
University of Toronto 
Department of Economics 

 

January 29, 2015

By Ismael Mourifie and Yuanyuan Wan

(Partially) Identifying potential outcome distributions in
triangular systems

Working Paper 532



(PARTIALLY) IDENTIFYING POTENTIAL OUTCOME DISTRIBUTIONS IN
TRIANGULAR SYSTEMS

ISMAEL MOURIFIÉ† AND YUANYUAN WAN‡

DEPARTMENT OF ECONOMICS UNIVERSITY OF TORONTO

ABSTRACT. In this paper we propose a new unifying approach to (partially) identify potential outcome

distributions in a non-separable triangular model with a binary endogenous variable and a binary

instrument. Our identification strategy provides a testable condition under which the objects of interest

are point identified. When point identification is not achieved, we provide sharp bounds on the potential

outcome distributions and the difference of marginal distributions.
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1. INTRODUCTION

This paper studies a non-separable triangular model with a binary endogenous variable and a

binary instrument  Y = g(D, U),

D = 1{V ≤ p(Z)},
(1)

where Y ∈ Y ⊆ R is the outcome variable, D ∈ {0, 1} is the endogenous regressor (treatment), and

Z ∈ {0, 1} is the binary instrument. (Y, D, Z) are observables. g and p are unknown functions with

g(d, ·) nondecreasing and left-continuous for d ∈ {0, 1}. U and V are scalar-valued latent variables.

Additionally U and V are normalized to be uniformly distributed i.e., U, V ∼ Uniform[0, 1]. Assum-

ing that Z is independent with (U, V),1 as will be discussed in more detail, we derive sharp bounds

on the potential outcome distributions

P(Yd ≤ y), d ∈ {0, 1}
† Corresponding author. Department of Economics, University of Toronto, 150 St. George Street, Toronto ON M5S 3G7,

Canada. ismael.mourifie@utoronto.ca.
‡yuanyuan.wan@utoronto.ca.
1In the presence of the exogenous covariate X, this assumption is strengthened. X is left out to simplify the notation, and
its addition will be discussed in Section 3.
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and the difference in marginal distributions

P(Y1 ≤ y)−P(Y0 ≤ y)

of the whole population. Identification of these quantities are especially important for the analyses of

heterogeneous treatment effects. As mentioned by Imbens and Rubin (1997) and Angrist and Pischke

(2008), these distributions are useful for policy makers who want to take into account differences in

the dispersion of earnings when contemplating the merits of one program or treatment versus another.

Our main contribution is to provide a new unifying approach to (partially) identify potential

outcome distributions in this setup. When g is strictly monotone in U (Y is therefore continuously

distributed), bounds collapse to a point and the point identification result achieved by Vuong and

Xu (2014) is recovered. When the outcome variable Y is binary, bounds are exactly as those found

by Shaikh and Vytlacil (2011). This identification strategy allows a testable condition to be derived

under which objects of interest are point identified. This testable condition reveals that identification

can be achieved, even if g is weakly monotone in U, which encompasses the cases where Y is either

censored, truncated, discrete, or mixed continuous-discrete outcomes.

A model similar to Equation (1) has also been studied by Vytlacil and Yildiz (2007). The

identification strategy in their study requires the existence of an additional exogenous covariate

and provides rank conditions based on exogenous covariates, under which it is possible to identify

the average effect. Recently, Vuong and Xu (2014) generalized Vytlacil and Yildiz (2007)’s rank

condition to point identify the quantile functions. Both papers do not discuss partial identification

when the proposed rank condition fails to hold. Our paper complements this research by providing

sharp bounds on potential outcome distributions whenever rank condition fails to hold. When the

rank condition holds our bounds coincide with the identification results of these studies.

The rest of the paper is organized as follows. Section 2 presents the identification strategy.

Section 3 generalizes the method to the case where additional exogenous covariates are available.

Proofs are collected in Appendix.

2. IDENTIFICATION STRATEGY

We make the following assumptions:

Assumption 1. (U, V) ⊥ Z.
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Assumption 2. g(d, ·) is non-decreasing and left-continuous for d ∈ {0, 1}.

Here p(z) = P(D = 1|Z = z), and without a loss of generality, we assume that p(1) ≥ p(0).2

Assumption 1 is a common assumption in the literature. Assumption 2 requires weak monotonicity

of g(d, ·) as a function of U, for each d ∈ {0, 1}. There are no restrictions on the relative ranking of

g(1, ·) and g(0, ·) i.e., both can cross each other many times.

Before presenting formal results, a heuristic argument for identification strategy will first be

provided. Under Assumption 1, the distribution function of Y1 can be decomposed as follows:

P(Y1 ≤ y) = P(Y1 ≤ y, V ≤ p(1)|Z = 1) + P(Y1 ≤ y, V > p(1)|Z = 1),

where the first right hand side term P(Y1 ≤ y, V ≤ p(1)|Z = 1) = P(Y ≤ y, D = 1|Z = 1) is

identified from the data. The second right hand side term P(Y1 ≤ y, V > p(1)|Z = 1) = P(Y1 ≤

y, D = 0|Z = 1) is the unobserved counterfactual.

In this paper, the sharp bounds for P(Y1 ≤ y, V > p(1)|Z = 1) are derived by taking advantage

of the "identified distribution of potential outcomes for compliers" i.e., P(Yd ≤ y|c) for d = 0, 1.

In fact, P(Y1 ≤ y, V > p(1)|Z = 1) is a weighting function of the distribution of Y1 for the

"defiers" and "never-takers" in the language of Imbens and Angrist (1994). Since model (1) imposes

a monotonicity restriction on the treatment, it rules out the existence of the "defiers" (See Vytlacil,

2002). Therefore, the unobserved quantity involves only the "never-takers". As suggested by the

name, "never-takers" never take the treatment, and the potential outcome under the treatment, i.e.,

Y1, cannot be observed from the data. However, Imbens and Rubin (1997) show that the potential

outcome distribution of the compliers for treated P(Y1 ≤ y|c) and untreated P(Y0 ≤ y|c) are

identifiable from the data. These distributions of the compliers are used as the matching function

criteria in this study. Indeed, for a fixed y ∈ Y , if there exists a y′ that makes the compliers indifferent

to being in the treated versus the untreated group, in the sense that

∆(y′, y) ≡ P(Y0 ≤ y′|c)−P(Y1 ≤ y|c) = 0,

2The model described in Equation (1) is related to potential outcome models. In particular, one can define Dj, j = 1, 2 as
a potential treatment when the value of Z is externally set to j. Likewise, Yj = g(j, U) can be defined as the potential
outcome when D is set to j externally (in potential outcome models, U does not need to be scalar-valued). In this notation,
Y = Y1D + Y0(1− D) and D = D1Z + D0(1− Z).
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then this value y′ makes also "never-takers" indifferent to being treated versus untreated. Because

the potential outcome distribution of Y0 for never-takers is identified, then the identification P(Y1 ≤

y, D = 0|Z = 1) = P(Y0 ≤ y′, D = 0|Z = 1) is achieved. If a "perfect" match does not exist

∆(y′, y) > 0 or ∆(y′, y) < 0 then P(Y1 ≤ y, D = 0|Z = 1) can be bound from below or above,

depending on the sign of ∆(y′, y).

The quantity ∆(y′, y) plays an important role in the identification strategy, and ∆(y′, y) is identi-

fied (See Imbens and Rubin, 1997). In particular,

∆(y′, y) =
H(y′, y)

p(1)− p(0)

where

H(y′, y) ≡
[
P(Y ≤ y′, D = 0|Z = 0)−P(Y ≤ y′, D = 0|Z = 1)

]
−
[
P(Y ≤ y, D = 1|Z = 1)−P(Y ≤ y, D = 1|Z = 0)

]
= P(Y0 ≤ y′, p(0) < V ≤ p(1))−P(Y1 ≤ y, p(0) < V ≤ p(1)). (2)

We will refer to H as " the matching function" hereafter. The above discussion is summarized in the

following lemma.

Lemma 1. Let g−1
d be the generalized inverse of gd. Under Assumptions 1 and 2 the following

occur:

(1) sign(H(y′, y)) = sign([g−1
0 (y′)− g−1

1 (y)]) where sign(a) = 1{a > 0} − 1{a < 0}.

(2) For a fixed y (or y′), H(y′, y) is a non-decreasing (or non-increasing) function in y′(or y′).

The proof of the lemma follows straightforwardly from Equation (2) and is therefore omitted.

From Lemma 1-(1), and because P(Y1 ≤ y, D = 0|Z = z) = P(U ≤ g−1
1 (y), D = 0|Z = z),

there is the following. For each given y:

P(U ≤ g−1
1 (y), D = 0|Z = z)


≤ P(U ≤ g−1

0 (y′), D = 0|Z = z) if sign(H(y′, y)) = 1

= P(U ≤ g−1
0 (y′), D = 0|Z = z) if sign(H(y′, y)) = 0

≥ P(U ≤ g−1
0 (y′), D = 0|Z = z) if sign(H(y′, y)) = −1,

4



where P(U ≤ g−1
0 (y′), D = 0|Z = z) = P(Y ≤ y′, D = 0|Z = z) is the observed factual of the

untreated.

To bound the unobserved counterfactual, previous research has used variations in the instrument,

across treatment, or from the exogenous covariate, when it is available. Here we show that variation

in the dependant outcome Y can also be used. Before stating the primary result, the following sets

are defined: The focus is put on the upper bound to deliver the main idea, and similar results hold for

TABLE 1. Collection of Sets

Ω+
01(y) ≡ {y′ : H(y′, y) ≥ 0} Ω−01(y) ≡ {y′ : H(y′, y) ≤ 0}

∆+
01(y) ≡ {y′ : H(y, y′) ≥ 0} ∆−01(y) ≡ {y′ : H(y, y′) ≤ 0}

the lower bound. Notice that by construction, we have

P(Y1 ≤ y, D = 0|Z = z) ≤ inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = z).

Thus,

P(Y1 ≤ y) ≤ inf
z∈{0,1}

[
P(Y ≤ y, D = 1|Z = z) + inf

y′∈Ω+
01(y)

P(Y ≤ y′, D = 0|Z = z)
]
.

As shown in Claim 3 in the appendix, the upper bound can be simplified as:

P(Y ≤ y, D = 1|Z = 1) + inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = 1)

≤ P(Y ≤ y, D = 1|Z = 0) + inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = 0). (3)

This simplification is helpful for the inference, and similar simplification has already been discussed

in the literature. Heckman and Vytlacil (2001) explained that the monotonicity imposed on the

treatment does not improve the Manski (1990) bounds, but it does provide a simplification of

the bounds. In addition to the monotonicity of the treatment, Assumption 2 allows for further

simplification of the bounds. The main identification result is given in the following theorem.

5



Theorem 1. Let (Y, D, Z), gd(.), and (U, V) define the triangular system (1). Under assumptions

(1) and (2) the following bounds are sharp:

P(Y ≤ y, D = 1|Z = 1) + sup
y′∈Ω−01(y)

P(Y ≤ y′, D = 0|Z = 1) ≤ P(Y1 ≤ y) ≤

P(Y ≤ y, D = 1|Z = 1) + inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = 1),

and

P(Y ≤ y, D = 0|Z = 0) + sup
y′∈∆+

01(y)
P(Y ≤ y′, D = 1|Z = 0) ≤ P(Y0 ≤ y) ≤

P(Y ≤ y, D = 0|Z = 0) + inf
y′∈∆−01(y)

P(Y ≤ y′, D = 1|Z = 0).

Proof. See Appendix A.

Remark 1. When Y is binary and without additional exogenous covariates, the bounds are exactly

as the bounds derived by Shaikh and Vytlacil (2011). When gd is strictly increased in U, the bounds

collapse to a point and then the identification result of Vuong and Xu (2014) is recovered. Indeed,

when gd is strictly increased, y′ can be found such that H(y′, y) = 0, therefore identification is

always obtained in this particular case.

Remark 2. Our identification strategy cannot be directly applied in the model with sector-specific

heterogeneity i.e., Yd = gd(Ud), where U1 6= U0. However, this methodology holds if we impose the

rank similarity assumption discussed in Chernozhukov and Hansen (2005) i.e., U1|V ∼ U0|V.

Remark 3. In the proof, a joint distribution is constructed based on observed distributions that

respects all restrictions imposed on the model that allows P(Y0 ≤ y) to equals his lower bound

and P(Y1 ≤ y) his upper bound. Therefore, the bounds on the difference in marginal distributions

obtained by simple subtraction of the bounds on the potential outcome distribution are also sharp.
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The presence of a multi-valued instrument strengthens the identification power of this strategy. A

general matching function can be defined as

H(y′, y, z′, z) ≡
[
P(Y ≤ y′, D = 0|Z = z)−P(Y ≤ y′, D = 0|Z = z′)

]
−
[
P(Y ≤ y, D = 1|Z = z′)−P(Y ≤ y, D = 1|Z = z)

]
.

If y′ that allows H(y′, y, z′, z) = 0 cannot be found, then a y′ that allows H(y′, y, z′′, z′) = 0 should

be found.

3. GENERALIZATION

Let us consider an extension with additional exogenous covariates X that enter both equations in

model (1) in the sense that  Y = g(D, X, U),

D = 1{V ≤ p(X, Z)},
(4)

with (U, V) ⊥ (Z, X). For sake of simplicity, let us assume that

Assumption 3. Supp(p(X, Z), X) = Supp(p(X, Z))× Supp(X), where Supp denotes the sup-

port.

This assumption is not required for a partial identification approach but is used here to simplify

the notation. Vytlacil and Yildiz (2007) and Vuong and Xu (2014) require that Supp(p(X, Z)|X =

x) ∩ Supp(p(X, Z)|X = x′) contains at least two values. Whenever Z and X are binary, it is

equivalent to Assumption 3. Shaikh and Vytlacil (2011) also use Assumption 3 to provide sharp

bounds on the average treatment effect, when Y is binary. Mourifié (2013) explains how sharp bounds

can be obtained when Assumption 3 fails to hold. Therefore, if Assumption 3 does not hold Mourifié

(2013)’s approach can be easily extended to the present context. A generalized matching function is

defined as:

H(y′, y, x′, x) ≡
[
P(Y ≤ y′, D = 0|X = x′, Z = 0)−P(Y ≤ y′, D = 0|X = x′, Z = 1)

]
−
[
P(Y ≤ y, D = 1|X = x, Z = 1)−P(Y ≤ y, D = 1|X = x, Z = 0)

]
.
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By adapting the derivation from the latter section, we can derive the following sharp bounds:

P(Y ≤ y, D = 1|X = x, Z = 1) + sup
(y′,x′)∈Ω−01(y,x)

P(Y ≤ y′, D = 0|X = x′, Z = 1)

≤ P(Y1 ≤ y|X = x) ≤

P(Y ≤ y, D = 1|X = x, Z = 1) + inf
(y′,x′)∈Ω+

01(y,x)
P(Y ≤ y′, D = 0|X = x′, Z = 1),

where Ω+
01(y, x) ≡ {y′ : H(y′, y, x′, x) ≥ 0} and Ω−01(y, x) ≡ {y′ : H(y′, y, x′, x) ≤ 0}. Sharp

bounds on P(Y0 ≤ y|X = x) can be similarly derived. Identification is achieved when x′ exists

such that H(y, y, x′, x) = 0. This is equivalent to the rank condition proposed by Vytlacil and

Yildiz (2007). If (y′, x′) exists in such a way to allow H(y′, y, x′, x) = 0, then the generalized rank

condition proposed by Vuong and Xu (2014) is recovered. However, having such a perfect match

cannot be achieved in many applications. In such a case the partial identification approach is useful

because it provides sharp bounds on potential outcome distributions.

REFERENCES

ANGRIST, J. D., AND J.-S. PISCHKE (2008): Mostly harmless econometrics: An empiricist’s

companion. Princeton university press.

CHERNOZHUKOV, V., AND C. HANSEN (2005): “An IV Model of Quantile Treatment Effects,”

Econometrica, 73(1), 245–261.

HECKMAN, J. J., AND E. J. VYTLACIL (2001): Instrumental variables, selection models, and tight

bounds on the average treatment effect. Springer.

IMBENS, G. W., AND J. D. ANGRIST (1994): “Identification and Estimation of Local Average

Treatment Effects,” Econometrica, 62(2), 467–475.

IMBENS, G. W., AND D. B. RUBIN (1997): “Estimating Outcome Distributions for Compliers in

Instrumental Variables Models,” The Review of Economic Studies, 64(4), 555–574.

KITAGAWA, T. (2014): “A Test for Instrument Validity,” Working paper.

MANSKI, C. F. (1990): “Nonparametric bounds on treatment effects,” The American Economic

Review, pp. 319–323.

MOURIFIÉ, I. (2013): “SHARP BOUNDS ON TREATMENT EFFECTS IN A BINARY TRIAN-

GULAR SYSTEM,” Discussion paper, University of Toronto, Department of Economics.

8



MOURIFIÉ, I., AND Y. WAN (2014): “Testing LATE Assumptions,” Working Paper.

NELSEN, R. B. (2006): An introduction to copulas. Springer.

SHAIKH, A. M., AND E. J. VYTLACIL (2011): “Partial identification in triangular systems of

equations with binary dependent variables,” Econometrica, 79(3), 949–955.

VUONG, Q., AND H. XU (2014): “Counterfactual Mapping and Individual Treatment Effects in

Nonseparable Models with Discrete Endogeneity,” Discussion paper, Working Paper.

VYTLACIL, E. (2002): “Independence, Monotonicity, and Latent Index Models: An Equivalence

Result,” Econometrica, 70(1), 331–341.

VYTLACIL, E., AND N. YILDIZ (2007): “Dummy Endogenous Variables in Weakly Separable

Models,” Econometrica, 75(3), pp. 757–779.

APPENDIX A. PROOF OF THEOREM 1

Note first that the model implies the following restriction on observables (See Kitagawa, 2014;

Mourifié and Wan, 2014, for details),

P(Y ∈ A, D = 0|Z = 1) ≤ P(Y ∈ A, D = 0|Z = 0) (5)

P(Y ∈ A, D = 1|Z = 0) ≤ P(Y ∈ A, D = 1|Z = 1) (6)
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We propose the following joint distribution. For generic argument (y, z) ∈ Y ∪ {0, 1}, Almost

surely in Z,

P(g̃1(Ũ) ≤ y, Ṽ < p(z)|Z) = P(Y ≤ y, D = 1|Z = z), (7)

P(g̃1(Ũ) ≤ y, Ṽ > p(z)|Z) = P(Y ≤ y, D = 1|Z = 1) (8)

+ inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = 1)−P(Y ≤ y, D = 1|Z = z), (9)

P(g̃0(Ũ) ≤ y, Ṽ > p(z)|Z) = P(Y ≤ y, D = 0|Z = z), (10)

P(g̃0(Ũ) ≤ y, Ṽ < p(z)|Z) = P(Y ≤ y, D = 0|Z = 1) (11)

+ sup
y′∈∆+

01(y)
P(Y ≤ y′, D = 1|Z = 1)−P(Y ≤ y, D = 0|Z = z), (12)

g̃−1
1 (y) = P(Y ≤ y, D = 1|Z = 1) + inf

y′∈Ω+
01(y)

P(Y ≤ y′, D = 0|Z = 1), (13)

g̃−1
0 (y) = P(Y ≤ y, D = 0|Z = 1) + sup

y′∈∆+
01(y)

P(Y ≤ y′, D = 1|Z = 1), (14)

where p(z) = P(D = 1|Z = z).

The theorem is proved by the following three steps.

A.1. Step 1: Show that g̃d(y) are non-decreasing left-continuous. We have to show here that

g̃−1
1 (y) is non-decreasing right-continuous function. Indeed, we can show that g̃−1

1 (y) is a well

defined CDF.

(1) g̃−1
1 (y) is a non-decreasing function.

y1 < y′1 ⇒ Ω+
01(y

′
1) ⊆ Ω+

01(y1) ⇒ infỹ1∈Ω+
01(y1)

P(Y ≤ ỹ1, D = 0|Z = 1) ≤

infỹ′1∈Ω+
01(y

′
1)

P(Y ≤ ỹ′1, D = 0|Z = 1)⇒ g̃−1
1 (y1) ≤ g̃−1

1 (y′1).

(2) It is readily verifiable that limy→y g̃−1
1 (y) = 0 and limy→y g̃−1

1 (y) = 1 where y and y are

the bounds of Y .

(3) Right-continuous. Since the first term in the definition of g̃−1
1 is right continuous by con-

struction, it remains to verify that the second term is right continuous. Let yn be a sequence

such that yn ↓ y.

To simplify notation, define A(y′) = P(Y ≤ y′, D = 0|Z = 1), B(y′) = P(Y ≤

y′, D = 0|Z = 0)−P(Y ≤ y′, D = 0|Z = 1), and C(y) = P(Y ≤ y, D = 1|Z = 1)−

P(Y ≤ y, D = 1|Z = 0). We want to show that infy′∈Ω+
01(yn)

A(y′)→ infy′∈Ω+
01(y)

A(y′),
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where

Ω+
01(y) =

{
y′ ∈ Y : B(y′) ≥ C(y)

}
.

Write Ωn = Ω+
01(yn). Notice that A(·), B(·) and C(·) are all right-continuous. We also

know from Equations (5) and (6) that A(·), B(·) and C(·) are non-decreasing.

Since yn ↓ y, C(·) is a non-decreasing and right continuous, we have C(yn) ↓ C(y),

which implies that Ω1 ⊆ Ω2 ⊆ · · · ⊆ Ωn · · · ⊆ Ω. Since B(·) is right continuous and

non-decreasing, we know each Ωn must take the form of Ωn = [tn, y], where y is the upper

boundary of Y (can be ∞). Let Ω+
01(y) = [t, y]. Since tn is a monotonically decreasing

sequence and is bounded below by t, it must be a convergent sequence. Let t∗ be its limit.

If B(·) is continuous at t, it is straightforward to see that t∗ = t. If t is a jumping point

of B(·), since B(·) is right continuous, there must exists a N such that for all n > N,

tn = t⇒ t = t∗. So regardless in which case we always have t = t∗. Therefore tn ↓ t.

Now we are ready to verify that infy′∈[tn,y] A(y′)→ infy′∈[t,y] A(y′). Since A(·) is non-

decreasing, we must have infy′∈[tn,y] A(y′) = A(tn)→ A(t) = infy′∈[t,y] A(y′), where the

convergence holds by the right continuity of A(·).

The proof that g̃−1
0 (y) is a well defined CDF can be similarly derived.

A.2. Step 2: Show that (Ũ, Ṽ) is a well defined copula. Now we proceed and prove that (Ũ, Ṽ)

is a well defined copula. We begin by proving it is well defined subcopula.

Definition 1. A two-dimentional subcopula (or brief subcopula) is a function C with the following

properties (Nelsen, 2006):

(1) Domain(C)=D1 × D2, where D1 and D2 are subsets of [0, 1] containing 0 and 1.

(2) C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2) ≥ 0, for all u1, u2 ∈ D1 and v1, v2 ∈ D2

such that u1 ≥ u2 and v1 ≥ v2.

(3) C(u, 1) = u and C(1, v) = v for all u ∈ D1 and for all v in D2.

By Nelsen (2006), it is sufficient to show that C(g̃−1
d (y), p(z)) ≡ P(Ũ ≤ g̃−1

d (y), Ṽ < p(z))

is a well-defined subcopula on S1 × S2 where S1 = ∪(y0,y1)∈Y×Y{g̃
−1
0 (y0), g̃−1

1 (y1)} ∪ {0, 1}

Property 1 and 3 holds straightforwardly by construction. It remains to verify property 2.

We consider the following cases:
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(1) g̃−1
1 (y′1) ≥ g̃−1

1 (y1) and p(1) ≥ p(0).

C(g̃−1
1 (y′1), p(1))− C(g̃−1

1 (y′1), p(0))− C(g̃−1
1 (y1), p(1)) + C(g̃−1

1 (y1), p(0))

= P(y1 < Y ≤ y′1, D = 1|Z = 1)−P(y1 < Y ≤ y′1, D = 1|Z = 0) ≥ 0.

The last inequality holds due to equation (6).

(2) g̃−1
0 (y′0) ≥ g̃−1

0 (y0) and p(1) ≥ p(0).

C(g̃−1
0 (y′0), p(1))− C(g̃−1

0 (y′0), p(0))− C(g̃−1
0 (y0), p(1)) + C(g̃−1

0 (y0), p(0))

= P(y0 < Y ≤ y′0, D = 0|Z = 0)−P(y0 < Y ≤ y′0, D = 0|Z = 1) ≥ 0.

The last inequality holds due to equation (5).

(3) g̃−1
1 (y1) ≥ g̃−1

0 (y0) and p(1) ≥ p(0).

C(g̃−1
1 (y1), p(1))− C(g̃−1

1 (y1), p(0))− C(g̃−1
0 (y0), p(1)) + C(g̃−1

0 (y0), p(0))

= [P(Y ≤ y1, D = 1|Z = 1)−P(Y ≤ y1, D = 1|Z = 0)]

− [P(Y ≤ y0, D = 0|Z = 0)−P(Y ≤ y0, D = 0|Z = 1)] = −H(y0, y1) ≥ 0.

The last inequality is proved in Claim 1.

(4) g̃−1
0 (y0) ≥ g̃−1

1 (y1) and p(1) ≥ p(0).

C(g̃−1
0 (y0), p(1))− C(g̃−1

0 (y0), p(0))− C(g̃−1
1 (y1), p(1)) + C(g̃−1

1 (y1), p(0))

= [P(Y ≤ y0, D = 0|Z = 0)−P(Y ≤ y0, D = 0|Z = 1)]−

[P(Y ≤ y1, D = 1|Z = 1)−P(Y ≤ y1, D = 1|Z = 0)] = H(y0, y) ≥ 0.

The last inequality is proved in Claim 2.

A.3. Step 3: Show that (Ũ, Ṽ) ⊥ Z. Since by construction, for each tuple (y, d, z), the quantity

P(g̃d(Ũ) ≤ y, Ṽ < p(z)|Z) does not depend on Z. The independence assumption is satisfied

straightforwardly.

A.4. Proof of Claims.
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Claim 1. If g̃−1
1 (y1) ≥ g̃−1

0 (y0) and p(1) ≥ p(0), then H(y0, y1) ≤ 0.

Proof. By definition of g̃−1
d , we have

g̃−1
1 (y0)− g̃−1

0 (y1) =

P(Y ≤ y1, D = 1|Z = 1)− sup
y′∈∆+

01(y0)

P(Y ≤ y′, D = 1|Z = 0)


−
[

P(Y ≤ y0, D = 0|Z = 0)− inf
y′∈Ω+

01(y1)
P(Y ≤ y′, D = 0|Z = 1)

]
≡ T (y1, y

0
(y0), y0, y1(y1)) ≥ 0.

Case 1: supy′∈∆+
01(y0)

P(Y ≤ y′, D = 1|Z = 0) ≥ P(Y ≤ y1, D = 1|Z = 0) and P(Y ≤

y0, D = 0|Z = 1) ≥ infy′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z = 1). In this case, we have

H(y0, y1) =
[
P(Y ≤ y0, D = 0|Z = 0)−P(Y ≤ y0, D = 0|Z = 1)

]
−
[
P(Y ≤ y1, D = 1|Z = 1)−P(Y ≤ y1, D = 1|Z = 0)

]
≤
[
P(Y ≤ y0, D = 0|Z = 0)− inf

y′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z = 1)
]

−
[
P(Y ≤ y1, D = 1|Z = 1)− sup

y′∈∆+
01(y0)

P(Y ≤ y′, D = 1|Z = 0)
]

= −T (y1, y
0
(y0), y0, y1(y1)) ≤ 0.

Case 2: supy′∈∆+
01(y0)

P(Y ≤ y′, D = 1|Z = 0) < P(Y ≤ y1, D = 1|Z = 0) or P(Y ≤ y0, D =

0|Z = 1) < infy′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z = 1). In this case, we have

P(Y ≤ y1, D = 1|Z = 0) > sup
y′∈∆+

01(y0)

P(Y ≤ y′, D = 1|Z = 0)

⇒ y1 /∈ ∆+
01(y0)⇒ H(y0, y1) < 0.

or

P(Y ≤ y0, D = 0|Z = 1) < inf
y′∈Ω+

01(y1)
P(Y ≤ y′, D = 0|Z = 1)

⇒ y0 /∈ Ω+
01(y1)⇒ H(y0, y1) < 0. �
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Claim 2. If g̃−1
1 (y0) ≥ g̃−1

1 (y1) and p(1) ≥ p(0), then H(y0, y1) ≥ 0.

Proof.

g̃−1
0 (y0)− g̃−1

1 (y1) =

[
P(Y ≤ y0, D = 0|Z = 0)− inf

y′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z = 1)

]

−

P(Y ≤ y1, D = 1|Z = 1)− sup
y′∈∆+

01(y0)

P(Y ≤ y′, D = 1|Z = 0)


≡ H(y1, y

0
(y0), y0, y1(y1)) ≥ 0.

Case 1: supy′∈∆+
01(y0)

P(Y ≤ y′, D = 1|Z = 0) ≤ P(Y ≤ y1, D = 1|Z = 0) and P(Y ≤

y0, D = 0|Z = 1) ≤ infy′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z = 1). In this case, we have

H(y0, y1) =
[
P(Y ≤ y0, D = 0|Z = 0)−P(Y ≤ y0, D = 0|Z = 1)

]
−
[
P(Y ≤ y1, D = 1|Z = 1)−P(Y ≤ y1, D = 1|Z = 0)

]
≥
[
P(Y ≤ y0, D = 0|Z = 0)− inf

y′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z = 1)
]

−
[
P(Y ≤ y1, D = 1|Z = 1)− sup

y′∈∆+
01(y0)

P(Y ≤ y′, D = 1|Z = 0)
]

= H(y1, y
0
(y0), y0, y1(y1)) ≥ 0.

Case 2: supy′∈∆+
01(y0)

P(Y ≤ y′, D = 1|Z = 0) > P(Y ≤ y1, D = 1|Z = 0) or P(Y ≤ y0, D =

0|Z = 1) > infy′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z = 1). Suppose the latter is true, that is,

P(Y ≤ y0, D = 0|Z = 1) > inf
y′∈Ω+

01(y1)
P(Y ≤ y′, D = 0|Z = 1)

We will argue that it must be the case that y0 ∈ Ω+
01(y1). We prove it by contradiction.

Suppose y0 /∈ Ω+
01(y1). Since by the previous argument (as in step 1) we know Ω+

01(y1)

take a form of [t, y], then y0 /∈ Ω+
01(y1)⇒ y0 < t. Since P(Y ≤ ·, D = 0|Z = 1) is right

continuous and non-decreasing, it is necessary that infy′∈Ω+
01(y1)

P(Y ≤ y′, D = 0|Z =

1) = P(Y ≤ t, D = 0|Z = 1). Since y0 < t, we must have

P(Y ≤ y0, D = 0|Z = 1) ≤ inf
y′∈Ω+

01(y1)
P(Y ≤ y′, D = 0|Z = 1),
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which is a contradiction. Therefore we must have y0 ∈ Ω+
01(y1), or alternatively by the

definition of Ω+
01(y1), H(y0, y1) ≥ 0.

By similar argument, we can show that if supy′∈∆+
01(y0)

P(Y ≤ y′, D = 1|Z = 0) >

P(Y ≤ y1, D = 1|Z = 0) is true, we must have H(y0, y1) ≥ 0 too. �

Claim 3. Inequality (3) holds.

Proof. We restate Inequality (3) here:

P(Y ≤ y, D = 1|Z = 1) + inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = 1)

≤ P(Y ≤ y, D = 1|Z = 0) + inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = 0).

Note first that

P(Y ≤ y, D = 1|Z = 1)−P(Y ≤ y, D = 1|Z = 0) = P(Y1 ≤ y, p(0) < V ≤ p(1)) (15)

On the other hand,

inf
y′∈Ω+

01(y)
P(Y ≤ y′, D = 0|Z = 0)− inf

y′∈Ω+
01(y)

P(Y ≤ y′, D = 0|Z = 1)

= inf
y′∈Ω+

01(y)
P(Y0 ≤ y′, V > p(0))− inf

y′∈Ω+
01(y)

P(Y0 ≤ y′, V > p(1))

= inf
y′∈Ω+

01(y)

{
P(Y0 ≤ y′, V > p(0))− inf

y′∈Ω+
01(y)

P(Y0 ≤ y′, V > p(1))

}
≥ inf

y′∈Ω+
01(y)

{
P(Y0 ≤ y′, V > p(0))−P(Y0 ≤ y′, V > p(1))

}
= inf

y′∈Ω+
01(y)

P(Y0 ≤ y′, p(0) < V ≤ p(1)) ≥ P(Y1 ≤ y, p(0) < V ≤ p(1)).

where the last inequality holds by the definition of Ω+
01(y) and Equation (2).

A similar result holds if we incorporate additional covariates X. �
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