
University of Toronto 
Department of Economics 

 

October 27, 2015

By Sebastian Dyrda and Marcelo Pedroni

Optimal Fiscal Policy in a Model with Uninsurable Idiosyncratic
Shocks

Working Paper 550



Optimal Fiscal Policy in a Model with
Uninsurable Idiosyncratic Shocks∗

Sebastian Dyrda

University of Toronto

sebastian.dyrda@utoronto.ca

Marcelo Pedroni

University of Amsterdam

m.pedroni@uva.nl

October, 2015

Abstract

This paper studies optimal taxation in an environment where heterogeneous house-
holds face uninsurable idiosyncratic risk. To do this, we formulate a Ramsey problem
in a standard infinite horizon incomplete markets model. We solve numerically for
the optimal path of proportional capital and labor income taxes, (possibly negative)
lump-sum transfers, and government debt. The solution maximizes welfare along the
transition between an initial steady state, calibrated to replicate key features of the
US economy, and an endogenously determined final steady state. We find that in the
optimal (utilitarian) policy: (i) capital income taxes are front-loaded hitting the im-
posed upper bound of 100 percent for 33 years before decreasing to 45 percent in the
long-run; (ii) labor income taxes are reduced to less than half of their initial level, from
28 percent to about 13 percent in the long-run; and (iii) the government accumulates
assets over time reducing the debt-to-output ratio from 63 percent to −17 percent in
the long-run. Relative to keeping fiscal instruments at their initial levels, this leads to
an average welfare gain equivalent to a permanent 4.9 percent increase in consumption.
Even though non-distortive lump-sum taxes are available, the optimal plan has positive
capital and labor taxes. Such taxes reduce the proportions of uncertain and unequal
labor and capital incomes in total income, increasing welfare by providing insurance
and redistribution. We quantify these welfare effects. We also show that calculating the
entire transition path (as opposed to considering steady states only) is quantitatively
important. Implementing the policy that maximizes welfare in steady state leads to a
welfare loss of 6.4 percent once transitory effects are accounted for.
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1 Introduction

How and to what extent should governments tax capital and labor income if they care
about individual income inequality and risk? We want to provide a quantitative answer
to this question. We, therefore, need a model that is able to generate realistic levels of
income inequality and uninsurable risk. Our approach in this paper is to numerically solve a
Ramsey problem in a quantitative general equilibrium model with heterogenous agents and
uninsurable idiosyncratic risk - from now on referred to as the standard incomplete markets
(SIM) model1.

The SIM model has been used extensively for positive analysis and been relatively suc-
cessful at matching some basic facts about inequality and uncertainty2. In this environment
agents face uncertainty with respect to their individual labor productivity which they cannot
directly insure against (only a risk-free asset is available). Depending on their productivity
realizations they make different savings choices which leads to endogenous wealth inequality.
As a result, on top of the usual concern about not distorting agents decisions, a (utilitarian)
Ramsey planner has two additional objectives: to redistribute resources across agents, and
to provide insurance against their idiosyncratic productivity risk.

The study of optimal fiscal policy in the SIM model has focused, so far, on the maxi-
mization of steady state welfare3. In contrast, we allow policy to be time varying and the
welfare function to depend on the associated transition path. We calibrate the initial steady
state to replicate several aspects of the US economy; in particular the fiscal policy, the dis-
tribution of wealth, and statistical properties of the individual labor income process. The
final steady state is, then, endogenously determined by the path of fiscal policy. The Ramsey
planner finances an exogenous stream of government expenditures with four instruments:
proportional capital and labor income taxes, (possibly negative) lump-sum transfers, and
government debt.

Labor and capital income taxes are distortive, however, they can be used to provide
insurance and redistribution. The only uncertainty that agents face, in our environment,
is with respect to their labor productivities4. Hence, labor income is the only risky part
of the agents’ income. By taxing labor income and rebating the extra revenue via lump-
sum, the planner can reduce the proportion of the agents’ income that is uncertain and
effectively provide insurance. On the other hand, capital income is particularly unequal

1This type of model was originally developed and analyzed by Bewley (1986), Imrohoruglu (1989), Huggett
(1993), and Aiyagari (1994).

2Our calibration strategy is similar to the ones in Domeij and Heathcote (2004) and
Castañeda, Dı́az-Giménez, and Rı́os-Rull (2003).

3See, for instance, Aiyagari and McGrattan (1998), Conesa, Kitao, and Krueger (2009), and Nakajima
(2010).

4Panousi and Reis (2012) and Evans (2014) focus instead on investment risk. One justification for our
focus on labor income risk is the fact that it is a bigger share of the total income for most agents in the
economy. The bottom 80 percent in the distribution of net worth have a a share of labor income above 77
percent, in the 2007 SCF.
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and by taxing capital the planner can reduce the proportion of unequal income in total
income and, this way, provide redistribution. The effect of government debt is more subtle.
Increasing government debt the government crowds out capital which affects prices indirectly,
in particular reducing wages and increasing interest rates which leads to a less uncertain but
more unequal distribution of income. The optimal fiscal policy weighs all these effects against
one another.

We find that optimal capital income taxes are front-loaded hitting the imposed upper
bound of 100 percent for 33 years then decreases to 45 percent in the long-run. Labor
income taxes are reduced to less than half of their initial level, from 28 percent to about
13 percent in the long-run. The ratio of lump-sum transfers to output is reduced to about
a half of its initial level of 8 percent and the government accumulates assets over time; the
debt-to-output ratio decreases from 63 percent to −17 percent in the long-run. Relative to
keeping fiscal instruments at their initial levels, this leads to a welfare gain equivalent to a
permanent 4.9 percent increase in consumption.

Unlike the Ramsey problem solved for representative-agent economies, in this paper we
do not rule out lump-sum taxation. The optimal levels of distortive taxation are, therefore,
derived rather than imposed. Even though lump-sum taxes are available, the planner chooses
to tax both capital and labor income at positive rates, rebating the associated revenue via
lump-sum transfers. Relative to a system that obtains all revenue via lump-sum taxes, such
a tax system changes the composition of agents’ after-tax income, reducing the proportions
associated with uncertain and unequal labor and capital incomes and increasing the propor-
tion of certain and equal transfer income; providing insurance and redistribution. To clarify
this point and to understand exactly how the optimal policy reacts to changes in uncertainty
and inequality we provide an analytic characterization of the solution to the Ramsey problem
in a simple two-period version of the SIM model.

We decompose the average welfare gains of 4.9 percent associated with implementing the
optimal policy into three parts: (i) 3.7 percent come from the more efficient allocation of ag-
gregate resources due to the reduction of the distortions of agents’ decisions; (ii) 4.9 percent
come from redistribution - the reduction in ex-ante inequality; and (iii) −3.7 percent come
from the reduction in insurance - there is more uncertainty about individual consumption
and labor streams under the optimal policy. The optimal policy implies an overall increase
of capital taxes and a reduction of labor taxes. The net effect on the distortions of agents’
savings and labor supply decisions is positive. The higher capital taxes decrease the propor-
tion of the agents’ income associated with the highly unequal asset income and lead to the
redistributional gains. Finally, a lower labor income tax leads to a higher proportion of the
agents’ income to come from the uncertain labor income, thus the negative insurance effect.

We show that disregarding transitory welfare effects can be severely misleading. To make
this point we compute the stationary fiscal policy that maximizes welfare in the final steady
state, which leads to a 9.8 percent greater steady state welfare than the initial steady state.
However, once transitory effects are considered, implementing this policy leads to a welfare

3



loss of 6.4 percent relative to keeping the initial fiscal policy. Relative to the fiscal policy
that maximizes welfare over transition it leads to a welfare loss of 11.3 percent.

In order to illustrate the role of market incompleteness in our findings, we develop the fol-
lowing build-up. We start from the representative agent economy and sequentially introduce
heterogeneity in initial assets; different (but constant and certain) individual productivity
levels; and, finally, uninsurable idiosyncratic productivity risk which adds up to the SIM
model. At each intermediate step, building on the work of Werning (2007), we analytically
characterize and then numerically compute the optimal fiscal policy over transition identify-
ing the effect of adding each feature. In particular, we show that the planner will choose to
keep capital taxes at the upper bound in the initial periods if there is asset heterogeneity,
before reducing it to zero. Productivity heterogeneity rationalizes positive (and virtually
constant) labor taxes. The key qualitative difference of the solution once uninsurable id-
iosyncratic productivity risk is introduced is that long-run capital income taxes are set to a
positive level. Rationales for this result already exist in the literature and are discussed in
the next section. To our knowledge, however, the level of the optimal long-run capital taxes
in the SIM model had not been obtained before.

Finally, we present robustness exercises with respect to the welfare function and the
calibration of the labor income process. Our benchmark results are for the utilitarian welfare
function which implies a particular social choice with respect to the equality versus efficiency
trade-off. We introduce a parameter in the welfare function that allows for different choices,
in particular for the planner to completely ignore equality concerns. The long-run levels
of capital and labor taxes are surprisingly resistant to changes in this parameter. What
does change significantly, however, is how long the capital tax is maintained at the upper
bound; the more the planner “cares” about inequality the more years it keeps those taxes
at the upper bound. With respect to different calibrations of the labor income process, the
magnitudes of the taxes are affected, but the qualitative features are maintained.

Related Literature

This paper is related to several strands of literature. First, it is related to the litera-
ture on the steady state optimal fiscal policy in the SIM model. In an influential paper,
Conesa, Kitao, and Krueger (2009) solve for the tax system that maximizes steady state
welfare in an overlapping generations SIM model. Their result includes an optimal long-run
capital income tax of 36 percent. It is important to note that though this result is similar to
ours the reasons behind it are different. They diagnose that their optimal capital tax level
follows from the planner’s inability to condition taxes on age, and the fact that a positive cap-
ital tax can mimic age-conditioned taxes in a welfare improving way (see Erosa and Gervais
(2002)). This mechanism is not present in our analysis since we abstract from life-cycle issues.

Aiyagari (1995) and Chamley (2001) provide rationales for positive long-run capital taxes
in environments similar to ours. Aiyagari (1995)’s logic depends on the planner choosing the
path of government expenditure (appearing separably in the agent’s utility function). The
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associated Euler equation implies the modified golden rule level of capital which can only be
achieved by taxing savings; the planner does not have precautionary motives while the agents
do. In our environment positive long-run capital taxes are preserved with exogenous gov-
ernmental spending and the modified golden rule holds. Chamley (2001) shows, in a partial
equilibrium version of the SIM model, that enough periods in the future every agent has the
same probability of being in each of the possible individual (asset/productivity) states. It is,
therefore, Pareto improving to transfer from the consumption-rich to the consumption-poor
in the long-run. If the correlation of asset holdings with consumption is positive, this transfer
can be achieved by a positive capital tax rebated via lump-sum. In short, an agent’s asset
level in the long-run is a good proxy for how lucky she has been; hence, taxing it is a good way
to provide insurance in the long-run. In recent work, Dávila, Hong, Krusell, and Rı́os-Rull
(2012) solve the problem of a planner that is restricted to satisfy agents’ budget constraints,
but is allowed to choose the savings of each agent. If the consumption-poor’s share of la-
bor income is higher than the average, increasing the aggregate capital stock relative to the
undistorted equilibrium can improve welfare through its indirect effect on wages and interest
rates. In our setup, the Ramsey planner taxes capital to affect after tax interest rates directly
and achieves the same goal, for more on the relationship between our results and theirs, see
Section 2.2.

Another important work on fiscal policy in the SIM model is Aiyagari and McGrattan
(1998), who search for the level of debt-to-output that maximizes steady state welfare. Inter-
estingly, they find that the optimal level is very close to the pre recession level of around 67
percent. The fact that they abstract from the transitional dynamics makes the result even
more remarkable: the government could chose its level of asset without having to finance
it over time, it could, for instance choose to have enough assets to finance all its expendi-
tures and yet it chooses to remain in debt. By holding debt, the government crowds out
capital increasing interest rates and decreasing wages. This effectively provides insurance
since the proportion of uncertain labor income out of total income is reduced. This benefit
is what drives the choice of the government to hold debt. However, there is another effect
associated with such a policy; it increases inequality (the proportion of the unequal asset
income out of total income increases). This negative effect is not particularly important in
Aiyagari and McGrattan (1998) because their calibration focuses on matching labor income
processes which leads to an underestimation of wealth inequality. Winter and Roehrs (2014)
replicate their experiment with a calibration that targets wealth inequality statistics and find
the opposite result, i.e. the government chooses to hold high levels of assets. Our calibration
procedure is closer to that of Winter and Roehrs (2014), which elucidates our result that the
Ramsey planner chooses to accumulate assets over time.

Heathcote, Storesletten, and Violante (2014) and Gottardi, Kajii, and Nakajima (2014b)
characterize the optimal fiscal policy in stylized versions of the SIM model. Their approaches
lead to elegant and insightful closed-form solutions. The environment and Ramsey problem in
Gottardi, Kajii, and Nakajima (2014b) is similar to ours except for the simplifications that
yield tractability; i.e. exogenous labor supply, the absence of borrowing constraints, and
i.i.d. shocks to human capital accumulation. Heathcote, Storesletten, and Violante (2014),
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on the other hand, focus on different, though related, questions. By abstracting from capital
accumulation, they are able to retain tractability in a model with progressive taxation, partial
insurance, endogenous government expenditure and skill choices (with imperfect substitution
between skill types). This leads to several interesting dimensions that, in our paper, we
abstract from. However, the simplifications in these models do not allow them to match
some aspects of the data which we find to be important for the determination of the optimal
tax system. In particular, the model in Heathcote, Storesletten, and Violante (2014) implies
no wealth inequality (wealth is zero for all agents). Our calibration strategy allows us to
match the distribution of wealth in the US.

We also contribute to the literature highlighting the importance of transition for pol-
icy prescriptions in incomplete markets models. Domeij and Heathcote (2004) use the SIM
model to evaluate the implementation of a zero capital income tax policy taking into ac-
count the transitional welfare effects. They conclude that such a reform would be detri-
mental to welfare due to its transitory effect on inequality. Krueger and Ludwig (2013),
Poschke, Kaymak, and Bakis (2012), and Winter and Roehrs (2014) also conduct experi-
ments in this spirit. Acikgoz (2013) claims that the optimal long-run fiscal policy is in-
dependent of initial conditions and the transition towards it. He, then, studies the properties
of fiscal policy in the long-run, but is silent about the optimal transition path which is the
focus of this paper.

There is an extensive literature that studies the Ramsey problem in complete market
economies; see Chari and Kehoe (1999) for a survey. The most well known result for the
deterministic subset of these economies is due to Judd (1985) and Chamley (1986); capital
taxes should converge to zero in the long run. Among others, Jones, Manuelli, and Rossi
(1997) and Atkeson, Chari, and Kehoe (1999), show this result is robust to a relaxation of a
number of assumptions. As was described above we make an effort to relate our main results
to the results in this literature.

The New Dynamic Public Finance literature takes an alternative approach to answer
our initial question. It focuses on the design of a mechanism that would allow the planner
to extract information about the agents’ unobservable productivities efficiently. It assumes
tax instruments are unrestricted and in this sense it dominates the Ramsey approach in
terms of generality, since the latter ignores the information extraction problem5 and im-
poses ad-hoc linearity restrictions on the tax system. One of the main results steaming
from this literature is the inverse Euler equation; see Golosov, Kocherlakota, and Tsyvinski
(2003). Farhi and Werning (2012) show that starting from the allocations from the steady
state of an undistorted SIM model and applying perturbations to implement the inverse
Euler equation leads to small welfare gains, of the order of 0.2 percent. Moreover, it is diffi-
cult to solve the private information problem in dynamic economies with persistent shocks.
Farhi and Werning (2013) and Troshkin, Tsyvinski, and Golosov (2010) have made advance-
ments in this direction in partial equilibrium settings and find that restrictions to linear taxes

5The Ramsey planner is also unable to observe productivity levels, it is not allowed to condition taxes on
them.
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lead to small welfare losses. Our view is that, even if only as a benchmark to more elaborate
tax systems, it is useful to understand the properties of a simpler optimal linear tax system
in a quantitative general equilibrium environment.

The rest of the paper is organized as follows. Section 2 illustrates the main mechanism
behind our results in a two-period economy. Section 3 describes the infinite horizon model,
sets up the Ramsey problem and discusses our solution technique. Section 4 describes the
calibration. Section 5 presents the main results of the paper. Section 6 presents the build-up
from the complete market economy results to our main results. Section 7 provides results for
alternative welfare functions and calibrations and Section 8 concludes.

2 Mechanism: Two-Period Economy

In the SIM model, there are two dimensions of heterogeneity: productivity and wealth.
Agents have different levels of productivity which follow an exogenous random process. In
addition, markets are incomplete and only a risk-free asset exists. Therefore, the idiosyncratic
productivity risk cannot be diversified away. It follows that the history of shocks, affects
the amount of wealth accumulated by each agent and there is an endogenously determined
distribution of wealth.

In a two-period economy, it is possible to evaluate how each dimension of heterogeneity
affects the optimal tax system. Since there is no previous history of shocks the initial wealth
inequality can be set exogenously. In this section, we characterize, under some assumptions
about preferences, the optimal tax system when the government has access to linear labor
and capital income taxes, and (possibly negative) lump-sum transfers. First, we assume
agents have the same level of wealth but face an idiosyncratic productivity shock - we call
this the uncertainty economy . Then, we shut down uncertainty and introduce ex-ante wealth
inequality - this is referred to as the inequality economy . Next we consider the case in which
there is uncertainty and inequality and discuss the relationship with the infinite horizon
problem.

2.1 Uncertainty economy

Consider an economy with a measure one of ex-ante identical agents who live for two periods.
Suppose they have time-additive, von Neumann-Morgenstern utility functions. Denote the
period utility function by u (c, n) where c and n are the levels of consumption and labor
supplied. Assume u satisfies the usual conditions and denote the discount factor by β. In the
first period each agent is endowed with ω units of the consumption good which can be either
consumed or invested into a risk-free asset, a, and supplies n̄ units of labor inelastically.

In period 2, consumers receive income from the asset they saved in period 1 and from
labor. Labor is supplied endogenously by each agent in period 2 and the individual labor
productivity, e, is random and can take two values: eL with probability π and eH > eL with
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probability 1− π, with the normalization πeL + (1− π) eH = 1. Due to the independence of
shocks across consumers a law of large numbers operates so that in period 2 the fraction of
agents with eL is π and with eH is (1− π). Letting ni be the labor supply of an agent with
productivity ei, it follows that the aggregate labor supply is N = πeLnL + (1− π) eHnH .

The planner needs to finance an expenditure of G in period 2. It has three instruments
available: labor and capital income taxes, τn and τk, and lump-sum transfers T which can
be positive or negative. Let w be the wage rate and r the interest rate. The total period 2
income of an agent with productivity ei is, therefore, (1− τn)weini+

(

1 +
(

1− τk
)

r
)

a+T .
In period 2, output is produced using capital, K, and labor and a constant-returns-to-scale
neoclassical production function f (K,N). We assume that f (·) is net of depreciation.

Definition 1 A tax distorted competitive equilibrium is a vector (K, nL, nH , r, w; τ
n,

τk, T ) such that

1. (K, nL, nH) solves

max
a,nL,nH

u (ω − a, n̄) + βE [u (ci, ni)] s.t. ci = (1− τn)weini +
(

1 +
(

1− τk
)

r
)

a+ T ;

2. r = fK (K,N), w = fN (K,N), where N = πeLnL + (1− π) eHnH ;

3. and, τnwN + τkrK = G+ T .

The Ramsey problem is to choose τn, τk, and T to maximize welfare. Since agents are
ex-ante identical there is no ambiguity about which welfare function to use, it is the expected
utility of the agents. If there is no risk, i.e. eL = eH , the agents are also ex-post identical and
the usual representative agent result applies: since negative lump-sum transfers are available,
it is optimal to obtain all revenue via this undistortive instrument and set τn = τk = 0.

In order to provide a sharp characterization of the optimal tax system we make the
following assumption discussed below6.

Assumption 1 No income effects on labor supply and constant Frisch elasticity, κ, i.e.

ucn − ucc
un
uc

= 0, and
uccun

n (uccunn − u2cn)
= κ.

6In a similar two-period environment, Gottardi et al. (2014a) characterize the solution to Ramsey problem
without Assumption A. However, they impose an alternative assumption about endogenous variables which
are satisfied under Assumption A. Further, this assumption allows us to provide a sharper characterization
of the optimal tax system (besides the signs of taxes we also characterize the levels).
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We pursue a variational approach. Suppose
(

K, nL, nH , r, w; τ
n, τk, T

)

is a tax distorted
equilibrium7. We consider a small variation on the tax system

(

dτn, dτk, dT
)

, such that
all the equilibrium conditions are satisfied. Then, evaluate the effect of such a variation
on welfare, taking as given the optimal decision rules of the agents. Using this method we
establish the following proposition (derivations and proofs are in Appendix A).

Proposition 1 In the uncertainty economy, if u satisfies Assumption A, then, the optimal
tax system is such that τk = 0,

τn =
(ν − 1)π(1− π) (eHnH − eLnL)

(ν − 1)π(1− π) (eHnH − eLnL) + κN (πν + (1− π))
> 0, (2.1)

where ν ≡ uc(cL,nL)
uc(cH ,nH)

, and T < 0 balances the budget.

Notice that the planner could choose to finance G with T but chooses a positive distortive
labor income tax instead. The revenue from labor taxation is rebated via lump-sum transfers
and the proportion of the agents’ income that comes from the uncertain labor income is
reduced. Hence, this tax system effectively provides insurance to the agents. Why not
provide full insurance by taxing away all the labor income? This is exactly what would
happen if labor were supplied inelastically. In fact, notice that in this case κ = 0 and
equation (2.1) implies τn = 1. However, with an endogenous labor supply the planner has
to balance two objectives: minimize distortions to agents’ decisions and provide insurance.
This balance is explicit in equation (2.1) seeing as a higher κ implies a lower τn. That is,
the more responsive labor supply is to changes in labor taxes the more distortive these taxes
are and the planner chooses a lower labor tax. In the limit, if κ → ∞ it will be optimal to
set τn = 0.

With income effects on labor supply, distortions of the savings decision would spill over to
the labor supply decision and vice-versa. Thus, it could be optimal, for instance, to choose
τk so as to mitigate the distortion imposed by a positive τn. This complex relationship
complicates the analysis considerably. Assumption 1 unties this relationship and as a result
it is optimal to set τk = 0.

Next, suppose that eL = 1 − ǫunc/π and eH = 1 + ǫunc/ (1− π), so that ǫunc is a mean
preserving spread on the productivity levels. It is easy to see that if ǫunc = 0 equation (2.1)
implies that τn = 0. The effect of an increase in ǫunc on the optimal τn is not as obvious since
the right hand side of equation (2.1) contains endogenous variables. An application of the
implicit function theorem, however, clarifies that as long as ∂ν/∂ǫunc > 0 and ∂ν/∂τn < 0,
it follows that ∂τn/∂ǫunc > 0, i.e. the optimal labor income tax is increasing in the level of
risk in the economy. Under standard calibrations, the equilibrium ratio of marginal utilities,
ν, is in fact increasing in the level of risk (∂ν/∂ǫunc > 0) and decreasing in the labor income
tax (∂ν/∂τn < 0), as an example see section 2.3.

7Since the equilibrium does not exist for τn ≥ 1 or τk ≥ (1 + r) /r, we impose the restrictions that τn < 1
and τk < (1 + r) /r.
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2.2 Inequality economy

Consider the environment described above only without uncertainty and with initial wealth
inequality. That is, suppose the productivity levels do not vary between agents, i.e. eL =
eH = 1, and that ω can take two values: ωL for a proportion p of the agents and ωH > ωL
for the rest, with ω̄ ≡ pωL + (1− p)ωH .

Definition 2 A tax distorted competitive equilibrium is
(

aL, aH , nL, nH , r, w; τ
n, τk, T

)

such that

1. For i ∈ {L,H}, (ai, ni) solves

max
ai,ni

u (ωi − ai, n̄) + βu (ci, ni) , s.t. ci = (1− τn)wni +
(

1 +
(

1− τk
)

r
)

ai + T ;

2. r = fK (K,N), w = fN (K,N), where K = paL+(1− p) aH and N = pnL+(1− p)nH ;

3. and, τnwN + τkrK = G+ T .

In this economy the concept of optimality is no longer unambiguous. Since agents are
different ex-ante, a decision must be made with respect to the social welfare function. In what
follows, by optimal we mean the one that maximizes W ≡ pUL + (1− p)UH ; the utilitarian
welfare function. The following proposition follows.

Proposition 2 In the inequality economy, if u satisfies Assumption A and has CARA or is
GHH as in equation (4.1), then the optimal tax system is such that τn = 0,

τk =

(

1+r
r

)

(ν − 1) p(1− p) (ωH − ωL)

(ν − 1) p(1− p) (ωH − ωL) +
ρ

ψ
(pν + (1− p))

> 0, (2.2)

where ρ ≡ 2+(1−τk)r
2+r

for CARA, ρ ≡ 1+β−
1
σ (1+(1−τk)r)

σ−1
σ

1+r+β
1
σ (1+(1−τk)r)

1
σ

for GHH, and ψ is the level of

absolute risk aversion8. T < 0 balances the budget.

The planner chooses a positive capital income tax which distorts savings decisions but
allows for redistribution between agents. The ex-ante wealth inequality is exogenously given.
However, agents with different wealth levels in the first period will save different amounts
and have different asset levels in the second period. This endogenously generated asset
inequality is the one the tax system is able to affect. A positive capital tax rebated via lump-
sum transfers directly reduces the proportion of the agents’ income that will be dependent
on unequal asset income achieving the desired redistribution which implies a reduction of
consumption inequality.

One of the key elements of equation (2.2) is the inverse of the coefficient of absolute risk
aversion, 1/ψ, which is proportional to the agents’ intertemporal elasticity of substitution.

8The level of absolute risk aversion is endogenous is the GHH case.
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This elasticity indicates the responsiveness of savings to changes in τk. Hence, the higher this
elasticity is the lower is the optimal τk, since providing redistribution becomes more costly.
The τn = 0 result is again associated with Assumption 1.

Assuming that ωL = 1 − ǫine/p and ωH = 1 − ǫine/ (1− p). The effect of an increase
in ǫine on the optimal τk can again be found by applying the implicit function theorem on
equation (2.2). It follows that, if ∂ν/∂ǫine > 0 and ∂ν/∂τk < 0, then ∂τk/∂ǫine > 0; the
optimal capital income tax is increasing in the level of inequality in the economy. Under the
assumptions of Proposition 2 it is possible to show that this will always be the case.

Relationship to Dávila, Hong, Krusell, and Rı́os-Rull (2012)

The results established in Dávila et al. (2012) have an interesting relationship to the ones
we obtain in this paper. We will use the last result to explain this relationship. Among
other things, Dávila et al. (2012) show that the competitive equilibrium allocation in the
SIM model is constrained inefficient. That is, the incomplete market structure itself induces
outcomes that could be improved upon if consumers merely acted differently; if they used the
same set of markets but departed from purely self-interested optimization. The constrained
inefficiency results from a pecuniary externality. The savings and labor supply decisions of
the agents affects the wage and interest rates and, therefore, the uncertainty and inequality in
the economy. These effects are not internalized by the agents and inefficiency follows. Notice
that the planner’s problem in their environment is significantly different from the Ramsey
problem described here. There the planner affects allocations directly and prices indirectly,
as a result redistribution and insurance can only occur via the manipulation of equilibrium
prices. Whereas here the Ramsey planner affects (after tax) prices directly and allocations
indirectly.

In a setting similar to the inequality economy just described above, for instance, Dávila et al.
(2012) show that there is underaccumulation of capital. A higher level of capital would de-
crease interest rates and increase wages, reducing inequality. A naive extrapolation of this
logic would suggest that capital taxes should be negative so as to encourage savings. This
logic, however, does not take into account the more relevant direct effect of the tax system
on after tax prices. Proposition 2 shows that the opposite is true: capital taxes should be
positive.

2.3 Uncertainty and inequality

If both uncertainty and inequality are present, the optimal tax system has to balance three
objectives: minimize distortions, provide insurance and redistribution. A reasonable con-
jecture is that under Assumption 1 the optimal tax system will be a convex combination
of the ones in Propositions 1 and 2, that is, positive labor and capital income taxes with
magnitudes associated with the levels of uncertainty and inequality in the economy. A more
subtle extrapolation of the results above points to another interesting prediction associated
with Assumption 1: the capital (labor) income taxes should be invariant with respect to the
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level of uncertainty (inequality). We corroborate these conjectures with a numerical example
the results of which are in Figure 19.

The first row of Figure 1 shows the optimal tax system with the level of uncertainty
(embodied by the parameter ǫunc) in the x-axis with two levels of inequality: ǫine = 0 (solid
line) and ǫine = 0.1 (dashed line). The solid lines corroborate Proposition 1. The comparison
between the dashed and the solid lines corroborates the conjectures made above. The labor
tax is increasing with the level of uncertainty and independent on the level of inequality
whereas capital taxes increase with the level of inequality and are independent on level of
risk. The second row of Figure 1 shows the results for the analogous experiment with ǫine on
the x-axis and ǫunc = 0 (solid) and ǫunc = 0.1 (dashed).

Figure 1: Optimal taxes in the presence of both uncertainty and inequality.
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2.4 Relationship with infinite horizon problem

The two-period examples are useful to understand the key trade-offs faced by the Ramsey
planner, since they allow for the exogenous setting of the levels of uncertainty (ex-post risk)

9We use GHH preferences which satisfy Assumption 1. The most relevant interpretation of this two-period
economy is that each period corresponds to half of the working life of a person. Accordingly, we set β = 0.9520

and δ = 1 − 0.920. Other parameters are set to satisfy the usual targets: σ = 2, κ = 0.72, χ = 6, n̄ = 0.3,
ω = 3.5, π = p = 0.5, and f (K,N) = KαN1−α − δK with α = 0.36. G is set to 0, but any other feasible
level would just shift the lump-sum transfers correspondingly.
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and inequality (ex-ante risk). In the infinite horizon version of the SIM model, however,
these concepts are inevitably intertwined. The characterization of the optimal tax system,
therefore, becomes considerably more complex. Labor income taxes affect not only the level
of uncertainty through the mechanism described above, but also the labor income inequality
and the distribution of assets over time. An agent’s asset level at a particular period de-
pends not only on its initial value, but on the history of shocks this agent has experienced.
Therefore, capital income taxation affects not only the ex-ante risk faced by the agent but
also the ex-post. Nevertheless, these results are useful to understand some of the key fea-
tures of the optimal fiscal policy in the infinite horizon model as will become clear in what
follows. In particular, Section 7.3 shows that the comparative statics with respect to agents’
intertemporal elasticity of substitution and Frisch elasticity described in this section are also
pertinent for the infinite horizon problem.

3 The Infinite-Horizon Model

Time is discrete and infinite, indexed by t. There is a continuum of agents with standard
preferences E0 [

∑

t β
tu (ct, nt)] where ct and nt denote consumption and labor supplied in

period t and u satisfies the usual conditions. Individual labor productivity, e ∈ E where
E ≡ {e1, ..., eL}, are i.i.d. across agents and follow a Markov process governed by Γ, a
transition matrix10. Agents can only accumulate a risk-free asset, a. Let A ≡ [a,∞) be the
set of possible values for a and S ≡ E × A. Individual agents are indexed by the a pair
(e, a) ∈ S. Given a sequence of prices {rt, wt}

∞
t=0, labor income {τnt }

∞
t=0, (positive) capital

income {τkt }
∞
t=0, and lump-sum transfers {Tt}

∞
t=0, each household, at time t, chooses ct (a, e),

nt (a, e), and at+1 (a, e) to solve

vt(a, e) = maxu(ct(a, e), nt(a, e)) + β
∑

et+1∈E

vt+1(at+1(a, e), et+1)Γe,et+1

subject to

(1 + τ c)ct(a, e) + at+1(a, e) = (1− τnt )wtent(a, e) + (1 + (1− I{a≥0}τ
k
t )rt)a+ Tt

at+1(a, e) ≥ a.

Note that value and policy functions are indexed by time, because policies {τkt , τ
n
t , Tt}

∞
t=0 and

aggregate prices {rt, wt}
∞
t=0 are time-varying. The consumption tax, τ c, is a parameter11. Let

10A law of large numbers operates so that the probability distribution over E at any date t is represented
by a vector pt ∈ R

L such that given an initial distribution p0, pt = p0Γ
t. In our exercise we make sure that

Γ is such that there exists a unique p∗ = limt→∞ pt. We normalize
∑

i p
∗

i ei = 1.
11We could potentially allow consumption taxes to also be chosen by the Ramsey planner and it is not

without loss of generality that we impose this restriction. There are two reasons for this choice. The first
is practical, we are already using the limit of the computational power available to us, and allowing for
one more choice variable would increase it substantially. Second, for the US in particular capital and labor
income taxes are chosen by the Federal Government while consumption taxes are chosen by the states, so this
Ramsey problem can be understood as the one relevant for a Federal Government that takes consumption
taxes as given. We need to add τc as a parameter for calibration purposes.
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{λt} be a sequence of probability measures over the Borel sets S of S with λ0 given. Since the
path for taxes is known, there will be a deterministic path for prices and for {λt}

∞
t=0. Hence,

we do not need to keep track of the distribution as an additional state; time is a sufficient
statistic.

Competitive firms own a constant-returns-to-scale technology f (·) that uses capital, Kt,
and efficient units of labor, Nt, to produce output each period (f (·) denotes output net of
depreciation - δ denotes the capital depreciation rate). A representative firm exists that
solves the usual static problem. The government needs to finance an exogenous constant
stream of expenditure, G, and lump-sum transfers with taxes on consumption, labor income,
and (positive) capital income. It can also issue debt {Bt+1} and, thus, has the following
intertemporal budget constraint

G+ rtBt = Bt+1 − Bt + τ cCt + τnt wtNt + τkt rtÂt − Tt, (3.1)

where Ct is aggregate consumption and Ât is the tax base for the capital income tax.

Definition 3 Given an initial distribution λ0 and a policy π ≡ {τkt , τ
n
t , Tt}

∞
t=0, a competi-

tive equilibrium is a sequence of value functions {vt}
∞
t=0, an allocation X ≡ {ct, nt, at+1, Kt,

Nt, Bt}
∞
t=0, a price system P ≡ {rt, wt}

∞
t=0, and a sequence of distributions {λt}

∞
t=0, such that

for all t:

1. Given P and π, ct(a, e), nt(a, e), and at+1(a, e) solve the household’s problem and
vt(a, e) is the respective value function;

2. Factor prices are set competitively,

rt = fK(Kt, Nt), wt = fN(Kt, Nt);

3. The probability measure λt satisfies

λt+1 =

∫

S

Qt ((a, e),S) dλt, ∀S ∈ S

where Qt is the transition probability measure;

4. The government budget constraint, (3.1), holds and debt is bounded;

5. Markets clear,

Ct +Gt +Kt+1 −Kt = f (Kt, Nt) , Kt +Bt =

∫

A×E

at(a, e)dλt.
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3.1 The Ramsey Problem

We now turn to the problem of choosing the optimal tax policy in the economy described
above. We assume that, in period 0, the government announces a commits to a sequence of
future taxes {τkt , τ

n
t , Tt}

∞
t=1, taking period 0 taxes as given. We need the following definitions:

Definition 4 Given λ0, for every policy π equilibrium allocation rules X (π) and equi-

librium price rules P (π) are such that π, X (π), P (π) and corresponding {vt}
∞
t=0 and

{λt}
∞
t=0 constitute a competitive equilibrium.

Definition 5 Given λ0, τ
k
0 , τ

n
0 , T0 and a welfare function W (π), the Ramsey problem is

to maxπW (π) such that X (π) and P (π) are equilibrium allocation and price rules.

In our benchmark experiments we assume that the Ramsey planner maximizes the util-
itarian welfare function: the ex-ante expected lifetime utility of a newborn agent who has
its initial state, (a, e), chosen at random from the initial stationary distribution λ0. The
planner’s objective is thus given by

W (π) =

∫

S

E0

∞
∑

t=0

βtu (ct (a, e|π) , nt (a, e|π)) dλ0.

In Section 7 we provide results for alternative welfare functions.

3.2 Solution method

We solve this problem numerically. Given an initial stationary equilibrium, for any policy π
we can compute the transition to a new stationary equilibrium consistent with the policy12

and calculate welfare W (π). We then search for the policy π that maximizes W (π). This
is, however, a daunting task since it involves searching in the space of infinite sequences. In
order to make it computationally feasible we impose the following ad-hoc constraints: that
each path {τkt , τ

n
t , Tt}

∞
t=1 be smooth over time and become constant after a finite amount of

periods. We denote the set of policies that satisfy these properties by ΠR. These conditions
are restrictive, but they allow the problem to be solved and are flexible enough to characterize
some of the key features of the optimal paths of taxes.

The statement about the ad-hoc constraints must be qualified. It is well know from the
existing solutions to the Ramsey problem in complete markets economies that capital taxes
should be front-loaded. We obtain similar results in Section 6. Hence, in defining the set
ΠR we take this under consideration. That is, we allow capital taxes to hit the imposed
upper bound of 100 percent for the first t∗ periods, where a model period is equivalent to one
calendar year. Importantly, t∗ is endogenously chosen and is allowed to be zero, so the fact
that the solution displays a capital tax at the upper bound for a positive amount of periods
is not an assumption but a result. Other than this, we assume that the paths for

{

τkt
}∞

t=t∗+1

12As long as the taxes become constant at some point.

15



and {τnt , Tt}
∞
t=1 follow splines with nodes set at exogenously selected periods. The placement

of the nodes is arbitrary, we started with a small number of them and sequentially added
more until the solution converged. In the main experiment the planner was allowed to choose
17 variables in total: t∗, τkt∗+1, τ

k
45, τ

k
60, τ

k
100, τ

n
1 , τ

n
15, τ

n
t∗+1, τ

k
45, τ

k
60, τ

k
100, T1, T15, Tt∗+1, T45,

T60, and T100. In the intermediate periods the paths follow a spline function and after the
final period they become constant at the last level. The choice of the periods 1, 15, 45, 60,
and 100, were a result of the fact that for experiments with less nodes, the optimal t∗ was
always close to 30, hence we placed the nodes at the same distance from each other except
for the last ones which are supposed to capture the long run levels13.

Solving the problem described above is a particularly hard computational task. Effectively
we are maximizingW (π) on the domain π ∈ ΠR, where each element of ΠR can be defined by
a vector with a finite number of elements (the nodes described above). We know very little
about its properties; it is a multivariate function with potentially many kinks, irregularities
and multiple local optima14. Thus, we need a powerful and thorough procedure to make sure
we find the global optimum. We use a global optimization algorithm that randomly draws
a very large number of policies in ΠR and computes the transition between the exogenously
given initial stationary equilibrium and a final stationary equilibrium that depends on the
policy. Then, we compute welfare W (π) for each of those policies and select those that yield
the highest levels of welfare. These selected policies are then clustered, similar policies placed
in the same cluster. For each cluster we run an efficient derivative free local optimizer. The
whole procedure is repeated depending on how many local optima have been found and a
Bayesian stopping rule is used to figure out if enough global procedures have been run. A
more detailed description of the algorithm can be found in Appendix D15.

4 Calibration

We calibrate the initial stationary equilibrium of the model economy to replicate key proper-
ties of the US economy relevant for the shape of the optimal fiscal policy. Table 1 summarizes
our parameters choices together with the targets we use to discipline their values and their
model counterparts. We use data from the NIPA tables for the period between 1995 and
200716 and from the 2007 Survey of Consumer Finances (SCF).

13If the solver chooses t∗ close to one of these predetermined nodes the algorithm replaces that node for
t = 30. For instance, if t∗ = 43 the periods became 1, 15, 30, t∗ + 1, 60, and 100.

14See Guvenen (2011) for a discussion of how to deal with such problems.
15The algorithm was parallelized for multiple cores. For each global iteration, we drew 131, 072 policies

and computed the transition and welfare for each of them. The number of transitions run for each cluster is
endogenously determined by the local solver, on average it amounted to around 150 transitions to find each
local maximum. A total of 8 global iterations were needed. We performed our analysis on the Itasca cluster
at the Minnesota Supercomputing Institute using 1024 cores.

16We choose this time period to be consistent with the one used to pin down fiscal policy parameters which
we take from Trabandt and Uhlig (2011).
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Table 1: Benchmark Model Economy: Target Statistics and Parameters

Statistic Target Model Parameter Value

Preferences and Technology

Intertemporal elasticity of substitution 0.50 0.50 σ 2.00*

Frisch elasticity 0.72 0.72 ν 0.72*

Average hours worked 0.30 0.30 χ 4.12

Capital to output 2.72 2.71 β 0.97

Capital income share 0.38 0.38 α 0.38*

Investment to output 0.27 0.27 δ 0.10

Borrowing Constraint

Households with negative wealth (%) 18.6 19.1 a −0.04

Fiscal Policy

Capital income tax (%) 36.0 36.0 τk 0.36*

Labor income tax (%) 28.0 28.0 τn 0.28*

Consumption tax (%) 5.0 5.0 τc 0.05*

Transfer to output (%) 8.0 8.0 T 0.08

debt-to-output (%) 63.0 63.0 G 0.15

Labor Productivity Process

Wealth Gini index 0.82 0.81 e1/e2 0.62

Percentage of wealth in 1st quintile −0.2 −0.2 e3/e2 3.89

Percentage of wealth in 4th quintile 11.2 10.2 Γ11 0.94

Percentage of wealth in 5th quintile 83.4 83.4 Γ12 0.05

Percentage of wealth in top 5% 60.3 60.8 Γ21 0.01

Correlation btw wealth and labor income 0.29 0.29 Γ22 0.92

Autocorrelation of labor income 0.90 0.90 Γ31 0.01

Standard Deviation of labor income 0.20 0.20 Γ32 0.04

Notes: Parameter values marked with (*) were set exogenously, all the others were endogenously and
jointly determined.
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4.1 Preferences and technology

We assume GHH preferences17 with period utility given by

u (c, n) =
1

1− σ

(

c− χ
n1+ 1

κ

1 + 1
κ

)1−σ

, (4.1)

where σ is the coefficient of relative risk aversion, κ is the Frisch elasticity of labor supply
and χ is the weight on the disutility of labor. These preferences exhibit no wealth effects
on labor supply, which is consistent with microeconometric evidence showing these effects
are in fact small18. Further, they imply that aggregate labor supply is independent of the
distribution of wealth which is convenient for computing out of steady state allocations in
our main experiment. We set the intertemporal elasticity of substitution to 0.5; the number
frequently used in the literature (e.g. Dávila et al. (2012) and Conesa et al. (2009)). For
the Frisch elasticity, κ, we rely on estimates from Heathcote et al. (2010) and use 0.72. This
value is intended to capture both the intensive and the extensive margins of labor supply
adjustment together with the typical existence of two earners within a household. It is also
close to 0.82, the number reported by Chetty et al. (2011) in their meta-analysis of estimates
for the Frisch elasticity using micro data. The value for χ is chosen so that average hours
worked equals 0.3 of total available time endowment19. To pin down the discount factor, β,
we target a capital to output ratio of 2.72, and the depreciation rate, δ, is set to match an
investment to output ratio of 27 percent20.

The aggregate technology is given by a Cobb-Douglas production function Y = AKαN1−α+
(1− δ)K with capital share equal to α. The total factor productivity A is set to normalize
output per capita, Y , to 1. The capital share parameter, α, is set to its empirical counterpart
of 0.38.

4.2 Borrowing Constraints

We discipline the borrowing constraint a using the percentage of households in debt (negative
net worth). We target 18.6 percent following the findings of Wolff (2011) based on the 2007
SCF.

4.3 Fiscal policy

In order to set the tax rates in the initial stationary equilibrium we use the effective average
tax rates computed by Trabandt and Uhlig (2011) from 1995 to 2007 and average them. The

17See Greenwood et al. (1988).
18See Holtz-Eakin et al. (1993), Imbens et al. (2001) and Chetty et al. (2012) for details.
19It is understood that in any general equilibrium model all parameters affect all equilibrium objects. For

the presentation purposes, we associate a parameter with the variable it affects quantitatively most.
20Capital is defined as nonresidential and residential private fixed assets and purchases of consumer

durables. Investment is defined in a consistent way.
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lump-sum transfers to output ratio is set to 8 percent and we discipline the government ex-
penditure by imposing a debt to output ratio of 63 percent also following Trabandt and Uhlig
(2011). The latter is close to the numbers used in the literature (e.g. Aiyagari and McGrattan
(1998), Domeij and Heathcote (2004) or Winter and Roehrs (2014)). The calibrated value
implies a government expenditure to output ratio of 15 percent, the data counterpart for the
relevant period is approximately 18 percent. Further, we also approximate well the actual
income tax schedule as can be seen in Figure 2.

Figure 2: Income tax schedule
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Notes: The data was generously supplied by Heathcote et al. (2014) who used PSID and the TAXSIM program to compute it.
The axis units are income relative to the mean.

4.4 Labor income process

The individual labor productivity levels e and transition probabilities in matrix Γ are chosen
to match the US wealth distribution, statistical properties of the estimated labor income
process and the correlation between wealth and labor income. There are three levels of labor
productivity in our model. Since we normalize the average productivity to one we are left
with two degrees of freedom. The transition matrix is 3× 3. The fact that it is a probability
matrix implies its rows add up to one, therefore we are left with an additional six degrees of
freedom. Thus, we end up with eight parameters to choose

It is common to use the Tauchen method when calibrating the Markov process for pro-
ductivities. This method imposes symmetry of the Markov matrix which further reduces the
number of free parameters. Following Castañeda et al. (2003) we do not impose symmetry
which allows us to target at the same time statistics from the labor income process and the
individual wealth distribution.

To match the wealth distribution we target shares of wealth owned by the first, fourth
and fifth quintile, the share of wealth owned by individuals in the top 5 percent and the Gini
index. The targets are taken from the 2007 Survey of Consumer Finances21. We also target

21For a general overview of this data see Dı́az-Giménez et al. (2011).
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properties of individual labor income estimated as the AR(1) process, namely its autocor-
relation and its standard deviation22. According to Domeij and Heathcote (2004), existing
studies estimate the first order autocorrelation of (log) labor income to lie between 0.88 and
0.96 and the standard deviation (of the innovation term in the continuous representation) of
0.12 and 0.25. We calibrate the productivity process so that the Markov matrix and vector
e imply an autocorrelation of (log) labor income of 0.9 and a standard deviation of 0.223 (in
Section 7 we provide robustness results with respect to these choices). Finally, we target the
correlation between wealth and labor income which is 0.29 in the 2007 SCF data. This way
we discipline to some extent the labor income distribution using the wealth distribution that
we match accurately. The resulting productivity vector, transition matrix and stationary
distribution of productivities, λ∗e, are

e =





0.79
1.27
4.94



 , Γ =





.956 .043 .001

.071 .929 .000

.012 .051 .937



 , and λ∗e =





.616

.377

.007



 .

4.5 Model performance

Table 8 presents statistics about the wealth and labor income distributions. We target five of
the wealth distribution statistics, so it is not surprising that we match that distribution quite
well. Table 9 presents another crucial dimension along which our model is consistent with
the data: income sources over the quintiles of wealth. The composition of income, specially
of the consumption-poor agents, plays an important role in the determination of the optimal
fiscal policy. The fraction of uncertain labor income determines the strength of the insurance
motive and the fraction of the unequal asset income affects the redistributive motive. Our
calibration delivers, without targeting, a good approximation of the income composition.
Finally, we also match the consumption Gini which remained fairly constant around 0.27 in
the period from 1995 to 2007 (see Krueger and Perri (2006)).

5 Main Results

The optimal paths for the fiscal policy instruments are portrayed in Figure 3. Capital taxes
should be front-loaded hitting the upper bound for 33 initial periods then decrease to 45
percent in the long-run. Labor income taxes are substantially reduced to less than half of
its initial level, from 28 percent to about 13 percent in the long-run. The ratio of lump-sum
transfers to output decreases initially to about 3 percent, then increases back to its initial
level of 8 percent before it starts converging to its final level of 3.5 percent. The government

22Including transitory shocks would allow a better match to the labor income process. However, these
types of shocks can, for the most part, be privately insured against (see Guvenen and Smith (2013)) so we
chose to abstract from them to keep the model parsimonious.

23We follow Nakajima (2012) in choosing these targets. The targets are associated with labor income,
wen, which includes the endogenous variables w and n. Therefore, to calibrate the parameters governing the
individual productivity process, the model must be solved repeatedly until the targets are satisfied.
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accumulates assets in the initial periods of high capital taxes reaching a level of debt-to-
output of about −125 percent, which then converges to a final level of −17 percent. Relative
to keeping fiscal instruments at their initial levels, this leads to a welfare gain equivalent to
a permanent 4.9 percent increase in consumption.

Figure 3: Optimal Fiscal Policy: Benchmark
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Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition; The black dots are the choice variables: the
spline nodes and t∗, the point at which the capital tax leaves the upper bound.

5.1 Aggregates

The aggregates associated with the implementation of the optimal policy are shown in Fig-
ure 8. The capital level initially decreases by about 8 percent in the first 13 years, but then
increases towards a final level 20 percent higher than the initial steady state. The increase
might be surprising at a first glance given the higher capital taxes. First notice that, even
if capital income taxes were set to 100 percent forever, there would still be precautionary
incentives for the agents with relatively high productivity to save: if they receive a negative
shock they can then consume their savings. The decrease in government debt also contributes
substantially to this increase - an effect we explain further below in Section 5.4.4. Most im-
portantly though, the level of aggregate labor increases by about 15 percent immediately after
the policy change following the reduction in labor taxes, increasing the marginal productivity
of capital.

The higher levels of capital and labor lead to higher levels of output and consumption,
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which increases by 15 and 20 percent respectively over the transition. The concomitant
increase in average consumption and labor has ambiguous effects on the welfare of the average
agent. Hence, we also plot in Figure 8f what we call the average consumption-labor composite,
defined below in equation (5.1), which is the more relevant measure for welfare. On impact the
labor-consumption composite increases by 13 percent as the higher consumption levels (due
to the initial reduction in savings) more than compensate for the higher supply of labor. It
then decreases for some periods following the reduction in output and the increasing savings.
In the long-run it returns to a level about 13 percent higher than the one in the initial steady
state.

Modified Golden Rule

Aiyagari (1995) analyses the optimal long-run capital taxes in an environment very similar to
ours.24 He argues that, since there are no aggregate shocks, the Ramsey planner’s decision to
move resources across time is risk-free and the associated Euler equation implies the modified
golden rule (i.e. β(1 + fK(K,N)) = 1). On the other hand, agents face idiosyncratic shocks
and the possibility of being borrowing-constrained in some future periods which leads to extra
savings due to precautionary reasons. In order to implement the optimal level of capital in
the long-run it follows that the planner must set positive capital taxes. This logic also implies
that the modified golden rule should hold in the long-run; our numerical results imply exactly
that (see Figure 4). We view this as corroborating evidence for the accuracy of our numerical
results.

Figure 4: Modified Golden Rule
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5.2 Distributional Effects

Movements in the levels do not provide a full picture of what results from the implementation
of the optimal fiscal policy. It is also important to understand its effects on inequality and on

24The home production assumption in Aiyagari (1995) is equivalent to our assumption that preferences are
GHH. The differences are that in his environment the planner does not have lump-sum taxes as an instrument,
but chooses the level of government expenditure every period (which enters separably in the agents’ utility
functions).
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the risk faced by the agents. Figure 5a plots the evolution of the Gini index for consumption25.
Notice that, though it takes some time for the reduction to start, the consumption Gini is
significantly reduced over the transition reaching a low about 16 percent lower than the initial
level. As will become clear below, this reduction in inequality is behind most of the welfare
gains associated with the optimal policy. Not surprisingly, such a change would be supported
by most agents in the economy with the exception of the highly productive and, therefore,
wealthier ones - see Table 2.

Figure 5b displays the evolution of the shares of labor, capital and transfer income out
of total income. Importantly, notice that the share of labor income is significantly increased
under the optimal policy. Since all the risk faced by agents in the SIM model is associated
with their labor income, it turns out that they face more risk after the policy is implemented.
This has an obvious negative effect on welfare which is, however, outweighed by the gains
associated with the higher levels of consumption and the reduction in inequality it provides.
The next sections will clarify some of these issues.

Figure 5: Inequality measures
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Table 2: Proportion in favor of reform

e = L e =M e = H All

99.6 98.3 3.7 99.5

25Since labor supply is proportional to productivity levels, the inequality of hours is unaffected by the
policy, it is in fact determined exogenously. Hence, here we can focus on consumption inequality.

23



5.3 Welfare decomposition

Here we present a result that will be particularly helpful for understanding the properties of
the optimal fiscal policy. First, let xt be the individual consumption-labor composite (the
term inside the utility function 4.1), that is

xt ≡ ct − χ
n
1+ 1

κ

t

1 + 1
κ

, (5.1)

and Xt denote its aggregate. The utilitarian welfare function can increase for three reasons.
First, it will increase if the utility of the average agent, U ({Xt}), increases; we call this
the level effect. Reductions in distortive taxes will achieve this goal by allocating resources
more efficiently26. Second, since agents are risk averse, it increases if the uncertainty about
individual paths {xt}

∞
t=0 is reduced; we call this the insurance effect. By redistributing from

the (ex-post) lucky to the (ex-post) unlucky, a tax reform can reduce the uncertainty faced
by the agents. Finally, it will increase if the inequality across the certainty equivalents of
the individual paths {xt}

∞
t=0, for agents with different initial (asset/productivity) states, is

reduced; we call this the redistribution effect. By redistributing from the rich (ex-ante lucky)
to the poor (ex-ante unlucky), the tax reform reduces the inequality between agents. In
Appendix C we give precise definitions for each of these effects and show how it is possible
to measure them. Then, letting ∆ be the average welfare gain, ∆L the gains associated with
the level effect, ∆I with the insurance effect, and ∆R with the redistribution effect, we prove
the following proposition.

Proposition 3 If preferences are GHH as in (4.1), then

1 + ∆ = (1 + ∆L) (1 + ∆I) (1 + ∆R) .

Hence, it is possible to decompose the average welfare gains into the components described
above27. The results for this decomposition for our main results are in Table 3. Most of
the welfare gains implied by the implementation of the optimal fiscal policy come from the
reduction in ex-ante inequality (redistribution effect). The also substantial welfare gains
associated with the reduction in distortions (level effect) is almost exactly offset by welfare
losses due to the increase in uncertainty (insurance effect).

5.4 Fixed instruments

In order to understand the role played by each instrument in the optimal fiscal policy, we
ran experiments in which we hold each of them fixed and optimize only with respect to the
others. Figures 9, 10, 11, and 12 display the solutions and Table 4 the welfare decomposition
for each of these experiments.

26This is the only relevant effect in a representative agent economy.
27The welfare gains described above are in terms of consumption-labor composite units. The decomposition

does not hold exactly in terms of consumption units. To keep our results comparable with others, we report
the average welfare gains in terms of consumption units and normalize the numbers for ∆L, ∆I , and ∆R

accordingly.
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Table 3: Welfare decomposition

Average Level Insurance Redistribution
welfare gain effect effect effect

∆ ∆L ∆I ∆R

4.9 3.7 -3.7 4.9

5.4.1 Capital taxes

It is clear from the welfare decomposition in Table 4 that the path of capital taxes plays
a crucial role in the redistributional gains associated with the unrestricted optimal policy.
Restricting capital taxes to their initial level brings the redistribution effect from 4.9 percent
to −0.2 percent. In line with the result in Proposition 2, the increase in capital taxes
especially in the initial years leads to a strong redistribution effect as the proportion of
unequal asset income is reduced (actually brought to zero in the first 33 years). Relative to
the optimal policy, the restriction on capital taxes also leads to higher labor taxes (which
explains the better insurance effect) and a lower accumulation of assets by the government.

5.4.2 Labor taxes

Fixing labor taxes at their initial level is particularly detrimental to the level effect. In the
optimal policy labor taxes are reduced substantially and the labor supply distortions reduced
accordingly. The redistributional gains are virtually unaffected whereas the insurance effect
is improved, which is consistent with the result in Proposition 1 since the restriction implies
higher labor taxes. The fact that the insurance effect is still negative might be surprising
though. What is behind this effect is the role played by the accumulation of assets by the
government which we explain bellow.

5.4.3 Lump-sum transfers

Restricting lump-sum transfers to its initial level doesn’t affect the results as much as the
other restrictions; the average welfare gains are reduced from 4.9 percent to 4.4 percent.
Most of the losses come from the reduction in the level effect. The restriction leads to a
higher overall level of transfers and, therefore, higher labor taxes relative to the unrestricted
optimal policy whereas capital taxes are virtually unaffected. This leads to an overall higher
level of distortions which explains the lower level effect.

5.4.4 Government debt

In the absence of borrowing constraints an increase in government debt is innocuous, in
response agents simply adjust their savings one-to-one and the Ricardian equivalence holds.
In the SIM model, however, agents face borrowing constraints (which are binding for some of
them). The Ricardian equivalence breaks down and in response to an increase in government
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Table 4: Welfare decomposition: Fixed instruments

∆ ∆L ∆I ∆R

Fixed capital taxes 1.0 3.7 -2.5 -0.2

Fixed labor taxes 3.3 0.0 -1.6 4.8

Fixed lump-sum 4.4 1.8 -2.5 5.1

Fixed debt 4.0 3.8 -3.2 3.2

Benchmark 4.9 3.7 -3.7 4.9

debt aggregate savings increase by less than one-to-one. Since the asset market must clear
(i.e. At = Kt + Bt), it follows that capital must decrease as a result. Hence, increases in
government debt crowd out capital while decreases crowd in capital28.

In order to understand why the government accumulates assets in the optimal policy it is
important to look at its effect on equilibrium prices29. A lower amount of government debt
leads to a higher level of capital which reduces interest rates and increases wages. Hence,
besides the positive level effect associated with the higher levels of capital such a policy
also affects the insurance and redistribution effects. It effectively reduces the proportion of
the agents’ income associated with the unequal asset income and increases the proportion
associated with uncertain labor income. The result is a positive redistribution effect and a
negative insurance effect. Thus, when government debt-to-output is held fixed the redistri-
butional gains are reduced from 4.9 percent to 3.2 percent while the insurance loss is reduced
from −3.7 percent to −3.2 percent. This also clarifies why the planner chooses to accumulate
assets when the instrument is not restricted: the welfare gains associated with the resulting
redistribution outweigh the losses from the increased uncertainty.

5.5 Transitory effects

In this section we first compute the optimal fiscal policy ignoring transitory welfare effects.
A comparison with our benchmark results allows us to measure the importance of accounting
for these transitory effects. If the difference was small this would be a validation of exper-
iments of this kind performed in the literature. It turns out, however, that the results are
remarkably different. A better option, is to solve for the optimal policy with constant in-
struments accounting for transitory welfare effects. The welfare loss associated with holding

28See Aiyagari and McGrattan (1998) and Winter and Roehrs (2014) for an extensive discussion of this
issue.

29The fact that the government accumulates assets does not imply that it becomes the owner of part of
the capital stock. Agents own the capital, but on average owe the government (in the form of IOU contracts)
more than the value of their capital holdings.
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the instruments constant, however, is still significant. The results are summarized in Tables
5 and 6.

Table 5: Final Stationary Equilibrium: transitory effects

τh τk T/Y B/Y K H r w

Initial equilibrium 28.0 36.0 8.0 63.0 1.65 0.33 4.1 1.14

Stat. equil. 18.0 - 3.7 -326.1 4.01 0.44 0.0 1.45

Stat. equil. fixed debt 4.7 -5.2 -5.4 63.0 2.84 0.43 1.9 1.26

Constant policy 7.6 73.7 3.5 49.8 1.31 0.36 7.1 1.01

Benchmark 12.6 45.1 3.5 -16.9 2.00 0.38 3.7 1.16

Notes: The values of τh, τk, T/Y , B/Y , and r are in percentage points.

Table 6: Welfare decomposition: transitory effects

∆ ∆L ∆I ∆R

Stat. equil. 24.7 19.6 -4.6 9.3

Stat. equil. fixed debt 9.8 18.8 -5.2 -2.6

Constant policy 3.3 3.4 -3.0 3.0

Benchmark 4.9 3.7 -3.7 4.9

5.5.1 Stationary equilibrium policy

Here the the planner chooses stationary levels of all four fiscal policy instruments to maximize
welfare in the final steady state. In particular, the planner can choose any level of government
debt without incurring in the transitional costs associated with it. It chooses a debt-to-output
ratio of −326 percent. At this level the amount of capital that is crowded in is close to the
golden rule level, that is, such that interest rates (net of depreciation) equal to zero. Thus,
taxing capital income in this scenario has no relevant effect and we actually find multiple
solutions with different levels of capital taxes which is why we do not display that number
in Table 5. The average welfare gains associated with this policy are of 24.7 percent, that is,
agents would be willing to pay this percentage of their consumption in order to be born in
the stationary equilibrium of an economy that has this policy instead of the initial stationary
equilibrium. However, these welfare gains ignore the transitory effects, it is as if the economy
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jumped immediately to a new steady state in with the government has a large amount of
assets without incurring in the costs associated with accumulating it.

A more reasonable experiment, which is closer to the one studied by Conesa et al. (2009),
is to restrict the level of debt-to-output ratio to remain at its initial level. When this is the
case, the planner reduces labor taxes and capital taxes substantially obtaining most of the
necessary revenue via lump-sum taxes. This has detrimental insurance and redistribution
effects, but the associated level effect more than makes up for it. The policy leads to a
welfare gain of 9.8 percent relative to the initial steady state when transitory effects are
ignored. However, once transitory effects are considered, implementing this policy leads to
a welfare loss of 6.4 percent. Hence, ignoring transitory effects can be severely misleading.
Importantly, the transitory distributional effects of the policy and the costs associated with
the accumulation of capital (or assets by the government) are ignored.

5.5.2 Transition with constant policy

Here we consider the problem of finding the constant optimal fiscal policy that maximizes
the same welfare function we use in our benchmark experiment, in which transitory effects
are accounted for. We present a comparison with the benchmark results in Figures 14 and
13. The level of capital taxes is close to average between the upper bound of 100 percent and
the final capital tax in the benchmark experiment. Labor taxes are reduced from a long-run
level of 12.6 percent to 7.6 percent and lump-sum transfers converge much faster to the final
level of 3.5 percent. The main difference in the fiscal policy instruments is the fact that with
a constant policy the government is not able to accumulate assets via higher initial capital
taxes. The debt-to-output ratio remains close to the initial level30. As a result of the higher
long-run capital tax and relatively higher debt-to-output ratio, capital decreases by about
20 percent in the long-run whereas it increases by approximately the same amount in the
benchmark experiment. The associated higher interest rates and lower wages lead to the
reduction in the redistributional gains and reduces the insurance losses associated with the
lower labor tax. This policy leads to an average welfare gain of 3.3 percent whereas the time
varying policy increases welfare by 4.9 percent. That is, the restriction to constant policies
leads a welfare loss of 1.6 percent.

6 Complete Market Economies

To our knowledge, this paper is the first to solve the Ramsey problem in the SIM environment.
In order to provide further insight and relate it to other results in the literature, we provide
a build up to our benchmark result. First, we start from the representative agent economy
(Economy 1) and introduce heterogeneity only in initial assets (Economy 2), heterogeneity
only in individual productivity levels (constant and certain) (Economy 3), and heterogeneity

30We do not restrict debt-to-output ratio to be constant in this experiment.
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both in initial assets and in individual productivity levels (Economy 4). Introducing idiosyn-
cratic productivity shocks and borrowing constraints brings us back to the SIM model. At
each step, we analyze the optimal fiscal policy identifying the effect of each feature.

In what follows we examine the optimal fiscal policy in Economies 1-4. Their formal
environments can be quickly described by starting from the SIM environment delineated
above. Economy 4 is the SIM economy with transition matrix, Γ, set to the identity matrix.
and borrowing constraints replaced by no-Ponzi conditions. Then, we obtain Economy 3 by
setting initial asset levels to its average, Economy 2 by setting the productivity levels to its
average, e = 1, and Economy 1 by equalizing both initial assets and levels of productivity.
Figure 6 contains the numerical results.

6.1 Economy 1: representative agent

To avoid a trivial solution, the usual Ramsey problem in the representative agent economy
does not consider lump-sum transfers to be an available instrument. Since in this paper we
do, the solution is, in fact, very simple. It is optimal to obtain all revenue via lump-sum
taxes and set capital and labor income taxes so as not to distort any of the agent’s decisions.
This amounts to τkt = 0 and τnt = −τ c for all t ≥ 1. Since consumption taxes are exogenously
set to a constant level, zero capital taxes leaves savings decisions undistorted and labor taxes
equal to minus the consumption tax ensures labor supply decisions are not distorted as well.
In this setup the Ricardian equivalence holds so that the path for lump-sum taxes and debt
are indeterminate: there is no lesson to be learned from this model about the timing of
lump-sum taxes or the path of government debt. This will also be the case in Economies 2,
3 and 4.

6.2 Economy 2: add heterogeneity in initial assets

Introducing heterogeneity in the initial level of assets we can diagnose the effect of this
particular feature on the Ramsey policies by comparing it to the representative agent ones.
We extend the procedure introduced by Werning (2007)31 to characterize the optimal policies
for this and the next two economies. We describe them in a proposition leaving the proof to
Appendix B.

Proposition 4 There exists a finite integer t∗ ≥ 1 such that the optimal32 tax system is
given by τkt = 1 for 1 ≤ t < t∗ and τkt = 0 for all t > t∗; and τnt = −τ c for all t ≥ 1.

Once again, there is no reason to distort labor decisions since labor income is certain and
the same for all agents. However, the paths for capital taxes and lump-sum transfer do differ

31Werning (2007) solves for separable and balance growth path utility functions. Besides solving for GHH
preferences we also impose the upper bound on capital income taxes and remove the possibility of time zero
taxation.

32All propositions in this section are valid for any set of welfare weights, not only the Utilitarian ones. The
associated numerical results do assume a Utilitarian welfare function though.
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Figure 6: Optimal Taxes: Complete Market Economies

(a) Capital Tax (Econ. 1)
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(e) Capital Tax (Econ. 3)
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(h) Labor Tax (Econ. 4)
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Notes: Dashed line: initial taxes; Solid line: optimal taxes.
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from the representative agent ones. Proposition 2 provides a rationale for taxing capital in
this case; since agents have different initial asset levels, capital taxes can be used to provide
redistribution. This fact together with the fact that capital taxes are zero in the long-run
determine the optimal path for capital taxes33. Capital taxes are positive and front-loaded,
hitting the upper bound in the initial periods subsequently being driven to zero. The extra
revenue obtained via capital taxation is redistributed via lump-sum transfers (or a reduction
in lump-sum taxes relative to the representative agent level). It is important to reemphasize
that since lump-sum transfers are an unrestricted instrument, there is no reason to tax capital
in the initial periods other than for redistributive motives.

In order to have a sense of the magnitudes of t∗ and the increase in lump-sum transfers,
we apply the same procedure to the one we used to solve for the optimal tax system in
the benchmark economy. All we need to do is choose the initial distribution of assets. The
stationary distribution of assets in this economy is indeterminate34, hence, we can choose any
one we want. To keep the results comparable we choose the initial stationary distribution
from the benchmark experiment 35.

6.3 Economy 3: add heterogeneity in productivity levels

It turns out that the Ramsey policies for this economy are a bit more complex. Let Φ, Ψ,
and Ωn be constants (defined in Appendix B) and define

Θt ≡
Ct

Ωnχ κ
1+κ

N
1+κ
κ

t

− 1.

The following proposition can be established.

Proposition 5 Assuming capital taxes are bounded only by the positivity of gross interest
rates, the optimal labor tax, τnt , can be written as a function of Θt given by

τnt (Θt) =
(1 + τ c) ΨΘt

ΦΘt +Ψ (σ +Θt)
− τ c, for t ≥ 1, (6.1)

with sensitivity

Θt

dτnt (Θt)

dΘt

=
σ (τnt (Θt) + τ c)2

(1 + τ c) Θt

. (6.2)

33Straub and Werning (2014) show that capital taxes can be positive in environments similar to this. The
reason why their logic does not apply here is the fact that the planner has lump-sum taxes as an available
instrument. In particular, the proof of Proposition 4 does not impose convergence of any Lagrange multipliers.

34For the preferences chosen above, consumption is linear on, and labor supply is independent of the indi-
vidual asset level. It follows that the equilibrium levels of aggregates are independent of the asset distribution
and equal to the representative agent ones (see Chatterjee (1994)). In a steady state, β

(

1 +
(

1− τk
)

r
)

= 1
and, therefore, every agent will keep its asset level constant.

35In fact, a rescaling of it since the steady state aggregate level of assets is different when there is no
idiosyncratic risk (since there is no precautionary savings).
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It is optimal to set the capital-income tax rate according to

Rt+1

R∗
t+1

=
τnt + τ c

τnt+1 + τ c
1− τnt+1

1− τnt
, for t ≥ 1. (6.3)

Since labor income in unequal, there is a reason to tax it, in order to provide redistribution.
Optimal labor taxes are not constant over time since they depend on Θt. If they were
constant, however, equation (6.3) would imply τkt = 0 for all t ≥ 2. Thus, capital taxes will
fluctuate around zero to the extent that labor taxes vary over time. We disregard the upper
bound on capital taxes, τkt+1 ≤ 1, because it would complicate the result even further and in
a non-interesting way. It could be that the bound is violated if the variation of Θt between
t and t+ 1 is large enough. However, as discussed below, quantitatively this is unlikely.

To obtain a numerical solution we set the productivity levels to the ones in the benchmark
economy and apply the same procedure. To have a sense of the magnitude of the sensitivity
of τnt to Θt we plug the initial stationary equilibrium numbers (τn = 0.221, τ c = 0.046,
σ = 2, and Θ ≈ 2) into equation (6.2). This implies a sensitivity of 0.06, i.e. a 1 percent
increase in Θt changes the tax rate by 0.06 of a percentage point, from 0.221 to 0.2209. We
can then calculate the path of Θt, which we plot in Figure 15. Notice that the volatility of
Θt over time is unsubstantial. It follows that the optimal labor taxes are virtually constant
and capital taxes virtually zero.

In any case, the fact that capital is taxed at all seems to be inconsistent with the logic put
forward so far. It is not, when labor taxes vary over time they distort the savings decision,
capital taxes are then set to “undo” this distortion. The analogous is not the case in Economy
2 because of the absence of income effects on labor supply; distortions of the savings decision
do not affect the labor supply.

6.4 Economy 4: add heterogeneity in both

The result for this economy is a combination of the last two.

Proposition 6 There exists a finite integer t∗ ≥ 1 such that the optimal tax system is given
by τkt = 1 for 1 ≤ t < t∗, τkt follows equation (6.3) for t > t∗; τnt evolves according to equation
(6.3) for 1 ≤ t < t∗; and τnt is determined by equation (6.1) for all t ≥ t∗.

Optimal capital taxes are very similar to Economy 2 and for the same reasons. Labor
taxes are determined by the same equation as in Economy 3 for t ≥ t∗. In initial period,
1 ≤ t < t∗, while capital taxes are at the upper bound, Rt = 1 < R∗

t and, therefore, equation
(6.3) implies that labor taxes should be increasing. Lump-sum transfers are higher than the
in Economies 2 and 3 since they are used to redistribute the capital and labor tax revenue.36

36Bhandari et al. (2013) solve recursively for Ramsey policies in an economy similar to Economy 4 with
aggregate risk.

32



7 Robustness

Figure 7 shows that the solution with 4 nodes (t∗,τkt∗+1,τ
n
1 , and T1) produces a reasonable

approximation for the benchmark solution, at least with respect to its basic features. In this
section, we make use of this fact, and present results for alternative welfare functions and for
different calibrations of the labor income process using these 4 nodes.

Figure 7: Optimal Fiscal Policy with 4 nodes

(a) Capital tax

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

(b) Labor tax

0 20 40 60 80 100 120

0

0.1

0.2

0.3

(c) Lump-sum-to-output

0 20 40 60 80 100 120

−0.15

−0.1

−0.05

0

0.05

0.1

(d) Debt-to-output

0 20 40 60 80 100 120

−1

−0.5

0

0.5

1

Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with 17 nodes (benchmark); Solid
line: optimal transition with 4 nodes.

7.1 Welfare function

All the results presented so far used the same social welfare function: the utilitarian one,
which places equal Pareto weights on each agent. This implies a particular social preference
with respect to the equality versus efficiency trade-off. Here we consider different welfare
functions that rationalize different preferences about this trade-off. With this in mind we
propose the following function

W σ̂ =

(
∫

x̄ (a0, e0)
1−σ̂ dλ0

)
1

1−σ̂

,

where λ0 is the initial distribution of individual states (a0, e0), x̄ denotes the individual
certainty equivalents of labor-consumption composite (given a particular initial state (a0, e0)),
and, following Benabou (2002), we call σ̂ the planner’s degree of inequality aversion. First
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notice that if σ̂ = σ (the agents’ degree of risk aversion), maximizing W σ is equivalent to
maximizing the utilitarian welfare function 37. If σ̂ = 0, then maximizing W 0 is equivalent
to maximizing (1 + ∆L) (1 + ∆I), that is, the planner has no redistributive concerns and
focuses instead in the reduction of distortions and the provision of insurance38. Finally, as
σ̂ → ∞ the welfare function approaches W∞ = min (x̄ (a0, e0)). Hence, by choosing different
levels for σ̂ we can place different weights on the equality versus efficiency trade-off, from
the extreme of completely ignoring equality (σ̂ = 0), passing through the utilitarian welfare
function (σ̂ = σ), and in the limit reaching the Rawlsian welfare function (σ̂ → ∞). Table 7
displays the results for different levels of σ̂.

When σ̂ = 0 the planner has no redistributive motive and, accordingly, t∗ = 0 which
is consistent with the results displayed above, in particular in Section 6. The benchmark
result that capital taxes should be held fixed at the upper bound for the initial periods is
inherently linked to the redistributive motive of the planner. It follows that higher σ̂ imply
higher t∗’s (lower lump-sum-to-output ratios and higher debt-to-output ratios). Otherwise,
overall, specially for σ̂ ≥ 1, the results do not change significantly with changes in σ̂. In
particular, the final levels of capital and labor taxes are remarkably similar.

7.2 Labor income process

The labor income process (summarized by the Markov matrix, Γ, and the vector of pro-
ductivity levels, e) is a key determinant of the amount of uncertainty and inequality faced
by agents in the economy. These parameters are a discrete approximation for a continuous
process for labor income, lit ≡ wetnt, that is

log (lit+1) = ρ log (lit) + ε, where ε ∼ N
(

0, σ2
ε

)

.

In our benchmark calibration we target ρ = 0.9 and σε = 0.2. Given the importance of these
choices for our results and the lack of consensus in the literature about them (see Section
4.4 for a discussion), we provide here the results for alternative numbers for ρ and σε. For
each of these we recalibrate the economy modifying only the corresponding target, Table 7
contains the results.

As one would expect, the magnitudes of the results do change considerably given changes
in these important parameters. However, reassuringly, the qualitative features of the fiscal
policy instruments and of where the welfare gains come from is not substantially affected.

7.3 Elasticities

One parameter, σ, determines three important aspects of our benchmark experiment: the
agents’ intertemporal elasticity of substitution and relative risk aversion, and the planner’s

37Notice that
(

∫

x̄ (a0, e0)
1−σ dλ0

)
1

1−σ

is a monotonic transformation of
∫ x̄(a0,e0)

1−σ

1−σ
dλ0, which is equiv-

alent to the utilitarian welfare function.
38This result can be established following a similar procedure to the one used in proof of Proposition 3.

The online appendix contains the proof.
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degree of inequality aversion. Table 7 contains the results for other choices of this parameter
and also for different levels of Frisch elasticity.

Table 7: Robustness

t∗ τk τn T/Y B/Y ∆ ∆L ∆I ∆R

Degree of Inequality Aversion. Benchmark: σ̂ = 2

σ̂ = 0 0 34.7 12.2 0.0 79.8 0.58 5.32 -2.74 -1.80

σ̂ = 1 19 49.9 10.1 2.9 -36.4 4.56 3.73 -3.83 4.81

σ̂ = 3 29 49.8 10.4 3.5 -76.8 4.64 2.90 -4.01 5.94

σ̂ = 4 30 48.9 11.5 4.1 -76.0 4.61 2.52 -3.78 6.05

σ̂ = 5 32 49.2 11.3 4.0 -84.2 4.59 2.45 -3.88 6.21

Labor Income Process. Benchmark: ρ = 0.9, σε = 0.2

ρ = 0.85 24 34.8 4.8 0.0 -100.2 5.43 4.81 -3.72 4.48

ρ = 0.95 21 42.8 11.5 3.7 -49.5 3.91 3.63 -3.35 3.74

σε = 0.15 28 28.1 4.9 0.1 -126.3 5.64 4.59 -4.09 5.31

σε = 0.25 34 57.8 11.6 4.7 -75.9 4.52 2.51 -4.29 6.52

Degree of Relative Risk Aversion and Frisch Elasticity. Benchmark: σ = 2, κ = 0.72

σ = 1.0 12 25.0 9.9 0.3 -21.7 5.48 6.10 -2.65 2.11

σ = 3.0 50 74.4 10.0 5.1 -93.1 9.94 2.96 -2.89 9.96

κ = 0.5 24 49.6 15.5 5.5 -52.5 4.62 1.45 -2.28 5.53

κ = 1.0 28 45.8 6.3 2.0 -84.8 10.36 7.37 -4.19 7.27

Benchmark 26 49.7 10.8 3.6 -62.5 4.64 2.97 -3.84 5.68

Notes: When σ̂ = 2 = σ the welfare function is utilitarian, this is the solution plotted in Figure 7. The
values for T/Y and B/Y are the ones from the final steady state. For the welfare decomposition we use the
utilitarian welfare function for comparability.

When σ is reduced from 2 to 1, the planner’s inequality aversion is reduced and, accord-
ingly, capital income taxes are kept at the upper bound for less periods (t∗ goes from 26 to
12). Moreover, the agents’ intertemporal elasticity of substitution increases and their risk
aversion is reduced which implies that long-run capital taxes lead to, at the same time, higher
distortions and less benefits. It follows that the optimal long-run capital tax is lower. This
leads to a higher proportion of welfare gains coming from the level effect and less coming
from redistribution. The opposite happens when σ is increased to 3. Intuitively, a higher
Frisch elasticity implies a lower optimal labor income tax and a higher associated level effect.
Notice that these results are in line with the propositions established in Section 2.
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8 Conclusions

In this paper we quantitatively characterize the solution to the Ramsey problem in the
standard incomplete market model. We find that even though the planner has the ability
to obtain all revenue via non distortive lump-sum taxes, it chooses instead to tax capital
income heavily and labor income to a lesser extent. Moreover, we show that it is beneficial
for the government to accumulate assets over time. With a welfare decomposition we diagnose
that, relative to the current US tax system, this policy leads to an overall reduction of the
distortions of agent’s decisions, to a substantial amount of redistribution and to a reduction
in the amount of insurance provided by the government. Importantly, we also show that
disregarding the transitory dynamics and focusing only on steady states can lead to severely
misleading results.

Finally, we do not view our results as a final answer to our initial question: to what extent
should governments use fiscal policy instruments to provide redistribution and insurance?
Instead, we understand it as a contribution to the debate. The model we use abstracts
from important aspects of reality, as any useful model must, and we miss some important
dimensions. For instance, in the model studied above an agent’s productivity is entirely
a matter of luck, it would be interesting to understand the effects of allowing for human
capital accumulation. We also assume the government has the ability to fully commit to
future policies, relaxing this assumption could lead to interesting insights.
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Appendix

This appendix presents concise versions of the proofs. Extensive versions with more details
are contained in a separate online appendix which can be found in our websites.

A Proofs for two-period economies

A.1 Uncertainty economy

Define τkR ≡ rτk/ (1 + r). Six equations determine a tax distorted equilibrium (K, nL, nH , r, w;
τn, τkR, T ) according to Definition 1: the first order conditions of the agent’s problem (one
intertemporal and two intratemporal), the first order conditions of the firm’s problem

r = fK (K,N) , and w = fN (K,N) , where N = πeLnL + (1− π) eHnH (8.1)

and the government’s budget constraint. Using equation (8.1) to substitute out for r and w we
are left with a system of four equations that any vector

(

K, nL, nH , τ
n, τkR, T

)

of equilibrium
values must satisfy. The two degrees of freedom are a result of the fact that the planner has
three instruments

(

τn, τkR, T
)

that are restricted by one equation, the government’s budget
constraint. Defining welfare by

W ≡ u (ω −K, n̄) + βE
[

u
(

(1− τn) fN (K,N) eini +
(

1− τkR
)

fK (K,N)K + T
)

, ni
]

and totally differentiating the four equilibrium equations together with this definition and
making the appropriate simplifications using Assumption 1 we obtain the following equation
(the algebra is tedious and, therefore, suppressed39):

dW = Θndτn +ΘkdτkR,

where Θn and Θk are complicated functions of equilibrium variables40.

39Mathematica codes that compute all the algebraic steps are available upon request.
40Here are the exact formulas:

Θk ≡
fKKUc

Φ

{

fNfKNN [(1− τn) (Vc − Uc) + τnκUc] + τkRfK (fN + fKNKκ)Uc

}

.

Θn ≡
fNN

(1− τn)Φ
{
(

1− τkR
)

f2
KfNK

[

(1− τn)
(

Ucc (Uc − Vc) + τkR (Vcc − Ucc)Uc

)

−
(

1− τkR
)

τnκUccUc

]

+ fN [(1− τn) (Vc − Uc) + τnκUc]
[(

1− τkR
)

fKNNUc −Ku0
cc

]

+
(

1− τkR
)

τkRfKNfKKκU2
c }.

where

Uc ≡ β [πuc (cL, nL) + (1− π)uc (cH , nH)] , Ucc ≡ β [πucc (cL, nL) + (1− π) ucc (cH , nH)] ,

Vc ≡ β
[

πuc (cL, nL)
eLnL

N
+ (1− π)uc (cH , nH)

eHnH

N

]

, Vcc ≡ β
[

πucc (cL, nL)
eLnL

N
+ (1− π)ucc (cH , nH)

eHnH

N

]

,

Φ ≡
(

1− τkR
) (

fKfNfKNKN ((1− τn) (Vcc − Ucc) + τnκUcc) + (fN + fKNKκ) f2
KKUcc − fNfKNNUc

)

+ (fN + fKNKκ)Ku0
cc.
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Lemma 2 Under Assumption 1, in equilibrium nH > nL and uc (cL, nL) > uc (cH , nH).

The proof of this Lemma is contained in the online appendix.

Proof of Proposition 1. First notice that the optimal tax system must satisfy Θn = 0 and
Θk = 0, otherwise there would exist variations in

(

τn, τkR
)

∈ (−∞, 1)2 that would increase
welfare. Θk = 0 simplifies to θk1 + θk2τ

n + θk3τ
k
R = 0 where

θk1 ≡ fNfKNN (Vc − Uc) , θk2 ≡ fNfKNN ((1 + κ)Uc − Vc) , and θk3 ≡ fK (fN + fKNKκ)Uc.

Solving this equation for τkR, substituting it in Θn = 0 and simplifying entails

Vc (1− τn)− Uc (1− (1 + κ) τn) = 0.

Solving for τn we obtain equation (2.1) and substituting it back in the equation for τkR we
obtain τkR = 0; and, therefore, τk = 0. This is the only pair

(

τn, τkR
)

∈ (−∞, 1)2 that solves
the system Θn = 0 and Θk = 0. The fact that the optimal level of τn > 0 follows from
Lemma 2.

A.2 Inequality economy

The proof of Proposition 2 is entirely analogous and for that reason suppressed here. It can
be found in the online appendix.

B Proofs for complete market economies

The proofs follow straight-forwardly the approach introduced by Werning (2007). Hence,
for details on the logic behind the procedure we refer the reader to that paper, here we
focus mainly on the parts that comprise our value added. We depart from Werning (2007) in
following ways: we use the GHH utility function (whereas he studies the separable and Cobb-
Douglas cases), we do not allow the Ramsey planner to choose time zero policies and impose
an upper bound of 1 for capital income taxes. These departures make the Ramsey planner’s
problem comparable to our benchmark experiment. The restriction on time zero policies
is particularly important because it prevents the planner from confiscating the (potentially
unequal) initial capital levels eliminating the corresponding redistribution motives.

Consider Economy 4 as described in Section 6. For simplicity, we assume that agents are
divided into a finite number of types i ∈ I of relative size πi. Type i has an initial asset
position of ai,0 and a productivity level of ei. Let pt denote the price of the consumption
good in period t in terms of period 0. Since markets are complete we can write down the
present value budget constraint of the agent (remember that τ c is a parameter),

∞
∑

t=0

pt ((1 + τ c) ci,t + ai,t+1) ≤

∞
∑

t=0

pt ((1− τnt )wteini,t +Rtai,t + Tt) ,
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where Rt ≡ 1 +
(

1− τkt
)

rt. Rule out arbitrage opportunities by setting pt = Rt+1pt+1, and
define T ≡

∑∞
t=0 ptTt. Then, the budget constraint simplifies to

∞
∑

t=0

pt ((1 + τ c) ci,t − (1− τnt )wteini,t) ≤ R0ai,0 + T . (8.2)

Similarly, the government’s budget constraint simplifies to

R0B0 + T +
∑

t

ptG =
∑

t

pt
(

τ cCt + τnt wtNt + τkt rtKt

)

. (8.3)

The resource constraint is given by

Ct +G+Kt+1 = f (Kt, Nt) , for all t ≥ 0. (8.4)

Definition 6 Given {ai,0}, K0, B0 and
(

τn0 , τ
k
0 , T0

)

, a competitive equilibrium is a policy
{

τnt , τ
k
t , Tt

}∞

t=1
, a price system {pt, wt, rt}

∞
t=0, and an allocation {ci,t, ni,t, Kt+1}

∞
t=0, such that:

(i) agents choose {ci,t, ni,t}
∞
t=0 to maximize utility subject to budget constraint (8.2) taking

policies and prices (that satisfy pt = Rt+1pt+1) as given; (ii) firms maximize profits; (iii) the
government’s budget constraint (8.3) holds; and (iv) markets clear: the resource constraints
(8.4) hold.

Given aggregate levels Ct and Nt, individual consumption and labor supply levels can be
found by solving the following static subproblem

Um (Ct, Nt;ϕ) ≡ max
ci,t,ni,t

∑

i

πiϕiu (ci,t, ni,t) s.t.
∑

i

πici,t = Ct and
∑

i

πieini,t = Nt

(8.5)
where u is given by equation (4.1), for some vector ϕ ≡ {ϕi} of market weights ϕi ≥ 0. Let
cmi,t (Ct, Nt;ϕ), and n

m
i,t (Ct, Nt;ϕ) be the argmax of this problem. It can be shown that41

cmi,t (Ct, Nt;ϕ) = ωciCt + χ
κ

1 + κ

(

(ωni )
1+κ
κ − ωciΩ

n
)

(Nt)
1+κ
κ

nmi,t (Ct, Nt;ϕ) = ωni eiNt

Um (Ct, Nt;ϕ) =
Ωc

1− σ

(

Ct − Ωnχ
κ

1 + κ
(Nt)

1+κ
κ

)1−σ

Then, implementability constraints can be written as
∞
∑

t=0

βt(Um
C (Ct, Nt;ϕ) c

m
i,t (Ct, Nt;ϕ) + Um

N (Ct, Nt;ϕ)n
m
i,t (Ct, Nt;ϕ)) (8.6)

= Um
C (C0, N0;ϕ)

(

R0ai,0 + T

1 + τ c

)

for all i ∈ I

41Where constants are defined as follows:

ωc
i ≡

(ϕi)
1
σ

∑

j πj (ϕj)
1
σ

, ωn
i ≡

(ei)
κ

∑

j πj (ej)
1+κ

, Ωc ≡

(

∑

i

πi (ϕi)
1
σ

)σ

, and Ωn ≡





∑

j

πj (ej)
1+κ





−
1
κ
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Proposition 7 An aggregate allocation {Ct, Nt, Kt+1}
∞
t=0 can be supported by a competitive

equilibrium if and only if the resource constraints (8.4) hold and there exist market weights
ϕ and a lump-sum tax T so that the implementability conditions (8.6) hold for all i ∈ I.
Individual allocations can then be computed using functions cmi,t and n

m
i,t, prices and taxes can

be computed using the usual equilibrium conditions.

The Ramsey problem is that of choosing policies
{

τnt , τ
k
t , Tt

}∞

t=1
, taking {ai,0}, K0, B0

and
(

τn0 , τ
k
0 , T0

)

as given, to maximize a weighted sum of the individual utilities,

∞
∑

t=0

βtπiλiu (ci,t, ni,t) , (8.7)

where {λi} are the welfare weights normalized so that
∑

i πiλi = 1 with λi ≥ 0, subject to
allocations and policies being a part of a competitive equilibrium and τkt ≤ 1 for all t ≥ 1.

First notice that in equilibrium it must be that Um
C (t) = β

(

1 +
(

1− τkt+1

)

rt+1

)

Um
C (t+ 1),

so that
Um
C (t) ≥ βUm

C (t + 1) , (8.8)

is equivalent to τkt+1 ≤ 1. Moreover, notice that τk0 and T0 have not been substituted out
in the implementability constraint. The fact that τn0 is given together with the equilibrium
condition (1− τn0 )w0 = −Um

N (0) /Um
C (0) is equivalent to

N0 = N̄0, (8.9)

where N̄0 is defined implicitly as a function of variables given to the Ramsey planner,

(1− τn0 ) fN
(

K0, N̄0

)

= Ωnχ
(

N̄0

)
1

κ .

Finally, we can use Proposition 7 to rewrite the Ramsey problem as that of choosing
{Ct, Nt}

∞
t=0, T , and ϕ to maximize (8.7) subject to (8.4) for all t ≥ 0, (8.6) for all i ∈ I with

multiplier µi, (8.8) for all t ≥ 0 with multiplier ηt, and (8.9). Equivalently, we can write it
as that of solving the following auxiliary problem

max
{Ct,Nt}

∞

t=0
,T,ϕ

∞
∑

t=0

βtW (Ct, Nt;ϕ, µ, λ)− Um
C (C0, N0;ϕ)

∑

i∈I

µi

(

R0ai,0 + T

1 + τ c

)

,

subject to (8.4) for all t ≥ 0, (8.8) for all t ≥ 0, and (8.9), where

W (Ct, Nt;ϕ, µ, λ) ≡
∑

i

πi{λiu
(

cmi,t (Ct, Nt;ϕ) , n
m
i,t (Ct, Nt;ϕ)

)

+ µi
(

Um
C (Ct, Nt;ϕ) c

m
i,t (Ct, Nt;ϕ) + Um

N (Ct, Nt;ϕ)n
m
i,t (Ct, Nt;ϕ)

)

}.
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With some algebra it can be shown that42

W (Ct, Nt;ϕ, µ, λ) =
1

1− σ

(

Ct − Ωnχ
κ

1 + κ
(Nt)

1+κ
κ

)−σ (

ΦCt − (Φ + (1− σ)Ψ)Ωnχ
κ

1 + κ
(Nt)

1+κ
κ

)

(8.10)
Define R∗

t ≡ 1 + rt and

η−1 ≡
R0

β (1 + τ c)

∑

i

πiµiai,0,

and first order conditions (for the following proofs we need only necessary conditions) together
with equilibrium conditions imply the following equations43

∑

i

πiµi = 0 (8.11)

τnt + τ c

1 + τ c
=

ΨΘt

ΦΘt +Ψ (σ +Θt) + Υtσ (βηt−1 − ηt)
, for t ≥ 1 (8.12)

Rt+1

R∗
t+1

=
ΦΘt+1 +Ψσ +Υt+1σ (βηt − ηt+1)

ΦΘt +Ψσ +Υtσ (βηt−1 − ηt)

Θt

Θt+1
, for t ≥ 0 (8.13)

Notice that Υt > 0 and Θt > 0, for all t ≥ 0.

B.1 Economy 2

Lemma 3 If ei = 1 for all i ∈ I, then Ψ = 0 and Φ > 0.

Proof. If ei = 1 for all i ∈ I, then it follows from the definition of Ψ that

Ψ =
Ωc

ε

∑

j πjµj (ej)
1+ε

∑

j πj (ej)
1+ε =

Ωc

ε

∑

j πjµj
∑

j πj
= 0

where the last equality follows from equation (8.11). Next, notice that

u
(

cmi,t (Ct, Nt;ϕ) , n
m
i,t (Ct, Nt;ϕ)

)

=
(ωci )

1−σ

1− σ

(

Ct − Ωnχ
κ

1 + κ
(Nt)

1+κ
κ

)1−σ

42Where constants are defined as follows:

Φ ≡
∑

j

πj

(

λj

ϕj

− σµjω
c
j

)

, and Ψ ≡
Ωc

κ

∑

j

πjµjejω
n
j .

43Where Υt ≡ Ωc/Ωnχ κ
1+κ

(Nt)
1+κ

κ .
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and, therefore, the solution to the problem must satisfy Ct > Ωnχ κ
1+κ

(Nt)
1+κ
κ for all t ≥ 0.

Otherwise, the objective function of the Ramsey problem would be −∞. On the other hand,
since Ψ = 0, it follows from equation (8.10) that

W (Ct, Nt;ϕ, µ, λ) =
Φ

1− σ

(

Ct − Ωnχ
κ

1 + κ
(Nt)

1+κ
κ

)1−σ

.

It follows that, if Φ ≤ 0, setting C0 = f
(

K0, N̄0

)

−G, and Ct = Nt = 0, for all t ≥ 1 (so that

Ct = Ωnχ κ
1+κ

(Nt)
1+κ
κ for all t ≥ 1) would maximize the objective function of the auxiliary

problem while being feasible which is a contradiction.

Proof of Proposition 4. Using Lemma 3, from equation (8.12) it follows that

τnt = −τ c, for t ≥ 1.

Next, suppose ηt = 0, for all t ≥ 0. Then, it follows from (8.13) that τk1 < 1 if

−
1

β

ΦΘ0

Υ0σ
≡ P1 < η−1 < M1 ≡

1

β

(R∗
1 − 1) ΦΘ0

Υ0σ
,

and that τkt = 0 for t ≥ 2. Hence, if P1 < η−1 < M1, the constraints will in fact never be
binding. Now, suppose ηt > 0, for t ≤ t∗ − 2 and ηt = 0, for all t ≥ t∗ − 1, then it follows
from (8.13) that τkt∗ < 1 if

−

t∗
∑

τ=1

1

βτ
ΦΘτ−1

Υτ−1σ
≡ Pt∗ < η−1 < Mt∗ ≡

t∗
∑

τ=1

1

βτ

(

∏t∗

t=τ R
∗
t − 1

)

ΦΘτ−1

Υτ−1σ
,

and that τkt = 0 for t ≥ t∗+1. The result follows from the fact that η−1 is finite, limt→∞ Pt =
−∞ and limt→∞Mt = ∞.

B.2 Economy 3

Proof of Proposition 5. In this economy there is no heterogeneity in initial levels of asset,
i.e. ai,0 = a0 for all i ∈ I. Then it follows that

η−1 =
R0

β (1 + τ c)

∑

i

πiµiai,0 =
R0

β (1 + τ c)
a0
∑

i

πiµi = 0

where the last equality follows from equation (8.11). Since here we assume that τkt does not
have to be bounded by 1, it follows that ηt = 0 for all t ≥ 1. Then, equation (6.1) follows
directly from equation (8.12), (6.2) from its derivative with respect to Θt, and (6.3) from
equations (8.12) and (8.13).

46



B.3 Economy 4

Proof of Proposition 6. Equation (6.3) can be established for all t ≥ 1, by substituting
(8.12) into (8.13). The existence of a t∗ such that ηt > 0, for t < t∗ − 1 and ηt = 0, for all
t ≥ t∗ − 1, follows from a very similar logic to the one used in the proof of Proposition 4,
which we suppress here44. Hence, for t ≥ t∗ we can obtain τnt by using (6.1), which follows
from (8.12) with ηt = 1. For the same time period τkt can then be found by using (6.3).
Now, having τnt∗ we can use the fact that τkt = 1 and (6.3) moving backwards to obtain τnt
for t < t∗.

C Welfare decomposition

Let v (x) ≡ u (c, n) where x is the consumption-labor composite defined in Section 5.3 and u is
defined in (4.1). Consider a policy reform. Denote by xRt (a0, e

t) the equilibrium consumption-
labor composite path of an agent with initial assets a0 and history of productivities et if the
reform is implemented. Let xNRt (a0, e

t) be the equilibrium path in case there is no reform.
The average welfare gain, ∆, that results from implementing the reform is defined as the
constant percentage increase to xNRt (a0, e

t) that equalizes the (utilitarian) welfare to the
value associated with the reform, that is,
∫

E0

[

U
(

(1 + ∆)
{

xNRt
(

a0, e
t
)})]

dλ0 (a0, e0) =

∫

E0

[

U
({

xRt
(

a0, e
t
)})]

dλ0 (a0, e0) ,

(8.14)
where λ0 is the initial distribution over states (a0, e0) and U ({xt (a0, e

t)}) ≡
∑∞

t=0 β
tv(xt(a0

, et)) =
∑∞

t=0 β
tu (ct (a0, e

t) , nt (a0, e
t)).

Define

Xj
t ≡

∫

xjt
(

a0, e
t
)

dλjt
(

a0, e
t
)

, for j = R,NR.

to be the average level of x at each t. Then, the level effect, ∆L, is

U
(

(1 + ∆L)
{

XNR
t

})

= U
({

XR
t

})

, (8.15)

In order to define the other two components we need some previous definitions. Let x̄j (a0, e0)
denote the individual consumption-labor certainty equivalent,

U
({

x̄j (a0, e0)
})

= E0

[

U
({

xjt
(

a0, e
t
)})]

, for j = R,NR, (8.16)

(notice that x̄j (a0, e0) can be chosen to be constant) and let X̄j be the aggregate consumption-
labor certainty equivalent,

X̄j =

∫

x̄j (a0, e0) dλ (a0, e0) , for j = R,NR. (8.17)

44With

Pt∗ ≡ −

t∗
∑

τ=1

1

βτ

ΦΘτ−1 +Ψσ

Υτ−1σ
, and Mt∗ ≡

t∗
∑

τ=1

1

βτ

(

∏t∗

t=τ R
∗

t − 1
)

ΦΘτ−1 +
(

Θτ−1

Θt∗

∏t∗

t=τ R
∗

t − 1
)

Ψσ

Υτ−1σ
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The insurance effect, ∆I , is defined by

1 + ∆I ≡
1− pRunc
1− pNRunc

, where U
((

1− pjunc
) {

Xj
t

})

= U
({

X̄j
})

, (8.18)

and the redistribution effect, ∆R, by

1 + ∆R ≡
1− pRine
1− pNRine

, where U
((

1− pjine
) {

X̄j
})

=

∫

U
({

x̄j (a0, e0)
})

dλ (a0, e0) . (8.19)

The following proposition holds45.

Proof of Proposition 3. First notice that v (x) ≡ u (c, n) where u is the GHH utility
function, defined in (4.1), satisfies the following regularity property: there exists a totally
multiplicative function h : (i.e. h (ab) = h (a) h (b), and h (a/b) = h (a) /h (b)) such that for
any scalar α,

v (αx) = h (α) v (x) . (8.20)

Hence, suppressing the dependence on (a0, e0), we obtain:

∫

E0U
({

xRt
})

dλR0
(8.16)
=

∫

U
({

x̄R
})

dλR0
(8.19)
= U

((

1− pRine
) {

X̄R
}) (8.20)

= h
(

1− pRine
)

U
({

X̄R
})

(8.18)
= h

(

1− pRine
)

U
((

1− pRunc
) {

XR
t

}) (8.20)
= h

((

1− pRine
) (

1− pRunc
))

U
({

XR
t

})

(8.15)
= h

((

1− pRine
) (

1− pRunc
))

U
(

(1 + ∆L)
{

XNR
t

})

(8.20)
= h

(

(1 + ∆L)
(

1− pRine
) (

1− pRunc
))

U
({

XNR
t

})

(8.20)
= h

(

(1 + ∆L)
(

1− pRine
)

(

1− pRunc
)

(1− pNRunc)

)

U
((

1− pNRunc
) {

XNR
t

})

(8.18)
= h

(

(1 + ∆L) (1 + ∆I)
(

1− pRine
))

U
({

X̄NR
})

(8.20)
= h

(

(1 + ∆L) (1 + ∆I)

(

1− pRine
)

(1− pNRine )

)

U
((

1− pNRine
) {

X̄NR
})

(8.19)
= h ((1 + ∆L) (1 + ∆I) (1 + ∆R))

∫

U
({

x̄NR
})

dλNR0

(8.18)
= h ((1 + ∆L) (1 + ∆I) (1 + ∆R))

∫

E0U
({

xNRt
})

dλNR0

(8.20)
=

∫

E0U
(

(1 + ∆R) (1 + ∆I) (1 + ∆L)
{

xNRt
})

dλNR0 .

The result follows from the definition of ∆ in equation (8.14).

45This result is similar to the one introduced by Benabou (2002) and used in Floden (2001).
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D Algorithms

Here we describe the algorithms used to obtain our results.

Algorithm for computing the transition between steady states 46

1. Solve for the initial stationary equilibrium.

2. Assume the economy converges to a new stationary equilibrium in t̄ periods and guess
a sequence K2, ..., Kt̄−1.

3. Solve for the new tax on labor such that given K2, ..., Kt̄−1 and the path for the other
taxes, government debt is unchanged between t̄ − 1 and t̄. Compute the associated
path for the government debt, B1, ..., Bt̄−1 (for details see the Final Tax Computation
section in the online appendix).

4. Solve for the final stationary equilibrium given final tax rates τk, τn, τ c and T , and Bt̄.
Compute Kt̄.

5. Solve for households savings decisions in transition.

6. Update the path of capital, i.e. take the initial stationary distribution over wealth
and productivity and use the decision rules computed above to simulate the economy
forward. Then, check for market clearing at each date and adjust K2, ..., Kt̄−1 appro-
priately.

7. If the new sequence for capital is the close to the old, we have found the equilibrium
path. Otherwise go back to step 5.

8. Increase t̄ until the solution stops changing.

Algorithm for global optimization47

1. Sample a large set X of points from a uniform distribution over the domain48.

2. Evaluate the objective function for all points in X .

3. Select a reduced set Xr with the highest objective function values. Sort the elements
of Xr into clusters and run a local49 solver one time for each cluster50.

4. Use a Bayesian stopping rule to determine whether or not the procedure should be
repeated.

46This is an extension of the procedure proposed by Domeij and Heathcote (2004). To solve for agent’s
decision rules we use the endogenous grid method (see Carroll (2006)).

47This procedure is described in more detail in Kucherenko and Sytsko (2005).
48We used pseudo-random numbers from a Sobol sequence which give more efficient results.
49We used an open source local solver called BOBYQA.
50See Rinnooy Kan and Timmer (1987).
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E Tables and Figures

Table 8: Distribution of wealth

Bottom (%) Quintiles Top (%) Gini
0-5 1st 2nd 3rd 4th 5th 95-100

Data -0.1 -0.2 1.1 4.5 11.2 83.4 60.3 0.82
Model -0.1 -0.2 1.5 4.7 10.2 83.4 60.8 0.81

Notes: Data come from the 2007 Survey of the Consumer Finance.

Table 9: Income sources by quintiles of wealth

Quintile Model Data
Labor Asset Transfer Labor Asset Transfer

1st 83.7 -0.1 16.4 82.0 2.0 16.0
2nd 85.4 1.6 13.1 83.0 4.8 12.2
3rd 84.1 4.7 11.2 80.0 7.3 12.7
4th 81.4 8.6 10.0 77.6 10.3 12.1
5th 58.7 36.2 5.2 51.7 40.0 8.3

Notes: Table summarizes the pre-tax total income decomposition. We
define the asset income as the sum of income from capital and business.
Data come from the 2007 Survey of the Consumer Finance, the numbers
are based on a summary by Dı́az-Giménez et al. (2011).
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Figure 8: Aggregates: Benchmark
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Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition.
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Figure 9: Optimal Fiscal Policy: Fixed Capital Taxes

(a) Capital tax
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Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with unrestricted instruments
(benchmark); Solid line: optimal transition with fixed capital taxes.

Figure 10: Optimal Fiscal Policy: Fixed Labor Taxes
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Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with unrestricted instruments
(benchmark); Solid line: optimal transition with fixed labor taxes.

52



Figure 11: Optimal Fiscal Policy: Lump-Sum Transfers to Output

(a) Capital tax
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Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with unrestricted instruments
(benchmark); Solid line: optimal transition with fixed lump-sum transfers to output ratio.

Figure 12: Optimal Fiscal Policy: Fixed debt-to-output
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Notes: Dashed thin line: initial stationary equilibrium; Dashed thick line: optimal transition with unrestricted instruments
(benchmark); Solid line: optimal transition with fixed debt-to-output ratio.
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Figure 13: Aggregates: Constant Policy
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Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition.
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Figure 14: Optimal Fiscal Policy: Constant Policy
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Notes: Dashed line: initial stationary equilibrium; Solid line: optimal transition; The black dots are the choice variables: the
spline nodes and t∗, the point at which the capital tax leaves the upper bound.

Figure 15: Economy 3: Θt
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