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1. Introduction

In the ninety years since Arthur Pigou introduced the idea that tolls could be used to
alleviate traffic congestion and increase social welfare, carts have given way to automobiles
and congestion has grown to consume 42 hours per commuter annually in the United
States—nearly an entire work week (Schrank, Eisele, Lomax, and Bak, 2015). In addition
to the 6.9 billion hours drivers lost to additional travel time in 2014, congestion wasted
3.1 billion gallons of fuel (Schrank, Eisele, Lomax, and Bak, 2015), releasing an additional
28 million metric tons of carbon dioxide into the atmosphere, as well as a host of other
pollutants. This additional pollution amounts to more than six times the annual emissions
saved by the current fleet of hybrid and electric vehicles,1 and is responsible for up to
8,600 preterm births a year (Currie and Walker, 2011). Congestion also retards economic
growth; cutting congestion delay in half would raise employment growth by an estimated
1 percent per year (Hymel, 2009).

Despite the significance of these costs, the vast majority of roads remain unpriced. A ma-
jor barrier to implementing congestion pricing is the received wisdom among economists,
policy makers, and the public that it would make many, if not most, road users worse off.2

That is, under the standard view, congestion pricing generates a Kaldor-Hicks improve-
ment, meaning the winners gain more than the losers lose, but not a Pareto improvement
that helps all road users.

Since, under this view, congestion pricing generates a Kaldor-Hicks improvement, there
exists a set of transfers we could implement that would turn it into a Pareto improvement;
however, there are at least two problems with doing so. First, it is difficult to target the
transfers precisely enough to actually make all road users better off.3 Second, even when
we can design transfers that make a policy Pareto-improving, they can still be difficult to
implement. As Stiglitz (1998) points out, it may not be enough to identify such transfers
because the transfers are transparent and thus harder to defend than the implicit transfers
the status quo entails; further, the government cannot commit to maintaining the transfers.
This makes policies that naturally generate a Pareto improvement all the more valuable.

The main result of this paper is that, contrary to the received wisdom, a carefully
designed toll on a portion of the lanes of a highway can generate a Pareto improvement,
even before the toll revenue is spent. To price a portion of the lanes we split a highway
into two routes using a barrier or painted lines, and add tolls to one of the routes. This

1See Appendix B.1 for the sources and calculations for this claim.
2See Appendix B.2 for a brief explanation of this standard result, evidence that this result is the received
wisdom, and a discussion of other barriers to congestion pricing.
3For example, Small (1983, 1992) makes practical proposals regarding how to use the revenue to improve the
distributional effects of congestion pricing but is careful to state that it is very unlikely that following his
proposals would generate a Pareto improvement.
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practice is generally called ‘value pricing,’ and the priced lanes are called ‘HOT lanes,’
‘express lanes,’ or more derisively, ‘Lexus lanes.’4

I obtain this new result by extending the bottleneck congestion model of Vickrey (1969)
and Arnott, de Palma, and Lindsey (1990, 1993) to reflect an important additional traffic
externality that has been identified by the transportation engineering literature but that
has largely been ignored in the economics literature.5 Not only does each additional
vehicle slow others down, but, in heavy enough traffic, additional vehicles can create
additional frictions which reduce throughput.

To understand these two externalities better, consider a two-lane highway that merges
down to one lane at some point, creating a bottleneck. When the arrival rate at the
bottleneck exceeds its capacity a queue forms. Each additional vehicle that travels during
rush hour lengthens the queue, increasing the travel time of all those behind it by a few
seconds. This lengthening of the queue is the standard externality. However, what this
simple externality fails to capture is the fact that a queue creates additional frictions that
reduce throughput, reducing the rate at which vehicles can pass through the bottleneck
and further increasing travel times. This contrasts with most queues; while a long line
at the grocery store means you have to wait a while, it does not affect the rate at which
customers are served.6

It is by reducing this second externality that tolling can lead to a Pareto improvement.
Time-varying tolls can smooth the rate that people depart for work, increasing speeds and
throughput,7 and when agents are homogeneous, this is enough to conclude everyone is
better off.

In practice, road users are not homogeneous, and allowing for heterogeneity makes it
likely that pricing all of the lanes will hurt some road users, even when pricing increases
throughput. Adding tolls reduces the time costs of traveling while increasing the financial
costs. As not all road users value their time equally, this can hurt some road users.

4The name ‘value pricing’ refers to drivers’ option of paying more for something of greater value, and the
acronym HOT stands for High-Occupancy/Toll. The epithet ‘Lexus lanes’ is intended to convey the accusation
that only those who can afford a Lexus can afford to drive in them. The empirical evidence indicates that
drivers of all income levels use the priced lanes, although the rich use them more frequently (Sullivan and
Harake, 1998, Sullivan, 2002, Patterson and Levinson, 2008).
5See Small (2015) for a recent review of the literature using the bottleneck model.
6This is somewhat of a simplification, as when there are just a few cars on the road adding an additional
vehicle can reduce speeds while increasing throughput, but will hold exactly in my model. An alternative
way of viewing the two externalities that is more accurate but does not separate the two externalities as
cleanly is to look at the elasticity of speed with respect the number of vehicles on the road, or density. First
note that throughput (vehicles/hour) is the product of speed (miles/hour) times density (vehicles/mile);
T = S × D. The standard externality is that ∂S

∂D < 0. As long as the elasticity of speed with respect to
density, εS,D = − ∂S

∂D
D
S , is less than one, throughput will be increasing in density. However, when εS,D > 1

the additional externality is in force and additional vehicles will reduce throughput.
7While it seems counterintuitive that adding tolls can increase both speeds and throughput, I show how this
is possible in Section 2.3.
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However, we can still generate a Pareto improvement by pricing a portion of the lanes.
Doing so increases speeds and throughput in the priced lanes allowing them to carry a
more-than-proportional share of traffic. This means the free lanes are carrying a less-than-
proportional share of traffic, and so travel times in the free lanes are better than they were
before. Since travel times in the free lanes are better, those who continue to use the free
lanes are better off. Those in the priced lanes could have stayed in the free lanes, and so
by revealed preference are better off. We have generated a Pareto improvement.

My main theoretical contribution involves characterizing the set of parameter values for
which pricing some or all of the lanes generates a Pareto improvement when there are two
groups of agents.8 Furthermore, I identify potential exceptions to the intuition above and
provide an intuitive sufficient condition for value pricing to yield a Pareto improvement:
we simply need some rich drivers to be using the highway at the peak of rush hour.9

These theoretical results build on Walters (1961), who first conjectured that too many
cars on the road could reduce throughput, and Vickrey (1987) who gave this second
externality a name: hypercongestion.10 My results extend those of Johnson (1964) and
de Meza and Gould (1987), who showed that Walters’ conjecture implied congestion pric-
ing would generate a Pareto improvement when agents are homogeneous, by modeling
the mechanism by which throughput falls and showing that we can still obtain a Pareto
improvement when agents are heterogeneous.11

I make two additional theoretical contributions. First, I show how the bottleneck
model’s implicit assumption that throughput is unaffected by pricing explains the differ-
ences between the welfare effects of congestion pricing in the bottleneck model relative to
other models. Second, I extend the bottleneck model to allow for a continuum of desired
arrival times. This feature, with otherwise homogeneous agents, appeared in the initial
papers using the bottleneck model (Vickrey, 1969, Hendrickson and Kocur, 1981), but was
subsequently dropped as it did not affect equilibrium outcomes.12 However, once agents

8A group is a set of agents with the same value of time and schedule inflexibility but with heterogeneous
desired arrival times.
9When there are more than two groups we need some of the richest group of drivers to be using the highway
at the peak of rush hour.
10Rotemberg (1985) shows an additional way equilibrium throughput can be lower than socially optimal: if
drivers internalize all the costs of an accident, then driving marginally closer to the vehicle ahead of them
(holding speed constant) increases highway throughput without changing the social cost of accidents, and so
increases social welfare. This externality cannot be internalized with a toll.
11This work also builds on a literature studying the distributional effects of pricing a portion of the lanes (eg.,
Small, Winston, and Yan, 2006, Light, 2009, van den Berg and Verhoef, 2011), and is related to a more recent
literature on hypercongestion in urban centers, which is the context in which Vickrey defined it (e.g., Small
and Chu, 2003, Arnott and Inci, 2010, Arnott, 2013, Fosgerau and Small, 2013).
12The two other papers to consider agents with a continuum of desired arrival times who are heterogeneous
in other dimensions are Newell (1987), who shows analytically that equilibrium travel times and tolls only
depend on the preferences of some drivers, and de Palma and Lindsey (2002), who numerically solve for the
equilibrium when there are no tolls. I build on this work by finding closed form solutions for the equilibrium
when either none or all of the lanes are priced, and solving numerically for the equilibrium when some of
the lanes are priced.
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are heterogeneous along other dimensions then allowing for agents’ desired arrival time
to be continuously distributed has significant effects on equilibrium outcomes and is vital
for matching the model to the data.

My main empirical contributions are twofold: confirming the practical relevance of the
theoretical possibility of generating a Pareto improvement, and measuring the size of the
social welfare gains available from congestion pricing. I generalize my model to allow
agent preferences to vary continuously along three dimensions: value of time, desired
arrival time, and schedule inflexibility. I then estimate the joint distribution of agent
preferences over these three dimensions for road users on California State Route 91. This
is the first time the distribution of inflexibility has been estimated, despite its importance
in dynamic congestion models, as well as the first time this joint distribution has been
measured. I then use these estimates to evaluate the effects of congestion pricing. I find
that the welfare gains from congestion pricing are large. Pricing all of the lanes increases
social welfare by $2,400 per road user per year, but at the cost of hurting some road
users by $2,390 per year. However, by pricing just half of the lanes we obtain a Pareto
improvement while still capturing 73 percent of the social welfare gains.

I extrapolate my results to the rest of the United States and find that applying a
throughput-maximizing toll to half the lanes on all urban highways would increase so-
cial welfare by over $30 billion per year, or $850 per year for the typical urban highway
commuter.13

2. How tolls can increase throughput

The argument in this paper depends critically on the claim that tolls can be used to
increase highway throughput. In this section I first explain the two causal mechanisms
identified by transportation engineers which reduce throughput, both of which occur
when a queue forms at a bottleneck. I then show how a carefully designed toll can
prevent these frictions from arising, thereby increasing throughput.

A bottleneck can occur at any place the capacity of a highway decreases, generally
because of a reduction in lanes. While the most noticeable bottlenecks are generally the
result of lane closures due to construction or an accident, far more common are bottlenecks
due to on-ramps. The typical on-ramp creates a bottleneck since it is a lane that joins the
highway and then ends; it adds vehicles but not capacity.

2.1. Queue spillovers. The first throughput-reducing friction occurs when the queue
behind a bottleneck grows long enough that it blocks other traffic. For example, a queue
can grow at a busy off-ramp, spilling onto the mainline of the freeway and blocking
through traffic; similarly, a queue on the highway can block upstream exits. Vickrey

13The social welfare gains are smaller for the typical urban road user than for those on California State
Route 91 because Route 91 is among the most congested highways in America and those who use it have
longer-than-average commutes.



PARETO IMPROVEMENTS FROM LEXUS LANES 5

(1969) labeled the second situation a trigger neck and transportation engineers call both
situations a queue spillover.

Queue spillovers are the reason that beltways or ring roads that go around major cities,
such as I-495, which encircles Washington D.C., and the Boulevard Périphérique, which
encircles Paris, are especially prone to crippling congestion (Vickrey, 1969, Daganzo, 1996).
Muñoz and Daganzo (2002) find that queue spillovers frequently reduce throughput by
25 percent where I-238 diverges from I-880N outside of San Francisco.

2.2. Throughput drop at bottlenecks. In addition, throughput at the bottleneck itself can
fall once a queue forms. On our two-lane highway the vehicles in the right lane need to
change lanes before getting to the bottleneck. When traffic is heavy doing so is difficult,
and there will be a vehicle that comes to a stop before merging and, rather than waiting for
a gap, will force its way over. Transportation engineers call this a destructive lane change,
and we can see the damage in two ways. First, the vehicle that forced its way over will
be moving very slowly and so go through the bottleneck at a slow speed. Equivalently, it
will open up a gap in front of itself; this will be a period of time that the bottleneck, the
scarce resource on the highway, is not being used.

There is a large transportation engineering literature documenting that throughput at
bottlenecks drops once a queue forms, which they refer to as the two-capacity hypothesis.
The name “two-capacity hypothesis” refers to the idea that a road has one capacity, or
throughput, when there is no queue and a different capacity when there is a queue. The
median estimate for the size of the drop is 10 percent; estimates range as high as 25
percent, and are presented in Appendix Table C.1.

2.3. Tolls can increase throughput. We can keep a queue short, thus preventing the two
mechanisms above from reducing throughput, by using a time-varying toll to smooth the
rate at which vehicles get on the highway. In doing so, it becomes possible for tolls to
make all road users better off.

Figure 1 gives a stylized example of how this can work. Consider a two-lane highway
that merges down to one lane, creating a bottleneck. When the road is unpriced, drivers
depart from home at rate ρ(t). At 7:00 a.m., rush hour begins and 48 vehicles per minute
depart from home, but if the highway’s maximum throughput is only 40 vehicles per
minute, then a queue forms and travel times start climbing. As the queue gets longer, the
second externality takes effect and highway throughput falls to just 32 vehicles per minute.
As we approach 8:30, the number of vehicles on the highway as well as travel times climb
to their peak. At 8:30, the departure rate falls to 8 vehicles per minute, allowing the length
of the queue, and thus travel times, to start falling, until eventually everyone has reached
work and rush hour ends at 9:20. In equilibrium, homogeneous drivers are indifferent
between departing anytime during rush hour; they can either leave early (or late) to avoid
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Figure 1. Tolls can smooth the departure rate, preventing queuing and
increasing throughput.

traffic but get to work earlier (or later) than desired, or leave so as to arrive right on-time
but endure a long commute in bad traffic.

Using time-varying tolls we can induce drivers to depart at rate ρ̃(t), reducing the
departure rate before 8:30 and increasing the rate thereafter. By preventing the queue
from forming, we eliminate both externalities; there is no queue and throughput remains
high at 40 vehicles per minute. Since throughput is higher, rush hour is shorter. In our
stylized example, rush hour can start 25 minutes later and end 3 minutes earlier.

By considering the effect of pricing on the first driver to depart in the morning, we can
take our first look at the welfare impacts of congestion pricing. When the road is free, this
driver does not face any congestion, but leaves for work very early. Adding tolls shortens
rush hour, so he does not need to leave as early; and he still faces no congestion and pays
no toll (for reasons we will see later), and therefore is better off. If all drivers are identical,
then the fact that the first driver to depart is better off means all drivers must be better off;
we have obtained a Pareto improvement before spending the revenue.

3. Model

I build on the bottleneck model of Vickrey (1969), which was formalized by Arnott,
de Palma, and Lindsey (1990, 1993). I make three important modifications to the model.
The first is to add the second externality by allowing throughput to fall when a queue
forms. This is a natural way to model the throughput drop at bottlenecks and serves as
shorthand for the effects of queue spillovers.14 The second modification is to allow the

14Under some very specific assumptions about the structure of the road network (Y-shaped network) and
distribution of destinations (constant over time), a model of queue spillovers maps exactly into this model.
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social planner to choose the fraction of the lanes that are priced; this goes beyond existing
work, such as Van den Berg and Verhoef (2011), which considers the welfare implications
of pricing a fixed portion of the lanes. The third change is to allow agents’ desired arrival
time at work to be continuously distributed, as in Vickrey (1969), Hendrickson and Kocur
(1981), and de Palma and Lindsey (2002). Allowing for a continuum of desired arrival
times is important because it allows drivers to be inframarginal, meaning that if the cost
of their chosen arrival time increases by a small amount, they do not change when they
arrive. This matters because it is necessary to match the data. The evolution of travel
times across the day suggests that the marginal driver at any point in time is quite willing
to change when he arrives to save just a little travel time, which means the marginal driver
cannot be a shift worker. A model that does not allow for inframarginal drivers must
either predict travel times which climb (and fall) much quicker than observed or does not
contain agents with very inflexible schedules.

3.1. Congestion technology. There is a single road connecting where people live to where
they work; this road can be split into two routes, one tolled, the other free. Let λtoll and
λfree denote the fraction of capacity devoted to each route, where λtoll + λfree = 1.15 Travel
along this road is uncongested, except for a single bottleneck through which at most s∗

vehicles can pass per unit time. Letting r denote the route and t the time of departure
from home, when the departure rate on a route, ρr(t), exceeds its capacity, λr · s∗, a queue
develops. Once the queue is more than ε vehicles long the throughput of the bottleneck
for that route falls to λr · s, where s ≤ s∗. Therefore, queue length, Qr, measured as the
number of vehicles in the queue, evolves according to
(1)

∂Qr (t)
∂t

=


0 if Qr(t) = 0 and ρr(t) ≤ λr · s∗,
ρr(t)− λr · s∗ if Qr (t) ≤ ε and ρr (t) > λr · s∗,
ρr(t)− λr · s if Qr (t) > ε;

r ∈ {free, toll}.

I then simplify by taking the limit as ε → 0, so throughput on a congested route is
constant.16

15Implicit in this is the assumption it is costless to split the road into two routes and that we can price a
fraction of a lane. In reality some separation between the priced and unpriced lanes is required. The Federal
Highway Administration recommends a three to four foot buffer when a pylon barrier is used (Perez and
Sciara, 2003, p. 39-40) and on I-394 in Minnesota there is a two foot buffer without any barrier (Halvorson
and Buckeye, 2006, p. 246). As federal standards call for twelve foot lanes on interstates (AASHTO, 2005,
p. 3), splitting the road into two routes could cost as much as a third of a lane. This space can come from
narrowing the existing lanes at the cost of reducing the design speed of the highway or the highway could be
widened by a few feet. In addition, in reality we are constrained to pricing an integer number of lanes. This
will matter when pricing two-lane highways, but is less of an issue on the typical wide urban highway.
16This allows me to keep the model simple while avoiding existence of equilibrium problems which can occur
when, if the route is congested, the equilibrium departure rate is too low to create congestion, but when the
route is uncongested the equilibrium departure rate is high enough to create congestion.
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It is by allowing s < s∗ that we add in the empirical finding of a throughput drop at
bottlenecks; and allowing λtoll to be any number between zero and one, rather than just
zero or one, allows us to consider pricing a portion of the lanes, rather than just all or
none.

Travel time along route r for an agent departing at t is

Td,r(t) = T f + Tv
d,r(t) r ∈ {free, toll},

where T f is fixed travel time—the amount of time it takes to travel the road absent any
congestion—and Tv

d,r(t) is variable travel time for route r. Variable travel time is only due
to queuing and is the length of the queue divided by the rate at which cars leave the
queue

(2) Tv
d,r(t) =

Qr(t)
λr · s

.

For simplicity, and without loss of generality, let T f = 0. Throughout the rest of this paper
when we discuss travel time we are only referring to the variable congestion-related travel
time.

It will be simpler to focus on arrival times instead of departure times, so define Tr (t)
as the travel time on route r for an agent arriving at t. Because this model is deterministic,
there is a one-to-one mapping between departure times and arrival times, and thus doing
so is innocuous.17

3.2. Agent preferences. Agents choose when to arrive at work and which route to take to
minimize the cost of traveling. Agents dislike three aspects of traveling: travel time, tolls,
and schedule delay—that is, arriving earlier or later than desired. These costs combine to
form the trip cost; the trip cost of arriving at time t on route r for an agent in group i with
desired arrival time t∗ is

(3) p (t, r; i, t∗) = αiTr (t) + τr (t) + Di (t∗ − t)

where α is the cost per unit time traveling (i.e., the agent’s value of time) and Di is group
i’s schedule delay cost function. Schedule delay costs are piecewise linear,

Di (t∗ − t) = (t∗ − t)

βi t ≤ t∗

−γi t > t∗

where β is the cost per unit time early to work, and γ is the cost per unit time late to
work. Each of these parameters represents how much an agent is willing to pay in money
to reduce travel time or schedule delay by one unit of time. The ratios β/α and γ/α

are an agent’s willingness to pay in travel time to reduce schedule delay (early and late
respectively) by one unit of time.

17See Appendix D.1 for more details.
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Let βi < αi for all i. This means that agents would rather wait for work to start at the
office than wait in traffic and is needed to prevent the departure rate from being infinite.

To simplify the problem let γi = ξβi for all i. This means that those who dislike being
early also dislike being late, while those who do not mind being early similarly do not
mind being late.18

Agents can differ in their value of time, schedule delay costs, and desired arrival time.
A group of agents is the set of agents with the same value-of-time and schedule delay costs.
Let G denote the set of groups. We will consider G ∈ {{1} , {1, 2} , R+} .

The primary source of heterogeneity in agents’ value of time is variation in their income,
and so if αi > αj then group i is richer than group j. While there are other sources of
heterogeneity in agents’ value of time,19 by using α as a proxy for income we can directly
discuss the primary concern with congestion pricing: that it helps the rich and hurts
everyone else.

The ratio of an agent’s schedule delay costs to value of time provides a measure of
how inflexible his schedule is, so if βi/αi > β j/αj then group i is more inflexible than
group j. The main source of heterogeneity in agents’ flexibility arises from differences in
occupation, as the opportunity cost of time early or late is different for those with different
types of jobs. If a shift worker is late he generally face penalties and when he is early
he passes the time talking with co-workers. Since there is not much difference for the
shift worker between spending time traveling or being at work early, his β/α is close to
one (the largest possible β/α). Similarly, due to the penalty when late, γ/α is large. In
contrast, an academic can start working whenever he gets to the office and so has a very
low marginal disutility from being early or late and so his β/α and γ/α are closer to zero.
Thus variation in β/α is driven by variation in schedule flexibility, where jobs that are
more flexible lead to a lower β/α.20

18Relaxing this assumption would only affect my theoretical results if there are agents who switch from
arriving early to arriving late, or vice-versa, when tolls are added to the road. Because of this assumption,
my estimator for marginal distribution of β/α (and the distribution of γ/α as it is a transformation of the
distribution of β/α) uses information about both early and late arrivals. In Section 8 I also fit a version of
the model which relaxes this assumption, among others, and find that these assumptions have a fairly trivial
effect on how well I can match the data and on those parameter estimates the relaxed version of the model
can recover.
19A driver’s value of time reflects his marginal disutility of travel time and so can be affected by how
comfortable his vehicle is or his taste for driving in congestion. Other empirically important sources of
heterogeneity are trip purpose, distance, and mode, with the last likely driven by selection (Small and
Verhoef, 2007, Abrantes and Wardman, 2011).
20How flexible a worker’s personal life is also affects the ratio, as leaving early for work means leaving home
earlier and going to bed earlier; and similarly leaving late for work likely implies working later to make up
for lost time.
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Within each group, agents’ desired arrival times are uniformly distributed over [ts, te].21

Having a continuous distribution of desired arrival times allows a positive measure set
of agents to arrive on-time, and thus allows for inframarginal agents; assuming this
continuous distribution is uniform keeps the model analytically tractable despite having a
continuum of types. While it may seem more natural to assume an agent’s desired arrival
time falls into some discrete set, such as {7:00, 7:30, . . . , 9:00}, what matters is when agents
want to arrive at the end of the highway, not when they want to arrive at work. Because
the distribution of distances between the end of the highway and work is continuous, the
distribution of desired arrival times at the end of the highway is also continuous.

Let ni denote the density of agents of group i who desire to arrive at a given time in
[ts, te] and let Ni = (te − ts) ni be the total mass of agents in group i. Furthermore, ∑ ni is
assumed to exceed the road’s capacity (s∗), so it is impossible for all agents to arrive at
their desired arrival time; thus some will need to arrive early or late.

The mass of agents of each type who use the road is independent of the trip cost, that
is, demand for travel along this road is perfectly inelastic. Were demand not perfectly
inelastic then the distribution of desired arrival times would no longer be uniform once
tolls were added to the highway and different types saw their trip costs change by different
amounts. By assuming perfectly inelastic demand, I maintain the benefits of having
uniformly-distributed desired arrival times. This assumption fits my empirical context:
California State Route 91, a highway through a mountain pass between Riverside County
and Orange County. Commuters do not have a reasonable alternative to taking SR-91 and
public transit accounts for less than 1 percent of the trips through the pass (Sullivan and
Burris, 2006, 192); thus I do not need to worry about agents switching to different roads
or modes and the only choice I am missing is the choice of whether to travel.22

Let {r, t} = σ (i, t∗) be the strategy of an agent in group i with desired arrival time t∗;
σ : G × [ts, te]→ {free, toll} × [0, 24].

3.3. Definition of equilibrium. The relevant equilibrium concept is that of a perfect
information, pure strategy Nash equilibrium, in which no agent can reduce his trip cost
by changing his arrival time or route choice.

21In Section 8 I provide evidence that this is a reasonable approximation to the truth. I am also assuming
that the distribution of desired arrival times is independent of value of time and inflexibility; in Appendix
H.2 I provide empirical evidence in support of this assumption.
22By having perfectly inelastic demand I rule out one way pricing can hurt the poor: because congestion
pricing lowers the cost for richer agents it induces more rich agents to travel. This counteracts some of the
benefit to existing agents of increasing throughput. If demand for trips by the rich is sufficiently elastic it is
even possible rush hour is longer once congestion pricing is implemented. In a previous version of this paper
I had elastic demand, and homogeneous desired arrival times, and the elasticity of demand only had minor
effects on the results. That said, there is evidence that the long run demand for travel is perfectly elastic
(Duranton and Turner, 2011). If demand is perfectly elastic for all types then it is impossible to increase or
reduce the cost of travel, and pricing all of the lanes, regardless of the effect it has on throughput, never hurts
any road users even before the revenue is used.
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I show that an equilibrium exists by construction, and show that equilibrium trip prices,
travel times, and tolls are unique in Appendix G.

4. Finding the equilibrium

The fundamental scarcity is that there are times where more agents want to arrive than
are able. Since not everyone can arrive at their desired arrival time, some agents must
arrive early or late. For some agents to be willing to arrive early or late, they must receive
a compensating differential in the form of lower travel times or cheaper tolls.

Since on a free route no toll is charged, travel times must vary. The only way to have
non-zero travel time is for there to be queuing, and so there will always be congestion on
the free route during rush hour, except at the very start and end, a zero measure set. Note
that congestion does not necessarily mean long travel times, just that there is additional
travel time due to congestion. Because a queue forms, throughput falls and the arrival
rate on the free route is λfree · s for all of rush hour.

In the bottleneck model the optimal toll eliminates congestion. One virtue of the
bottleneck model is that its production possibilities frontier has a unique optimal point
that maximizes speed and throughput and so the optimal toll is the one that keeps us at
this point. Restricting the departure rate on the priced route to less than λtoll · s∗ leaves
capacity unused and creates unnecessary schedule delay. Allowing more than λtoll · s∗

vehicles to depart generates queuing, which wastes time and decreases throughput. This
means the socially optimal toll is set to eliminate queuing and maximize throughput. The
toll varies to induce some agents to arrive early or late, so they depart at the rate the
priced route can handle; thus a queue never forms, and the departure and arrival rate on
the tolled route is λtoll · s∗ for all of rush hour.

These observations allow me to simplify notation. Since there is no extra travel time due
to congestion on the priced route and no toll on the free route, I drop the route-specific
subscripts for τ and T. Further, define

sr =

s r = free,

s∗ r = toll.

Given these results, the bottleneck model when the road is completely free or priced
is similar to the Hotelling (1929) differentiated goods model. We have continuum of
differentiated goods (arrival times), and agents have unit demand and bear a cost of
purchasing a good different from the one they prefer (schedule delay costs). The key
difference is that each good is “provided” by firms in a perfectly competitive market who
in aggregate inelastically supply sr units of the good.23

23It is also analogous to the von Thünen (1930) model of land use. Instead of land use we are modeling the
use of arrival times, and we replace transportation costs with schedule delay costs. When all agents have



PARETO IMPROVEMENTS FROM LEXUS LANES 12

4.1. Free route. The most desirable arrival times are allocated to those who are willing
to pay the most for them. For a free route the currency used is travel time. This means
those who are very inflexible arrive closer to their desired arrival time because an agent’s
inflexibility is his willingness to pay in travel time to reduce schedule delay, that is, his
willingness to pay in travel time to arrive closer to his desired arrival time. This is
formalized in the following lemma. The proof, along with all other omitted proofs, is
given in Appendix A.

Lemma 1. If group i is more inflexible than group j (i.e., βi/αi > β j/αj) then if an agent from
group i with desired arrival time t∗ arrives at t on a free route then no agent from group j arrives
between t∗ and t on a free route.

Once we have assigned agents to arrival times, we can use their preferences to back out
the travel time profile (i.e., the function T). If an agent arrives early or late on a free route
it must be true that his marginal rate of substitution between schedule delay and travel
time equals the marginal rate of substitution the equilibrium travel time profile offers; that
is, the slope of the travel time profile at the time he arrives must equal his inflexibility
if he is early and −ξ times his inflexibility if he is late. If an agent arrives exactly at
his desired arrival time all we know is that his schedule delay costs are such that he is
unwilling to accept schedule delay given the travel time profile. I formalize these results
in the following lemma.24

Lemma 2.

{t, free} ∈ σ (i, t∗)⇒

 dT
dt (t) = α−1

i
dDi
dt (t) if t 6= t∗,

−γi
αi
≤ dT

dt (t
∗) ≤ βi

αi
if t = t∗.

To finish defining the travel time profile we add the initial condition that the travel time
at the start of rush hour is zero.

4.2. Priced route. For a priced route the currency used to allocate arrival times is money.
This means those with a high β arrive closer to their desired arrival time because an
agent’s β is his willingness to pay in money to reduce schedule delay. This is formalized
in the following lemma.

Lemma 3. If βi > β j then if an agent from group i with desired arrival time t∗ arrives at t on the
priced route then no agent from group j arrives between t∗ and t on the priced route.

In similar fashion to before, once we have assigned agents to arrival times, we can
use their preferences to back out the toll schedule (i.e., the function τ). If an agent from

the same desired arrival time and the cost of being late is the same as the cost of being early the models are
identical.
24This lemma also implies that to have inframarginal agents there must be a kink in the schedule delay cost
function.
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group i arrives early or late on a priced route it must be true that his indifference curve is
tangent to the “budget line” so his marginal rate of substitution between schedule delay
and money equals the marginal rate of substitution the toll schedule offers. Thus the slope
of the toll schedule at the time he arrives must equal βi if he is early and −ξβi if he is
late. If an agent arrives exactly at his desired arrival time all we know is that his schedule
delay costs are such that he is unwilling to accept schedule delay given the toll schedule.
We formalize these results in the following lemma.

Lemma 4.

{t, toll} ∈ σ (i, t∗)⇒

 dτ
dt (t) =

dDi
dt (t) if t 6= t∗,

−γi ≤ dτ
dt (t

∗) ≤ βi if t = t∗.

To finish defining the toll schedule I assume the toll is zero when the road is uncon-
gested and so is zero at the start of rush hour. Allowing negative tolls is an effective
way to “spend” the revenue raised by congestion pricing to improve congestion pricing’s
distributional impacts; by ruling out negative tolls we make it harder to generate a Pareto
improvement.

4.3. Value pricing. When there are two routes, one free and the other priced, we need to
assign agents to routes, and then we can use the methods above to assign them to arrival
times on their routes. Agents travel on the route that gives them the lowest cost. I save
most of the details concerning how I do this until later, as I approach it differently when
there are two groups than when there are an arbitrary number of groups, though want to
make one point now: the start and end of rush hour are the same on each route. If not,
then there would be a time where there was congestion on the free route, but no toll on
the priced route, and so an agent arriving at this time on the free route would deviate and
arrive at the same time on the priced route. Similarly, there cannot be a positive toll on
the priced route while there is no congestion on the free route.

5. Homogeneous agents

Let us start by considering the case where every agent is identical.25 Starting with the
simplest version of the model allows me to highlight how the welfare effects of congestion
pricing depend crucially on whether tolling increases or decreases throughput.

In any congestion model with continuous time the first agent to arrive on either route
pays no toll and faces no congestion. This must be true since the first agent could shift
his arrival time forward by an infinitesimal amount and would then be arriving outside
of rush hour. He would then face no travel time and pay no toll.26 The only cost this first
agent bears is the schedule delay costs from arriving so early.

25So ts = te and n1 is a point mass.
26When there is no one else on the road a driver imposes no externality on others and so the socially optimal
toll is zero.
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In addition, when agents are identical, they must all have the same equilibrium trip
cost regardless of when they arrive. This means we can use changes in the start of rush
hour as a sufficient statistic for whether congestion pricing helps all road users when all
agents are homogeneous. If congestion pricing leads to rush hour being longer, so rush
hour starts earlier, then congestion pricing hurts the first agent to arrive because he now
has more schedule delay. Since all agents are identical, if congestion pricing hurts the first
agent to arrive, it must hurt all agents. Likewise, if congestion pricing leads to rush hour
being shorter, so rush hour starts later, then congestion pricing helps the first agent to
arrive because he now has less schedule delay. Since all agents are identical, if the first
agent is better off then all agents are better off.

This logic implies that if we believe highway traffic is always on the PPF, then we cannot
escape the conclusion that congestion pricing, while Kaldor-Hicks efficient, hurts road
users before the revenue is spent.

Proposition 1 (Prior literature). If agents are homogeneous in any congestion model with a
strictly negative relationship between flow and speeds, then congestion pricing makes all agents
worse off before the toll revenue is spent.

When traffic is on the PPF the goal of congestion pricing is to reduce throughput so
that the remaining agents can travel faster.27 It is this logic that leads the U.S. Department
of Transportation to state that “congestion pricing works by shifting purely discretionary
rush hour highway travel to other transportation modes or to off-peak periods” (2006,
1). But reducing throughput means rush hour must be longer, and so when agents are
homogeneous this means all are harmed before the revenue is used.

The standard bottleneck model (s = s∗) assumes away the traditional trade-off between
throughput and speed, where increasing one requires decreasing the other (cf. Pigou,
1920, Knight, 1924, Walters, 1961). While this makes modeling the dynamics of rush hour
tractable, as an unappreciated side effect it also changes the welfare effects of congestion
pricing.

Proposition 2 (Vickrey, 1969). If agents are homogeneous in the bottleneck model with no
throughput drop (i.e., s = s∗), then congestion pricing neither helps nor hurts any agents before
the toll revenue is spent.

Because reducing the rate at which vehicles pass through the bottleneck does not
increase speeds, the goal of pricing is no longer to reduce throughput, but rather to
prevent a queue from forming. We set prices to reduce the departure rate at the beginning
of rush hour and increase it at the end. This increases social welfare by eliminating
variable travel time, but because the length of rush hour is unchanged it does not affect
consumer welfare.
27More precisely stated, the strategic goal of congestion pricing is to maximize social welfare, but when traffic
is on the PPF the tactical goal becomes reducing throughput.
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The literature has not recognized the importance of assuming away the traditional trade-
off between throughput and speed for explaining the differences between the welfare
effects of congestion pricing in the bottleneck and other models.28 For example, Arnott,
de Palma, and Lindsey (1993) and Van den Berg and Verhoef (2011) both use the bottleneck
model and find that the welfare impacts of congestion pricing are much more favorable
than previous research reported, but attribute the difference to using a dynamic model
rather than the implicit assumption about how pricing affects throughput.

If, however, the traffic engineers are right and queuing creates additional frictions that
reduce throughput, then congestion pricing generates a Pareto improvement when agents
are identical.

Proposition 3. If all agents are homogeneous in the bottleneck model with a throughput drop (i.e.,
s < s∗), then congestion pricing generates a Pareto improvement and helps all agents before the
toll revenue is spent.

When queues reduce throughput the goal of pricing is to increase throughput by elim-
inating the queue and its attendant frictions. We are able to increase both speeds and
throughput. Because rush hour is shorter, all agents are better off.

Including heterogeneity in agents’ preference in our modeling will make the analysis
more complicated; however, whether it is possible for congestion pricing to generate a
Pareto improvement prior to using the revenue still depends on whether tolling increases
throughput. While we can no longer use changes in the start of rush hour as a sufficient
statistic for how everyone’s welfare changes, it still tells us about how someone’s welfare
changes. Because these results hold for at least one agent, we can conclude that if increas-
ing speeds requires reducing throughput then it is impossible for congestion pricing to
generate a Pareto improvement before spending the revenue, but since congestion pricing
can increase throughput while increasing speeds, then it is possible for congestion pricing
to generate a Pareto improvement regardless of how the revenue is spent.

6. Two groups

While it is possible for pricing all of the lanes to generate a Pareto improvement when
agents are heterogeneous, we can expand the set of parameters for which congestion
pricing generates a Pareto improvement by pricing only a portion of the lanes. To identify
the potential barriers to obtaining a Pareto improvement from congestion pricing and to
understand how value pricing can help overcome these barriers, let us now allow for two
groups of agents. I end the section with a simple sufficient condition for when congestion
pricing leaves all road users better off: as long as some rich agents use the highway at
the peak of rush hour then value pricing generates a Pareto improvement. This result

28Chu (1995) implicitly makes this point when he shows “the behavior of the [bottleneck] approach is the
limit of that of the reformulated Henderson approach as the elasticity of travel delay goes to infinity” (p. 324).
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holds even when there are an arbitrary number of groups. This section contains the main
theoretical contributions of the paper.

As the primary concern with congestion pricing is that it only helps the rich, the main
distinction I make is between high- and low-income agents, and so I define group 1 as
rich and group 2 as poor (i.e., α1 > α2).

As our first look at the benefit of value pricing, consider what happens when the only
heterogeneity is due to a small group of poor agents, so small that they do not affect the
equilibrium. If we price all of the lanes there is no guarantee they are not worse off;29

however when we price just a portion of the lanes we can know that they are better off.

Proposition 4. If all agents except for a zero measure set are homogeneous, then in the bottleneck
model with a throughput drop (i.e., s < s∗), pricing a portion of the lanes generates a Pareto
improvement and helps all agents before the toll revenue is spent.

Proof. Since the zero measure group of agents has no impact on equilibrium, we know by
Proposition 3 that all agents in the group with positive measure are better off. For those
agents in the positive measure group who are on the free lanes to be better off, travel
times must have fallen at each point in time. Thus if the zero measure agents travel on the
free lanes at the same time they traveled before, then they will have shorter travel times
and be better off. Since they have an option that gives them a lower trip cost than before,
whatever they choose must make them better off. Thus all agents are better off. �

The logic behind this proof leads to a straightforward empirical test for whether value
pricing gives rise to a Pareto improvement, even with arbitrary heterogeneity: check if
travel times on the free lanes fell for every point in time. If so, pricing must have helped
every road user.

Proposition 4 isolates the mechanism by which value pricing makes it easier to generate
a Pareto improvement: value pricing increases highway throughput while preserving
the ability of agents to pay with their time instead of their money to travel at the peak.
While the increase in total throughput is smaller than when pricing all of the lanes, and
so the social welfare gains are smaller too, doing so makes it easier to obtain a Pareto
improvement.

Once we allow both groups to be large enough to affect the equilibrium there are addi-
tional barriers to obtaining a Pareto improvement; however, the intuition of Proposition
4 will still hold. In the rest of this section I solve for the equilibrium with two groups of
positive mass and then use these results to determine when pricing all or part of the lanes
generates a Pareto improvement.

29Congestion pricing reduces travel time costs while increasing monetary costs, and so whether the small
group is better off depends on how their value of time compares to that of the other agents.
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6.1. Equilibrium when the road is completely free or priced. For simplicity, define
group A as the group that arrives off-peak, and group B as the group that arrives on-peak.
This reduces the number of cases we need to solve and we can map A and B into rich
and poor as needed. Lemma 1 implies that on a free route βA/αA < βB/αB and Lemma 3
implies that on a priced route βA < βB. When the entire road is either free or priced, one
of two subcases apply: either nB ≤ s or nB > s.

6.1.1. Equilibrium when group B is inframarginal. When nB ≤ s on a free road there is
enough capacity for the inflexible agents to all arrive exactly at their desired arrival time.
This means that only flexible agents arrive early or late.

Define tmax
i as the time such that the agent in group i with this desired arrival time is

indifferent between arriving early or late. Any agent from group i who has desired arrival
time t∗ < tmax

i strictly prefers to arrive early or on-time, and similarly if t∗ > tmax
i then

they strictly prefer to arrive late or on-time.30 I use the superscript “max” for two reasons:
first, the agent from group i with desired arrival time tmax

i will have the largest trip cost
of any agent in group i; second, the peak of rush hour, tmax, occurs at one or more groups
tmax
i .

Defining tij as the time when agents from group i stop arriving and agents from group
j start arriving, and, for the sake of notation, defining a fictional group 0 who travels
when no one else is on the road, we can use Lemma 2 to define the equilibrium travel
time profile as the solution to

dTI

dt
(t) =


βA/αA t0A ≤ t < tmax

A

−γA/αA tmax
A ≤ t < tA0

0 otherwise

,(4)

TI (t0A) = 0.(5)

The subscript I denotes that these objects belong to the case where some agents are
inframarginal.31

This allows us to write equilibrium travel times as a function of the start of rush hour,
t0A, the end of rush hour, tA0, and the peak of rush hour, tmax

A . The requirements of
equilibrium give us three equations that can be solved for these three unknowns.

The first equation requires that the demand for early arrivals by agents in group A
equals the supply. The supply for early arrivals is the capacity available between the start
of rush hour and the peak. In this period of time (tmax

A − t0A) s agents can arrive. However,
we need to account for the capacity used by agents in group B. Since they arrive on-time,

30This relies on the travel time profile having a single local maximum, which I prove in the appendix in
Proposition G.1.
31To be precise, an agent is the marginal driver at time t if increasing the travel time or toll by a small amount
would cause him to choose a different arrival time. He is inframarginal if it would not affect his choice of
arrival time.
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(tmax
A − ts) nB of the capacity available for early arrivals is used by agents of group B. All

agents in group A with a desired arrival time before tmax
A arrive early, and so demand for

early arrivals by agents in group A is (tmax
A − ts) nA. Thus in equilibrium

(6) (tmax
A − t0A) s− (tmax

A − ts) nB = (tmax
A − ts) nA.

The second equation is similar to the first, and requires that the demand for late arrivals
by agents in group A equals the supply. By similar reasoning as above, in equilibrium we
need

(7) (tA0 − tmax
A ) s− (te − tmax

A ) nB = (te − tmax
A ) nA.

The third equation comes from requiring that travel time at the end of rush hour be
zero:

(8) TI (tA0) = 0.

The way we find the equilibrium when the road is priced is essentially the same. As
nB ≤ s there is enough capacity for all agents in group B to arrive on-time. Using Lemma
4 we can define the equilibrium toll schedule as the solution to

dτI

dt
(t) =


βA t0A ≤ t < tmax

A

−γA tmax
A ≤ t < tA0

0 otherwise

,(9)

τI (t0A) = 0.(10)

Again we have three variables still to determine, and the equations that define them are
similar to the equations for a free road. Because capacity on a priced route increases to s∗,
we replace s with s∗ in (6) and (7), as well as changing subscripts to denote that we are
considering a priced route. Finally, we replace (8) with

(11) τI (tA0) = 0.

We now know enough to find equilibrium trip costs. By solving (6), (7), and (8), or
the equivalent equations for a priced route, we can determine the equilibrium travel time
profile or toll schedule. We can then find each type’s equilibrium trip cost p̄ (i, t∗) =

mint,r p (t, r; i, t∗), as is done in Appendix F.1. The equilibrium trip costs for agents in
group A for r ∈ {free, toll} are

p̄I,r (A, tmax
A ) = βA (NA + NB)

1
sr

ξ

1 + ξ
,(12)

p̄I,r (A, t∗) = p̄I,r (A, tmax
A )− (tmax

A − t∗)

βA t∗ ≤ tmax
A

−ξβA t∗ > tmax
A

.(13)
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For group B agents on a free route equilibrium trip prices are

p̄I,free (B, t∗) =
αB

αA
p̄I (A, t∗) ,(14)

while on a priced route they are

p̄I,toll (B, t∗) = p̄I (A, t∗) .(15)

While (13)–(15) can be calculated directly, they are also fairly intuitive. First, note that
due to the slope of the travel time profile and toll schedule every agent in group A who
arrives early is indifferent between arriving at their desired arrival time or earlier, and
likewise those who are late are indifferent between arriving at their desired arrival time
or later.

To see the intuition behind (13) consider two agents in group A, one with desired arrival
time of tmax

A and the other of t∗. They are both willing to arrive at t∗, and were they to
do so the only difference in their trip cost would be the difference in their schedule delay
costs at t∗. This means we can write the trip cost of the second as the trip cost of the first
minus the difference in their schedule delay costs at t∗.

To see the intuition for (14) and (15) consider two agents with desired arrival time t∗,
one from each group. Both are willing to arrive at t∗. When arriving at t∗ on a free route
neither of them have any schedule delay costs and they face the same travel time, so the
only difference in their trip cost is due to the difference in their value of time. By dividing
the group A agent’s trip cost by his value of time we recover the travel time at t∗, which
we then multiply by the group B agent’s value of time to obtain the group B agent’s trip
cost. Similarly, on a tolled route they face the same toll and have no schedule delay or
travel time, and so their trip costs are identical.

When one group is inframarginal their preferences do not affect the equilibrium or
the marginal group’s trip cost. Equation (12) is the same as (15) in Arnott, de Palma,
and Lindsey (1993), with N = NA + NB. Further, travel times and tolls are the same.
Because the inframarginal group’s preferences do not affect equilibrium, the logic behind
Proposition 4 carries over to this case, and, as I show later, value pricing generates a Pareto
improvement.

6.1.2. Equilibrium when group B is marginal. When nB > s there is no longer enough
capacity for the inflexible agents to all arrive at their desired arrival time, and so they
must arrive early or late.32 Group B agents will use all of the capacity near the peak,
and group A agents will use all of the capacity off-peak. We can use Lemma 2 and the

32Agents arriving early (late) are indifferent between arriving anytime between their desired arrival time and
the earliest (latest) someone from their group arrives. Within a group of indifferent agents I choose their
arrival times such that if an agent desires to arrive later than another agent, then he actually arrives later than
the other agent. This choice means in this case only a set of measure zero agents arrive at their desired arrival
time; it would be possible to re-arrange arrival times so that a greater share of group B agents arrived at their
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requirement that the travel time at the end of rush hour is zero to define the equilibrium
travel time profile as the solution to

dTM

dt
(t) =



βA/αA t0A ≤ t < tAB

βB/αB tAB ≤ t < tmax
B

−γB/αB tmax
B ≤ t < tBA

−γA/αA tBA ≤ t < tA0

0 otherwise

,(16)

TM (t0A) = TM (tA0) = 0.(17)

The subscript M denotes that these objects belong to the case where all agents are marginal.
Now we have three additional variables to solve for to find equilibrium travel times. As

before, we use the requirement that supply equals demand for early and late arrivals, but
now we do so for both groups. These requirements give us the following equations.

(tAB − t0A) s = (tmax
A − ts) nA,(18)

(tA0 − tBA) s = (te − tmax
A ) nA,(19)

(tmax
B − tAB) s = (tmax

B − ts) nB,(20)

(tBA − tmax
B ) s = (te − tmax

B ) nB.(21)

For the final equation I impose the definition of tmax
A ,

(22) p (tAB, free; A, tmax
A ) = p (tBA, free; A, tmax

A ) .

As when nB ≤ s, the equations which define the equilibrium toll schedule are essentially
the same as those that define the equilibrium travel time profile. By Lemma 4 and the
requirement that the toll at the end of rush hour be zero we know

dτM

dt
(t) =



βA t0A ≤ t < tAB

βB tAB ≤ t < tmax
B

−γB tmax
B ≤ t < tBA

−γA tBA ≤ t < tA0

0 otherwise

,(23)

τM (t0A) = τM (tA0) = 0.(24)

As before, we replace s with s∗ in (18)–(21) and change subscripts. Finally, we update the
definition of tmax

A for a priced route by replacing “free” with “toll” in (22).

desired arrival times, but they would still be indifferent between being early or late, and it would have no
effect on travel times, tolls, or trip costs.
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Once again, we solve the applicable equations to determine the equilibrium travel time
profile or toll schedule, and use those to find equilibrium trip costs. The equilibrium
trip costs for the agents with desired arrival time tmax

i in each group i ∈ {A, B} on route
r ∈ {free, toll} are

p̄M,r (A, tmax
A ) = βA (NA + NB)

1
sr

ξ

1 + ξ
,(25)

p̄M,free (B, tmax
B ) = αB

(
NA

βA

αA
+ NB

βB

αB

)
1
s

ξ

1 + ξ
,(26)

p̄M,toll (B, tmax
B ) = (NAβA + NBβB)

1
s∗

ξ

1 + ξ
.(27)

We can then define the trip costs for all the other agents in reference to (25)–(27):

(28) p̄M,r (i, t∗) = p̄M,r (i, tmax
i )− (tmax

i − t∗)

βi t∗ ≤ tmax
i

−ξβi t∗ > tmax
i

for i ∈ {A, B} .

These are derived in Appendix F.1, where I also show that tmax
A = tmax

B , a result which also
holds in every subsequent case.

The intuition behind (28) is that an agent with desired arrival time tmax
i is willing to

arrive at the same time as an agent in his group with desired arrival time t∗ and so the
only difference in their trip cost is the difference in their schedule delay costs at that time.

Notice that (25) is the same as (12), and that (28) matches (13). The equilibrium trip cost
for an agent who is willing to arrive at the start or end of rush hour is pinned down by
the length of rush hour. It does not matter whether the other group’s agents are all able
to arrive at their desired arrival time and it does not matter whether the road is priced
or free, except indirectly through the effect of pricing on road capacity. Furthermore, the
preferences of the group arriving at the peak do not affect the equilibrium trip costs of the
group arriving off-peak.

6.2. Equilibrium when value pricing. Solving for the equilibrium with two routes is
more complicated because agents choose which route they take as well as their arrival
time. There are two results that will make assigning agents to routes simpler. First, the
same group arrives off-peak on both routes, or at least is indifferent about doing so. This
is because the cost of arriving at the very start or end of rush hour is the same for all
agents on both routes because at those times there is no toll or travel time, just schedule
delay. The second result formalizes the intuition that the rich prefer to be on the priced
route and the poor prefer the free route:

Lemma 5. If there are two groups and two routes, one priced and one free, then the rich are never
on the free route unless the poor are too, and the poor are never on the priced route unless the rich
are too.



PARETO IMPROVEMENTS FROM LEXUS LANES 22

Given these results, we can write down modified versions of the linear systems of
equations above and solve for equilibrium trip prices for each of the eight value pricing
cases.33,34 I do so in Appendix F.2.

6.3. When does congestion pricing generate a Pareto improvement? While charging
time-varying tolls can increase throughput by preventing the destructive effects of queu-
ing, it also requires changing the currency used to allocate arrival times from time to
money. Although both of these effects are Kaldor-Hicks efficiency-enhancing, changing the
currency used hurts poor agents, and in particular it hurts poor inflexible agents. Whether
pricing generates a Pareto improvement depends on whether the gains in throughput
outweigh the harm from changing the currency for all agents.

Changing the currency hurts agents who are both inflexible and poor because the direct
effect of changing the currency is that it makes desirable arrival times relatively cheaper
for richer agents. This means a poor agent who had been traveling at the peak—that is,
a poor agent who is also inflexible—either needs to pay more to outbid the rich agent to
continue to travel at the peak, or travel further off-peak, thereby increasing his schedule
delay. As a result, pricing all of the lanes will not always yield a Pareto improvement, as
the next proposition shows.

Proposition 5 (Pricing all lanes is not always Pareto improving). If there are two groups and
the mass of poor agents is not too large, then there exists a small enough ratio of the inflexibility of
the rich to the inflexibility of the poor, (β1/α1) / (β2/α2), such that pricing all of the lanes does
not generate a Pareto improvement before the revenue is spent.

The mass of poor agents is too large for this result to hold when

n2 > s and
n2

n1 + n2
> 1−

1− s
s∗

1−
(

1−min
{

1, β1
β2

})
s
s∗

.

Consider an illustrative example where there are rich and flexible finance professors,
and poor and inflexible retail store cashiers. When there are no tolls on the road the
finance professors take advantage of their flexibility to avoid rush hour traffic by traveling
before or after the peak. After all, they can start working once they get to their office, or
work from home for a while and leave late. In contrast, the cashiers travel so as to arrive
at work close to their desired arrival time; while they waste time sitting in traffic, that is
not much different from getting to work early and wasting time waiting for their shift to

33Equilibrium can fall in one of eight cases depending on the parameters. The three dimensions in which
the cases differ are (1) which group is not arriving off-peak, (2) whether some agents in this group are
inframarginal or if they are all marginal, and (3) whether they are on one or two routes.
34In two of the cases the toll schedule or travel time profile is not completely defined by Lemmas 2 and 4 and
so I use another indifference relation to characterize part of the toll schedule or travel time profile. The need
to use this other indifference relation goes away when there is a continuum of groups.
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start. Thus, when the road is unpriced, the cashiers travel at the peak of rush hour and
the finance professors travel off-peak.

If the finance professors are sufficiently richer than the cashiers, then when we add
tolls to all of the lanes of the highway the order of arrival reverses. The finance professor
did not like waking up early to avoid traffic, but was willing to do so because he could
start working as soon as he arrived at his office. Now by paying a toll to travel at the
peak he can avoid both waking up early and sitting in traffic. Unfortunately, in switching
from traveling off-peak to on-peak, the finance professor displaces the cashier, who must
now travel off-peak.35 Unless the increase in capacity due to pricing is large enough, the
cashiers are worse off.

That said, if the rich are more inflexible than the poor, so that instead we have relatively
poor yet flexible humanities professors, and rich yet inflexible lawyers, then pricing the
entire road helps all road users. When the road is free, the flexible humanities professors
wake up early to avoid traffic while the inflexible lawyers travel at the peak, putting up
with traffic as the price of being on-time to their many meetings. Now when we add
tolls the order of arrival does not change: the humanities professors still get to work early
(they would rather show up early than pay a hefty toll) and the lawyers still travel at the
peak, but are thrilled to pay a toll rather than sit in traffic. The increased capacity of the
highway due to pricing means the humanities professors do not need to get to work quite
as early and reduces the equilibrium tolls both groups pay. Everyone is better off.

Furthermore, even if we have rich and flexible finance professors and poor and inflexible
cashiers, if the highway capacity was large enough when the road was free for all of the
cashiers to arrive exactly on-time, and even some of the finance professors were able to
arrive on-time (i.e., the cashiers were inframarginal), then by pricing just some of the
lanes we can still obtain a Pareto improvement. We need to leave enough of the lanes
unpriced so that all the cashiers can continue to travel on an unpriced route and arrive
on-time. The finance professors who already had been traveling at the peak will travel on
the priced lanes, and so none of the cashiers are displaced by finance professors shifting
from off-peak to on-peak. Because we have priced some of the lanes, throughput is higher,
rush hour shorter, and all agents are better off.

Combining these last two heuristic arguments suggests we can avoid the harm from
congestion pricing if there are already some rich agents traveling at the peak of rush hour.
This intuition is formalized in the following proposition.

Proposition 6 (Sufficient condition for pricing to generate a Pareto improvement). If there
are two groups of agents, pricing can increase throughput (s∗ > s), and there are some rich agents

35Alternatively, if the finance professors are not sufficiently richer than the cashiers, the cashiers will choose
to outbid the finance professors for the right to travel at the peak of rush hour. However, doing so still leaves
them worse off (unless the throughput drop is large enough).
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traveling at the peak of rush hour when the road is free, then there exists a λtoll ∈ (0, 1] such that
pricing λtoll of the lanes generates a Pareto improvement even before the revenue is spent.

Casual empiricism finds that at the peak of rush hour the road is filled with both Lexus
and Kias, and so the requirements of this proposition seem likely to hold. This suggests
it is likely that value pricing will generate a Pareto improvement even before the revenue
is spent. However, while Proposition 6 can be generalized beyond two groups, it also
has a weakness: being able to price some fraction of the lanes does not mean we can
price an economically significant fraction.36 To show that this result is empirically and
economically relevant, I will generalize the model to allow for a continuum of groups,
then estimate the distribution of agent preferences, and use that distribution to estimate
the welfare effects of pricing part or all of the lanes.

I fully characterize the set of parameters for which pricing part or all of the lanes
generates a Pareto improvement in Appendix F.3. Because equilibrium trip costs take a
different form depending on how A and B map into rich and poor, whether group B is
marginal or inframarginal, and whether group B is on one or two routes, doing so requires
solving 19 different cases. Proposition 7 highlights the most important additional results
from doing so, where the phrase “more likely” is formally defined as follows.

Definition. Let Vx=x0 be the set of parameters for which outcome Z occurs given that
parameter x has value x0. If x0 < x1 ⇔ Vx=x0 ⊂ Vx=x1 , then outcome Z is more likely
as x increases. Similarly, if x0 > x1 ⇔ Vx=x0 ⊂ Vx=x1 , then outcome Z is more likely as x
decreases.

Proposition 7. If there are two groups then pricing all or part of the lanes is more likely to generate
a Pareto improvement prior to spending the toll revenue as

• the ratio of inflexibility of rich to poor [(β1/α1) / (β2/α2)] increases,
• the throughput drop (1− s/s∗) increases, and
• income inequality (α1/α2) decreases.

In addition

• for any set of parameters there exists a throughput drop large enough such that pricing the
entire road generates a Pareto improvement, and
• the set of parameter values such that pricing all of the lanes generates a Pareto improvement

is a subset of the closure of the set of parameter values such that pricing a portion of the
lanes generates a Pareto improvement.

36To generalize, define the rich as the richest agents. The logic continues to hold that by leaving enough
capacity for all those who are not rich who had been traveling at the peak to continue to do so we will
generate a Pareto improvement.
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7. Continuum of groups

In this section I solve the model with a continuum of groups. The main value of this
section is that it provides the tools needed to show the theoretical possibility results
from Section 6 are empirically relevant. I use the results of this section to estimate the
distribution of agent preferences in Section 8 and then combine the results of this section
with those empirical results to evaluate the impact of pricing all or part of the highway in
Section 9.

I show that when the rich are more inflexible than the poor, pricing all of the lanes gives
rise to a Pareto improvement, and so the intuition for the importance of the correlation
between income and inflexibility continues to hold.

Working with a continuum of types will be easier if we adjust our notation slightly. We
can still index groups by i, but it will often be easier to directly refer to a group by their
value of time and inflexibility.37 Define δ = β/α as inflexibility, n (α, δ, t∗) as the density
of agents (which for simplicity I normalize to integrate to one), nδ (δ) as the marginal
distribution of inflexibility, and nβ (β) as the marginal distribution of β.

7.1. Equilibrium when the road is completely free or priced. We can find equilibrium
trip costs for every agent by first assigning agents to arrival times using the algorithm
from Section 4, then using Lemma 2 to find travel times, and then combining agents’ travel
times and schedule delays to find their trip costs. Along the way I confirm that rush hour
has a single peak and that equilibrium trip prices, travel times, and tolls are unique. The
details are in Appendix G.

I find the following closed form solutions (up to the possible need to solve the integrals
numerically) for equilibrium trip costs on a completely free or priced route:

p̄free (α, δ, t∗) =
ξ

1 + ξ

1
s

[
α

ˆ 1

0
min

{
δ′, δ, δ̂

}
nδ

(
δ′
)

dδ′
]

(29)

− (tmax − t∗) α min
{

δ, δ̂
}1 t∗ ≤ tmax

−ξ t∗ > tmax
,

p̄toll (α, δ, t∗) =
ξ

1 + ξ

1
s∗

[ˆ ∞

0
min

{
β′, αδ, β̂

}
nβ

(
β′
)

dβ′
]

(30)

37Now the set of groups G is the set of non-negative real numbers. We can use a real number to index a tuple
of real numbers by interleaving the digits of each number in the tuple. Since β/α = δ ∈ [0, 1] and 1 = 0.9̄, we
can write a groups δ only using decimals, and so we interleave the decimal parts of a group’s value of time
and inflexibility to create the decimal part of their index, and let the integer part of a group’s value of time
be the integer part of their index.
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− (tmax − t∗)min
{

αδ, β̂
}1 t∗ ≤ tmax

−ξ t∗ > tmax
,

where δ̂ and β̂ are the marginal type to arrive during [ts, te].
To see the intuition behind these expressions for trip cost, we can rewrite them as

(31)

trip cost =
ξ

1 + ξ
× length rush hour× censored mean of

willingness to pay −
adjustment for

desired arrival time .

Let us work through each term of (31). The ratio ξ/ (1 + ξ) is a measure of how the cost
of being late compares to the cost of being early and is the fraction of agents who arrive
before the peak of rush hour. If ξ is zero then it is costless to be late, as a result agents can
wait to travel until there is no traffic or toll; everyone will be late and have a trip cost of
zero. As ξ increases the costs of being late increases and so a larger share of agents arrive
before the peak. Because agents care more about arriving on-time, travel times (or tolls)
are higher and everyone’s trip cost increases.

The next factor is the length of rush hour, which on a free route is 1/s and on a priced
route is 1/s∗ because we normalized the mass of agents to one. A longer rush hour means
more schedule delay and higher travel times or tolls, and so increases trip costs.

The final factor of the first term is the most interesting; the integrals in (29) and (30)
are the censored mean of an agent’s willingness to pay in the currency the route requires.
On a free route it is the censored mean of the distribution of inflexibility, or willingness
to pay in travel time to reduce schedule delay, while on the priced route it is the censored
mean of the distribution of willingness to pay in dollars to reduce schedule delay. On the
free route we then multiply this by the agent’s value of time to convert from travel time
to dollars.

The censoring occurs at the willingness to pay of the marginal agent who arrives at the
same time as the agent whose trip cost we are considering. For an agent with δ < δ̂ on
a free route or β < β̂ on a priced route this is his own willingness to pay. This means
he does not care about the actual preferences of those with a higher willingness to pay;
whether they are willing to pay a cent more or a thousand dollars more for the most
desirable arrival times does not matter—either way they outbid him for the most desirable
arrival times. All that matters is how much of the desirable arrival time they use. In
contrast, he cares very much about the preferences of those whom he must outbid, since
he must actually outbid them. If an agent is inframarginal, so δ > δ̂ on a free route or
β > β̂ on a priced route, then the censoring occurs at the marginal willingness to pay of
the marginal agent at the time they arrive.

The final term is an adjustment for differences in desired arrival times. Those who want
to arrive at the peak of rush hour pay the highest costs, while those who prefer to arrive
further from the peak pay lower costs.
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We can use the expressions for trip costs, (29) and (30), to show that when the rich are
more inflexible than the poor, then pricing all of the lanes generates a Pareto improvement.
This helps confirms that our intuition that the correlation between income and inflexibility
is a crucial parameter in determining whether pricing generates a Pareto improvement
carries over from two groups to a continuum of groups.

Proposition 8. If the inflexibility and value of time are perfectly rank correlated, so that if one
agent is richer than another then he is also more inflexible than the other, then pricing all of the
lanes of a highway generates a Pareto improvement before the revenue is spent.

7.2. Equilibrium when value pricing. In contrast to the case where there were just two
groups, I must solve for the value pricing equilibrium numerically instead of analytically.
To do so, I first assign agents to routes and then solve for the equilibrium on each route.
Solving numerically requires me to use several approximations, which I choose so I can
use the closed-form solutions for trip prices on a completely free or priced highway, (29)
and (30), to find equilibrium trip prices on a route given the agents who are on it.

The assignment of agents to routes is made simpler by the following lemma, which
allows us to divide the space of agents’ preference parameters into those on the free route
and those on the priced route using a continuous function.

Lemma 6. For a given flexibility and desired arrival time there is a value of time, α̂ (δ, t∗) such
that all agents with a higher value of time travel on the priced route and all agents with a lower
value of time travel on the free route. Furthermore, α̂ is a continuous function if the travel time
profile and toll schedule are continuous.

It is unlikely that after conditioning on route choice the distribution of desired arrival
times will be uniform and independent of α and δ. This means that δ̂ and β̂ need not be
constant over [ts, te]; however, in practice they are nearly constant and so I approximate
them with a constant. The largest approximation error in δ̂ and β̂ ranges from 0.2 to
2.9 percent across my main three specifications.38 Making this approximation allows me
to apply (29) and (30) to each route individually, adjusting for route capacity and the
distribution of agents on the route.39 Given the small size of the approximation error and
how much it helps in solving for the equilibrium, this approximation seems reasonable.

Given the approximation of δ̂ and β̂ over [ts, te] I can further simplify α̂ using the next
lemma, which shows that α̂ is often flat in one dimension.

Lemma 7. All agents in a group that is not inframarginal regardless of which route they are on,
travel on the same route or are indifferent between both routes, that is,

38Specifically, given the equilibrium I have found, I find the marginal δ and β for each t ∈ [ts, te] and compare
it to δ̂ and β̂.
39See Appendix G.3 for details.
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δ < δ̂ and αδ < β̂⇒ ∂α̂ (δ, t∗)
∂t∗

= 0.

Similarly, all agents who are inframarginal regardless of which route they are on and who have
the same value of time and desired arrival time, travel on the same route or are indifferent between
both routes, that is,

δ > δ̂ and αδ > β̂⇒ ∂α̂ (δ, t∗)
∂δ

= 0.

The intuition for the first claim is that when an agent is not inframarginal his desired
arrival time does not determine his actual arrival time, but only whether he is early or
late, and so his trip cost differs from the other agents in his group only by the adjustment
for desired arrival time. This adjustment is the same on both routes and so cancels out
when looking at the difference between trip costs on either route. Thus if one route is
preferred by one agent in a group, it must be preferred by all agents in that group.

The proof of the second claim is that if an agent is inframarginal regardless of which
route he chooses, then he arrives on-time regardless of the route he chooses. This means
his cost on the free route is αT (t∗) and his cost on the priced route is τ (t∗), and he
chooses whichever route has the lowest cost. This holds for any agent who is inframarginal
regardless of which route he chooses, and who has the same value of time and desired
arrival time, and so all of these agents make the same choice.

Based on Lemma 7, I approximate α̂ (δ, t∗) as

(32) α̂ (δ, t∗) =

α̂M (δ) δ < δ̂

α̂I (t∗) δ ≥ δ̂
,

where α̂M (δ) and α̂I (t∗) are solved for using Chebyshev collocation. This approxima-
tion performs significantly better than the two dimensional Chebyshev approximation
of α̂ (δ, t∗): in my main specifications the approximation error40 is less than a tenth of a
cent using (32) with tenth degree Chebyshev polynomials, for twenty nodes total, while
the approximation error is nearly a dollar using the tensor product of two tenth degree
Chebyshev polynomials, for one hundred nodes in total.41

To solve for the equilibrium I find the type that is the marginal agent during [ts, te] on
each route (δ̂ on the free route and β̂ on the priced route), as well as the function α̂ (δ, t∗)
that separates the space of agent preferences by which route they are on, by solving the
following set of equations numerically:

40Measured as the largest welfare loss from traveling on the route assigned by α̂ (δ, t∗) instead of the route
that actually minimizes trip cost.
41Using (32) has worse asymptotic properties than the two dimensional Chebyshev approximation of α̂ (δ, t∗),
as it will not converge to the true α̂ (δ, t∗) over the small area where

(
δ− δ̂

) (
α̂ (δ, t∗) δ− β̂

)
< 0, regardless

of the degree of the Chebyshev polynomial.
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ˆ te

ts

ˆ 1

δ̂

ˆ α̂(δ,t∗)

0
n (α, δ, t) dαdδdt = (1− λ) s (te − ts) ,

ˆ te

ts

ˆ 1

0

ˆ ∞

max{α̂(δ,t∗),δ−1 β̂}
n (α, δ, t) dαdδdt = λs∗ (te − ts) ,

p̄free (α̂ (δ, t∗) , δ, t∗) = p̄toll (α̂ (δ, t∗) , δ, t∗) for all {δ, t∗} ∈ C,

where C is the set of Chebyshev collocation nodes. In Appendix G.4 I show there is a
unique solution to this set of equations.

8. Estimating the distribution of consumer preferences

The theoretical analysis above makes clear that whether value pricing can make all
road users better off depends on agents’ preferences. We now turn to estimating the
distribution of agents’ preferences, along with other relevant parameters. We will then
combine these results with those in Section 7 to evaluate the distribution and size of the
welfare gains from congestion pricing in Section 9.

The main structural object I estimate is the joint distribution of agents’ inflexibility,
value of time, and desired arrival time. My general approach is to split the population
into two categories using a measure of whether an agent is, broadly speaking, flexible
or inflexible; then, within each category I estimate the marginal distributions of the
three preference parameters. Having done so, I combine these marginal distributions
into a joint distribution by assuming each preference parameter is independent of the
others.42 This means the correlations between preference parameters manifest themselves
through differences in the marginal distributions between categories, rather than through
the correlations within a category.

8.1. Data. I estimate this joint distribution for road users on a segment of California State
Route 91 (SR-91). The segment I focus on is thirty-three miles long and runs from the
center of Corona to the junction of SR-91 and I-605. I choose this specific segment because
it roughly represents a median commute for those living in Corona who use SR-91.

I use data from three sources. The first, California Polytechnic State University’s State
Route 91 Impact Study (Sullivan, 1999), is a series of surveys of road users who use SR-91
conducted between 1995 and 1999. I use this data set to estimate the fraction of agents who
are flexible, the distribution of the value of time for each category, and the distribution of
desired arrival times for the inflexible category.

The second data set is the 2009 National Household Travel Survey (“NHTS”, U.S.
Department of Transportation, 2009), which I use to confirm that my estimates from

42In Appendix H I conduct two tests of the assumption of independence of marginal distributions within a
category. In both cases I fail to reject the hypothesis that they are independent.
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Table 1. Fraction of drivers and trips that are flexible

Fraction of . . . SR-91 Large MSAs

Drivers who typically leave early .57
or late to avoid traffic [.55, .60]

Trips on interstate during morning .43 .35–.60
where drivers can choose arrive time [.40, .47] [.32, .62]

Trips on interstate to work .50 .47
where drivers can choose arrival time [.47, .53] [.45, .49]

Notes: 95% confidence intervals in brackets. For second and third column confidence intervals calculated
using jackknife-2 replicate weights. A trip is flexible if the driver and all passengers can choose
when to arrive at their destination, unless the destination is the driver’s home, in which case they
must be able to choose their departure time. A trip is a series of trip segments which ends when the
driver stays at one destination for more than thirty minutes.

the SR-91 Impact Study are similar to what I would estimate for other large metropolitan
statistical areas (MSAs).43

The final data set is the California Department of Transportation’s Performance Mea-
surement System (“PeMS”, 2014). PeMS includes road detector data from almost all of
the highways in California. From this data set, I calculate travel times for every business
day in 2004.44 I use these travel times to estimate the distribution of inflexibility.

8.2. Fraction of road users who are flexible. The first task is to estimate the relative sizes
of the two categories of agents.

The SR-91 Impact Study contains two measures of flexibility: one focuses on the driver’s
typical trip, the other on a specific recent trip. The first row of Table 1 shows that 57
percent of road users on SR-91 report that they typically leave early or late to avoid traffic
congestion, and the second row shows that 43 percent of road users could choose what
time they arrived at their destination for a specific peak period trip. The strength of the
first measure is that it asks whether the road user takes an action which reveals their
flexibility, while the strength of the second is that it is about a specific recent trip and so
better reveals the fraction of road users on a given morning who are flexible.

While the NHTS does not ask the same questions as the SR-91 Impact Study, it does
allow me to make some comparisons between drivers on SR-91 and those in other large
MSAs. The NHTS only asks individuals if they can choose their arrival time for work
trips, rather than for all trips. For the sake of making a clean comparison between drivers
on SR-91 and in the rest of the United States, the third row of Table 1 reports estimates of

43I define a large MSA as one with a population above three million.
44I define a business day as a weekday which is not one of the ten United States federal holidays.
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how many road users can choose when to arrive at work from both data sets.45 I find that
the fraction of workers who are flexible on SR-91 is fairly similar to the fraction in other
large MSAs.

I can estimate the fraction of all trips during the morning that are flexible using the
NHTS if I make assumptions about what kinds of non-work trips are flexible.46 Doing
so leads to the range of estimates reported in the second column of the second row. The
bottom of the range comes from assuming no non-work trips are flexible, while the top
comes from assuming that other trips where the driver probably has control over when
it begins (such as shopping, doctor’s appointments, and visiting friends) are flexible. My
estimate of the fraction of trips on SR-91 that are flexible falls roughly in the middle of
the range of estimates for large MSAs.

I use the specific-trip measure as my definition of which agents are in the flexible
category. Doing so gives more conservative estimates for the maximum fraction of the
lanes we can price and still obtain a Pareto improvement, as well as for the private welfare
gains from pricing a given fraction of the lanes. All other results are largely unaffected by
which definition of flexibility I use.47

8.3. Distribution of the value of time. To estimate the distribution of the value of time I
first map household income into value of time and then fit a log-normal distribution to
the data using maximum likelihood. I do this separately for the flexible and inflexible
road users.

To map household income to value of time, I use the following U.S. Department of
Transportation formula: an individual’s value of time is half their hourly household
income, which is their annual household income divided by 2,080 hours per year (Belenky,
2011, p. 12).48,49 While it would be preferable to use annual individual income, or better
yet, individual wages, the SR-91 Impact Study and NHTS do not contain this information.

Using this formula means I underestimate the welfare gains from congestion pricing
and overstate the difficulty in obtaining a Pareto improvement. This is due to two standard
results in the literature on the value of travel time. The first is that drivers particularly
dislike traveling in congested traffic, valuing a reduction in it at above half their wage
(Small and Verhoef, 2007, p. 53), which means I underestimate the welfare gains. The

45I limit the NHTS sample to those who travel on the interstate, so that they are similar to those traveling
on SR-91. While SR-91 is not an interstate, it is a limited access highway and so indistinguishable in all but
signage from an interstate.
46The morning is defined in the SR-91 Impact Study as 4–10 a.m. and so for consistency I maintain that
definition with the NHTS. I also continue to limit the NHTS sample to those who travel on the interstate.
47The results using the typical-trip measure of flexibility are reported in Appendices H and I.
48The U.S. Department of Transportation uses this formula to estimate a median value of time based on
median household income, I am going further in using it by applying it to individuals.
49There is a large literature estimating the mean or median value of time, which generally finds it is half the
mean or median wage, though it is higher when roads are congested. See Small and Verhoef (2007, p. 53) for
a literature review.
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Table 2. Distribution of value of time for morning highway users

SR-91 Large MSAs

Flexible
Median 25.95 26.05

(0.90) (0.34)
Interquartile range 20.0 32.21

(1.8) (0.89)
N 303 7,059

Inflexible
Median 22.16 22.52

(0.56) (0.27)
Interquartile range 15.19 24.55

(0.87) (0.59)
N 433 4,270

Rank correlation† 0.200∗∗∗ 0.157∗∗∗

(0.055) (0.037)
Notes: Standard errors in parentheses. Standard errors for SR-91 estimates are calculated by bootstrapping.

The data for large MSAs are weighted using individual weights and their standard errors calculated
using jackknife-2 replicate weights. I convert household income to value of time using a formula
from the USDOT (Belenky, 2011), adjust dollar amounts to 2012 dollars using the CPI, and then fit
the categorical data to a log-normal distribution using maximum likelihood. For large MSAs I use
the most generous definition of flexibility, which assumes certain non-work trips are flexible.

† Goodman and Kruskal’s γ between income and flexibility.
∗∗∗ p < .001

second is that value of time does not increase proportionally with income (ibid.), and so
by assuming it does increase proportionally with income I overestimate the variance in
value of time. This makes it appear harder to find a Pareto improvement.

I fit a log-normal distribution to the data using maximum likelihood. To write the
likelihood function, define yi as the income category for observation i, and h (yi) and l (yi)

as the highest and lowest incomes within category yi. Further define c as the function
that converts household income into an estimate of value of time using the formula from
Belenky (2011) and adjusts for inflation using the consumer price index, using 2012 as
the base year, and F as the cumulative distribution function for a log-normal distribution
which depends on the parameter vector ~θ. Using this notation I write the likelihood of
observing the data as

(33) L
(
~θ|~y
)
=

N

∏
i=1

[
F
(

c (h (yi)) |~θ
)
− F

(
c (l (yi)) |~θ

)]
.

I estimate the parameters of the distribution of the value of time by finding the parameters
~θ which maximize (33).
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I estimate the distribution of the value of time separately for the flexible and inflexible
categories, as mentioned earlier. While the levels of these estimates matter for valuing
the time saved by congestion pricing, as Propositions 7 and 8 show, it is the correlation
between value of time and flexibility that affects our ability to obtain a Pareto improve-
ment.50

The first column of Table 2 reports the results from estimating the distribution of the
value of time using the SR-91 Impact Study. I find that flexible agents on average have
higher values of time than the inflexible. The Goodman and Kruskal’s rank correlation
between flexibility and income (reported in the last row) is 0.20, which can be roughly
interpreted as meaning that three times out of five a randomly selected flexible agent will
have a higher value of time than a randomly selected inflexible agent.51

The last column in Table 2 present the results from estimating the distribution of the
value of time in large MSAs using the NHTS. In this column I use the most generous form
of the NHTS definition of flexibility, which assumes certain non-work trips are flexible.

As with the estimates of the fraction of agents in the flexible category, the results for
SR-91 are similar to other large MSAs. Comparing both columns of Table 2 shows that we
obtain similar estimates for the median value of time for each category, and a relatively
similar rank correlation. While my estimates of the interquartile range are much larger for
large MSAs than for SR-91, this is probably because the SR-91 Impact Study only contains
people who choose to live in Riverside County and commute on SR-91. This smaller group
is likely to be more homogeneous than the larger group of those who live in a large MSA.

As a benchmark, we can compare my estimates of the distribution of the value of
time to those of Small, Winston, and Yan (2005), who use more detailed data and more
sophisticated methods to measure the distribution of value of time for road users on SR-91.
While they do not estimate the distribution separately for flexible and inflexible agents, I
can compare their results to those from my relatively simple method when pooling the
flexible and inflexible agents. Adjusting for inflation, they find that the median value of
time is $29.54 and the interquartile range is $10.47, while I find a median of $23.58 and an
interquartile range of $17.06. As expected, I underestimate the median and overestimate
the interquartile range.

8.4. Distribution of desired arrival time. In this subsection, I provide evidence that my
assumption that desired arrival times are uniformly distributed is a reasonable approx-
imation to the truth, as well as estimate the length of time over which agents desire to
arrive.

What I care about is the time when agents desire to arrive at the highway exit, but what
I observe in the data is when they actually arrive at their destination; this means the data

50To be more precise, multiplying everyone’s income by the same scaling factor would not change our ability
to obtain a Pareto improvement.
51This interpretation would be exact if there were no ties in the data.
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Figure 2. Empirical cumulative distribution function of arrival time for
agents who cannot choose when they arrive at their destination and arrive
before noon. Data from SR-91 Impact Study.

is informative about the shape and spread in the distribution of desired arrival times for
inflexible agents, but not for the position of the distribution and not for flexible agents.

Because I observe actual arrival times instead of desired arrival times, I must focus on
those whose actual arrival times are their desired arrival times—that is, those in the
inflexible category, who are unable to choose their arrival time.

Because I observe arrival times at agents’ destinations rather than at the highway exit,
the underlying distribution I want to recover (the distribution of inflexible agents’ desired
arrival times at the highway exit) is a smoothed and shifted version of the distribution
I observe (the distribution of inflexible agents’ actual arrival times at their destination).
The distribution is smoothed because the distance agents must travel from the end of
the highway to their destinations varies, and so among those who want to reach their
destination at 7:00 a.m., there are some who want to reach the end of the highway at
6:40 a.m. and others who want to reach it at 6:55 a.m. The distribution is shifted because
agents want to exit the highway earlier than they want to arrive at work. To correct for
this shift, I estimate the first desired arrival time, ts, as part of the structural estimation of
the distribution of flexibility.

To test whether the distribution of desired arrival times is uniformly distributed, I
compare the cumulative distribution function (CDF) of a uniform distribution to the
empirical CDF of desired arrival times for the inflexible agents using SR-91. I do so in
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Figure 2a. If the distribution were uniform then the empirical CDF would lie along the
45 degree line; it is clear that the distribution of desired arrival times is not uniform.
However, when we remove the first and last 10 percent of road users to arrive, as in Figure
2b, then the distribution is close to being uniform. A remaining difference is that the
empirical CDF is not as smooth as that of a uniform distribution, but, as discussed in the
last paragraph, this is exactly what we expected to find. These patterns are robust, and
hold within the NHTS data as well.52

Truncating the extreme deciles is relatively innocuous. By doing so I am ignoring agents
who want to arrive extremely early or late. Some of these agents are arriving outside of
rush hour, and so they are not relevant for my analysis. The rest are among those who are
least harmed by congestion pricing; they are already traveling at undesirable times, and
so will not be displaced. Furthermore, because congestion pricing can reduce the length
of rush hour, they may find that after pricing they are traveling outside of rush hour and
so face no congestion or toll. Should congestion pricing help those who want to arrive at
the peak of rush hour, it almost certainly helps those who want to arrive at the tails.

I estimate the spread in the distribution of desired arrivals times by matching the largest
and smallest remaining observation to the expected value of their order statistics. I show
in Appendix H.5 that this procedure gives me an unbiased estimate of the length of time
over which inflexible agents wish to arrive, te − ts. I estimate that te − ts is 4.40 hours, as
is reported in the first row of the first column of Table 4.

As I do not observe the distribution of desired arrival times for those who are flexible,
I assume it is the same as the distribution for those who are inflexible. This assumption
is relatively harmless. When an agent is marginal, his desired arrival time determines
whether he is early or late, but not his actual arrival time. Ascribing the wrong desired
arrival time to an agent who is always marginal will not affect the equilibrium or the
change in the agents’ trip costs due to congestion pricing.53 Fortunately, most agents in
the flexible category are always marginal.

8.5. Distribution of inflexibility. The bottleneck model provides a mapping between
model parameters and the travel time profile (TTP). By inverting this mapping, I estimate
the remaining parameters: the distribution of inflexibility, Nδ (δ); the ratio of the cost of
being early to late, ξ; the length of rush hour on a free route, 1/s; the first desired arrival
time at the highway exit, ts; and free flow travel times, Tf .

I am only able to estimate the distribution of inflexibility for those road users who do
not arrive on-time. For all other road users I only obtain a lower bound. This follows
from Lemma 2 and is due to the fact that the TTP does not reflect the preferences of the
inframarginal road users.

52In Appendix H.4 I recreate Figure 2 for all of the United States, Los Angeles, and New York City, and find
the same results.
53It will affect the level of their trip costs, but in a consistent way so that it differences out.
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Because I am unable to observe a portion of the distribution of inflexibility, I make
assumptions about its shape, and then test the sensitivity of my results to these assump-
tions. I assume that the distribution of inflexibility for those agents who are in the flexible
category, N f

δ , is uniform on
[
0, δ̄
]
; and the inflexibility of those in the inflexible category,

Ni
δ, has a beta(5, 0.5) distribution transformed to have support

[
δ̃, 1
]
. This means I am

assuming most of the inflexible agents are very inflexible, as most of the weight of Ni
δ is

near one and its mode is one. The assumed form of Ni
δ does not affect the estimation of

the other parameters; however, it does affect the counterfactual results, and so Appendix
I reports the counterfactual results for a wide variety of assumptions about Ni

δ.
I estimate the remaining parameters ~θ =

{
δ̄, ξ, s, ts, Tf

}
by using the Generalized

Method of Moments (GMM) to choose ~θ to best match the model-predicted TTP to the
empirical TTP calculated from the PeMS data set. The estimation uses my estimates of
the fraction of agents who are flexible, φ, and the length of desired arrivals, te − ts, from
Sections 8.2 and 8.4. While I could estimate φ and te − ts as part of the GMM routine, and
doing so would allow me to match the TTP better, I estimate them separately because I
have natural measures of them and want to match those particular “moments” exactly.

Letting xij be the observed travel time on SR-91W from the center of Corona to the
junction of SR-91 and I-605 for arrival time i on day j, I can then write the moment
conditions as

T
(
ti; δ̄, ξ, s, ts, φ, te − ts

)
+ Tf = ∑

j
xij/250 for ti ∈ {4:00, 4:05, . . . , 10:00} ,

where T
(
ti; δ̄, ξ, s, ts, φ, te − ts

)
is defined by (G.19) in Appendix G.

While each parameter in ~θ is chosen to best match the model’s predicted TTP to the
empirical TTP, each parameter also directly maps into a particular feature of the predicted
TTP, and thus the estimate for each parameter is strongly affected by a particular feature
of the empirical TTP. These relationships are reported in Table 3.

To test the restrictiveness of my functional form assumptions, I fit a relaxed version of
the model to the data non-parametrically. After relaxing the functional form assumptions
for the distributions of inflexibility and desired arrival times, as well as the assumption
that the ratio of the cost of being late to early is the same for all agents, the theory
still imposes three sets of constraints on travel times. Letting imax index the start of the
five-minute period in which the peak of rush hour occurs, the constraints are as follows:

(1) Travel times are positive:
Ti > 0 ∀i.

(2) Travel times are increasing before the peak and decreasing after:

Ti ≥ Ti−1 ∀i ≤ imax and



PARETO IMPROVEMENTS FROM LEXUS LANES 37

Table 3. Which features of the data identify which parameters

Parameter Notation Feature of data which identifies parameter

Distribution of inflexibility nδ (δ) Distribution of the slope of the travel time pro-
file

Ratio of schedule delay
costs late-to-early

ξ Ratio of the average slope after the peak to the
average slope before the peak

Free flow travel time Tf Average travel time between 4 a.m. and when
travel times start climbing

Length of rush hour 1/s Length of time when travel times are above Tf

First desired arrival time ts Time when the slope of the travel time profile
stops changing because the marginal type be-
comes constant at ts when desired arrival times
are uniformly distributed

Ti ≤ Ti−1 ∀i > imax.

(3) Travel times are convex before the peak and convex after the peak:

Ti − Ti−1

ti − ti−1
≥ Ti−1 − Ti−2

ti−1 − ti−2
∀i 6∈ {imax + 1, imax + 2, imax + 3} .

The first constraint is never binding and the third constraint makes the second constraint
redundant for all but the first and last arrival times.

To fit the relaxed model to the data non-parametrically, I find the travel times, Ti, as
as well as the index of the five-minute window in which the peak of rush hour occurs,
imax, which minimize the GMM criterion subject to the three sets of constraints above. I
can then use the predicted TTP from the non-parametric estimation and the relationships
from Table 3 to non-parametrically estimate ts, te − ts, 1/s, ξ, and Tf .54

Table 4 reports the GMM and non-parametric estimates, which are very similar. In
particular, the non-parametric estimate of the length of desired arrivals is almost the same
the estimate from Section 8.4, despite the fact that it is estimated from the TTP rather than
survey data.

The length of rush hour is the period of time when travel times are higher than they
would be in free flow conditions, not just when they are exceptionally long. Using this
definition, I estimate that rush hour is more than seven and a half hours long, starting
before five in the morning and not ending until a little after noon.

I estimate that the inflexibility of those in the flexible category is uniformly distributed
on [0, 0.228] and that the ratio of the cost of being late to the cost of being early is 0.4. This
last result means the cost of being late is less than the cost of being early; while this appears
unreasonable, it is largely a result of how I estimate this ratio, and is best interpreted as

54See Appendix H.6 for details on the non-parametric estimation.
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Table 4. Remaining parameter estimates

GMM Non-parametric

Length of desired arrivals (hours) (te − ts) 4.40 4.33
(0.22) (0.22)

First desired arrival time (hours) (ts) 5.556 5.333
(0.063) (0.068)

Length of rush hour on free route (hours) (1/s) 7.74 8.00
(0.40) (0.33)

Maximum inflexibility of flexible agents
(
δ̄
)

0.228 —
(0.042)

Ratio of schedule delay costs late to early (ξ) 0.411 0.403
(0.033) (0.039)

Free flow travel time (minutes)
(
Tf
)

36.71 36.69
(0.90) (0.77)

Note: Bootstrapped standard errors in parentheses. The estimate in the first element of the first row comes
from fitting the largest and smallest observations of the trimmed sample of the inflexible agents’
desired arrival times to the expected value of their order statistics (N = 488). The last five rows of the
first column report the GMM estimates (N = 250). The second column reports non-parametric
estimates, which come from finding the predicted travel times that best meet a mimimum set of
restrictions implied by the model, and then estimating parameters from these predicted travel times
(N = 250). The non-parametric estimates of ts and te − ts require assuming desired arrival times are
uniformly distributed.

saying that the marginal driver who is late pays lower schedule delay costs than the
marginal driver who is early; there is nothing unreasonable about this. Furthermore,
being late does not necessarily mean literally arriving late to an appointment, but can
mean you would prefer to go to the doctor at 9 a.m. but instead schedule the appointment
for 11 a.m. to avoid traffic. You arrive exactly on-time to your 11 a.m. appointment, but
still have schedule delay costs.

The empirical TTP along with the predicted TTPs from both methods are shown in
Figure 3. The two predicted TTPs both match the data well and are difficult to tell
apart.55 Making the additional assumptions about functional forms only increases the
root GMM criterion by 7.7 percent. The small difference in the root GMM criterion of the
non-parametric and GMM estimates, as well as the similarity in their parameter estimates,
suggests that it is innocuous to make these additional assumptions.

9. Counterfactuals

Given the estimated distribution of driver preferences from Section 8, we can use
the results of Section 7 to solve for the equilibrium under counterfactual congestion

55The two predicted TTPs differ the most at 5:00 and 10:00 a.m; the difference at 5:00 is due to the assumption
that the marginal distribution of inflexibility of those in the flexible category is uniformly distributed, and
the difference at 10:00 largely results from not imposing the assumption that γi = ξβi for all groups i.
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Figure 3. Actual versus predicted travel times. Data from PeMS.

pricing regimes. This allows me to estimate the aggregate welfare effects as well as the
distributional effects of pricing a portion or all of the lanes. I conclude this section with a
variety of sensitivity checks on these results.

The final parameter needed to evaluate counterfactuals is the amount throughput falls
once a queue forms. The traffic engineering literature summarized in Section 2 esti-
mates that queues at bottlenecks reduce throughput by roughly 10 percent, while queue
spillovers reduce throughput by 25 percent. I report results for both of these levels of
throughput drop, as well as the midpoint between them. For the sake of the discussion, I
focus on the middle case, though the same patterns in the results hold for all three levels
of the throughput drop.

9.1. Aggregate welfare effects. Table 5 reports the largest annual welfare loss, the average
annual welfare effects, and the decomposition of the welfare effect of pricing all or part of
the lanes of the highway. The headline result is that pricing a portion of the lanes helps all
road users, while pricing all of them significantly hurts some road users. Pricing a portion
of the lanes generates a Pareto improvement, while pricing all of the lanes does not.

While pricing all of the lanes raises significant revenue, it is not enough for a uniform
rebate to make pricing the entire road Pareto improving. The worst-off agent is hurt by
$2,390 per year, which is 70 percent larger than annual toll revenue per capita. This means
using the revenue to make pricing the entire road generate a Pareto improvement requires
spending it in a way that targets those who are harmed.

Value pricing generates a Pareto improvement even before using the revenue; however,
doing so requires giving up some of the potential social welfare gains. By not pricing
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Table 5. Average annual welfare effects of congestion pricing

Size of throughput drop (%) 10 17.5 25

Fraction of lanes priced 1 0.25 1 0.5 1 0.5

Largest welfare loss ($)† 3420 0 2390 0 1590 0.0
(420) (120) (320) (55) (290) (0.0021)
[0.0] [0.74] [0.0] [0.94] [0.01] [1.0]

Welfare gains ($)
Social 2270 1010 2400 1740 2510 1910

(280) (140) (290) (230) (290) (250)
Private 490 310 1080 760 1580 1020

(240) (85) (240) (150) (290) (200)
Reduction in travel time (hours) 76.5 18.1 76.5 40.5 76.5 45.9

(9.1) (3.5) (9.1) (6.0) (9.1) (7.0)
Reduction in travel time costs ($) 1960 820 1960 1390 1960 1490

(250) (130) (250) (200) (250) (210)
Reduction in schedule delay (hours) 113.6 30.7 199 108.9 284 162

(7.3) (2.0) (13) (7.0) (18) (10)
Reduction in schedule delay costs ($) 305 195 438 342 543 417

(41) (28) (52) (42) (63) (50)
Tolls Paid ($) 1780 700 1320 970 930 888

(200) (82) (160) (110) (150) (98)

Notes: Bootstrapped standard errors in parentheses. The fraction of bootstrapping iterations for which
pricing a given fraction of the road yields a Pareto improvement is in brackets. I assume two trips
per working day and 250 working days per year. Social welfare gains are the sum of the reduction in
travel time costs and the reduction in schedule delay costs; and they do not include the value of
saving gasoline or reducing pollution. Private welfare gains are social welfare gains minus the
private cost of the tolls paid. Numbers in the table do not add up exactly due to rounding.

† The largest welfare loss is not an average, but the maximum annual welfare loss.

all of the lanes we leave some lanes congested and with lower throughput; this costs
30 percent of the social welfare gains available from congestion pricing. That said, if by
making congestion pricing yield a Pareto improvement we are able to actually implement
congestion pricing then we are trading $660 per person per year of potential, unrealized,
welfare gains for $1,740 per person per year of actual welfare gains.

The welfare gains available from congestion pricing are large; even in the conservative
case they are over $1,000 per agent per year. In the middle case pricing half of the lanes
would be equivalent to increasing the median income of these agents by over 3.5 percent,
and pricing all of the lanes would increase median income by over 5 percent. Most of the
welfare gain comes from changing the currency used to pay for desired arrival times from
time to money. The time spent in traffic is a social loss while the money spent on tolls is
just a transfer. Most of this portion of the welfare gains accrues to whomever gets to keep
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Table 6. Travel times and tolls

Size of throughput drop (%) 10 17.5 25

Fraction of lanes priced 0 1 0.25 1 0.5 1 0.5

Excess travel times (min)
Average 9.2 0 9.6 0 9.6 0 8.58

(1.1) (0) (1.1) (0) (1.0) (0) (0.93)
Peak 23.3 0 23.1 0 22.2 0 19.7

(2.6) (0) (2.5) (0) (2.4) (0) (2.2)
Toll ($)

Average 0 3.56 5.18 2.64 3.55 1.86 3.11
(0) (0.41) (0.60) (0.32) (0.39) (0.31) (0.34)

Peak 0 9.2 12.6 6.48 8.55 4.36 7.32
(0) (1.2) (1.4) (0.87) (0.93) (0.77) (0.85)

Notes: Bootstrapped standard errors in parentheses. Averages are calculated over agents, not over time.

the toll revenue. However, a significant amount of the welfare gains goes to the road users
themselves. Even if the toll revenue is wasted the average road user will be $760 better off
each year due to value pricing.

Value pricing captures a large portion of the welfare gains available, even though we are
pricing only half of the lanes. This contrasts with Verhoef, Nijkamp, and Rietveld (1996),
Liu and McDonald (1998, 1999), and Verhoef and Small (2004) who find that pricing part
of the highway yields a less-than-proportional share of the welfare gains available from
congestion pricing. The logic behind their result is that if congestion pricing reduces
throughput, then by pricing agents out of the priced lanes we make traffic worse in the
free lanes. This leads to lower tolls and more congestion on the priced route, and so to a
smaller share of the welfare gains. In contrast, when pricing increases throughput we do
not have this additional concern.

It is perhaps surprising that pricing half of the lanes captures more than half of the
available social welfare gains. As we would expect, pricing half of the lanes reduces travel
times by roughly half the amount as pricing all of the lanes. However, because those with
a high value of time are choosing to travel on the priced lanes we save the most valuable
half of the travel time, and so capture over 70 percent of the value of the reduction in
travel time. The same pattern repeats itself with the reduction in schedule delay. This
allows us to capture a more-than-proportional share of the available social welfare gains
when pricing a portion of the lanes.

9.2. Effect on travel times and tolls. Table 6 reports peak and average excess travel times
(i.e., the additional travel time due to congestion) and tolls in a variety of counterfactuals.
These are averaged over agents rather than time, which is why the table shows that average
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travel times are higher when pricing a portion of the lanes.56 Value pricing increases the
typical agent’s travels times, but also reduces their schedule delay, and so they are better
off. If we instead compare travel times for any given arrival time we find that value pricing
reduces travel times at every point in time, on average by between 1.3 and 22 percent,
depending on what size of throughput drop we use. This means we pass the simple test
for generating a Pareto improvement we constructed at the start of Section 6.

Tolls are higher when we price only some of the lanes. This occurs because when there
are fewer agents in the priced lanes, the marginal agent has a higher value of time. The
tolls reflect the marginal agents’ preferences and so are higher. This is also why tolls paid
(i.e., annual per capita toll revenue) in Table 5 are more than proportional to the fraction
of lanes priced.

9.3. Distributional effects. Figure 4 shows the annual welfare changes due to pricing all
(Panel A) or half (Panel B) of the lanes, averaged by group.57 The agents harmed the most
by pricing all of the lanes are the inflexible poor (in the bottom right of Panel A)—those
who need to arrive to work exactly on-time and who would strongly prefer to pay with
their time to do so instead of their money. The curve of darkest red in the lower right of
Panel A lies along the curve α = β̂ · δ; these are the agents who were able to arrive exactly
on time when the road was free, but when the road is priced they are displaced by flexible
rich agents who start arriving during the peak. The inflexible rich (in the upper right) are
the best off; when the road is free they arrive on-time but bear large travel time costs, and
they are delighted to pay with their money instead of their time. The flexible (on the left)
are not very affected by adding tolls; they avoided paying with travel time by arriving
off-peak and they will avoid paying with money by continuing to arrive off-peak. They
are better off since they have a little less schedule delay, but as they are flexible they do
not value the reduction highly.

By pricing just half of the lanes we preserve the ability of the poor to pay with their
time, and so, as Panel B shows, avoid hurting the inflexible poor. We reduce the benefits
to the inflexible rich, but we have generated a Pareto improvement.

Panel B also shows which agents are on which route. The black lines are the maximum
and minimum values of α̂ (δ, t∗) for each δ, and so separate the space of groups into those
on the priced route and those on the free route. Those above both lines are on the priced
route, those below both are on the free route, and those groups between the two lines
have members on both routes.

In both panels of Figure 4 the change in trip cost is constant for a given value of time
across a range of high levels of inflexibility. This occurs for the same reason α̂ (δ, t∗) is

56The difference in average excess travel time when we weight by arrival time or agent occurs because there
are now times on the free route when travel times are zero, but as no one travels at these times they are not
included in the average travel time experienced by agents.
57Figure 4 does not show the 8 percent of agents with a value of time above fifty dollars an hour.
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Figure 4. Annual change in welfare, averaged by group, when the through-
put drop is 17.5 percent. The black lines in Panel B are the maximum and
minimum values of α̂ (δ, t∗) for each δ.

flat when δ > δ̂ and α̂ (δ, t∗) > β̂/δ̂: if an agent is inframarginal regardless of whether the
road is free or priced, then he arrives exactly on time and so his actual inflexibility does
not affect his trip cost or the change in his trip cost.

If we are willing to relax the requirement that pricing must generate a Pareto improve-
ment and instead put some bound on the maximum harm done, then we can reap a
greater portion of the potential welfare gains. Figure 5 shows this trade off when the
throughput drop is only 10 percent. The largest drop in the maximum harm comes from
leaving at least some of the lanes unpriced, because the inflexible poor would prefer to
have a more congested free option where they can pay with their time instead of needing
to pay with their money. By pricing 75 percent of the lanes we enjoy 80 percent of the
social welfare gains while inflicting only 50 percent of the maximum harm.

9.4. Extrapolating to the rest of the United States. I use results from Margiotta, Cohen,
Morris, Trombly, and Dixson (1994) and Schrank, Eisele, and Lomax (2012) and data from
U.S. Department of Transportation (2009) to extrapolate my estimates of the private and
social welfare gains, both per road user and in total, from value pricing to other cities in
the United States. These results are reported in Appendix Tables I.1 and I.2. I find that
pricing half the lanes on all urban highways would increase social welfare by over $30
billion per year. By way of comparison, recent estimates of the cost of congestion have
included $45 billion (Winston, 2013), $82 billion (Couture, Duranton, and Turner, 2014),
and $160 billion (Schrank, Eisele, Lomax, and Bak, 2015); while these estimates are larger
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Figure 5. Trade-off between maximum harm and social welfare gains when
throughput drop is 10 percent.

than mine, they are measuring the cost of congestion on all the lanes of all roads for all
hours.

The social welfare gains for the typical commuter average $850 per year, with slightly
more than half the welfare gains accruing directly to the commuters. The social welfare
gains are smaller for the typical urban road user than for those on SR-91 because SR-91 is
among the most congested highways in America and those who use it have longer-than-
average commutes.

9.5. Sensitivity checks. I conduct a variety of sensitivity checks in Appendix I. Table
I.3 recreates Table 5 using the typical-trip measure of flexibility. The results are largely
unchanged: value pricing generates a Pareto improvement while pricing all of the lanes
does not, the largest welfare loss from pricing all of the lanes is 30 percent lower, and
social welfare gains are similar. The composition of the social welfare gains does differ:
tolls revenue are lower and private welfare gains are larger.

Table I.5 and Figure I.1 compare results when using different assumptions on the
distribution of the inflexibility of those agents in the inflexible category. The estimates of
the size of the social and private welfare gains are unchanged, but in the most conservative
case (specific-trip measure of flexibility with a small throughput drop) whether value
pricing generates a Pareto improvement depends on the distribution assumed.
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10. Conclusion

This paper has shown that a carefully designed toll applied to a portion of the lanes
of a highway can generate a Pareto improvement, even before the toll revenue is spent.
Specifically, I first show that a time-varying toll that smooths the rate at which drivers enter
the highway can increase both speeds and throughput, generating a Pareto improvement
when agents are homogeneous. I then show that when agents are heterogeneous a Pareto
improvement can still be generated, but we will typically be limited to pricing a portion of
the lanes. By pricing a portion of the lanes, we increase total highway throughput while
preserving the ability of the poor to pay with time instead of money. I derive an intuitive
sufficient condition for value pricing to yield a Pareto improvement: we simply need some
rich drivers to be using the highway at the peak of rush hour.

To confirm the practical relevance of this theoretical possibility result, and to measure
the size of the social welfare gains, I estimate the joint distribution of agent preferences
and use these estimates to evaluate the effects of congestion pricing. I find that pricing
half the lanes would generate a Pareto improvement, and increase social welfare by over
$1,700 per road user per year.

There are at least four ways to make it even more likely value pricing generates a Pareto
improvement. First, we can use the revenue to help those whom congestion pricing harms.
Second, we can include in our analysis other ways for the poor to pay with time instead
of money to use the priced lanes. Riding a bus that uses the priced lanes and car pooling
both take extra time, but provide access to the priced lanes at reduced financial cost. Third,
we can recognize that everyone is in a hurry sometimes (i.e., agents face shocks to their
preferences), and so even if some drivers are worse off on some days, they main gain
enough value from taking the faster priced lanes on days they are in a hurry such that
value pricing yields a Pareto improvement. Fourth, we can include in our analysis the
benefits from reducing fuel usage as decreasing pollution helps everyone.

The potential welfare gains from value pricing are large and obtainable. Extrapolating
my results to the rest of the United States suggests that pricing half the lanes on urban
highways would increase social welfare by over $30 billion per year, without hurting any
road users. Furthermore, implementing the tolls which generate a Pareto improvement
is straightforward. The technology Vickrey (1963) envisioned for the electronic collection
of tolls is in use today and since highway throughput is observable, writing pricing
algorithms to maximize throughput is relatively straightforward.
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