium as a particular case.

Definition. The model is consistent with Bayesian Nash Equilibrium if players’ beliefs about

other players’actions are equal to these players’best response probabilities: Bi = Qj (mj , Bj) and

Bj = Qi (mi, Bi). �
5 In field data, researchers typically observe a vector of state variables that remains fixed for all action profiles such

that utility for action profile (ai, aj) can be defined as Πi(xi, ai, aj) where xi is the vector of state variables affecting
subject i’s payoff. The identification results in this paper can be extended to a utility function π (mi(ai, aj), xi) as
long as the experimental design provides randomized variation in the vector of state variables (xR, xC).
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This framework is related to the Quantal Response Equilibrium (QRE) proposed by Mckelvey

and Palfrey (1995, 1998). In particular, the Bayesian Nash equilibrium can be interpreted as a

QRE.

QRE interprets εi(ai) as player i’s decision error. If the player’s behavior departs from the

Nash equilibrium, the QRE interprets it as the player making a mistake when calculating her

expected payoff, although the player can still form the correct belief about the opponent’s action.

Our framework relaxes two assumptions with respect the existing empirical applications of QRE

models. First, subjects are not restricted to having the correct belief when they play the game.

They may have biased beliefs, and the bias can be heterogeneous across subjects. Second, instead

of assuming that the researcher knows the payoff function π and that it is equal to the monetary

payoff, we treat it as an unknown to be estimated from the data.6

2.2 Experimental design and subject heterogeneity

Given the game described above, the experimental researcher chooses T different matrices of mon-

etary payoffs that are indexed by t ∈ {1, 2, ..., T}. Let mt = (mRt,mCt) be the t − th matrix of

monetary payoffs, wheremRt andmCt represent the matrices of payoffs for the row and the column

player, respectively. There is a sample of N subjects indexed by n ∈ {1, 2, ..., N}. Subjects are

randomly assigned to 2T possible treatments. A treatment in this experiment is defined as a pair

(i, t), where t is the index of the payoff matrix in the game the subject has to play, and i ∈ {R,C}

represents the player role of the subject in that game (i.e., either row or column player). The

random allocation of players to treatments is anonymous such that each subject does not have any

information about who is the other subject he is playing against. Once subjects have been allo-

cated to treatments, they play their respective games. We use the categorical variable dn ∈ {R,C}

× {1, 2, ..., T} to represent the treatment (i, t) received by subject n, and the binary variable

an ∈ {0, 1} is used to represent the subject’s actual choice in the game. Therefore, the data from

this randomized experiment can be described in terms of the observations {dn, an : n = 1, 2, ..., N}.

Subjects can be heterogeneous in preferences and beliefs. Variables εnit(0) and εnit(1) represent

the idiosyncratic components of the payoff function for subject n if he is assigned to treatment

(i, t). Similarly, the probability Bnit represents the subjective belief of subject n when assigned to

treatment (i, t). We make the following assumption of additive separability and independence on

6See Mckelvey and Palfrey (1995), Mckelvey, Palfrey and Weber (2000) and Goeree, Holt and Palfrey (2003) among
others. Goeree, Holt and Palfrey (2003) relax the assumption that the utility function π is equal to the monetary
payoff and estimate a parametric model for this function. In this paper, we do not impose any functional form for
the utility, other than being an increasing function.
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subjects’heterogeneity in preferences and beliefs.

Assumption 1. (A) All the heterogeneity in preferences across subjects is captured by the private

information variables εnit(0) and εnit(1) that have zero mean, are independently distributed across

(n,i,t), and independent of mt. (B) Subject n’s beliefs in treatment (i, t) are Bnit = Bit + ξnit,

where Bit represents the mean beliefs across all subjects conditional on treatment (i, t), and ξnit

is subject n idiosyncratic component in beliefs that is private information of this subject, has zero

mean, it is independently distributed across (n,i,t), and independent of mt, Bit, and Bjt. �

Assumption 2. Define the random variable ωnit ≡ εnit(0)− εnit(1)− ξnit βπ (mit), where βπ (mit)

has been defined above. Conditional on mit, the random variable ωnit has a probability distribution

Fω|mit
that is known to the researcher and it is strictly monotonic in R. �

Consider subject n that has been assigned to treatment t as a player of type i. The best

response probability of this subject is Qnit ≡ Qi (mit, Bnit), and using the definition in equation

(4) this best response probability is equal to Fε̃(απ (mit) + βπ (mit) Bnit). This best response

probability depends on the idiosyncratic beliefs of subject n, Bnit. Under Assumptions 1-2, we can

integrate this best response probability function over the idiosyncratic component of beliefs, ξnit.

We obtain the Conditional Choice Probability (CCP) function:

Pit ≡ Pi
(
mit, Bit

)
= Fω|mit

(
απ (mit) + βπ (mit) Bit

)
(5)

There is a substantial empirical literature in behavioral and experimental economics that studies

players’non-equilibrium behavior and heterogeneous beliefs. Level-k models by Nagel (1995) and

Stahl and Wilson (1994, 1995) and the cognitive hierarchy model by Camerer, Ho, and Chong

(2004) are some important contributions in this literature.7 Our model relaxes some restrictions in

these previous studies. We do not impose BNE, QRE, or level-k rationalizability, and ξnit captures

heterogeneity in beliefs across player roles and across subjects in the same role. We also consider

a nonparametric specification of the utility of money. In addition, our framework allows that the

standard deviation of error term ωnit depends on the monetary payoff matrix mit.

Assumption 2 imposes the restriction that the researcher knows the distribution of the unob-

servable variable ωnit. In section 3, we relax Assumption 2 and show that this distribution can be

nonparametrically identified if the experimental design includes a special regressor.8 Suppose that

7For a survey of papers in this field, see Crawford, Costa-Gomes and Iriberri (2013).
8See Matzkin (1992) and Lewbel (2000) for the nonparametric identification of the distribution of the unobservable

variables in single-agent discrete decision models using special regressors. Lewbel and Tang (2015) have used this
idea for the estimation of games of incomplete information under equilibrium restrictions.
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the payoff function has the following structure:

Πnit(anit, aj) = anit znit + π (mit(anit, aj)) + εnit(anit) (6)

where znit is a non-monetary payoff (e.g., extra points in the grade of student n) and it is private

information of subject n. That is, the experimental design includes a payment znit that subject n

obtains if he chooses alternative 1 regardless the action of the other player. The payment znit is not

subject to any strategic interaction with the other player.9 Furthermore, the experimental design

is such that znit is independent of the unobservable ωnit and it is independently and identically

distributed over subjects and treatments with a distribution Fz that has continuous support over

a compact set Z ∈ R. Payments zRnt and zCnt are random draws from the distribution Fz.10 In

this model, the Conditional Choice Probability for player-treatment (i, t) is:

Pi
(
zit,mit, Bit

)
= Fω|mit

(
zit + απ (mit) + βπ (mit) Bit

)
(7)

In section 3, we also present identification results for this model.

3 Identification

The dataset consists of N observations {dn, an}, one for each subject, where dn represents the

treatment received by subject n, and an is his action in the game. Each subject n is randomly

assigned to one of the 2T treatments such that dn is independent of the unobservables in ωn.

Let πi be the vector of payoff parameters for player i in the experiment, πi ≡ {π(mit(aR, aC)) :

(aR, aC) ∈ {0, 1}2 and t = 1, 2, ..., T}. Similarly, let Bi ≡ {Bit : t = 1, 2, ..., T} be the vector of

average belief parameters for player i in the experiment. The researcher is interested in using this

experimental data to estimate preferences and beliefs parameters πR, πC , BR, and BC .

LetMT ≡ {mt = (mRt,mCt) : t = 1, 2, ..., T} be the set of payoffmatrices in the T treatments

of the randomized experiment. Assumption 3 establishes a condition on the set MT that plays a

fundamental role in our identification results.

Assumption 3. The set MT of payoff matrices in the randomized experiment is such that there

are at least two treatments, say t1 and t2, such that: (A) player i has the same payoffs in the two

9A key difference between the two payments is that mit is subject to strategic uncertainty (i.e., it depends on
the unknown action of the other player) while zit is not. Based on this difference, the specification of the payoff
function with the special regressor assumes that payment zit is valued under risk neutrality (linear and additive)
while payment mit may be subject to risk aversion/risk loving considerations under the utility function π.
10For notational simplicity, here we assume that the distribution of znit is the same for any treatment (i, t). However,

all the results trivially extend to an experimental design where the distribution of znit varies across treatments (i, t),
as long as the random draws of znit are independent across (n, i, t).
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treatments but the payoffs of player j 6= i are different, i.e., mit1 = mit2 and mjt1 6= mjt2; (B)

player i’s conditional choice probabilities vary across the two treatments. �

Assumption 3(A) establishes that the experimental design generates a particular variation in

monetary payoffs across treatments: the payoff matrix of player j varies while the payoff matrix of

player i remains constant. We show below that this condition provides an exclusion restriction that

can be used to identify player i’s beliefs from this player’s observed behavior. Assumption 3(B) is

a "Relevance condition" that is necessary for identification. Since conditional choice probabilities

are nonparametrically identified, Assumption 3(B) is testable from the data. Assumption 3(B) can

be also interpreted as a Rationalizability assumption, i.e., player i’s knows that player j maximizes

expected payoff given beliefs. Since player j’s payoff matrix varies across treatments t1 and t2,

player i’s beliefs about player j′s behavior also varies between the two treatments, and given that

his own payoffmatrix did not change, his actual behavior should be different as long as his behavior

depends on beliefs.

We show below that under Assumptions 1 to 3 we can test for the null hypothesis of unbiased

(equilibrium) beliefs without parametric assumption on the utility function and average beliefs.

Then, we present additional conditions for the full nonparametric identification of the model. Fi-

nally, we relax Assumption 2 and present identification results for the model where the distribution

function Fω|mit
is unknown to the researcher and nonparametrically specified and the experiment

includes a randomized special regressor z.

3.1 Tests of unbiased beliefs

Under the conditions in Assumption 1 the choice probabilities Pit are identified for every player-role

and treatment (i, t). In particular, the probability Pit is equal to E[an | dn = (i, t)] and we can

estimate Pit consistently using the frequency estimator:

P̂it =

∑N
n=1 an 1{dn = (i, t)}∑N
n=1 1{dn = (i, t)}

(8)

where 1{.} is the indicator function. For the identification results in this section, we treat the

choice probabilities Pit as known. Let F−1ω|mit
(.) be the inverse function of the CDF of Fω|mit

. This

inverse function exits because the strict monotonicity of the CDF. Under Assumption 2, the inverse

function F−1ω|mit
(Pit) is identified for every treatment (i, t). For notational simplicity, we use the

variable Sit to represent F−1ω|mit
(Pit). The model implies that:

Sit = απ (mit) + βπ (mit) Bit (9)

9



Let t1 and t2 be the two treatments in Assumption 3. Let Ti,t1 be the subset of treatments in

the experiment where player i has the same monetary payoffs as in treatment t1 i.e., Ti,t1 ≡ {t :

mit = mit1}. For any treatment t ∈ Ti,t1 , we have that

Sit − Sit1 = βπ (mit1)
[
Bit −Bit1

]
(10)

Assumption 3(B) and the strict monotonicity of the CDF Fω|mit
imply that Sit2 −Sit1 6= 0. There-

fore, given that βπ(mit) 6= 0, equation (10) implies that Bit2 −Bit1 6= 0. Taking this into account,

we have that for any treatment t ∈ Ti,t1 ,

Sit − Sit1
Sit2 − Sit1

=
Bit −Bit1

Bit2 −Bit1

(11)

This expression shows that, under assumptions 1-3, the observed behavior of subjects playing type-i

identifies the beliefs ratio (Bit − Bit1)/(Bit2 − Bit1) for any treatment t ∈ Ti,t1 . That is, observed

behavior can identify an object that depends only on beliefs and not on preferences. This result

implies that the assumption of unbiased or equilibrium (average) beliefs is testable.

Under the restriction of equilibrium beliefs, the ratio (Bit − Bit1)/(Bit2 − Bit1) should be

equal to the ratio of the choice probabilities of the other player (subject playing type-j), i.e.,

(Pjt − Pjt1)/(Pjt2 − Pjt1). This provides a testable restriction.

Proposition 1. Under Assumptions 1 to 3, for any treatment t ∈ Ti,t1, the hypothesis of equilibrium

(unbiased) beliefs implies the restriction:

Sit − Sit1
Sit2 − Sit1

=
Pjt − Pjt1
Pjt2 − Pjt1

(12)

with Sit ≡ F−1ω|mit
(Pit). Given that the choice probabilities Pit and Pjt are identified, this restriction

is testable when the number of treatments in the set Ti,t1 is at least three. �

For experiments where the payoff matrix of player i has a particular structure, it is possible to

construct a test of unbiased beliefs that requires only two treatments in the set Ti,t1 . Suppose that

the matrix of monetary payoffs of player i is symmetric and diagonal-constant (Toeplitz matrix)

such that mi(0, 0) = mi(1, 1) and mi(0, 1) = mi(1, 0). For instance, this is form of the payoff

matrix in a matching pennies game. Under this condition, we have that βπ (mi) = −2 απ (mi) and

equation (9) becomes Sit = απ (mit) [1− 2 Bit]. Therefore, under Assumption 3, for treatments t1

and t2 we have that
Sit2
Sit1

=
1− 2 Bit2

1− 2 Bit1

(13)

This condition provides a different test for the null hypothesis of unbiased beliefs.
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Proposition 2. Under Assumptions 1 to 3 and the condition that the matrix of monetary payoffs

of player i is symmetric and diagonal-constant, the hypothesis of equilibrium (unbiased) beliefs

implies the testable restriction:

Sit2
Sit1

=
1− 2 Pjt2
1− 2 Pjt1

. � (14)

3.2 Identification of utility and beliefs

We now consider the identification of utility parameters απ (mit) and βπ (mit) and belief parameters

Bit for any treatment t in the set of treatments Ti,t1 . Later we discuss the identification of the

utility function from the functions απ (mit) and βπ (mit).

Equations (9) and (11) imply that, for any treatment t ∈ Ti,t1 , preferences and beliefs of player i

are identified up to two constants. To see this, define the constant parameters µ and λ as µ ≡ Bit1

and λ ≡ Bit2 −Bit1 . And for any treatment t ∈ Ti,t1 , define the ratio Rit ≡ (Sit−Sit1)/(Sit2 −Sit1)

that is identified from the data. Note that by definition Rit1 = 0 and Rit2 = 1. Then, we can write

equation (11), that describes the model restrictions on beliefs, as:

Bit = µ+ λ Rit (15)

Similarly, for any treatment t ∈ Ti,t1 we can write equation (9) as:

Sit = απ (mit1) + βπ (mit1) [µ+ λ Rit] (16)

Operating in this equation we can obtain the following expressions for the preference parameters

in terms of identified objects and the unknown constants µ and λ. For any t ∈ Ti,t1 ,

βπ (mit) = βπ (mit1) =
1

λ
(Sit2 − Sit1) (17)

απ (mit) = απ (mit1) = Sit1 −
µ

λ
(Sit2 − Sit1) (18)

Equations (15), (17) and (18) show that the vector of parameters θt1 ≡ {Bit, απ (mit), βπ (mit) :

t ∈ Ti,t1} is identified up to the two constants µ and λ.

The model implies an additional restriction on the sign of απ (mit1). Remember that απ (mi) ≡

π (mi(1, 0)) − π (mi(0, 0)). Since the utility of money is an increasing function, we have that the

sign of απ (mit1) is equal to the sign of the money difference mit1(1, 0)−mit1(0, 0), such that:

sign
{
Sit1 −

µ

λ
(Sit2 − Sit1)

}
= sign { mit1(1, 0)−mit1(0, 0) } (19)
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Suppose that mit1(1, 0)−mit1(0, 0) ≥ 0 and that Sit2 − Sit1 > 0. This is without loss of generality

because we can always label the two choice alternatives such that mit1(1, 0) −mit1(0, 0) ≥ 0, and

we can label treatments t1 and t2 such that Sit2 −Sit1 > 0. The sign restriction in (19) implies the

following inequality constraint for µ/λ:

Bit1

Bit2 −Bit1

≡ µ

λ
≤ Sit1
Sit2 − Sit1

(20)

Note that this inequality also provides a testable restriction for the null hypothesis of unbi-

ased (equilibrium) beliefs: under this null hypothesis, we should have that Pjt1/(Pjt2 − Pjt1) ≤

Sit1/(Sit2 − Sit1).

Proposition 3. Under Assumptions 1 to 3 and monotonicity of the payoff function, the hypothesis

of equilibrium (unbiased) beliefs implies the inequality restriction:

Pjt1
Pjt2 − Pjt1

≤ Sit1
Sit2 − Sit1

(21)

Given that the choice probabilities Pit and Pjt are identified, this restriction is testable as long as

the set Ti,t1 contains at least two treatments. �

Suppose that we have an empirical application where the number of treatments in the set Ti,t1
is greater than two. Suppose that for any treatments t different than t1 and t2 we reject the null

hypothesis in Proposition 2, but that for treatments t1 and t2 we cannot reject the null hypothesis

in Proposition 3. Therefore, we cannot reject the null hypothesis that player i has unbiased beliefs

at treatments t1 and t2 but has biased beliefs at other treatments in the set Ti,t1 . Given this

condition, the whole vector of structural parameters θt1 ≡ {Bit, απ (mit) βπ (mit) : t ∈ Ti,t1} is

point identified.

Proposition 4. Under Assumptions 1 to 3 and the condition that player i has unbiased beliefs in

treatments t1 and t2, the vector of structural parameters θt1 ≡ {Bit, απ (mit), βπ (mit) : t ∈ Ti,t1}

is point identified. �

Proof: If beliefs at treatments t1 and t2 are unbiased, we have that µ ≡ Bit1 = Pjt1 and λ ≡

Bit2 −Bit1 = Pjt2 −Pjt1 such that constants µ and λ are identified. Then, equations (15), (17) and

(18) imply that the parameters Bit, απ (mit), and βπ (mit) are identified for any t ∈ Ti,t1 . �
Note that the selection of the baseline treatments t1 and t2 in the set Ti,t1 should be based on

the test in Proposition 3.

When the matrix of monetary payoffs of player i is symmetric and diagonal-constant, we can

construct a different version of the inequality test in Proposition 3 and of the identification result
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of beliefs and payoffs in Proposition 4. Under this structure of the payoff matrix, there is only

one unknown constant to determine beliefs and payoff parameters. Taking into account that Sit =

απ (mit) [1− 2 Bit] and µ ≡ Bit1 , it is straightforward to show that for any treatment t ∈ Ti,t1 ,

απ (mi) =
Sit1

1− 2 µ
(22)

and

Bit =
1

2

[
1− (1− 2 µ)

Sit
Sit1

]
(23)

Given these conditions, we have versions of Propositions 3 and 4 for games with a symmetric and

diagonal-constant matrix of monetary payoffs.

Proposition 5. Under Assumptions 1 and 2, monotonicity of the payoff function, and a symmetric

and diagonal-constant matrix of monetary payoffs, the hypothesis of equilibrium (unbiased) beliefs

implies the testable inequality restrictions:

Sit
1− 2Pjt

≥ 0 (24)

for any t ∈ Ti,t1. �

Proposition 6. Under Assumptions 1 to 3, a symmetric diagonal-constant matrix of monetary

payoffs, and the condition that player i has unbiased beliefs in one of the treatments in set Ti,t1, the

vector of structural parameters θt1 ≡ {Bit, απ (mit), βπ (mit) : t ∈ Ti,t1} is point identified. �

Proof: Suppose (without loss of generality) that the treatment with unbiased beliefs is t1. Then,

we have that µ ≡ Bit1 = Pjt1 such that constants µ is identified. Then, equations (22) and (23)

imply that the parameters Bit, απ (mit), and βπ (mit) are identified for any t ∈ Ti,t1 . �

3.3 Identification of the distribution of private information

So far, we have assumed that the researcher knows the distribution function Fω|mit
of the unob-

servable variable in the payoff function. We now relax this assumption and replace Assumption 2

with conditions for the nonparametric identification of this distribution function.

Assumption 4. (A) The payoff function is Πi(ai, aj) = ai zi + π (mi) + εi(ai). (B) In the exper-

iment, each subject n is randomly assigned to a treatment that consists of: a game t with payoff

matrices (mRt,mCt); a player role, i.e., row or column player; and a non-monetary payment znit

that is a random draw from the probability distribution Fz and it is private information of subject

n. (C) The probability distribution Fz is continuous and strictly increasing over the real line. (D)
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The unobservable variable ωnit ≡ εnit(0) − εnit(1)− ξnit βπ (mit) has median zero and is median

independent of the monetary payoff mit. �

The dataset consists of N subjects and an observation for subject n consists of {dn, an, zn},

where dn represents the player-role and monetary treatment for subject n, zn is the non-monetary

treatment, and an is the player’s action in the game.

Proposition 7. Under Assumptions 1, 3, and 4, the cumulative distribution function Fω|mit
(ω) is

nonparametrically identified for any treatment (i, t) and any value ω ∈ R. �

Proof: Given treatment (i, t) and z ∈ R, define the conditional choice probability Pit(z) ≡ Pr(an = 1

| dn = (i, t),zn = z). For any (i, t, z), this choice probability function is nonparametrically identified.

Assumptions 1 and 4 imply that Pit (z) = Fω|mit
(z + απ (mit) + βπ (mit) Bit). By Assumption 4,

there is a value z such that the choice probability function takes a value equal to 1/2. Let z∗it be this

value of z for treatment (i, t), i.e., Pit (z∗it) = 1/2. For any treatment (i, t), the value z∗it is identified

from the data. Since the random variable ωnit has median equal to zero, we have that the condition

Fω|mit
(ω) = 1/2 implies that ω = 0. Therefore, Pit (z∗it) = 1/2 = Fω|mit

(z∗it + απ (mit) + βπ (mit)

Bit) implies that:

z∗it + απ (mit) + βπ (mit) Bit = 0 (25)

This expression shows that απ (mit) + βπ (mit) Bit is equal to −z∗it, and therefore it is identified.

Therefore, for any value ω ∈ R we have that:

Pit (ω + z∗it) = Fω|mit
(ω + z∗it + απ (mit) + βπ (mit)Bit)

= Fω|mit
(ω)

Such that Fω|mit
(ω) is identified. �

The proof of Proposition 7 provides also a straightforward approach to estimate the value Sit =

απ (mit) + βπ (mit) Bit. This value is equal to −z∗it and can be estimated by looking at the value

of z that makes the choice probability function Pit (z) equal to one-half.

4 Empirical application

In this section, we apply the model and the identification results in section 2 and 3 to datasets

from two laboratory experiments that incorporate the exclusion restriction in Assumption 3. We

start by describing these experiments.
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4.1 Experiment 1: Matching pennies

Table 1 presents the payoff matrices in the experiment by Goeree and Holt (2001, henceforth

GH). Each player simultaneously chooses between two possible actions, 0 or 1. The pairs of num-

bers between brackets, [mR,mC ], represent the monetary payoffs of row player and the column

player, respectively, measured in cents. The experiment contains three games or treatments. The

only difference across treatments is in the monetary payoff of the row player under action profile

(aR, aC) = (0, 0). It is clear that this experimental design satisfies the exclusion restriction in

Assumption 3(A). Furthermore, note that the payoff matrix of the column player is symmetric

and diagonal-constant. Therefore, for this game we can apply the test and identification result in

Propositions 2, 5, and 6.

Table 1: Matching Pennies Experiment
(Goeree and Holt, 2001)

Treatment 1
Player C

aC = 0 aC = 1
Player R aR = 0 [80 , 40] [40 , 80]

aR = 1 [40 , 80] [80 , 40]

Treatment 2
Player C

aC = 0 aC = 1
Player R aR = 0 [320 , 40] [40 , 80]

aR = 1 [40 , 80] [80 , 40]

Treatment 3
Player C

aC = 0 aC = 1
Player R aR = 0 [44 , 40] [40 , 80]

aR = 1 [40 , 80] [80 , 40]

The experiment includes 50 subjects (N = 50): five cohorts of ten subjects who were undergrad-

uates in an economic class from University of Virginia. They were randomly matched and assigned

as row or column player. In addition, the ordering of treatments is alternated for different sessions.

Each subject records his/her decision of the game described by table 1 in an instruction sheet. In

addition to this matching pennies game, subjects are also asked to play other nine different games
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which are not the focus of this paper. In this experiment each subject is paid $6 for showing up.

The average earnings for a two-hour session is about $35 with range from $15 to $60 for all 10

games.

Half of the subjects are randomly selected as row players and the remaining subjects are column

players. Each subject plays all three treatments once, and his role as either row or column player

is fixed across treatments.11 Table 2 presents the frequencies or players’choice probabilities from

this experiment and the corresponding standard errors. The behavior of both players varies across

treatments. In particular, though the payoff matrix of the column player is the same in the three

treatments the behavior of this player varies considerably. According to the model, the change

in the behavior of the column player should be attributed to the change in this player’s beliefs

on the behavior of the row player. This evidence is consistent with the “relevance” restriction in

Assumption 3(B) that establishes that player R’s behavior varies across treatments. We will exploit

this source of variation in this experiment to test for unbiased beliefs of the column player and to

identify beliefs and utilities for this player. Since the experiment does not provide the same source

of variation for the row player, we cannot identify beliefs and preferences for this other player.

Table 2: Matching Pennies Game Experiment
Empirical Choice Probabilities: N = 50

(Standard errors in parentheses)
Player R [ P̂R,t] Player C [ P̂C,t]

Treatment 1 0.52 (0.100) 0.52 (0.10)
Treatment 2 0.04 (0.039) 0.84 (0.073)
Treatment 3 0.92 (0.054) 0.20 (0.080)

Note: For player-type i, P̂it =
[∑N

n=1an 1{dn= (i, t)}
]
/
[∑N

n=11{dn= (i, t)}
]

Goeree and Holt (2001) treat this matching pennies game as one with complete information.

They conclude that while subjects’behaviors are consistent with mixed strategy Nash Equilibrium

in treatment 1, their behaviors departures considerably from the theoretical prediction in treatment

2 and 3. In contrast, our framework treats subject’s preference as private information and it allows

for players’biased beliefs and nonlinear utility of money.

4.2 Experiment 2: Coordination game

The second experiment deals with a coordination game. Heinemann, Nagel, and Ockenfels (2009,

henceforth HNO) study and measure the strategic uncertainty that appears in games with multiple
11For detailed instruction of this experiment, visit http://www.people.virginia.edu/~cah2k/trdatatr.pdf.
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equilibria when players have non-coordinated beliefs about the selected equilibrium. To study this

phenomenon, they design and implement a randomized experiment using a set of coordination

games with different group sizes, monetary payoffs and coordination diffi culty.

Table 3 presents the payoff matrices in the different treatments of their experiment. There are

G players in the game. Players simultaneously choose between action 0 and 1. Action a = 0 is a

safe action that gives the player m0 Euros regardless of other players’decisions. Action a = 1 is a

risky action that yields 15 Euros if at least a fraction λ of other players also choose action a = 1,

but it yields zero monetary payoff otherwise. Even though this experiment is a game with more

than two players, table 3 shows that we can treat it as a two player game in which each player plays

with an aggregate player. In this game, m0 is a measure of the opportunity cost of coordination,

and λ measures coordination diffi culty. We expect that asm0 and λ increase, coordination behavior

becomes more unlikely to be maintained.

Table 3: Coordination Game Experiment
(Heinemann, Nagel and Ockenfels, 2009)

Other players
q = fraction of other players choosing a = 1

q < λ q ≥ λ
Player R aR = 0 m0 m0

aR = 1 0 15 Euros

Treatments
T = 81 treatments. Set of treatment consists of
every combination (G,m0, λ) with:

G (# players) ∈ {4, 7, 10}
m0 ∈ {j ∗ 1.5 : j = 1, 2, ..., 9} Euros
λ ∈ {1/3, 2/3, 1}

The experiment was conducted in different locations: Frankfurt, Barcelona, Bonn and Cologne.

Heinemann, Nagel and Ockenfels (2009) report that there are substantial differences among subject

pools. For instance, subjects in Frankfurt are more risk averse than students from other locations.

Therefore, it is reasonable to believe that those subjects from different locations are from different

populations. Accordingly, our analysis focuses on Frankfurt as it contains most of the subjects and

treatments.

The experiment was run at a computer laboratory in the Economics Department of the Univer-

sity of Frankfurt between May and July 2003. Most of subjects were undergraduates in business
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and economics. There are 90 treatments or games according to all the possile values of the para-

meters G, m0, and λ with G ∈ {4, 7, 10}, λ ∈ {1/3, 2/3, 1}, and any value of m0 between 1.5 Euros

and 13.5 Euros with an incremental unit of 1.5 Euros.12 Subjects were randomly assigned into a

group G, where G is 4, 7 or 10. Then, given the selection of group size G, a subject participates

in all the treatments / games for every value of λ and m0. Therefore, each subject participates in

30 treatments. To prevent learning, Heinemann, Nagel and Ockenfels (2009) do not give feedback

between blocks. At the end of a session, only 1 of 40 situations is randomly selected to determine

subject’s earning. This avoids potential hedging and each decision situation can be treated as

independent. The duration of a session is about 40-60 minutes with an average earning of 16.68

Euros per subject.

The experiment is conducted using different populations of students from Frankfurt, Barcelona,

Bonn and Cologne. Heinemann, Nagel and Ockenfels (2009) report that there is substantial differ-

ences in risk preferences between subject pools. For instance, subjects in Frankfurt are more risk

averse than students from other locations. Therefore, it is reasonable to believe that those subjects

come from different populations. Accordingly, our analysis focuses on Frankfurt as it contains most

of the subjects and treatments.13

Unlike the GH experiment, the HNO coordination game does not have a variable that shifts one

player’s monetary payoff while has no impact on other players’utility. Note that the parameter

m0 shifts all players’monetary payoff and cannot be an exclusion restriction. However, changes

in the coordination diffi culty parameter λ and group size G play the same role as our exclusion

restriction. In particular, a change in λ or G does not shift the payoff matrix of any player

but it affects the beliefs that players have about the behavior of other players. With exogenous

(randomized) variation in λ and G, all the identification results in previous section hold in HNO

coordination game.

The number of subjects N in this experiment is 64, 42, or 40 depending on the treatment. Table

4 presents players’empirical choice probabilities and their corresponding standard errors for each

of the 81 treatments. Note that for any value of the parameters G and m0, the choice probability

of the risky action (a = 1) always declines when the parameter λ (the coordination diffi culty)

increases. This implies that λ is a relevant instrument because it affects players’beliefs without

affecting their own payoff matrix, i.e., it satisfies Assumption 3. Note that for each value of the

12We have not used treatments with m0 = 15 in our analysis because subjects’ choice probabilities are very
imprecisely estimated for these treatments.
13For details about this experiment, see section 3 in Heinemann, Nagel and Ockenfels (2009). The experimental in-

structions are available on the supplements page of the Review of Economic Studies website at http://www.restud.org.
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safe monetary payoffm0, there are nine treatments (i.e. 9 combinations of (G,λ)). For illustration

purpose, we index these nine treatments by t in HNO experiment.

Table 4: Coordination Game Experiment
Empirical Choice Probabilities (Probability of choosing risky action)

(Standard errors in parentheses)
G = 4 G = 7 G = 10

λ = 1 λ =2
3 λ =1

3 λ = 1 λ =2
3 λ =1

3 λ = 1 λ =2
3 λ =1

3

m0= 1.5 0.7813 0.8750 0.9531 0.7143 0.8333 0.8810 0.6750 0.8500 0.9000

(0.0517) (0.0413) (0.0264) (0.0697) (0.0575) (0.0500) (0.0741) (0.0565) (0.0474)

m0= 3.0 0.7188 0.8750 0.9688 0.6429 0.7143 0.8333 0.6250 0.8500 0.9250

(0.0562) (0.0413) (0.0217) (0.0739) (0.0697) (0.0575) (0.0765) (0.0565) (0.0416)

m0= 4.5 0.6094 0.8438 0.9531 0.5000 0.7381 0.8571 0.4000 0.8000 0.9000

(0.0610) (0.0454) (0.0264) (0.0772) (0.0678) (0.0540) (0.0775) (0.0632) (0.0474)

m0= 6.0 0.4375 0.7031 0.8750 0.3810 0.5714 0.8333 0.3250 0.5250 0.8500

(0.0620) (0.0571) (0.0413) (0.0749) (0.0764) (0.0575) (0.0741) (0.0790) (0.0565)

m0= 7.5 0.2813 0.4688 0.8125 0.2619 0.4286 0.7143 0.2750 0.3750 0.8250

(0.0562) (0.0624) (0.0488) (0.0678) (0.0764) (0.0697) (0.0706) (0.0765) (0.0601)

m0= 9.0 0.1719 0.2656 0.6406 0.1667 0.3333 0.6190 0.2250 0.2500 0.6000

(0.0472) (0.0552) (0.0600) (0.0575) (0.0727) (0.0749) (0.0660) (0.0685) (0.0775)

m0= 10.5 0.1406 0.1250 0.4375 0.0714 0.1667 0.4286 0.1250 0.2250 0.4500

(0.0435) (0.0413) (0.0620) (0.0397) (0.0575) (0.0764) (0.0523) (0.0660) (0.0787)

m0= 12.0 0.0781 0.1094 0.2656 0.0714 0.0476 0.2619 0.1250 0.1500 0.3500

(0.0335) (0.0390) (0.0552) (0.0397) (0.0329) (0.0678) (0.0523) (0.0565) (0.0754)

m0= 13.5 0.0781 0.0781 0.1875 0.0476 0.0238 0.1667 0.1000 0.1250 0.2500

(0.0335) (0.0335) (0.0488) (0.0329) (0.0235) (0.0575) (0.0474) (0.0523) (0.0685)

Subjects per 64 42 40

treatment

In this game, Pm0,t represents the choice probability of the risky action when the treatment is

(m0, t) where t denotes a treatment index for (G,λ). Given G − 1 of the players (all except one),

let gm0,t be the number of these players who choose the risky action. According to the model, gm0,t

is a Binomial random variable with parameters G− 1 and Pm0,t. Therefore, the probability that at

least a fraction λ of the other players choose the risky action is:

CPm0,t ≡ Pr (gm0,t ≥ λ[G− 1]) = 1−BIN (λ[G− 1] ;G− 1, Pm0,t) (26)

where BIN(n;N,P ) is the CDF of a Binomial with parameters (N,P ). In this game, Bm0,t

represents beliefs about the probability that at least a fraction λ of the other players choose the risky

action. Therefore, the condition of unbiased beliefs is not Bm0,t = Pm0,t but instead Bm0,t = CPm0,t.
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4.3 Tests and estimation

4.3.1 Hypothesis testing

In the two applications we present tests and estimation results under three alternative parametric

specifications for the distribution of the unobserved variable ωnit: (a) standard normal (Probit); (b)

double exponential (Logit); and (c) exponential with zero median. The form of the inverse function

Sit ≡ F−1ω|mit
(Pit) for these three distributions is: (a) for the Probit model, Sit = Φ−1(Pit), where

Φ−1 is the inverse CDF of the standard normal; (b) for the Logit model, Sit = ln(Pit)− ln(1−Pit);

and (c) for the exponential model, Sit = − ln(2[1− Pit]).

Consider the GH experiment. Let P̂Rt and P̂Ct be the estimated choice probabilities in table 2

for t = 1, 2, 3, and let ŜCt be F−1ω (P̂Ct). Based on Proposition 1, we could construct the statistic
ŜC3−ŜC1
ŜC2−ŜC1

− P̂R3−P̂R1
P̂R2−P̂R1

and its standard error to test for the null hypothesis of unbiased beliefs using

a t-test. This test is asymptotically valid. However, this test does not have good small-sample

properties when one, or both, of the values in the denominator, ŜC2− ŜC1 and P̂R2− P̂R1, are close

to zero. To deal with this issue, we use instead the following statistic:

δ̂ =
(
ŜC3 − ŜC1

)(
P̂R2 − P̂R1

)
−
(
ŜC2 − ŜC1

)(
P̂R3 − P̂R1

)
(27)

We also use the bootstrap method to calculate the standard error se(δ̂) (Horowitz, 2001). Since in

this experiment the matrix of monetary payoffs of the column player is symmetric and diagonal-

constant, we can also apply the test of unbiased beliefs in Proposition 2. We can construct the

statistics14

δ̂12 = ŜC2 (1− 2P̂R1)− ŜC1(1− 2P̂R2)

δ̂13 = ŜC3 (1− 2P̂R1)− ŜC1 (1− 2P̂R3)

(28)

δ̂12 is a test statistic for the unbiased belief in treatments 1 and 2, and δ̂13 is the same type of test

statistic but for treatments 1 and 3. Define the vector δ̂1 = (δ̂12, δ̂13)
′. Under the null hypothesis of

unbiased beliefs in treatments 1, 2, and 3, the statistic δ̂′1 · V̂ ar(δ̂1) · δ̂1 has a Chi-square distribution

with two degrees of freedom where V̂ ar(δ̂1) is an estimate of the variance-covariance matrix of δ̂1.

We apply the same test to the HNO experiment but with the following adjustments. Recall

that Pm0,t represents the choice probability of the risky action when the treatment is (m0, t), where

t denotes a treatment index for (G,λ). And CPm0,t is the probability that at least a fraction λ

of the other players choose the risky action. Therefore, for a single m0, we can always find there

14Note that the restrictions δ12 = 0 and δ13 = 0 imply the restriction δ23 = 0, and therefore this third restriction
is redundant. Also, note that the restrictions δ12 = 0 and δ13 = 0 imply δ defined in equation (27) is also zero.
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treatments t1, t2 and t and construct the following test-statistic:

δ̂m0,(t1,t2,t) =
(
Ŝm0,t2 − Ŝm0,t1

)(
ĈPm0,t − ĈPm0,t1

)
−

(
Ŝm0,t − Ŝm0,t1

)(
ĈPm0,t2 − ĈPm0,t1

) (29)

δ̂m0,(t1,t2,t) is the unbiased beliefs test statistic for treatments t1, t2 and t. For given (m0, t1, t2),

there are seven other combinations of (G,λ) for treatment t, such that we can construct seven

different statistics δ̂m0,(t1,t2,t). We use these seven δ̂’s to construct a Chi-Square test for testing the

hypothesis that players have unbiased belief in all treatments (G,λ) for a given m0.

4.3.2 Estimation

For the estimation of payoffs and beliefs in the GH experiment, we can exploit the symmetry of

the payoff matrix of the column player to identify payoffs and beliefs parameters with only one

restriction of unbiased beliefs (Proposition 6). Suppose that we impose the restriction of unbiased

beliefs in treatment t = 1. This implies that we can estimate beliefs of the column player at

treatments t = 2, 3 using the estimator:

B̂Ct =
1

2

[
1−

(
1− 2 P̂R1

) ŜCt
ŜC1

]
(30)

And we can estimate the payoff parameter of the column player using the estimator:

α̂π (mC) = ̂π (80)− π (40) =
ŜC1

1− 2P̂R1
(31)

In the experiment for the coordination game, we impose the restriction that beliefs are unbiased

for treatment t1 and t2 for m0. Under this restriction, we can estimate belief for treatment (m0, t):

B̂m0,t = ĈPm0,t1 +
(
ĈPm0,t2 − ĈPm0,t1

)( Ŝm0,t − Ŝm0,t1

Ŝm0,t2 − Ŝm0,t1

)
(32)

Given estimated beliefs B̂m0,t for every treatment, we apply OLS to the regression-like equation

Ŝm0,t =
π(m0)

σω,m0

+
π(15)

σω,m0

B̂m0,t

to estimate the utility parameters π(m0)/σω,m0 and π(15)/σω,m0 , where σ
2
ω,m0

is the variance of

the unobservable ω that we allow to be heteroscedastic with respect to m0. We use a bootstrap re-

sampling method to calculate standard errors that account for the two-step feature of the estimation

method. Given estimates π(m0)/σω,m0 and π(15)/σω,m0 , we obtain the the normalized payoff

π̃(m0) = 15 ∗ [π(m0)/σω,m0 ]/[π(15)/σω,m0 ] = 15 ∗ π(m0)/π(15) such that π̃(m0) does not depend

on the variance of the unobservable and π̃(15) is normalized to 15.
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4.4 Empirical results: GH experiment

The monetary payment for player R in outcome (0, 0) is higher in treatment 2 compared to treat-

ment 1. Therefore, alternative aR = 0 becomes more attractive to R in treatment 2. If player C

has rational beliefs, she should predict that player R will choose aR = 0 with higher probability

in treatment 2 than in treatment 1. The best response to such belief is to choose aC = 1 more

frequently. A similar argument applies to the comparison of treatments 1 and 3. The estimated

choice probabilities in Table 2 are consistent with this argument: PC2 [= 0.84] > PC1 [= 0.52] >

PC3 [= 0.20], and these inequalities are statistically significant. However, this argument is not a

formal and rigorous test of unbiased beliefs. Without taking into account players’preferences and

their degree of risk aversion/loving, we do not know whether or not these changes in the choice

probability are consistent with unbiased beliefs. Here we implement formal tests of unbiased beliefs

that takes into account these considerations.

Table 5: Tests of Unbiased Beliefs
Matching Pennies

Probit Logit Exponential
Treatments 1,2, & 3
H0 : δ = 0 : δ̂ [s.e] 0.0503 [0.3753] 0.0726 [0.6479] -0.1942 [0.3683]

(p-value) (0.8818) (0.9032) (0.5426)

Treatments 1 & 2
H0 : δ12 = 0 : δ̂12 [s.e] -0.0859 [0.3242] -0.1400 [0.5402] -0.0831 [0.3454]

(p-value) (0.7932) (0.7926) (0.7926)

Treatments 1 & 3
H0 : δ13 = 0 : δ̂13 [s.e] 0.0758 [0.2886] 0.1277 [0.4760] 0.0531 [0.2102]

(p-value) (0.7876) (0.7868) (0.7820)

Treatments 1, 2, & 3
H0 : δ12 = δ13 = 0 : Chi-square 0.1392 0.1336 0.1217

(p-value) (0.9328) (0.9354) (0.9410)

Note: Standard error is calculated using bootstrap with 5,000 replications.

Table 5 presents results for our tests of unbiased beliefs in the GH experiment. We report

results from four different tests: the test from Proposition 1 for δ = 0, and three different tests

from Proposition 2 for δ12 = 0 and δ13 = 0 separately and for the joint restriction. Standard errors

are calculated by bootstrap with 5,000 bootstrap samples. All the tests are consistent with the

hypothesis that the column player has unbiased beliefs in the three treatments. All the p-values are
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greater than 0.5 and highly insignificant. Goeree and Holt (2001) conclude that column player tends

to predict row players’behaviors correctly based on an observation of choice probability. In this

paper, we verify their qualitative observation in a framework with incomplete information. They

also conclude that row player seems to simply responds to monetary payoff without considering

column player’s response. However, we cannot verify this point as there is a lack of exclusion

restriction for the row player. Take treatment 2 as an example, row player’s high choice probability

of action 0 can be explained by either row player predicts column player would choose action 0

with a suffi ciently high probability or row player values 320 cents far more than 80 cents and 40

cents or both. Without an exclusion restriction, we cannot distinguish these two effects.

Table 6 presents estimates of the preference parameter απ = π(80) − π(40). We report esti-

mates under the three models for the unobservables (Probit / Logit / Exponential), and under

the condition of unbiased beliefs at each of the treatments.15 All the estimates are significantly

greater than zero which implies the strict monotonicity of the payoff function. Furthermore, the

estimates under the three different distributional assumptions on the unobservable are very close

after adjusting their scales.16 In this experiment, player C receives only two possible monetary

payoffs, and therefore, we cannot study possible departures from the restriction of linear utility

function.

Table 6: Estimation of Payoff Parameters
Matching Pennies

Parameter Probit Logit Exponential
Unbiased beliefs at t = 2

π(80)− π(40) 1.0809∗∗∗ 1.8024∗∗ 1.2385∗

(s.e.) (0.3899) (0.7464) (0.6478)

Unbiased beliefs at t = 3
π(80)− π(40) 1.0019∗∗ 1.6504∗ 0.5595∗

(s.e.) (0.4321) (0.7849) (0.1554)

***, **, * indicate significance at 1%, 5%, and 10% levels.

15 In Table 6, we do not include the estimate of π(80)−π(40) under the restriction of unbiased beliefs in treatment
1. This is because, in treatment 1, both players’choice probabilities are close to 50%, the exclusion restriction has
little power, and as a result the estimated preference is very imprecise.
16Recall that the standard deviation of the error is 1 for Probit model,

√
2
3
π for Logit model, and

√
2 for exponential

model.
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4.5 Empirical results: HNO experiment

The HNO experiment includes many treatments with rich randomized variation players’monetary

payoffs. Such design enables us to address not only the test of unbiased beliefs but also possible

non-linearity of the utility function of money.

For each m0, there exist nine combinations of (G,λ) which provide exogenous variation for

unbiased belief test. However, we cannot use all nine combinations as some of them do not satisfy

the “relevance”condition of Assumption 3(B). To see this, suppose that the opportunity cost, as

measured by m0, is large enough such that the choice probability of the risky action becomes close

to zero regardless λ = 1 or λ = 2/3. This implies that, for high values of m0, subjects’beliefs are

not affected by changes in λ and those treatments do not provide enough exogenous variation to

identify biased beliefs. We address this issue by choosing the largest subset of nine treatments for

each m0 such that any two treatments do not share same choice probabilities (i.e. reject an equal

choice probability at 10 percent significance level). We then conduct the unbiased belief test using

such subset based on equation (29).17

Table 7 presents the results of all these tests. The fifth column shows which subset of treatments

is used to conduct the test of unbiased beliefs for the corresponding m0 and the degrees of freedom

for the test. Table 7 shows that there are several subsets of treatments where the test rejects

the hypothesis of unbiased beliefs, implying that Bayesian Nash equilibrium is inconsistent with

observed subjects’behavior. Specifically, when m0 is very low (i.e. m0 = 1.5, or 3, or 4.5) subjects’

beliefs appear as biased. In contrast, for the largest values of (i.e. m0 = 12, or 13.5) beliefs are close

to the actual coordination probability and the test statistic cannot reject the hypothesis of unbiased

beliefs. For middle range values of m0 the results are mixed. values is insignificant.18 Note that

this conclusion should not be interpreted as a comparative statistics exercise on m0 because the

subsets of treatments to conduct unbiased belief test for each m0 are different. We postpone the

discussion about comparative statistics on beliefs after the estimation of players’payoff function

and beliefs below.

17Admitedly, this procedure might be affected by pre-testing bias.
18Heinemann, Nagel and Ockenfels (2009) also consider a Bayesian game which is different than the one in this

paper. The Bayesian Nash Equilibrium in their framework predicts that the equilibrium probability of the risky action
increases monotonically with m0 and λ, and decreases with G. This prediction is clearly rejected by the empirical
choice probabilities, and therefore, they conclude that BNE is not appropriate in this experiment. In contrast, the
BNE in our framework does not predict their comparative statistics and it requires a formal test of unbiased beliefs.
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Table 7: Tests of Unbiased Beliefs
Coordination Game (Chi-Square Test)

(p-value in parentheses)
Probit Logit Exponential Treatment
Model Model Model Index

m0 = 1.5 3.1898∗∗ 2.6966 2.5239 1,2,3
(0.0741) (0.1006) (0.1121) (d.f. = 1)

m0 = 3.0 4.5180∗∗ 4.0588∗∗ 3.9355∗∗ 1,2,3
(0.0335) (0.0439) (0.0473) (d.f. = 1)

m0 = 4.5 5.6385∗∗ 4.7488∗ 3.4600 1,2,3,7
(0.0597) (0.0931) (0.1773) (d.f. = 2)

m0 = 6.0 3.3787 3.0128 3.4123 2,3,7,8
(0.1846) (0.2217) (0.1816) (d.f. = 2)

m0 = 7.5 1.5463 1.3931 4.4916∗∗ 1,2,3
(0.2137) (0.2379) (0.0341) (d.f. = 1)

m0 = 9.0 3.7684∗ 3.5429∗ 3.6324∗ 1,3,5
(0.0522) (0.0598) (0.0567) (d.f. = 1)

m0 = 10.5 3.7707∗ 2.9759∗ 4.6426∗∗ 3,4,5
(0.0.0522) (0.0845) (0.0312) (d.f. = 1)

m0 = 12.0 1.7664 1.5882 1.6675 5,8,9
(0.1838) (0.2076) (0.1966) (d.f. = 1)

m0 = 13.5 1.6626 1.6349 1.1114 5,8,9
(0.1973) (0.2010) (0.2918) (d.f. = 1)

Number of subjects 64 42 40

***, **, * indicate significance at 1%, 5%, and 10% levels.

We estimate payoff parameters using the two-step lest squares estimator described above in

section 4.3. To select the unbiased beliefs treatments, we apply the following procedure. First (step

1), for each m0, we construct all the possible subsets of three treatments satisfying the condition

that any pair of treatments within the subset has significantly different choice probabilities (using

p = 0.1 as the cutoff for the p-value of the test of equal choice probabilities). This step tries to

account for the potential problem of "weak instruments" in the test of unbiased beliefs. Second (step

2), using equation (29), we conduct the unbiased beliefs test for every subset of three treatments

that passes the selection criterion in step 1. We select the subset with the highest p-value and

impose the restriction that beliefs are unbiased in these three treatments. Third (step 3), under

the restriction in step 2, we estimate the rest of the beliefs parameters and utility parameters.

For values of m0 such that the unbiased belief test rejects the null hypothesis for every possible

subset of three treatments, we choose the two treatments by applying Proposition 3 that exploits

the restriction of strict monotonicity of the payoff function.
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Table 8: Estimation of Payoff Parameters
Coordination Game

(standard error in parentheses)
Probit Model Logit Model Exponential Model

Payoffs Unbiased Belief Payoffs Unbiased Belief Payoffs Unbiased Belief
Treatments Treatments Treatments

π(1.5) 0.3803 t = 1, 3 1.4103 t = 1, 3 2.9421 t = 1, 3
(4.7402) p=n.a. (4.2894) p=n.a. (3.4681) p= n.a.

π(3) 1.3150 t = 1, 3 2.0244∗ t = 1, 3 3.1003∗∗∗ t = 1, 3
(1.0919) p=n.a. (1.1733) p=n.a. (1.0925) p= n.a.

π(4.5) 1.6543∗ t = 1, 3, 7 1.6358∗∗ t = 1, 3, 7 1.4417∗∗ t = 1, 7, 9
(0.9241) p=0.5830 (0.8837) p=0.7892 (0.7237) p=0.8798

π(6) 4.1466∗∗∗ t = 3, 7, 8 4.0637∗∗∗ t = 3, 7, 8 4.1527∗∗∗ t = 2, 7, 8
(1.0131) p=0.8904 (1.0035) p=0.9692 (1.0412) p=0.6866

π(7.5) 7.8417∗∗∗ t = 2, 4, 6 7.7179∗∗∗ t = 1, 2, 6 4.4342∗∗∗ t = 3, 4, 5
(1.3819) p=0.9654 (1.2272) p=0.9514 (0.7336) p=0.6264

π(9) 10.1793∗∗∗ t = 1, 2, 3 10.2377∗∗∗ t = 1, 2, 3 8.7978∗∗∗ t = 1, 2, 3
(1.1710) p=0.5070 (1.1775) p=0.4692 (1.5230) p=0.5548

π(10.5) 13.8134∗∗∗ t = 3, 4 13.6697∗∗∗ t = 3, 4 15.2276∗∗∗ t = 3, 4
(0.9597) p=n.a. (0.8517) p=n.a. (2.4847) p= n.a.

π(12) 13.8952∗∗∗ t = 5, 8, 9 13.4586∗∗∗ t = 5, 8, 9 17.9552∗∗∗ t = 5, 8, 9
(1.6660) p=0.1642 (1.7893) p=0.1764 (1.9996) p=0.1588

π(13.5) 10.5192∗∗∗ t = 5, 8, 9 9.7867∗∗∗ t = 5, 8, 9 17.6108 t = 5, 8, 9
(2.8859) p=0.1402 (2.8718) p=0.1538 (11.8893) p=0.1714

π(15) 15 n.a. 15 n.a. 15 n.a.
n.a. n.a. n.a. n.a. n.a. n.a.

***, **, * indicate significance at 1%, 5%, and 10% levels.

Table 8 presents the estimation results. The column titled “Unbiased Beliefs Treatments”

reports the subset of treatments where we impose the restriction of unbiased beliefs and its cor-

responding p-value. Note that, as explained at the end of section 4.3.2, we account for hetero-

cedasticity in the unobservable and then we need to incorporate a scale normalization in the utility

function: we normalize π(15) = 15. Before we comment our main estimation results, we want to

draw attention on the estimate of the utility parameter π(13.5). The monotonicity of the payoff

function is violated at m0 = 13.5. Note that the p-value of the unbiased belief test at this value

of m0 is no more than 0.18 for the distributional assumptions on the unobservable. Therefore,

we interpret this non-monotonicity result as evidence that the selected combination of treatments

t = 5, 8, 9 does not satisfy the unbiased belief assumption. For the Probit model, the estimated

utility function is strictly increasing at all the other values of money.19

19The monotonicity condition also fails for π(3) for Logit model and π(3), π(10.5), π(12) for exponential model.
We interpret it as exponential error term is inadequate to explain subjects’behaviors especially when m0 is relatively
large.
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Figure 1: Estimated Payoff (Probit Model)

 

Figure 1 presents the estimated utility function for the Probit model, and 95% confidence bands.

This estimated utility function has an inverted S-shape: it is convex for relatively low values of

money and concave for large monetary payoffs. It indicates that subjects are risk loving when

receiving small monetary payoffs but they turn to be risk averse when the payoff increases. This

function is significantly different to the standard specification that restricts utility to be equal to

the monetary payoff (i.e., π(m0) = m0). The linear specification over-estimates (under-estimates)

utility for values of m0 smaller (larger) than 7.5 Euros. Imposing the restriction that the utility

is equal to the monetary payoff can generate incorrect conclusions on beliefs. Furthermore, our

estimates suggest that the specification of a globally concave utility function may generate also

important biases because this concavity does not hold at small monetary payoff. This indicates that

the conventional functional forms adopted for the utility function in many applications (i.e. linear,

logarithmic, CRRA, or CARA functions) can be mis-specified. In contrast, this paper provides

a method that estimate payoff functions without imposing any functional form assumption. Of
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course, this flexibility has the price of less precise estimates of the parameters. However, the

nonparametric specification can be considered an exploratory approach to search for the correct

parametric specification.

Tables 9 to 11 present our estimates of beliefs on the probability that at least a proportion

λ of other players choose the risky action, and compare these beliefs with the actual probability.

Each table corresponds to a particular value for the number of players G. Table 9 shows some

interesting features of subject’s beliefs. In general, subject’s belief about successful coordination

decreases as either m0, G, or λ increase. For G = 7, subjects’beliefs underestimate the actual

coordination probability when m0 is small (i.e., smaller than 6 Euros) and λ is also relatively low

(i.e. λ = 2
3 ,
1
3). However, subjects tend to over-predict the probability of successful coordination

when the coordination diffi culty is high (i.e. λ = 1). A similar pattern is also found for experiments

with G = 4 and G = 10, though the experiment with four players presents stronger evidence in

favor of the hypothesis equilibrium beliefs.

28



Table 9: Comparison Between Belief and Actual Coordination Probability
Probit Model, G = 7

(standard error in parentheses)
λ = 1 λ =2

3 λ =1
3

Beliefs True Choice Beliefs True Choice Beliefs True Choice
Probability Probability Probability

m0= 1.5 0.3544∗∗ 0.1328 0.5879∗∗∗ 0.9377∗∗∗ 0.7114∗∗∗ 0.9999∗∗∗

s.e. (0.1428) (0.0863) (0.1573) (0.0593) (0.1570) (0.0011)
Equality Test p-value=0.0428 p-value=0.0352 p-value=0.0960

m0= 3 0.2670∗∗ 0.0706 0.3649∗∗∗ 0.7703∗∗∗ 0.5615∗∗∗ 0.9993∗∗∗

s.e. (0.1068) (0.0571) (0.1096) (0.1189) (0.1285) (0.0027)
Equality Test p-value=0.0128 p-value=0.0004 p-value=0.0082

m0= 4.5 0.1103 0.0156 0.4461∗∗∗ 0.8113∗∗∗ 0.6726∗∗∗ 0.9997∗∗∗

s.e. (0.1007) (0.0201) (0.1315) (0.1089) (0.1536) (0.0017)
Equality Test p-value=0.3586 p-value=0.0010 p-value=0.0508

m0= 6 0.0872 0.0031 0.3889∗∗∗ 0.4852 0.8807∗∗∗ 0.9993∗∗∗

s.e. (0.1083) (0.0063) (0.1406) (0.1455) (0.1270) (0.0028)
Equality Test p-value=0.5518 p-value=0.1586 p-value=0.5166

m0= 7.5 0.0000 0.0003 0.3745∗∗∗ 0.2210∗ 0.9890∗∗∗ 0.9913∗∗∗

s.e. (0.0334) (0.0014) (0.1227) (0.1164) (0.0404) (0.0142)
Equality Test p-value=0.5124 p-value=0.0620 p-value=0.9586

m0= 9 0.0000 0.0000 0.3579∗∗ 0.1001 0.9042∗∗∗ 0.9671∗∗∗

s.e. (0.0901) (0.0002) (0.1651) (0.0770) (0.1254) (0.0360)
Equality Test p-value=0.4884 p-value=0.0322 p-value=0.6640
m0= 10.5 0.0000 0.0000 0.3129∗∗∗ 0.0087 0.8078 ∗∗∗ 0.8085∗∗∗

s.e. (6.89× 10−6) (0.0000) (0.1194) (0.0170) (0.1248) (0.1065)
Equality Test p-value=1 p-value=0.0154 p-value=0.9840

m0= 12 0.0000 0.0000 0.0000 0.0001 0.4899∗∗∗ 0.4941∗∗∗

s.e. (0.0559) (0.0000) (0.0155) (0.0010) (0.1473) (0.1498)
Equality Test p-value=0.4490 p-value=0.3248 p-value=0.9432
m0= 13.5 0.0000 0.0000 0.0000 0.0000 0.2680∗∗ 0.2632∗

s.e. (0.0418) (0.0000) (0.0067) (0.0002) (0.1173) (0.1308)
Equality Test p-value=0.4212 p-value=0.2638 p-value=0.9456

***, **, * indicate significance at 1%, 5%, and 10% levels.
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Table 10: Comparison Between Belief and Actual Coordination Probability
Probit Model, G = 4

(standard error in parentheses)
λ = 1 λ =2

3 λ =1
3

Beliefs True Choice Beliefs True Choice Beliefs True Choice
Probability Probability Probability

m0= 1.5 0.4768∗∗ 0.4768∗∗∗ 0.6943∗∗∗ 0.9570∗∗∗ 0.9999∗∗∗ 0.9999∗∗∗

s.e. (0.0953) (0.0963) (0.1008) (0.0285) (0.0003) (0.0003)
Equality Test p-value=1 p-value=0.0090 p-value=1

m0= 3 0.3713∗∗∗ 0.3713∗∗∗ 0.6511∗∗∗ 0.9570∗∗∗ 1.0000∗∗∗ 1.0000∗∗∗

s.e. (0.0880) (0.0883) (0.1131) (0.0281) (0.0001) (0.0002)
Equality Test p-value=1 p-value=0.0166 p-value=1

m0= 4.5 0.2566∗∗∗ 0.2263 0.6423∗∗∗ 0.9344∗∗∗ 0.9931∗∗∗ 0.9999∗∗∗

s.e. (0.0922) (0.0680) (0.1255) (0.0369) (0.0103) (0.0003)
Equality Test p-value=0.5664 p-value=0.0162 p-value=0.5734

m0= 6 0.1782 0.0837∗∗ 0.6096∗∗∗ 0.7879∗∗∗ 1.0000∗∗∗ 0.9934∗∗∗

s.e. (0.1099) (0.0371) (0.1092) (0.0714) (0.0336) (0.0061)
Equality Test p-value=0.3000 p-value=0.0172 p-value=0.8374

m0= 7.5 0.0457 0.2220 0.4582∗∗∗ 0.4532∗∗∗ 1.0000∗∗∗ 0.9934∗∗∗

s.e. (0.1121) (0.0145) (0.1454) (0.0927) (0.0336) (0.0061)
Equality Test p-value=0.8926 p-value=0.9620 p-value=0.1734

m0= 9 0.0000 0.0051 0.2124∗∗ 0.1742∗∗∗ 0.9468∗∗∗ 0.9536∗∗∗

s.e. (0.0236) (0.0052) (0.0873) (0.0645) (0.0282) (0.0243)
Equality Test p-value=0.2902 p-value=0.4926 p-value=0.4944
m0= 10.5 0.2437 0.0028 0.1979 0.0430 0.8220∗∗∗ 0.8220∗∗∗

s.e. (0.1536) (0.0034) (0.1493) (0.0283) (0.0602) (0.0599)
Equality Test p-value=0.1714 p-value=0.3456 p-value=1

m0= 12 0.0000 0.0005 0.0843 0.0333 0.4977∗∗∗ 0.6039∗∗∗

s.e. (0.0819) (0.0010) (0.1132) (0.0238) (0.1275) (0.0900)
Equality Test p-value=0.4740 p-value=0.7522 p-value=0.1060
m0= 13.5 0.0663 0.0005 0.0663 0.0174 0.3040∗∗∗ 0.4636∗∗∗

s.e. (0.0787) (0.0010) (0.0789) (0.0159) (0.1109) (0.0963)
Equality Test p-value=0.5514 p-value=0.5942 p-value=0.0470

***, **, * indicate significance at 1%, 5%, and 10% levels.
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Table 11: Comparison Between Belief and Actual Coordination Probability
Probit Model, G = 10

(standard error in parentheses)
λ = 1 λ =2

3 λ =1
3

Beliefs True Choice Beliefs True Choice Beliefs True Choice
Probability Probability Probability

m0= 1.5 0.2892∗∗ 0.0291 0.6280∗∗∗ 0.9661∗∗∗ 0.7706∗∗∗ 1.0000∗∗∗

s.e. (0.1453) (0.0445) (0.1611) (0.0555) (0.1565) (0.0001)
Equality Test p-value=0.0640 p-value=0.0454 p-value=0.2086

m0= 3 0.2437∗∗ 0.0146 0.5953∗∗∗ 0.9661∗∗∗ 0.7927∗∗∗ 1.0000∗∗∗

s.e. (0.1071) (0.0267) (0.1357) (0.0569) (0.1411) (0.0001)
Equality Test p-value=0.0196 p-value=0.0170 p-value=0.2234

m0= 4.5 0.0000 0.0003 0.5536∗∗∗ 0.9144∗∗∗ 0.7853∗∗∗ 1.0000∗∗∗

s.e. (0.0204) (0.0016) (0.1416) (0.0928) (0.1517) (0.0001)
Equality Test p-value=0.3812 p-value=0.0102 p-value=0.2388

m0= 6 0.0000 0.0000 0.3156∗∗ 0.3055∗ 0.9238∗∗∗ 1.0000∗∗∗

s.e. (0.0235) (0.0004) (0.1284) (0.1583) (0.1205) (0.0010)
Equality Test p-value=0.4954 p-value=0.0888 p-value=0.7010

m0= 7.5 0.0303 0.0000 0.2603 0.0740 1.0000∗∗∗ 0.9999∗∗∗

s.e. (0.1234) (0.0002) (0.1765) (0.0835) (0.0384) (0.0016)
Equality Test p-value=0.8776 p-value=0.1772 p-value=0.4126

m0= 9 0.1161 0.0000 0.1764 0.0100 0.8673∗∗∗ 0.9750∗∗∗

s.e. (0.1375) (0.0000) (0.1492) (0.0256) (0.1395) (0.0406)
Equality Test p-value=0.5530 p-value=0.3092 p-value=0.4606
m0= 10.5 0.1979 0.0000 0.4461∗∗∗ 0.0058 0.8419 ∗∗∗ 0.8505∗∗∗

s.e. (0.1638) (0.0000) (0.1493) (0.0180) (0.1226) (0.1172)
Equality Test p-value=0.3196 p-value=0.0196 p-value=0.8380

m0= 12 0.1388 0.0000 0.2168∗ 0.0006 0.6625∗∗∗ 0.6627∗∗∗

s.e. (0.1298) (0.000) (0.1271) (0.0051) (0.1703) (0.1667)
Equality Test p-value=0.4020 p-value=0.0802 p-value=0.5810
m0= 13.5 0.1274 0.0000 0.1861∗ 0.0002 0.3992∗∗∗ 0.3993∗∗∗

s.e. (0.1043) (0.0000) (0.1125) (0.0026) (0.1754) (0.1772)
Equality Test p-value=0.2762 p-value=0.0786 p-value=0.5324

***, **, * indicate significance at 1%, 5%, and 10% levels.
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5 Conclusion

A common approach to study risk aversion and biased beliefs in experimental games is to directly

eliciting preferences and beliefs. Recent papers have shown that the elicitation process may affect

players’ behavior in games. This paper complements the existing literature by treating utility

and beliefs as unknowns and estimating them directly from choice data. Our approach requires

an experimental design with multiple treatments where payoff matrices vary across treatments for

some players but not others. This revealed preference/beliefs approach avoids endogeneity issues

and the elicitation process, which can reduce the experimental burden. We propose different tests

for the null hypothesis of unbiased (equilibrium) beliefs and present identification results on beliefs

and payoff function.

We apply our test and identification results to experimental data from a matching pennies game

conducted by Goeree and Holt (2001) and a coordination game studied by Heinemann, Nagel, and

Ockenfels (2009). Our empirical results show that in the matching pennies game, subjects tend

to correctly predict other players’behavior when other players’monetary payoffs change. In the

coordination game, the estimated utility function of money has an inverted S-shape, indicating that

subjects are risk loving when receiving small monetary payoffs but they become risk averse when

the payoff increases. Estimated beliefs exhibit a U-shape with respect to the opportunity cost of

coordination. Players’beliefs are unbiased when the opportunity cost is in the middle range while

the belief becomes biased when the cost is either low or high.
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