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1. INTRODUCTION

Since the seminal work of Guerre, Perrigne, and Vuong (2000, GPV hereafter), the

nonparametric estimation of auction models has received enormous attention from both the

perspectives of econometric analysis and empirical applications. In this paper, we revisit

the first-price auction models and propose a novel estimation procedure for the valuation

quantile function. Our approach is appealing both computationally and theoretically. We

first construct a quantile estimator that is tuning-parameter-free and robust in the sense that it

is consistent under weaker smoothness assumptions than typically imposed in the literature

(details later). Whenever the typical smoothness assumptions are satisfied, we can construct

a trimming-free and asymptotically normal second step estimator that achieves the optimal

rate of GPV. Furthermore, our estimation procedure explicitly incorporates the restriction of

the monotone bidding strategy, which is important for empirical work but not ensured by

most of the existing approaches.

To better illustrate the features of our estimator, we begin by reviewing existing approaches

in the literature. We focus on the baseline case of homogeneous auctions and will discuss

possible extensions to incorporate auction specific characteristics in our empirical illustration.

We consider the standard GPV setup of independent private value (IPV) first price auction.

Their novel approach is to transform the first-order condition for optimal bids and express a

bidder’s value as an explicit function of the submitted bid, the Probability Density Function

(PDF) and Cumulative Distribution Function (CDF) of bids:

v = s−1(b) ≡ b +
1

I − 1
G(b)
g(b)

, (1)

where b is the bid, I is the number of bidders, and G(·) and g(·) are the distribution and

density of bids, respectively. A two-step estimation method follows from this observation:

first construct a pseudo value for each bid and then apply kernel density estimation to the

sample of pseudo values. GPV establish the consistency of their estimator and the optimal

rate.
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Haile, Hong, and Shum (2003) made another important observation. They show that the

equilibrium bidding strategy is strictly monotone, then there exists a quantile representation

of the first-order condition

Qv(α) = Qb(α) +
1

I − 1
α

g(Qb(α))
, 0 ≤ α ≤ 1, (2)

where Qb(·) and Qv(·) are the bid and valuation quantile functions, respectively. Note

that the right-hand side must be strictly increasing in α, too. Based on this representation,

Marmer and Shneyerov (2012, MS hereafter) proposed a novel inference method: first

nonparametrically estimate Qv(·) based on Equation (2) and subsequently estimate the valu-

ation density using f (v) = 1/Q′v(Q−1(v)). MS show that their estimator is asymptotically

normal and achieves the optimal rate of GPV.

In both estimators of GPV and MS, the bids density g(·) appears in the denominator

of the first step estimation; in MS, the derivative of the bids quantile also appears in the

denominator of the second step. In practice, trimming near the boundaries is needed but can

be troublesome as it is well known that there is no generic guidance. In addition, there is no

guarantee that the empirical analog of the right-hand side of Equation (1) or (2) remains

strictly increasing.

In this paper, we propose to consider the integrated quantile function of the valuation as

in Liu and Luo (2014):

V(β) ≡
∫ β

0
Qv(α)dα =

I − 2
I − 1

∫ β

0
Qb(α)dα +

1
I − 1

Qb(β)β, 0 ≤ β ≤ 1. (3)

The integrated quantile representation has the following merits. First, the sample analog of

V(·), denoted by Vn(·), is easy to compute. It essentially requires little more than sorting

the observed bids. Neither bandwidth choice nor trimming is needed. Second, the strict

monotonicity of the bidding strategy necessarily implies the strict convexity of the right-hand

side. Based on this observation, we can use the greatest convex minorant (g.c.m., call it

V̂(·)) of Vn(·) as an estimator for V(·). Since Vn(·) is a piece-wise linear function of β,
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so is its greatest convex minorant V̂(·), which can be very easily calculated.1 Then we

can estimate Qv(·) by taking the piece-wise derivatives of V̂(·). As a matter of fact, as

we will formally prove later, this estimator is cube-root-n consistent and requires weaker

smoothness on model primitive, i.e., it only requires that F(·) be continuously differentiable,

as opposed to twice continuously differentiable in GPV and MS. We called it as our first

step estimator Q̂v(·). Note that Q̂v(·) is tuning-parameter-free. If indeed the model admits

enough smoothness, we can improve the convergence rate by considering a kernel smoothed

version q̂v(·) of Q̂v(·). We show that q̂v(·) is asymptotically normal and achieves GPV’s

optimal rate. Note that despite that one needs to choose a bandwidth for q̂v(·) (for which

we propose an optimal bandwidth), there is no need for trimming.2

Another appealing feature of our estimator is that the monotonicity of bidding strategy is

imposed in a simple way through the calculation of g.c.m.. As a result, the estimates Q̂v(·)
and q̂v(·) are always increasing by construction. To the best of our knowledge, Henderson,

List, Millimet, Parmeter, and Price (2012, HLMPP hereafter) were the first to address

the imposition of monotonicity in first price auctions. They argued that nonparametric

estimators that naturally impose existing economic restrictions have empirical virtue. Our

method, however, is different from theirs, who achieve the desired monotonicity constraint

by tilting the empirical distribution of the data by the least amount. Their method requires

repeated re-weighting of the sample. Bierens and Song (2012)’s sieve approach implicitly

imposes the monotonicity constraint, but it can be computationally expensive. Our estimator

imposes the monotonicity by taking the greatest convex minorant of the integrated valuation

quantile function. The g.c.m. of V(·) is easy to compute since the empirical counterpart of

V(·) is piece-wise linear.

1Many statistics softwares, for example, R, provide a command for calculating g.c.m..
2See Hickman and Hubbard (2014) for a modified version of the GPV estimator which replaces trimming with
boundary correction.
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We illustrate our method using the California Highway Procurement auction data set.

In practice, it is common that researchers observe auction-specific characteristics.3 Our

method still applies if the observed auction-specific characteristics are discrete-valued (or

discretization of continuous variables) by conditioning on each realization. The estimate

will then be interpreted as conditional valuation quantiles on observed auction character-

istics. When the observed auction-specific characteristics are continuous, we follow the

homogenization methods proposed by Haile, Hong, and Shum (2003) and apply our estima-

tion methods to the homogenized bids. The homogenization approach imposes additional

additive separability structure on how valuation depends on observed characteristics. There

are other ways to handle observed auction heterogeneity, for example in GPV and MS, the

conditional valuation density is estimated by Kernel method without making such an additive

separability assumption. Nevertheless, the trade-off is that Kernel estimation may suffer

the “curse of dimensionality” when the covariates are high dimensional. Recently Gimenes

and Guerre (2013) proposed an augmented-quantile regression method to overcome such

difficulty by observing that a linear specification of valuation quantile function generates

a linear specification for the bid quantile function. In this paper we follow Haile, Hong,

and Shum (2003)’s homogenization method since it is convenient to implement under its

assumptions and plan to explore other possibilities in future research.

The rest of the paper is laid out as follows. We lay out the model and propose our estimator

in Section 2. We examine the performance of our estimator in Section 3. Section 4 is the

empirical illustration. We conclude the paper in Section 5.

2. MODEL AND MAIN RESULTS

We consider the first-price sealed-bid auction model with independent private values. A

single and indivisible object is auctioned. We make the following assumptions.

3In general, the first price auction model is not identified if there is unobserved heterogeneity across auctions,
see Armstrong (2013b).
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Assumption 1. There are L → ∞ identical auctions, and for each auction, there are I

symmetric and risk neutral bidders. Their private values are i.i.d. draws from a common

distribution F(·).

We consider large number of auctions with finite bidders. Let the total number of bids be

n = LI. The asymptotics is on the number of auctions, that is, L→ ∞. The assumption that

number of bidders I is constant across auctions is just for simplifying notation; our analysis

can be easily extended to conditional on I as long as I is independent of valuation. For the

benchmark model, we assume that there is no observed heterogeneity across auctions, and

we will discuss in our empirical application how to handle the observed heterogeneity based

on the method proposed in Haile, Hong, and Shum (2003).

Assumption 2. F(·) is continuously differentiable over its compact support [v, v]. There

exists λ > 0 such that infv∈[v,v] f (v) ≥ λ > 0.

Assumption 2 only requires that F(·) is continuously differentiable, which is weaker than

the twice continuously differentiability, as assumed in the literature, e.g., GPV and MS. It is

well known that the equilibrium strategy is

b = s(v|F, I) ≡ v− 1
F(v)I−1

∫ v

0
F(x)I−1dx.

GPV show that the first-order condition can be written as Equation (1). Haile, Hong, and

Shum (2003) represents this equation in terms of quantiles as in Equation (2). In this paper,

we consider the integrated quantile function of the valuation as in Equation (3).

2.1. Estimation. Now let us first propose a tuning-parameter-free estimator for the valua-

tion quantile function. Let b·c denote the integer part and b(i) be the i-th order statistic of a

sample of bids {bi}n
i=1. Employing Equation (3), we construct a raw estimator Vn(·) for

V(·) as follows. Let Vn(0) = 0. For α ∈ { 1
n , 2

n , · · · , 1},

Vn (α) =
I − 2

n(I − 1)

nα

∑
i=1

b(i) +
1

I − 1
αb(nα).
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For α ∈
(

j−1
n , j

n

)
, j = 1, · · · , n, define

Vn (α) = (j− αn)Vn

(
j− 1

n

)
+ (αn− j + 1)Vn

(
j
n

)
.

One raw estimator Qv,n(·) for Qv(·) can be constructed as the left-derivative of Vn(·). In

particular, let Qv,n(0) = v, and for α ∈
(

j−1
n , j

n

]
, j = 1, 2, · · · , n,

Qv,n (α) = b(j) +
1

I − 1
j− 1

n
b(j) − b(j−1)

1/n
.

However, Qv,n (α) may not be increasing in α. The auction model implies that the higher

a bidder bids, the higher his/her valuation is. Thus it is desirable to construct a series of

pseudo valuations that increase with the corresponding bids.

We impose the monotonicity constraint by taking the left-derivative of the g.c.m. of Vn(·).
Note that Vn(·) is piecewise linear. Let V̂(·) be the g.c.m. of Vn(·), which is also piecewise

linear. Define Q̂v(0) = v and for α ∈
(

j−1
n , j

n

]
, j = 1, · · · , n,

Q̂v(α) = n
{

V̂
(

j
n

)
− V̂

(
j− 1

n

)}
.

By definition, Q̂v(·) is a left-continuous and weakly increasing step function.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied at v0 ∈ V , then

n
1
3 (Q̂v(α0)−Qv(α0))

d→ Cα0 argmaxt

{
B(t)− t2

}
,

where Cα0 is a constant depends on α0 and B is a two-sided Brownian motion process.

Proof. See Appendix A.1.

We have a few comments on Theorem 1. First, Cα0 depends on α0, g and Qb and is

estimable (detailed expression in Appendix A.1). To conduct inference on Qv(α0), one can

obtain the critical values by estimating Cα0 and simulating the one-dimensional Brownian

motion B, which is easy to compute. An alternative way is subsampling whose validity

follows straightforwardly from Theorem 1. Second, Theorem 1 establishes the limiting
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distribution of the quantile estimator; an estimator of valuation distribution and its limiting

distribution can be obtained by inverting Q̂ and the Delta-method, respectively. Thirdly,

the cube-root-n consistency of the quantile estimator is obtained under weak assumptions

on value distribution F(·) and without choosing any tuning parameters. This is similar to

the well-known results in the literature on isotonic estimation: without imposing additional

smoothness assumptions on the model primitives and without introducing smoothing, one

can at most get cube-root-n rate.4 Fourthly, Theorem 1 indeed provides us a basis for con-

structing a simple trimming-free smoothed quantile estimator that converges at a faster rate,

provided appropriate smoothness conditions as listed in Assumption 3 below. Specifically,

for any 0 < α < 1, let

q̂v (α) =
∫ 1

0

1
h

K
(

α− u
h

)
Q̂v(u)du. (4)

Note that by construction, q̂v(·) is necessarily increasing since Q̂v(·) is increasing.

Assumption 3. Assumption 2 is satisfied. Furthermore, f is continuously differentiable.

Assumption 4. nh5 → c ∈ (0, ∞).

Assumption 5. The kernel K : R→ R is a symmetric function satisfying (1)
∫

R
K(u)du =

1; (2)
∫

R
uK(u)du = 0; (3)

∫
R
|u2K(u)|du < ∞; (4) supu |K(u)| = K < ∞; (5)

continuously differentiable.

Theorem 2. Suppose Assumptions 1 and 3 to 5 are satisfied, and let α ∈ (0, 1), then
√

nh(q̂v(α)−Qv(α))
d→ N(B, V ), where

B = − c2α

6(I − 1)
Q
′′′
b (α)

∫
u3K′(u)du V =

α2

c(I − 1)2 (Q
′
b(α))

2
∫

K2(u)du.

Proof. See Appendix A.2.
4Under a similar set of smoothness assumptions to ours, Armstrong (2013a) proposes to estimate the bidding
strategy by maximizing the sample analog of the bidder’s objective function and subsequently estimates
the valuation distribution function at cube-root-n rate. Our estimator is based on the integrated-quantile
representation of the first order condition. Both estimators are tuning-parameter-free and robust to the degree
of smoothness in the model.
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Note that the variance and bias depends on c in an analytic form. One can easily estimate

the optimal choice of c that minimizes the asymptotic mean squared error, provided the

model has enough smoothness for consistent estimation of Q
′′′
b (·). We do not further pursue

it in this paper.

Sometimes, an analyst might be more interested in the valuation density function than

the quantile function. The former can be estimated easily with our first step estimator

Q̂v(·) as well. First, we construct a sample of pseudo valuations empolying Q̂v(·). Let

v̂j = Q̂v(j/n), where j = 1, . . . , n. Second, we apply a kernel density estimator on the

sample of pseudo values {v̂j}N
j=1: for v ∈ (v, v)

f̂ (v) =
1

nh

n

∑
j=1

K
(

v̂j − v
h

)
.

Since our first step estimator Q̂v(·) is tuning-parameter-free, our estimator of the valuation

density function requires only one tuning parameter h.

2.2. Generalization to procurement auctions. Our methods can be easily adapted to first

price procurement auction settings. Suppose that there are I bidders competing for a contract

in a first-price sealed bid auction. For each auction, every bidder i simultaneously draws

an i.i.d. cost ci from a common distribution F(·) and submits a bid to maximize his/her

expected profit E[(bi − ci)1(bi ≤ s(minj 6=i cj))]. The lowest bid wins the contract, and the

bidder is paid the amount he/she bid.

Differentiating the expected profit with respect to bi gives the following system of first-

order differential equations that define the equilibrium strategy s(·)

(bi − ci)(I − 1)
f [s−1(bi)]

[1− F(s−1(bi))]s′[s−1(bi)]
= 1,

which can be rewritten as

ci = bi −
1

I − 1
1− G(bi)

g(bi)
.
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Therefore, the quantile relationship becomes

Qc(α) = Qb(α)− (1− α)/[(I − 1)g(Qb(α))],

where Qc(·) represents the cost quantile function. The integrated quantile function becomes

C(β) ≡
∫ β

0
Qc(α)dα =

I − 2
I − 1

∫ β

0
Qb(α)dα− 1

I − 1
Qb(β)(1− β)+

1
I − 1

Qb(0). (3’)

To impose the monotonicity constraint, we consider the g.c.m. of the empirical counterpart

of the following function:

C̃(β) ≡ C(1− β),

which is the reflection of the integrated quantile function over the line β = 1/2. The

idea is to utilize the prior information that the maximum possible bid equals the maximum

cost in procurement auctions, i.e. Qb(1) = Qc(1). As the pseudo values are constructed

sequentially, consider the g.c.m. of C̃(·) is preferable to C(·). To see this, note that [Ĉ(1)−
Ĉ(n−j

n )]/(j/n) = I−2
I−1 ∑N

k=n−j+1 b(k)/j + 1
I−1 b(N−j) and [Ĉ(1/n) − Ĉ(0)]/(1/n) =

b(1). By definition, the preferred method starts with the largest pseudo valuation ĉ(n) =
I−2
I−1 b(n) +

1
I−1 b(n−1). Note that the right-hand side converges to Qb(1) = Qc(1) at a fast

rate. On the other hand, considering the g.c.m. of C(·), we would start with an estimate of

the smallest pseudo valuation ĉ(1) ≤ b(1). Although b(1) converges to Qb(0) at a fast rate,

it does not guarantee that ĉ(1) converges to Qc(0) at a fast rate.

For estimation, we construct a raw estimator C̃n(·) for C̃(·) by plugging in the bid

quantile estimator. We then take the g.c.m. of C̃n(·). The pseudo cost of the bidder whose

bid is the jth highest is constructed as the negative of the right-derivative of the g.c.m. at

β = (j− 1)/n, where j = 1, . . . , n. A smooth estimator for the cost quantile function

follows naturally: q̂c (α) =
∫ 1

0
1
h K
(

α−u
h
)

Q̂c(u)du. Moreover, we can also apply a kernel

density estimator on the sample of pseudo costs: f̂ (c) = 1
nh ∑n

j=1 K
(

ĉj−c
h

)
.
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3. SIMULATION

To study the finite sample performance of our estimation method, we conduct Monte

Carlo experiments. We adopt the setup of the Monte Carlo simulations from MS. The true

valuation distribution is

F(v) =


0 if v < 0,

vγ if 0 ≤ v ≤ 1,

1 if v > 1,

where γ > 0. Such a choice of private value distributions is convenient since the distributions

correspond to linear bidding strategies as:

s(v) =
(
1− 1

γ(I − 1) + 1
)
· v. (5)

We consider I = 7 bidders, n = 4200 and γ ∈ {0.5, 1, 2}. The number of Monte Carlo

replications is 1000. For each replication, we first generate randomly n private values from

F(·). Second, we obtain the corresponding bids bi employing the linear bidding strategy

(5). Third, we construct a raw estimator Vn(·) for V(·). Let V̂(·) be the g.c.m. of Vn(·).
Fourth, we obtain a sample of pseudo values v̂j as the left-derivative of V̂(·) at j/N and

estimate the valuation density function using a kernel estimator.

We compare our method with MS and GPV. For the MS and GPV methods, we use

the same setups as in MS: the tri-weight kernel function for the kernel estimators and the

normal rule-of-thumb bandwidths in estimation of densities. For our method, we also use the

tri-weight kernel function for the kernel estimators and the normal rule-of-thumb bandwidth

in estimation of f : h = 1.06σ̂vn−1/7, where σ̂v is the estimated standard deviation of the

constructed pseudo valuations {v̂j}N
j=1.

Table 1 shows the simulation results for density estimation. When the distribution is

skewed to the left (γ = 0.5), our method improves MSE and MAD but seems to produce

larger biases near the boundaries. While the MS and GPV methods behave similarly in

terms of MSE and MAD, the former seems to produce larger biases. When the distribution
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is uniform or skewed to the right (γ = 1 or 2), our method performs similarly to the GPV

method, both of which seem perform slightly better than the MS method.

TABLE 1. Simulation Results for Density Estimation

v 0.2 0.3 0.4 0.5 0.6 0.7 0.8
γ = 0.5 MSE MS 0.0068 0.0073 0.0103 0.0131 0.0132 0.0171 0.0202

GPV 0.0056 0.0072 0.0101 0.0132 0.0139 0.0188 0.0218
Ours 0.0044 0.0057 0.0080 0.0100 0.0109 0.0140 0.0163

Bias MS -0.0041 -0.0019 -0.0086 -0.0029 -0.0159 -0.0156 -0.0185
GPV 0.0038 0.0018 -0.0034 0.0037 -0.0019 0.0025 0.0072
Ours 0.0120 0.0043 -0.0016 0.0037 -0.0022 0.0038 0.0056

MAD MS 0.0672 0.0689 0.0806 0.0907 0.0908 0.1027 0.1094
GPV 0.0611 0.0688 0.0800 0.0925 0.0940 0.1106 0.1186
Ours 0.0543 0.0608 0.0711 0.0806 0.0825 0.0952 0.1030

γ = 1 MSE MS 0.0036 0.0050 0.0066 0.0076 0.0102 0.0122 0.0148
GPV 0.0025 0.0035 0.0050 0.0060 0.0082 0.0102 0.0127
Ours 0.0023 0.0033 0.0049 0.0061 0.0083 0.0102 0.0129

Bias MS 0.0003 0.0000 -0.0047 -0.0035 0.0014 -0.0060 -0.0113
GPV 0.0000 0.0015 -0.0023 -0.0011 0.0053 0.0007 -0.0021
Ours 0.0000 0.0016 -0.0027 -0.0020 0.0056 0.0007 -0.0026

MAD MS 0.0479 0.0557 0.0647 0.0688 0.0800 0.0892 0.0961
GPV 0.0402 0.0470 0.0563 0.0610 0.0724 0.0806 0.0904
Ours 0.0389 0.0459 0.0557 0.0615 0.0730 0.0812 0.0901

γ= 2 MSE MS 0.0016 0.0025 0.0037 0.0063 0.0085 0.0108 0.0154
GPV 0.0011 0.0016 0.0025 0.0044 0.0060 0.0078 0.0112
Ours 0.0011 0.0017 0.0028 0.0049 0.0069 0.0091 0.0130

Bias MS -0.0006 -0.0031 -0.0008 -0.0013 -0.0033 -0.0085 -0.0001
GPV 0.0005 -0.0020 0.0007 0.0002 -0.0004 -0.0044 0.0021
Ours 0.0006 -0.0019 0.0013 0.0002 -0.0006 -0.0048 0.0020

MAD MS 0.0320 0.0394 0.0481 0.0637 0.0739 0.0830 0.1008
GPV 0.0263 0.0321 0.0396 0.0528 0.0624 0.0707 0.0864
Ours 0.0266 0.0329 0.0415 0.0555 0.0668 0.0767 0.0929

4. EMPIRICAL ILLUSTRATION

In this section, we implement our methods using the California highway procurement

data. In particular, we analyze the data used in Krasnokutskaya and Seim (2011). It
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covers highway and street maintenance projects auctioned by the California Department

of Transportation (Caltrans) between January 2002 and December 2005. We focus on the

procurement auctions with 2 to 7 bidders. For each auction, the data contain the engineer’s

estimate of the project’s total cost, the type of work involved, the number of days allocated

to complete the project, the identity of the bidders and their bids.

Following Haile, Hong, and Shum (2003), we homogenize the bids before implementing

our method to control for observable heterogeneity for each sample (with the same number

of bidders). In particular, we regress the logarithm of the bid (logb) on the logarithm of

the engineer’s estimate (logX), the logarithm of the number of days (logDays) and the

project type dummies. Table 2 displays the results. The homogenized bids (bid_new) are

calculated as the exponential of the differences between the logarithm of the original bids

and the demeaned fitted values of the regression. Table 3 displays the mean and standard

deviation of the original and homogenized bids.

TABLE 2. Regression Results

2 3 4 5 6 7
logX 0.978∗∗∗ 0.966∗∗∗ 1.015∗∗∗ 0.957∗∗∗ 0.932∗∗∗ 0.938∗∗∗

(34.11) (56.68) (50.59) (51.81) (49.91) (56.58)

logDays 0.00650 0.00473 -0.00271 0.0901∗∗∗ 0.138∗∗∗ 0.00430
(0.15) (0.25) (-0.13) (4.76) (6.31) (0.18)

type Yes Yes Yes Yes Yes Yes
n 206 474 564 470 402 252
adj. R2 0.871 0.906 0.857 0.929 0.930 0.947
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We estimate a first price auction model with each sample. Figure 1 displays the estimated

inverse bidding strategies, the estimated valuation quantile functions without and with

smoothing, respectively. The curves represented are: from the sample with 2 bidders (yellow

solid line); 3 bidders (magenta dash-dot line); 4 bidders (cyan solid line); 5 bidders (red
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TABLE 3. Summary Statistics

2 3 4 5 6 7 Total
bid 993.8 967.6 757.7 1136.9 990.9 1769.7 1042.8

(1644.5) (1935.9) (843.7) (4584.7) (3350.3) (7288.0) (3595.9)

bid_new 652.5 587.7 566.3 508.9 464.4 478.5 540.0
(208.4) (190.6) (178.6) (129.0) (135.0) (137.4) (174.0)

cost 402.1 468.0 477.8 453.8 423.6 441.7 451.5
(259.6) (223.6) (218.9) (164.4) (156.3) (159.5) (200.0)

profit 250.4 119.7 88.46 55.09 40.79 36.81 88.59
(75.81) (77.65) (60.62) (49.56) (42.83) (46.68) (83.51)

profit rate 0.439 0.244 0.197 0.136 0.109 0.0978 0.190
(0.213) (0.208) (0.194) (0.167) (0.153) (0.158) (0.206)

Std. Dev. in parentheses. pro f it = bid_new− cost. Profit rate=profit / bid.

ŝ−1(·) Q̂v(·) q̂v(·)

FIGURE 1. Estimation results

dash-dot line); 6 bidders (green solid line); 7 bidders (blue dash-dot line), and the 45-degree

line (black dash line).

All inverse bidding strategies are increasing. The valuation quantile functions seem to be

close except for I = 2. Table 3 displays some summary statistics of the estimated pseudo

costs. The auctions with two bidders tend to be less costly to finish in percentage terms. In

fact, the generated profit rate is almost twice that of the sample with three bidders. As the
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auction becomes more competitive when the number of bidders increase from two to seven,

the profit rate decreases from 44% to about 10%.

5. CONCLUSION

This paper considers the nonparametric estimation of first-price auction models based

on an integrated-quantile representation of the first-order condition. The monotonicity of

bidding strategy is imposed in a natural way. We propose two estimators for the valuation

quantile function and derive their asymptotics: a non-smoothed estimator that is tuning-

parameter-free and a smoothed one that is trimming-free. We show the former is cube-root

consistent under weaker smoothness assumptions and the latter achieves the optimal rate

of GPV under standard ones. A series of Monte Carlo simulations shows our methods

work well in finite samples. We apply our methods to data from the California highway

procurements auctions.
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APPENDIX A. PROOF OF MAIN THEOREMS

A.1. Proof of Theorem 1. For a > 0, let Zn(a) = argmint∈[0,1]{Vn(t)− at}. If the argmin is a

set, then we take the inf of the set. For any τ ∈ [0, 1], by van Es, Jongbloed, and Zuijlen (1998,

Theorem 2), the two following events are equivalent

Zn(a) ≤ τ ⇔ Q̂v(τ) ≥ a.

Therefore, we have for a fixed α0 ∈ [0, 1],

n
1
3 (Q̂v(α0)−Qv(α0)) < z⇔ Q̂v(α0) < zn−

1
3 + Qv(α0)⇔ Zn(zn−

1
3 + Qv(α0)) > α0

⇔ argmin
s∈[0,1]

{Vn(s)− (zn−
1
3 + Qv(α0))s} > α0

⇔ argmin
{t:α0+tn−

1
3 ∈[0,1]}

{Vn(α0 + tn−
1
3 )− (zn−

1
3 + Qv(α0))(α0 + tn−

1
3 )} > 0

⇔ argmin
t∈[−α0n

1
3 ,1−α0n

1
3 ]

{Vn(α0 + tn−
1
3 )−Vn(α0)−Qv(α0)tn−

1
3 − ztn−

2
3 } > 0

⇔ argmin
t∈[−α0n

1
3 ,1−α0n

1
3 ]

{n 2
3 Vn(α0 + tn−

1
3 )− n

2
3 Vn(α0)−Qv(α0)tn

1
3 − zt} > 0,

where we conduct changing variable s = α0 + tn−
1
3 and use the fact that s > α0 ⇔ t > 0. Let

Wn(t) = n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)−Qv(α0)tn−

1
3

]
, the the above expression reduces to

n
1
3 (Q̂v(α0)−Qv(α0)) < z⇔ argmin

t∈[−α0n
1
3 ,1−α0n

1
3 ]

{Wn(t)− zt} > 0

It remains to analyze the asymptotic behavior of Wn(t). Decompose Wn as following

Wn(t) = n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)

]
− n

2
3

[
V(α0 + tn−

1
3 )−V(α0)

]
+ n

2
3

[
V(α0 + tn−

1
3 )−V(α0)−Qv(α0)tn−

1
3

]
.

The second component equals to 1
2 Q′v(α0)t2 + o(1) by Assumption 2. By Lemma 3, the first right

hand side term converges weakly to α0

(I−1)
√

g(Qb(α0))
B(t), where B is a two sided Brownian Motion
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Therefore, we have

Wn(t)
w→ α0

(I − 1)
√

g(Qb(α0))
B(t) +

1
2

Q′v(α0)t2.

To simplify the notation, let the constants in front of B and t2 be a and b, respectively. Note that

a > 0 and b > 0. By Van Der Vaart and Wellner (1996, Theorem 3.2.2) and the property of Brownian

motion,

argmin
t∈[−α0n

1
3 ,1−α0n

1
3 ]

{Wn(t)− zt} d→ argmin
t∈R

{aB(t) + bt2 − zt}

∼ argmin
t∈R

{aB(t) + b(t− z
2b

)2 − z2

4b
} ∼ argmin

t∈R

{aB(t) + b(t− z
2b

)2}

∼ argmin
t∈R

{ a
b

B(t) + (t− z
2b

)2} ∼
( a

b

)2/3
argmin

t∈R

{B(t) + t2}+ z
2b

Therefore,

P
(

n
1
3 (Q̂v(α0)−Qv(α0)) < z

)
→ P

(( a
b

)2/3
argmin

t∈R

{B(t) + t2}+ z
2b

> 0

)

= P

(
argmin

t∈R

{B(t) + t2} > − z
2b

(
b
a

)2/3
)

= P

(
argmaxt∈R{B(t)− t2} < z

2b

(
b
a

)2/3
)

Thus we can conclude that

n
1
3 (Q̂v(α0)−Qv(α0))

d→ 2a2/3b1/3 argmaxt∈R{B(t)− t2}.

A.2. Proof of Theorem 2. For notation simplicity, let Kh(·) = (1/h)K(·/h). Then

q̂v(α) =
∫

Kh (α− u) dV̂(u) =
∫

Kh (α− u) dVn(u) +
∫

Kh (α− u) d(V̂ −Vn)(u)

=
∫

Kh (α− u) dVn(u) +
1
h

∫
K′h(α− u)(V̂(u)−Vn(u))du

=
∫

Kh (α− u) dVn(u) +
1
h

∫
K′(t)(V̂(α + ht)−Vn(α + ht))dt

=
∫

Kh (α− u) dVn(u) + Op((n/ log n)−2/3/h) (6)
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where the third inequality holds by integration by parts, and the last equality holds by Lemma 8.

It is then sufficient to focus on the first right hand side term. Since Qv,n is piecewise flat and is

left-continuous, we have

∫
Kh (α− u) dVn(u)−Qv(α) =

∫
Kh (α− u) Qv,n(u)du−Qv(α)

=
n

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du−Qb(α)︸ ︷︷ ︸
An(α)

+
1

I − 1

(
n

∑
i=1

(i− 1)(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))

)
︸ ︷︷ ︸

Bn(α)

.

An(α) and Bn(α) are dealt with by Lemmas 9 and 11, respectively.

APPENDIX B. LEMMAS FOR THEOREM 1

Lemma 1. Suppose that Assumptions 1 and 2 hold, then for any α0 ∈ (0, 1) and uniformly over

t ∈ T , where T is compact,

n2/3

{∫ α0+t/n1/3

α0

Qb,n(τ)dτ −
∫ α0+t/n1/3

α0

Qb(τ)dτ

}
p→ 0.

Proof. Under Assumption 2, by the Bahadur representation for quantile functions (see, e.g. Bahadur,

1966; Kiefer, 1967), we know that uniform in τ ∈ [δ, 1− δ],

Qb,n(τ)−Qb(τ) =
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

fb(Qb(τ))
+ Oa.s.

(
n−3/4(log n)1/2(log log n)1/4

)
.

Since α0 ∈ (0, 1), we have

n2/3
∫ α0+t/n1/3

α0

(Qb,n(τ)−Qb(τ)) dτ = n2/3
∫ α0+t/n1/3

α0

(
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

fb(Qb(τ))

)
dτ+ op(1)

= n2/3
∫ Qb(α0+t/n1/3)

Qb(α0)

(
F(u)− 1

n ∑
i

1[bi ≤ u]

)
du + op(1)

=
1√
n ∑

i
n1/6

∫ Qb(α0+t/n1/3)

Qb(α0)
(F(u)− 1[bi ≤ u]) du + op(1)

=
1√
n ∑

i
ξn(bi, t) + op(1),
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where ξn(bi, t) = n1/6
∫ Qb(α0+t/n1/3)

Qb(α0)
(F(u)− 1[bi ≤ u]) du. Note that E[gn(bi, t)] = 0 and the

summand are i.i.d.. To derive the covariance function, take t and s from a compact set,

E[ξn(bi, t)ξn(bi, s)] = E

[
n1/3

∫ Qb(α0+t/n1/3)

Qb(α0)
1[bi ≤ u]du

∫ Qb(α0+s/n1/3)

Qb(α0)
1[bi ≤ u]du

]
+ o(1)

= n1/3
∫ Qb(α0+t/n1/3)

Qb(α0)

∫ Qb(α0+s/n1/3)

Qb(α0)
E {1[min{u, v} ≥ bi]} dudv + o(1)

= n1/3
∫ Qb(α0+t/n1/3)

Qb(α0)

∫ Qb(α0+s/n1/3)

Qb(α0)
G(min{u, v})dudv→ 0,

where G is the c.d.f. of the bid distribution. The convergence hold uniformly over compact set of t

and s. The conclusion therefore holds.

Lemma 2. Suppose that Assumptions 1 and 2 hold, then

n2/3α0

{
Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)

}
w→ α0√

g(Qb(α0))
B(t),

where B is a two-sided Brownian motion.

Proof. Let T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · be a sequence of compact sets. Given Assumption 2, we

can apply Bahadur representation again (see Lemma 1) and know that uniform in τ ∈ Tk,

Qb,n(τ)−Qb(τ) =
τ − 1

n ∑i 1[bi ≤ Qb(τ)]

g(Qb(τ))
+ Oa.s.(n−3/4(log n)1/2(log log n)1/4.

Let r1n = Oa.s.(n−1/12(log n)1/2(log log n)1/4, we have uniformly in t ∈ Tk,

n2/3
{

Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)
}

=
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 − 1[bi ≤ Qb(α0)]

g(Qb(α0))

)
+ r1n

=
n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(α0) < bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
+ r1n + r2n,
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where

r2n =
n1/6
√

n ∑
i

(
α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0 + tn−1/3))
− α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
= n1/6

(
1

g(Qb(α0 + tn−1/3))
− 1

g(Qb(α0))

)
1√
n ∑

i
ξi = n1/6O(n−1/3)Op(1) = op(1),

where ξi = α0 + tn−1/3 − 1[bi ≤ Qb(α0 + tn−1/3)]. For the leading term, it is can be shown by

standard result that over each of the compact sets T1 ⊆ T2 ⊆ · · · ⊆ Tk ⊆ · · · , we have

n1/6
√

n ∑
i

(
tn−1/3 − 1[Qb(α0) < bi ≤ Qb(α0 + tn−1/3)]

g(Qb(α0))

)
w→ 1√

g(Qb(α0))
B(t),

where B is a Brownian motion. The stated result follows.

Lemma 3. Suppose that Assumptions 1 and 2 hold, then

n
2
3

[
Vn(α0 + tn−

1
3 )−Vn(α0)

]
− n

2
3

[
V(α0 + tn−

1
3 )−V(α0)

]
w→ α0

(I − 1)
√

g(Qb(α0))
B(t)

where B is a two-sided Brownian motion.

Proof. Recall that for any τ ∈ (0, 1),

Vn(τ) =
1
n

I − 2
I − 1 ∑

i
bi1[bi ≤ Qb,n(τ)] +

1
I − 1

τQb,n(τ) + Op(1/n)

≡ I − 2
I − 1

V1n(τ) +
1

I − 1
V2n(τ) + Op(1/n).

Likewise,

V(τ) =
I − 2
I − 1

∫ τ

0
Qv(t)dt +

1
I − 1

α0Qb(τ) ≡
I − 2
I − 1

V1(τ) +
1

I − 1
V2(τ).
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The part associate with V1n, that is, n
2
3

[
V1n(α0 + tn−

1
3 )−V1n(α0)

]
−n

2
3

[
V1(α0 + tn−

1
3 )−V1(α0)

]
converges in probability to zero by Lemma 1. For the part associated with V2n, note that

n
2
3 (I − 1)

[
V2n(α0 + tn−

1
3 )−V2n(α0)

]
− n

2
3

[
V2(α0 + tn−

1
3 )−V2(α0)

]
= n2/3Qb,n(α0 + tn−1/3)(α0 + tn−1/3)− n2/3Qb,n(α0)α0 − n2/3Qb(α0

+ tn−1/3)(α0 + tn−1/3) + n2/3Qb(α0)α0

= n2/3α0

{
Qb,n(α0 + tn−1/3)−Qb,n(α0)−Qb(α0 + tn−1/3) + Qb(α0)

}
+ n1/3t

{
Qb,n(α0 + tn−1/3)−Qb(α0 + tn−1/3)

}
The second right hand side term, for |t| < K, is uniformly bounded by order n1/3 × n−1/2 ×

Op(1)
p→ 0. The first right hand side term is dealt with by Lemma 2.

APPENDIX C. LEMMAS FOR THEOREM 2

We introduce some notation. Let kn be a sequence of integers such that kn → ∞ and n/kn → ∞.

Without loss of generality we assume kn divides n and let `n = n/kn. We therefore can divide

[0, n] into kn equal size intervals with each interval contains `n consecutive integers. Let {si, i =

1, 2, · · · , kn} be the set of upper boundary of those intervals such that si = i`n.

For (i− 1)`n ≤ s < i`n, i = 1, 2, · · · , kn, define

L(s) =
s− (i− 1)`n

`n
V
(

i
n

)
+

i`n − s
`n

V
(

i− 1
n

)
,

and

Ln(s) =
s− (i− 1)`n

`n
Vn

(
i
n

)
+

i`n − s
`n

Vn

(
i− 1

n

)
,

That is, L and Ln are the linear interpolation of V and Vn on kn knots {s1/n, s2/n, · · · , skn /n},

respectively. Note that since V is convex under H0, L is necessarily convex. However Ln may not be

convex since Vn is not necessarily convex. Let An be the event such that Ln is convex. Since Ln is
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convex if and only if each segment is convex, the complement of An can be written as

Ac
n =

kn−1⋃
i=2

{
Vn

(
(i− 1)`n

n

)
+ Vn

(
(i + 1)`n

n

)
< 2Vn

(
i`n

N

)}

=
kn⋃

i=2

{
V
(
(i− 1)`n

n

)
+ V

(
(i + 1)`n

n

)
− 2V

(
i`n

n

)

+∆n

(
(i− 1)`n

n

)
+ ∆n

(
(i + 1)`n

n

)
− 2∆n

(
i`n

n

)
< 0

}
,

where ∆n ≡ Vn −V.

Lemma 4. Suppose that Assumption 3 is satisfied, then there exists a positive c1 such that mini=2,··· ,kn−1 |V
(
(i−1)`n

n

)
+

V
(
(i+1)`n

n

)
− 2V

(
i`n
n

)
| ≥ c1

k2
n
.

Proof. By Assumption 3, there exists c1 > 0 such that Q′v(α) ≥ c1 > 0 for all α ∈ [0, 1]. Then we

have

V
(
(i− 1)`n

n

)
+ V

(
(i + 1)`n

n

)
− 2V

(
i`n

n

)
=
∫ (i+1)`n

n

i`n
n

Qv(α)dα−
∫ i`n

n

(i−1)`n
n

Qv(α)dα ≥
∫ (i+1)`n

n

i`n
n

[
Qv(α)−Qv

(
i`n

n

)]
dα

=
`n

n

[
Qv(α

∗
n)−Qv

(
i`n

n

)]
≥ c1

`2
n

n2 =
c1

k2
n

. �

Lemma 5. Let ‖ · ‖ denote the sup norm. Conditional on An, there is

‖Vn − V̂‖ ≤ 2‖(Vn − Ln)− (V − L)‖+ 2‖V − L‖.

Proof. By Kiefer and van Wolfowitz (1976), for any convex function m, ‖V̂ −m‖ ≤ ‖Vn −m‖.

Therefore,

‖Vn− V̂‖ ≤ ‖Vn− Ln‖+ ‖Ln− V̂‖ ≤ 2‖Vn− Ln‖ ≤ 2‖(Vn− Ln)− (V− L)‖+ 2‖V− L‖. �

Lemma 6. Suppose that Assumption 3 is satisfied, then there exists c3 > 0 such that for all s ∈ [0, n],

0 ≤ L(s)−V(s) ≤ c3

k2
n

.
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Proof. L(s) > V(s) follows immediately by the convexity of V. The other inequality holds follows

from a similar argument as in Lemma 4 and the fact that Q′v(α) is bounded from above uniformly.

Lemma 7. Suppose that Assumptions 1 and 3 is satisfied, then

‖Vn − Ln −V + L‖ = Op

(√
log kn

nkn

)
+ Op

(
log n

n

)
.

Proof. Define function VP such that VP(j/N) = V(j/N) for each j/N and otherwise equals to

its own interpolation. It is obvious that ‖VP − V‖ = O(1/n). It is then sufficient to focus on

Vn − Ln − VP + L. Note that all four functions are piece-wise linear, and so does there linear

combinations. Therefore, the sup must be achieved at some knot(s). Based on this observations, we

can write

‖Vn − Ln −VP + L‖

= max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣∆n(j/n)− j− (i− 1)`n

`n
∆n(i/n)− i`n − j

`n
∆n((i− 1)/n)

∣∣∣∣ ,

where for t ∈ [0, 1],

∆n(t) = Vn(t)−VP(t) = Vn(t)−V(t) + O(1/n)

=
I − 2
I − 1

{
[tn]

∑
i=1

b(i)
n
−
∫ t

0
Qb(α)dα

}
︸ ︷︷ ︸

∆A(t)

+
1

I − 1

{
[tn]
n

b(j) − tQb(t)
}

︸ ︷︷ ︸
∆B(t)

+O(1/n)

where [x] denotes the integer part of x. Note that ∆A is an integrated quantile process. By Tse

(2009, Theorem 2.1), there exists a Gaussian process Gn and Brownian bridge BA
n defined on proper

measurable space such that for any τ < 1/6,

‖
√

n∆A − ψn‖
a.s.
= O(n−τ),

where ψn(t) = Gn(t) +
∫ t

0 BA
n (u)dQb(u). On the other hand, by Csorgo and Revesz (1978, Theo-

rem 6), there exists a sequence of Brownian bridge Bn such that supδn≤t≤1−δn
|g(Qb(t))

√
n∆B(t)−
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Bn(t)|
a.s.
= Op(n−1/2 log n). We can then conclude

‖Vn − Ln −VP + L‖

≤ max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣∆A(j/n)− j− (i− 1)`n

`n
∆A(i/n)− i`n − j

`n
∆A((i− 1)/n)

∣∣∣∣
+ max

i=1,···Kn
max

(i−1)`n≤j≤i`n

∣∣∣∣∆B(j/n)− j− (i− 1)`n

`n
∆B(i/n)− i`n − j

`n
∆B((i− 1)/n)

∣∣∣∣+Op(1/n)

d
=

1√
n

max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣ψn(j/n)− j− (i− 1)`n

`n
ψn(i/n)− i`n − j

`n
ψn((i− 1)/n)

∣∣∣∣+Op(n−τ−1/2)

+
1√
n

max
i=1,···Kn

max
(i−1)`n≤j≤i`n

∣∣∣∣Bn(j/n)− j− (i− 1)`n

`n
Bn(i/n)− i`n − j

`n
Bn((i− 1)/n)

∣∣∣∣+Op(log n/n)

≤ 1√
n

sup
0≤t−s≤ 1

kn

|ψn(t)−ψn(s)|+
1√
n

sup
0≤t−s≤ 1

kn

|Bn(t)− Bn(s)|+Op(log n/n)+Op(n−τ−1/2)

≤
√

2 log log n√
n

1√
kn

+
1√
n

√
log log Kn√

kn
+ Op(log n/n) + Op(n−τ−1/2)

where the last two inequalities result from the continuity module of Gaussian processes and the fact

that g(b) ≥ b > 0 for all b (GPV Proposition 1). Recall that kn ∝ n
log n , we con conclude that the

right hand side is of order Op((n/ log n)−2/3).

Lemma 8. Suppose Assumptions 3 to 5 are satisfied, the ‖V̂ −Vn‖ = Op((n/ log n)−2/3).

Proof. The conclusion holds by Lemmas 5 to 7. �

Lemma 9. Suppose Assumptions 3 to 5 are satisfied, then for 0 < α < 1,

An(α) ≡
n

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du−Qb(α) = −
√

n(Fn(Qb(α))− α)/g(Qb(α)) + op(1).

Proof. We just need to verify that conditions of Yang (1985, Theorem 1) are satisfied. Then the

results follows. �

Lemma 10. Let z(i) = n(b(i) − b(i−1)). Suppose Assumption 3 is satisfied, then for any r > 0,

n−r maxi |z(i)|
p→ 0.

Proof. This directly follows from Parzen et al. (1962, Theorem 2.1) since both E[z(i)] and V(z(i))

converge to zero.
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Lemma 11. For 0 < α < 1, let

Bn(α) ≡
n

∑
i=1

(i− 1)(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))
.

If Assumptions 3 to 5 are satisfied, then
√

nhBn(α)
d→ N(B, V ), where constant B and V are

defined below in the proof.

Proof. Define B̃n(α) as

B̃n(α) =
n

∑
i=1

αn(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du− α

g(Qb(α))

Note first when n is large,

n
n

∑
i=1

(b(i) − b(i−1))
∫ i

n

i−1
n

Kh (α− u) du = n
n−1

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du

− n
n−1

∑
i=1

b(i)
∫ i+1

n

i
n

Kh (α− u) du + nb(n)
∫ 1

n−1
n

Kh (α− u) du− nb(0)
∫ 1/n

0
Kh (α− u) du

≈ n
n−1

∑
i=1

b(i)
∫ i

n

i−1
n

Kh (α− u) du− n
n−1

∑
i=1

b(i)
∫ i+1

n

i
n

Kh (α− u) du.

The last equality holds because under Assumption 5, when n is large, Kh (t) = 0 for any t 6= 0.

Then we know that

B̃n(α)−
α

g(Qb(α))
= αn

n−1

∑
i=1

b(i)

{∫ i
n

i−1
n

Kh (α− u) du−
∫ i+1

n

i
n

Kh (α− u) du

}

=
α

h2

n−1

∑
i=1

b(i)
∫ i

n

i−1
n

K′
(

u− α

h

)
du = α

∂{∑n
i=1 b(i)

∫ i
n

i−1
n

Kh (τ − u) du}

∂τ
|τ=α.

By Welsh (1988, main theorem), under Assumptions 3 to 5,
√

nh(B̃n(α)− α
g(Qb(α))

)
d→ N(B, V ),

where

B = −α

6
Q
′′′
b (α)

∫
u3K′(u)du, V = α2Q

′
b(α)

∫
K2(u)du.
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Next we show that Bn − B̃n = op(1/
√

nh) uniformly over α ∈ [δ, 1− δ] for any δ > 0. Let

z(i) = n(b(i) − b(i−1)) and r be a small positive constant,

|Bn(α)− B̃n(α)| = |
1
h

n

∑
i=1

(
i− 1

n
− α

)
z(i)

∫ i
n

i−1
n

K
(

u− α

h

)
du|

≤ n−r max
i
|z(i)|nr|1

h

n

∑
i=1

(
i− 1

n
− α

) ∫ i
n

i−1
n

K
(

u− α

h

)
du|

= op(1)nr|1
h

n

∑
i=1

(
i− 1

n
− α

) ∫ i
n

i−1
n

K
(

u− α

h

)
du| = op

(
1

n1−rh

)
= op(1/

√
nh),

where the last equality holds because
∫

uk(u) = 0 and

n

∑
i=1

(
i− 1

n
− α

) ∫ i
n

i−1
n

K
(

u− α

h

)
du =

∫ 1

0
(u − α)K

(
u− α

h

)
du + O(1/n) = O(1/n).

Therefore we can conclude that
√

nhBn(α)
d→ N(B, V ). �
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