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Abstract

I develop a directed search model of the labor market in which firms choose a re-
cruiting intensity, determining the number of applicants they will interview. Interviewing
applicants is costly but reveals their productivity, allowing the firm to hire better workers.
I characterize the equilibrium and find that the uniqueness and cyclicality of recruiting
intensity crucially depend on parameter values. Calibration of the model to the US labor
market indicates a multiplicity of the equilibrium. An increase in aggregate productivity—
given selection of a particular equilibrium—causes recruiting intensity to move counter to
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1 Introduction

1.1 Motivation and Summary

The process by which workers and firms match in the labor market is a complex one, with either
side of the market facing numerous choices and trade-offs. Search models of the labor market
based on the Diamond-Mortensen-Pissarides framework have traditionally abstracted from
most of these choices. They restrict attention to agents’ participation decisions by modeling
this process with an aggregate matching function which solely depends on the ratio of the
number of vacancies to the number of unemployed. Although this approach has been very
fruitful for improving our understanding of modern labor markets, recent quantitative work
has emphasized the need for richer models. For example, Davis et al. (2013) argue that firms’
recruiting intensity varies over the business cycle, counter to unemployment. As they explain,
focusing exclusively on the number of vacancies ignores the fact that firms may increase their
hiring probability if they “increase advertising or search intensity per vacancy, screen applicants
more quickly, relax hiring standards, improve working conditions, and offer more attractive
compensation to prospective employees.”

The strategic use of wages plays a central role in models of directed search, pioneered by
Moen (1997), but screening decisions and hiring standards are still relatively unexplored in the
search literature.1 This is somewhat surprising, because firms spend considerable resources
deciding which of their applicants they wish to hire. The Employment Opportunities Pilot
Projects (EOPP) data set, which I discuss in detail in section 4, indicates that US firms re-
cruiting for low-skilled jobs in the early eighties on average received 14 applications, conducted
5 interviews and made 1.2 job offers per vacant position, spending a total of 6 hours on the
process. Burks et al. (2013) report that a high-tech firm with 1.4 million applicants between
2003 and 2011 subjected 10% to a series of interviews and made a job offer to 0.5%. The
absence of a micro-founded equilibrium model in the literature means that various important
questions regarding these decisions remain unanswered. For example, what are the trade-offs
that firms face in their recruiting decisions? Does firms’ recruiting intensity move counter to
unemployment in response to changes in aggregate conditions, such as a productivity shock?

This paper aims to shed light on these questions by extending a standard directed search
model of the labor market with meaningful recruiting decisions for firms. That is, in addition
to workers’ compensation, each firm chooses a recruiting intensity, determining how many
applicants it will interview.2 The primary reason for firms to interview applicants is an infor-
mation friction: applicants differ in their productivity and a firm can learn this productivity

1See section 1.2 for a literature review.
2Hence, unlike Davis et al. (2013), I reserve the terminology “recruiting intensity” for firms’ interviewing

decisions and treat workers’ compensation as a separate choice. I maintain the standard assumption of one
vacancy per firm, because firms’ choice of how many vacancies to create has already been analyzed in detail
by Kaas and Kircher (2013).
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only through a job interview. A larger number of interviews allows a firm to rank more appli-
cants and therefore hire better workers, but comes at a higher cost, capturing the idea that
each interview requires time or effort.

In this environment, I characterize equilibrium, derive a rich set of empirical predictions
and analyze the above questions. I find that the answers crucially depend on the details of the
environment. First, a productivity shock has a direct effect and an indirect effect on recruiting
intensity, which work through in increase in the marginal gains of an extra interview for a given
number of applicants and a change in the number of applicants itself, respectively. Depending
on parameter values, these effects may strengthen or partially offset each other, making the
total effect an empirical question. Second, for certain parameter values, the equilibrium may
not be uniquely determined, in which case shocks to the equilibrium selection rule can be an
additional source of fluctuations in recruiting intensity and unemployment.

The complexity of the equilibrium prevents a precise analytical characterization of these
effects. In order to make progress, I therefore demonstrate how the model can be calibrated
using data on firms’ recruiting process. Although the lack of nationally representative data im-
plies that the results should be interpreted with care, they indicate that the equilibrium is not
unique. An increase in aggregate productivity—given selection of a particular equilibrium—
causes recruiting intensity to move counter to unemployment, while a shock to the equilibrium
selection rule predicts the opposite pattern.

Having provided a rough outline, I now describe the environment and the main results in
more detail. As I discuss in section 2, I consider a directed search model of the labor market
with a continuum of workers and free entry of firms, each with one vacancy. Workers choose a
search intensity, determining the number of applications that they can send, while firms choose
a recruiting intensity, determining the number of interviews that they can conduct. Firms
have the ability to post information about their terms of trade and their recruiting intensity,
helping workers to direct their applications to the firms that offer the highest expected payoff.
However, frictions arise because search and recruiting are costly and because agents cannot
coordinate their actions. As a result, the number of applications that a firm receives is a
random variable with a distribution that depends on the firm’s announcement. Subsequently,
each firm interviews a number of applicants, consistent with its choice of recruiting intensity.
It learns their productivity and ranks them by their profitability in order to make job offers.

In section 3, I first analyze recruiting decisions for the special case in which each worker
sends one application per period, as standard in the literature on directed search. I show that
a unique equilibrium exists and that this equilibrium is constrained efficient. In equilibrium,
all firms choose the same level of recruiting intensity and will generically interview multiple
but not all applicants, balancing the cost of an extra interview with the gain of potentially
finding a better match. Each firm will make a job offer to its most productive interviewee, as
long as his productivity exceeds an endogenous threshold, and—because each worker has only
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one chance to match—this job offer is always accepted
In this environment, an increase in aggregate productivity has two opposing effects on

firms’ recruiting intensity. First, there is a direct effect; given a number of applicants, the
productivity shock increases firms’ payoff of a match, which causes firms to choose a higher
recruiting intensity. At the same time however, the productivity shock encourages firm entry,
reducing the number of applicants at each firm. This indirect effect causes firms to choose a
lower recruiting intensity, as the number of interviews is necessarily bounded by the number
of applicants. Hence, the sign of the total impact is ambiguous.

For the magnitude of both the direct effect and the indirect effect, the assumption that
workers search for one job at a time clearly matters. If workers apply to multiple jobs simulta-
neously, they may get multiple job offers and reject all except the best. This potential rejection
of job offers may strengthen the direct effect, since a small number of interviews no longer
yields a good match with sufficiently high probability, or weaken it, as an extra interview is
less likely to result in a better match. Likewise, the way in which workers change their search
intensity in response to the productivity shock may strengthen or weaken the indirect effect
by increasing or decreasing the expected number of applicants for each firm.

These considerations are important, because the assumption that workers send a single
application per period might be pervasive and analytically convenient, it is also inconsistent
with various empirical facts. For example, 2012 data from CareerBuilder.com, the largest US
employment website, indicates that workers send on average 5.0 applications on days on which
they apply at least once.3 Further, a recent survey by the website among recruiters indicates
that although candidates decline job offers relatively infrequently (less than 10%), the main
reason for them to do so is because they received another offer (CareerBuilder, 2014).

In the second part of section 3, I therefore relax the assumption that workers apply for one
job at a time by embedding the recruiting dimension into a model of multiple applications,
in the spirit of Galenianos and Kircher (2009) and Kircher (2009). As in their models, wage
dispersion arises. Hence, a worker choosing a higher search intensity incurs a higher cost, but
reduces his risk of not getting any job offer and—conditional on getting an offer—increases his
chances of finding a job with a high payoff. For firms, the introduction of simultaneous search
changes their trade-offs in non-trivial ways. In equilibrium, firms posting different terms of
trade choose different recruiting intensities, but the relationship is not necessarily monotonic.
Interestingly, equilibrium may not be unique if the cost of recruiting is sufficiently large. This
implies that, in addition to productivity shocks, shocks to the equilibrium selection rule may
be a second source of fluctuations in recruiting intensity and unemployment. Since these
shocks are potentially more persistent than shocks to aggregate productivity, understanding

3I thank Ioana Marinescu and Roland Rathelot for this information. A detailed description of the data can
be found in Marinescu and Rathelot (2014). Kudlyak et al. (2012) and Faberman and Kudlyak (2014) provide
similar evidence of simultaneous search with data from the job search engine SnagAJob, which specializes in
hourly jobs.
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their respective implications is important.
In section 4, I therefore discuss how the model can be calibrated using aggregate matching

and recruiting information from the Current Population Survey (CPS) and the EOPP data
set. I show that while the model with one application per worker cannot match the data, the
model with multiple applications does a good job and yields reasonable empirical predictions.
The calibrated parameter values imply that the equilibrium is not unique. Using these values,
I do two counterfactual experiments. First, I analyze the effects of an increase in aggregate
productivity and find that—given selection of a particular equilibrium—it leads to a higher
recruiting intensity for firms and, not surprisingly, a reduction in unemployment. Hence, re-
cruiting intensity moves counter to unemployment in this case. Second, I study the effect of
a shock to the equilibrium selection rule, causing agents to play a different equilibrium. The
shock worsens the frictions in the market and although firms increase their recruiting inten-
sity to compensate for this, unemployment increases. Hence, recruiting intensity moves with
unemployment in this case. Hence, although better data is required for a definite conclusion,
productivity shocks appear to be a better explanation of procyclical movements in recruiting
intensity than shocks to the equilibrium selection rule.

Section 5 discusses some of the key assumptions and their impact on the results. In
addition, it analyzes constrained efficiency of the equilibrium. Finally, section 6 concludes and
the appendix contains all proofs as well as extra details about the calibration.

1.2 Related Literature

This paper contributes to multiple strands of literature. First, this paper adds to the literature
on interviewing decisions by firms. Most papers in this literature are primarily empirical and
use partial equilibrium models; Barron et al. (1985), Barron et al. (1987) and Burdett and
Cunningham (1998) study the determinants of firms’ recruiting decisions with the EOPP
data, while van Ours and Ridder (1992, 1993) and Abbring and van Ours (1994) analyze
Dutch recruiting data and find evidence for simultaneous rather than sequential search by
firms. Equilibrium models of job interviews appear to be limited to Villena-Roldan (2012),
who studies how interview costs affect inequality. Relative to his work, I emphasize a different
question and present a model which features search intensity decisions for workers and active
competition among firms.

Also related are papers that abstract from interviewing decisions, but introduce an inten-
sive margin to firms’ strategy in a different manner. For example, Pissarides (2000) analyzes
recruiting intensity in a reduced-form way in a random search model and finds that the equi-
librium intensity is independent of any aggregate variable. Kaas and Kircher (2013) present a
model with large firms and interpret recruiting intensity as the decision how many vacancies
to create, which they show to be procyclical.
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At a technical level, this paper adds to the directed search literature. The papers in
this literature have explored various assumptions regarding the process that governs meetings
between workers and firms. For example, Moen (1997) and Acemoglu and Shimer (1999) con-
sider bilateral meetings; Shi (2001, 2002, 2006) and Shimer (2005a) use an urn-ball meeting
technology in which each worker applies to one firm and each firm faces a Poisson number
of applicants; and recent work by Albrecht et al. (2006), Galenianos and Kircher (2009) and
Kircher (2009) study extensions of the urn-ball framework by allowing workers to apply to
multiple firms. However, in all of these specifications, the number of workers that a firm
can contact is exogenously determined and equal to either 1 or the Poisson number of appli-
cants.4 This paper contributes by making the number of interviews that the firm conducts an
endogenous choice.5

2 Model

2.1 Setting

Agents. Consider a one-period labor market with a mass s of workers and a positive measure
v of firms, determined by free entry. Both types of agents are risk-neutral. All workers supply
one indivisible unit of labor, while each firm has a position that can be filled by exactly one
worker. As standard in the literature, agents are restricted to symmetric and anonymous
strategies.

Timing. The interaction between workers and firms takes place in a number of subsequent
phases. First, firms create vacancies and post contracts during the entry phase. After observing
all posted contracts, workers choose their search intensity and send job applications during
the search phase. Upon receiving these applications, firms interview a number of applicants
during the recruitment phase. Matches are formed during the matching phase, after which
output is produced in the production phase.

Entry. In the entry phase, firms can enter the market and create a vacancy at cost kV >

0. Each entering firm makes two irreversible decisions. The first decision is a recruiting
intensity r ∈ R ≡ [0,∞), while the second decision concerns the terms of trade with a match,
summarized by w ∈ W ≡ [0, 1]. To simplify exposition, I will often refer to a combination of
r and w as—for lack of a better term—a contract, denoted by c = (r, w) ∈ C ≡ R ×W. All

4Note that this distinction does not coincide with the distinction between bilateral and urn-ball, since some
urn-ball models require firms to randomly select one applicant (e.g. Shi, 2001; Albrecht et al., 2006; Galenianos
and Kircher, 2009; Gautier and Wolthoff, 2009).

5The fact that meeting 1 or all applicants are feasible choices for the firms in my model does not necessarily
imply that the cited papers are nested. They generally differ along other dimensions and generate many insights
that cannot directly be obtained from my model.
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identical contracts will be treated symmetrically by workers and are therefore said to form a
submarket.

Recruiting Intensity. A firm’s recruiting intensity r can be interpreted as a measure for
the amount of time or resources that the firm will spend on interviewing workers. A higher
value of r increases the probability that the firm will hire a very productive worker, as I will
explain below, but is also more costly. I assume that the cost of a recruiting intensity r equals
kRr ≥ 0. The assumption that a firm chooses r before learning its number of applicants or
their types captures the idea that the firm needs to hire a number of recruiters (or sign a
contract with a recruiting agency) before knowing how successful its search for a worker is
going to be.

Terms of Trade. The terms of trade specify how output will be divided between the firm
and the worker that it hires. I assume that the firm compensates its hire for the value of
unemployment and additionally pays him a fraction w of the match surplus.6 This guarantees
that a firm and a worker will match only if the match surplus is non-negative and that firms
prefer more productive over less productive workers. As I discuss in section 5, efficiency at the
aggregate level may require transfers between agents that do not match (such as application
fees) for some parameter values. In line with most of the literature, I do not consider such
transfers as we rarely observe them in real life, presumably because they could create incentives
for ‘fake’ vacancies to arise.7

Search. At the beginning of the search phase, unemployed workers observe the contract
of each firm, allowing them to direct their search.8 Workers initiate contact with the firms
by sending applications. I assume the following structure. Each unemployed worker chooses
a search intensity α ∈ A ≡ [0,∞) at cost kAα. This search intensity can be interpreted
as a measure for the time the worker allocates to job search and it determines the number
of applications that he can send. However, the relation between search intensity α and the
number of applications a can be stochastic, e.g. because of randomness in the time it takes to

6Alternatively, one could allow the firm to post a menu of wages, one for each productivity type, but risk-
neutrality implies that workers only care about their expected payoff and the assumption of a surplus-sharing
rule is notationally more convenient. Note that this structure resembles the outcome of Nash bargaining,
common in random search models (see e.g. Pissarides, 2000), except that w is now an endogenous variable
instead of an exogenous parameter representing the worker’s bargaining power.

7Albrecht et al. (2006) and Galenianos and Kircher (2009) are examples of models in which application fees
could improve welfare, but are ruled out by assumption. See Lester et al. (2014) for a detailed discussion of
when application fees are useful.

8The assumption that workers also observe recruiting intensity is convenient but not crucial. One can
alternatively assume that workers observe the expected productivity of the worker that the firm will hire (in
addition to the terms of trade). A formal discussion of this issue requires more notation and is therefore
postponed to section 5.1.
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apply to a particular position.9

Specifically, given a search effort α, a worker can send a ∈ {1, . . . , A} applications with
probability pa (α) , where A is a potentially large but finite integer. I explore two variations
of the search process. First, I restrict workers to send one application, i.e. A = 1 and
p1 (α) = 1 for all α. Subsequently, I relax this assumption by allowing workers to send multiple
applications, A > 1. To make α interpretable as a search intensity in that case, I assume that
the cumulative distribution Pa (α) =

∑a
i=1 pi (α) satisfies first-order stochastic dominance in

α. Further, I assume p1 (0) = 1, pA (∞) = 1 and pa (α) ∈ (0, 1) for all a ∈ {1, . . . , A} and
0 < α <∞.10

Productivity. After the applications have been sent, the productivity x of each potential
match is realized, independently across all firm-applicant pairs. An applicant is unqualified
for the job with probability 1− q ∈ [0, 1), in which case his productivity x equals zero. With
probability q, the applicant is qualified and his productivity is a draw from a distribution Q (x)

with support X ≡ (0, x) ⊂ (0,∞).11

Recruitment. The recruitment phase consists of two parts. First, firms costlessly observe
whether applicants are qualified or not, allowing them to eliminate all applicants with x = 0.
Second, the firm interviews a number of qualified applicants. An interview is a prerequisite for
hiring and allows firms to learn the productivity x of a match with the applicant. Applicants
with productivity below an endogenous threshold x generate a negative payoff for the firm and
will therefore not be offered the job, even if no other applicants are present at the firm.

The number of interviews nR that a firm can conduct (its ‘interview capacity’) depends
on its choice of recruiting intensity r. To be precise, I assume that nR follows a geometric
distribution with parameter r

r+1 ∈ [0, 1], such that the probability that a firm can interview

nR ∈ N1 ≡ {1, 2, . . .} applicants is given by
(

r
r+1

)nR−1 1
r+1 and the expected capacity is

exactly one more than the firm’s recruiting intensity, E [nR] = r + 1.12 The actual number
of interviews taking place then equals min {nQ, nR}, where nQ ∈ N0 ≡ {0, 1, . . .} is the firm’s
number of qualified applicants. Since a worker’s productivity is unknown ex ante, the firm
randomly selects nR qualified applicants for an interview if nQ > nR. The firm rejects all
applicants which it does not interview or which are too unproductive.

9A key advantage of this approach is that it avoids optimization over a discrete variable. See Kaas (2010)
for a related setup in a random search model.

10Allowing one application at zero cost (by choosing α = 0) is not crucial, but avoids that a high kA dissuades
workers from applying and the market collapses.

11Theoretically, not much insight is lost by setting q = 1. Allowing for q < 1 is important when confronting
the model with the data in section 4.

12Allowing firms to interview one candidate at zero cost (by choosing r = 0) eliminates cases without trade,
but is otherwise not crucial for the results.
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The randomness in the interview capacity is useful because it results in relatively simple
expressions for matching probabilities, as I will show in section 2.2. It can be motivated as
follows. Firms can generally roughly determine the number of applicants that they will be
able to interview by hiring more or fewer recruiters. However, the exact number of interviews
may also depend on factors that could not be anticipated. For example, some recruiters may
unexpectedly not be available, or the screening of a candidate takes longer or shorter than
foreseen.

Matching. In order to understand the mechanism that governs matching, consider workers
and firms as nodes in a bipartite network, connected by links representing interviews. Firms’
preferences over workers are determined by their productivities x. I assume that workers do not
learn their own productivity before matches have been formed. This guarantees that workers’
preferences over firms only depend on the terms of trade w, which considerably simplifies the
equilibrium analysis.13 The matching is then assumed to be stable on this network in the
sense that no firm matches with a worker with productivity x ≥ x while one of its preferred
interviewed applicants (i.e. with higher productivity) is hired by another firm at worse terms
of trade w or remains unemployed. Otherwise, both the firm and the worker could do better
by forming a match together. Stability can be motivated by a process in which firms offer their
job sequentially to the candidates, and workers are free to reconsider their options.14 Ties are
broken randomly.

Production. In the last phase, production takes place and payoffs are realized. Unemployed
workers receive a payoff U0 from unemployment benefits and/or household production, while
firms with vacancies obtain a zero payoff. A match with productivity x produces an output
U0 + S (x), where S (x) denotes the surplus created by the match. Surplus is continuous and
strictly increasing in x.15 To rule out trivial cases, I assume throughout that matches with
sufficiently low x generate a negative surplus while matches with sufficiently high x generate a
positive surplus, i.e. S (0) < 0 and S (x) > 0. Given terms of trade w, the payoff of a matched
worker equals U0 + wS (x), while the firm for which he works obtains (1− w)S (x).

13As I discuss in more detail below, this assumption implies that the equilibrium has a convenient recursive
structure, which is lost if workers know their x and may accept a job with a low w but a high x over a job with
a high w but a low x. One can interpret the assumption as a convenient way to model the idea that workers
starting a new job may know the expected value of the match, but generally face some uncertainty regarding
its exact realization (in reality, for example because of uncertainty regarding match duration or wage growth).

14This deferred acceptance process, first described by Gale and Shapley (1962), converges in finite time for
finite economies. Since the labor market described here contains a continuum of agents, I impose stability by
assumption, following Kircher (2009).

15When analyzing the cyclicality of recruiting intensity in section 3 and 4, I will assume that a change in
aggregate productivity causes a vertical shift in S (x).
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2.2 Strategies, Queue Lengths, and Payoffs

Firms’ Strategies. Each firm faces a number of decisions: whether to enter the market
or not, which contract to post, and to which applicant to make a job offer. The first and
last decision are straightforward: entry will take place as long as the expected payoff of entry
is positive and the firm will always try to hire the best applicant possible as long as his
productivity x is high enough to create a positive surplus, i.e. x ≥ x, where x solves S (x) =

0. The optimal contract is less trivial and will be derived below. Denote the equilibrium
distribution of contracts by F and its support by CF ⊆ C.

Workers’ Strategies. Workers make three decisions: which search intensity to choose, to
which contracts to apply, and which job offer to accept. Denote the equilibrium distribution
of search intensity by H (α) and its support by AH . Each search intensity translates into a
number of applications a. Conditional on this number, a worker solves a portfolio problem to
determine to which firms he wishes to apply. By the anonymity assumption, his solution to
this problem can be summarized by the a contracts to which he applies, i.e.,

ca = (c1:a, . . . , ca:a) = ((r1:a, w1:a) , . . . , (ra:a, wa:a)) ,

where, without loss of generality, w1:a ≤ . . . ≤ wa:a. Although workers send their appli-
cations simultaneously, it will occasionally be convenient to refer to the application to ci:a
as a worker’s i-th application.16 Conditional on a, let the distribution of workers’ appli-
cation strategies be denoted by Ga with support CGa , such that Ga (c̃a) is the joint proba-
bility P [r1:a ≤ r̃1:a, w1:a ≤ w̃1:a, . . . , ra:a ≤ r̃a:a, wa:a ≤ w̃a:a]. Likewise, let Gi:a represent the
marginal distribution of a worker’s i-th application with support CGi:a.

Acceptance Probability. After receiving job offers, workers take the position that provides
them with the best terms of trade; assume—again without loss of generality—that they accept
the job offer from the application with the higher index in case of a tie. Let ξi:a (ca) denote the
probability that a worker with application portfolio ca accepts a job offer from a firm posting
ci:a, conditional on receiving such a job offer. From the point of view of q firm posting c, the
probability that its job offer gets accepted depends on the distribution of i and a among the
applicants it attracts. Let pi:a (c) be the conditional probability that an arbitrary applicant
to the firm applied with his i-th out of a applications and let G−i:a (c−i:a; c) the conditional
distribution of his remaining applications c−i:a = (c1:a, . . . , ci−1:a, ci+1:a, . . . , ca:a). The firm’s

16Numbering applications from the lowest wage to the highest wage is convenient, as it will turn out that
workers who only send a few applications will send them to low wages.
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offer will then be accepted with probability

Ξ (c) =

A∑
a=1

a∑
i=1

pi:a (c)

ˆ
ξi:a (ca) dG−i:a (c−i:a; c) . (1)

Gross Queue Length. As well-known in the literature on urn-ball models, the number of
applications that a firm receives follows a Poisson distribution. The endogenously determined
mean of this distribution, which I call the gross queue length and denote by λ (c), equals the
ratio of the total number of applications sent to c to the total number of firms offering c.
Formally, for c = (r, w), λ (c) is defined by

ˆ
[1,r]×[0,w]

λ (c̃) d [vF (c̃)] = s

ˆ
AH

A∑
a=1

pa (α)
a∑
i=1

Gi:a (c) dH (α) ∀c ∈ C. (2)

The right-hand side denotes the total mass of applications sent to contracts with terms of trade
no higher than w and a recruiting intensity no higher than r. The left-hand side integrates
queue lengths across all vF (r, w) firms posting such contracts, yielding the total mass of
applications received by these firms. Both masses need to be the same for each possible r and
w.17

Net Queue Length. A firm does not only care about the number of applicants, but also
about their productivity and whether they will accept a potential job offer. Given a gross
queue λ, the number of applicants with productivity greater than x > 0 and without better
offers follows a Poisson distribution as well.18 Its mean µ (x;λ, c), the net queue length, satisfies

µ (x;λ, c) = λΞ (c) q (1−Q (x)) ≤ λ. (3)

Effective Queue Length. A firm will hire a worker with productivity greater than x ∈ [x, x]

if and only if it is able to identify a worker from the corresponding net queue among its total
number of qualified applicants. To derive an expression for the probability of this event, it
is helpful to define a third queue length, the effective queue length κ (x;λ, c), as the weighted
average of qλ and µ (x;λ, c), with 1

r+1 and r
r+1 being the respective weights. That is,

κ (x;λ, c) =
1

r + 1
qλ+

r

r + 1
µ (x;λ, c) . (4)

Job Offer and Hiring Probability. Despite the complexity of the model, the follow-
ing proposition then establishes that simple expressions can be derived for two key endoge-
nous variables, which greatly improves tractability. These variables are i) a firm’s probability

17See Kircher (2009) for a detailed discussion of a similar expression.
18Lester et al. (2014) discuss this property of the Poisson distribution (which they call invariance) in detail.
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η (x;λ, c) of hiring a worker with productivity exceeding x > 0; and ii) a worker’s probability
ψ (x;λ, c) of receiving a job offer after drawing a match-specific productivity x > 0. To be
precise, η (x;λ, c) depends on the firm’s contract only through the net queue length and the
effective queue length, while ψ (x;λ, c) depends on the effective queue length alone, which
greatly improves tractability.19

Proposition 1. A firm with net queue length µ (x;λ, c) and effective queue length κ (x;λ, c)

hires a worker with productivity exceeding x > 0 with probability

η (x;λ, c) =

η (x;λ, c) for all x < x

µ(x;λ,c)
κ(x;λ,c)

(
1− e−κ(x;λ,c)

)
for all x ≥ x.

(5)

The job offer probability ψ (x;λ, c) of an applicant with productivity x > 0 is determined by

ψ (x;λ, c) = − ∂

∂Q (x)

1−Q (x)

κ (x;λ, c)

(
1− e−κ(x;λ,c)

)
. (6)

If κ (x;λ, c) = 0, then, by convention, η (x;λ, c) = 0 and ψ (x;λ, c) =

0 for x < x

1 for x ≥ x.

Limiting Cases. To build intuition, consider two limiting cases. First, if r → 0, a firm can
only interview one random qualified applicant and η (x;λ, c) = Ξ (c) (1−Q (x))

(
1− e−qλ

)
.

This is the product of (in reverse order) the probability that the firm has at least one qualified
applicant, the probability that this applicant draws a productivity larger than x, and the
probability that this applicant would accept a job offer. All workers with x ≥ x are equally
likely to get a job offer, hence ψ (x;λ, c) = 1

qλ

(
1− e−qλ

)
, resembling the simplest urn-ball

models.
If r →∞, a firm can perfectly rank all its applicants. It forms a match with productivity

exceeding x > 0 as long as it attracts at least one applicant who has such productivity and who
is willing to accept a job offer, i.e. η (x;λ, c) = 1− e−µ(x;λ,c). An applicant with productivity
equal to x ≥ x will get a job offer as long as no better applicants who would accept the firm’s
job offer are present. Hence, ψ (x;λ, c) = e−µ(x;λ,c), which is strictly increasing in x and equals
1 for the highest productivity type x.

Properties. The following lemma establishes some properties of η (x;λ, c) which will be
convenient in the equilibrium analysis. These properties imply that a firm is more likely to
hire a good worker if it attracts a longer queue or if it chooses a higher recruiting intensity, that

19The proposition describes these probabilities conditional on queue lengths. Its scope therefore extends to
models with ex ante heterogeneity in worker productivity (e.g. Shimer, 2005a) or models in which applications
are sent randomly (e.g. Gautier and Moraga-Gonzalez, 2005; Gautier et al., 2014).
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the marginal effect is diminishing, and that the queue and recruiting intensity are complements
in hiring.

Lemma 1. The hiring probability satisfies the following properties:

1. η (x;λ, c) is strictly increasing in λ and r;

2. η (x;λ, c) is strictly concave in λ and r, with ∂2

∂λ∂rη (x;λ, c) > 0.

Notation. The definitions (3) to (6) take the gross queue λ as exogenously given. While
this will prove convenient for much of the analysis, the gross queue length is of course an
equilibrium object which depends on a firm’s contract c, as made explicit in (2). Hence, a
firm’s hiring probability equals η (x;λ (c) , c) in equilibrium. To keep the exposition as simple
as possible, I will often slightly abuse notation and refer to this probability as η (x; c) . Likewise,
I will write µ (x; c) ≡ µ (x;λ (c) , c), κ (x; c) ≡ κ (x;λ (c) , c) and ψ (x; c) ≡ ψ (x;λ (c) , c).

Firms’ Payoffs. Given the hiring probability (5), the maximization problem of a firm can
be written as maxc V (c), where V (c) represents the value of creating a vacancy and posting
a contract c. That is,20

V (c) = − (1− w)

ˆ x

x
S (x) dη (x; c)− kV − kRr. (7)

Free entry implies that firms will continue to enter as long as the expected payoff is strictly
positive. Hence, in equilibrium, maxc∈C V (c) ≤ 0 and v ≥ 0, with complementary slackness.

Workers’ Payoffs. Workers’ payoffs can divided into two parts. First, given a realization
of a number of applications a, an application portfolio ca, and a productivity draw x > 0, a
worker will end up in a position offering terms of trade wi:a with probability ξi:a (ca)ψ (x; ci:a).
He chooses ca to maximize his expected payoff U∗a = maxca Ua (ca), where21

Ua (ca) = U0 +
a∑
i=1

ξi:a (ca)wi:aE [ψ (x; ci:a)S (x)] . (8)

Anticipating this, the worker chooses his search intensity α to maximize his expected payoff
net of search costs, i.e. his value of search, U∗ = maxα U (α), where

U (α) = p1 (α)U∗1 + p2 (α)U∗2 − kAα. (9)
20The minus sign in front of the integral appears because η (x; c) represents the probability mass above x.
21Recall that ψ (x; c) = 0 for all x < x.
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Recursive Formulation. A worker’s acceptance probability must satisfy

ξi:a (ca) =
a∏

j=i+1

(1− E [ψ (x; cj:a)]) , (10)

where E [·] denotes the expectation over all possible values of x.22 Substitution of this ex-
pression in (8) reveals that—as in Galenianos and Kircher (2009) and Kircher (2009)—we can
write workers’ payoff in a recursive way. That is,

U∗i = max
c

E
[
ψ (x; c) (U0 + wS (x)) + (1− ψ (x; c))U∗i−1

]
, (11)

where U∗0 = U0. This formulation implies that a worker’s payoff from his i-th application does
not depend on the total number of applications that he sends, which considerably simplifies
the equilibrium analysis. Going forward, it will often be convenient to interpret U∗i−1 as the
outside option corresponding to a worker’s i-th application.

3 Equilibrium

3.1 Equilibrium Definition

Out-of-Equilibrium Beliefs. Before defining the equilibrium, note that firms must form
beliefs regarding the acceptance probability Ξ (c) and the gross queue length λ (c) for every
c ∈ C, as they must be able to determine their expected payoff for any feasible contract.
While equation (1) and (2) can be used to determine Ξ (c) and λ (c) for all contracts posted
in equilibrium, firms’ beliefs off the equilibrium path require extra care. I follow the solution
of Galenianos and Kircher (2009)—who discuss this issue in detail—by imposing that Ξ (c) =

limε→0 Ξε (c) and λ (c) = limε→0 λε (c), where Ξε (c) and λε (c) are the acceptance probability
and gross queue in a perturbed economy in which a fraction ε of firms posts a random contract
c ∈ C, according to some distribution F̃ (c) with full support. In this economy, workers
face a distribution of contracts Fε (c) = (1− ε)F (c) + εF̃ (c) and will choose application
portfolios and search intensities according to {G1,ε . . . , GA,ε} and Hε, respectively. Given
these distributions, Ξε (c) and λε (c) can be calculated from (the updated versions of) (1) and
(2) in a straightforward manner. It follows from the results in Galenianos and Kircher (2009)
that the exact form of F̃ (c) does not matter as long as it has full support.

Equilibrium Definition. I now define an equilibrium as follows.

Definition 1. An equilibrium is a measure of vacancies v, a distribution of contracts F ,
application distributions {G1, . . . GA}, a search intensity distribution H, a gross queue lengths

22Hence, E [ψ (x; cj:a)] = (1− q)ψ (0; cj:a) + q
´ x
0
ψ (x; cj:a) dQ (x) = q

´ x
0
ψ (x; cj:a) dQ (x).
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λ (c), an acceptance probability Ξ (c), and market utilities {U∗1 , . . . , U∗A}, such that:

1. Optimal Contracts: V (c) = V ∗ ≡ maxc̃∈C V (c̃), ∀c ∈ CF ;

2. Optimal Entry: V ∗ = 0 if v > 0 and V ∗ ≤ 0 if v = 0;

3. Optimal Applications: Ua (ca) = U∗a ≡ maxc̃a Ua (c̃a), ∀ca ∈ CGa ∀a ∈ {1, . . . , A};

4. Optimal Search Intensity: U (α) = U∗ = maxα̃ U (α̃), ∀α ∈ CH ;

5. Off-the-Equilibrium Beliefs: Ξ (c) = limε→0 Ξε (c) and λ (c) = limε→0 λε (c);

6. Consistency: equations (1) to (11) hold.

3.2 One Application

I first analyze the model under the assumption that all workers send one application, i.e. A = 1

and p1 (α) = 1 for all α. This assumption, which is pervasive in the literature on directed
search, simplifies the equilibrium derivation considerably, since it implies that all job offers
will be accepted with probability Ξ (c) = ξi:a (ca) = 1 and that workers will trivially choose a
search intensity α = 0.

Existence and Uniqueness. Proposition 2 establishes existence and uniqueness of the
equilibrium. The derivation of these results is relatively standard and is therefore relegated to
the proof in the appendix. In short, one can rewrite the firm’s optimization problem in terms
of the queue length λ and recruiting intensity r. By virtue of lemma 1, the resulting objective
function is strictly concave in these two variables, which, in combination with the free entry
condition, implies a unique solution (λ∗1, r

∗
1, w

∗
1). The measure of firms v∗ subsequently follows

from equation (2).

Proposition 2. For A = 1, a unique equilibrium exists. In this equilibrium, all v∗ > 0 firms
that enter the market post the same equilibrium contract (r∗1, w

∗
1), each attracting a gross queue

λ∗1 = s
v∗ .

As common in directed search models with one application and ex ante homogeneous
agents, all firms and workers participate in the same submarket in equilibrium and they share
the surplus, i.e. 0 < w∗1 < 1. Unless the recruiting cost is very large, the heterogeneity in
productivity provides an important incentive for firms to choose r∗1 > 0 and interview multiple
workers (in expectation). As a result, the distribution of productivity in realized matches
first-order stochastically dominates Q (x).
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Productivity Shock. Next, consider the effect of an increase in aggregate productivity,
which is modeled as a parallel upward shift of the surplus function S (x).23 Proposition 3
establishes that this productivity shock has two opposing effects on recruiting intensity r∗1,
a positive direct effect for a given λ∗1 and a negative indirect effect through a change in λ∗1.
After all, for a given λ∗1, the upward shift of the surplus function increases firms’ payoff from
a match and lowers the match-specific productivity cutoff x below which a firm does not want
to hire. This increases the potential gains from interviewing, causing firms to choose a higher
recruiting intensity. At the same time, the decrease in x makes entry more attractive, which
lowers the equilibrium queue length λ∗1 for a given r∗1. As established in lemma 1, λ and r are
complements in hiring, so the shorter queues provide firms with an incentive to lower their
recruiting intensity, making the total effect ambiguous.

Proposition 3. For A = 1, the direct effect of an increase in aggregate productivity on r∗1 is
positive and the indirect effect is negative.

3.3 Multiple Applications

While the assumption of a single application per worker was convenient for deriving the re-
sults in the previous subsection, it simultaneously limits their scope. Allowing for multiple
applications per worker is not only empirically relevant, as argued in the introduction, but
also important from a theoretical point of view. For example, when workers can send multiple
applications, their choice of search intensity will be an important determinant of how queue
lengths respond to an increase in aggregate productivity. Likewise, the potential rejection
of job offers determines how attractive it is for firms to increase their recruiting intensity in
response to the productivity shock. In this subsection, I therefore re-introduce the possibility
for workers to send more than one application, assuming throughout that the search cost kA
is sufficiently small such that they indeed choose α > 0.24

Contract Dispersion. Simultaneous search complicates the equilibrium analysis consider-
ably, as it makes the acceptance probability Ξ (c) an endogenous variable. Fortunately, one
can build on the insights provided by Galenianos and Kircher (2009) and Kircher (2009).
They prove for related environments—but without choices of recruiting intensity or produc-
tivity differences among workers—that equilibrium must have a very specific structure. In
particular, if workers send at most A applications, A different wages emerge in equilibrium,
w∗1 < w∗2 < . . . < w∗A, and workers apply at most once to each wage. The following lemma
extends these results to the environment of this paper.

23An increase in aggregate productivity may also change the relative gains from hiring a good versus a bad
worker. I leave this extension for future research, as little evidence is available on the degree of complementarity
/ substitutability between match productivity and aggregate productivity.

24Alternatively, one could assume that p′1 (α)→ −∞.
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Lemma 2. For A > 1, any equilibrium consists of A different contracts, (c∗1, . . . , c
∗
A) satisfying

w∗1 < . . . < w∗A. Workers apply at most once to each contract.

To understand lemma 2, suppose all workers send exactly A applications. These appli-
cations differ along two dimensions. First, the applications differ in their outside options,
U∗0 < . . . < U∗A−1. Second, the probability with which a worker accepts a job offer differs
across the applications, ξ∗1:A < . . . < ξ∗A:A. Which application a worker uses to apply to a
particular firm is private information. However, if recruiting is costly, firms have incentive to
try to induce revelation of this information, as the likelihood of rejection of job offers affects
their entry decisions. The difference in the applications’ outside option makes this feasible,
as it implies that the worker is willing to accept a larger decline in matching probability in
exchange for a higher wage while sending his j-th application than while sending his i-th
application, for all j > i.25 Hence, firms design the wages such that perfect separation of a
worker’s applications arises in equilibrium.

Existence and Uniqueness. The results of Galenianos and Kircher (2009) and Kircher
(2009) regarding existence and uniqueness of the equilibrium do not carry over equally easily.
The reason is somewhat technical. The requirement of perfect separation gives rise to a large
number of incentive compatibility (IC) constraints; a worker must not strictly prefer to send
application i to contract c∗j for j 6= i. Of these constraints, the most restrictive one is for
j = i + 1. That is, if a worker weakly prefers to send his i-th application to c∗i rather than
c∗i+1, for all i ∈ {1, . . . , A− 1}, then incentive compatibility holds for other j as well.

In equilibrium, the IC constraint between c∗i and c∗i+1 will hold. However, it depends on
the fine details of the environment whether this IC constraint binds or not. Galenianos and
Kircher (2009) show that it binds for all i ∈ {1, . . . , A− 1} in their model with r∗i = r∗i+1 = 0.
In contrast, Kircher (2009) demonstrates that it is not binding for r∗i , r

∗
i+1 → ∞. For 0 <

r∗i , r
∗
i+1 < ∞, as is generically the case in my model, one cannot establish analytically which

of the two cases applies, which impedes equilibrium characterization.26

Proposition 4 therefore focuses on the case A = 2, for which these complications are
manageable as there is effectively only one IC constraint,

U∗1 ≥ Udev1 ≡ U0 + w∗2E [ψ (x; c∗2)S (x)] , (12)

where Udev1 denotes the payoff from sending the first application to c∗2. The proposition
establishes that while existence is always guaranteed, uniqueness—in this environment in which
some workers apply once while others apply twice—crucially depends on whether (12) binds

25That is, the outside option affects the worker’s marginal rate of substitution between wage and matching
probability.

26In principle, the IC constraint may bind for some but not all i ∈ {1, . . . , A− 1}.
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or not.27

Proposition 4. For A = 2, an equilibrium exists. The equilibrium is unique when U∗1 > Udev1 ,
while a continuum of equilibria arises when U∗1 = Udev1 . In an equilibrium, all workers choose
the same search intensity α∗ and all v∗ > 0 firms entering the market post one of two contracts
c∗1 and c∗2, satisfying w

∗
1 < w∗2. Workers who apply twice send one application to each type of

contract. Workers applying once send their application to c∗1 with probability 1 if U∗1 > Udev1

and with probability γ if U∗1 = Udev1 , with each equilibrium corresponding to a different value
of γ.

Multiplicity. Key for understanding proposition 4 is to realize that heterogeneity in the
number of applications breaks the perfect correlation between applications’ outside options
and acceptance probabilities.28 There now exist three different types of applications: i) the
applications of workers who only apply once; ii) the first application of workers who apply
twice; and iii) the second application of workers who apply twice. Denote these types by 1:1,
1:2, and 2:2, respectively. Workers who send only one application have an outside option U∗0
(as is the case for the first application of workers who apply twice), but will accept a job
offer with probability ξ∗1:1 = 1 (as is the case for the second application of workers who apply
twice). The equivalence in outside option implies that the applications of type 1:1 cannot be
separated from applications of type 1:2. This means that IC constraint (12), which separates
applications of type 1:2 from applications of type 2:2, plays a crucial role. If this constraint
is slack, workers who send one application must send it to c∗1. However, if the constraint
binds, a worker applying once is exactly indifferent between c∗1 and c∗2 and therefore happy to
randomize between them with probability γ and 1− γ, respectively.29

Both cases are potentially relevant. By continuity, it follows from the results in Kircher
(2009) that the IC constraint is slack and the equilibrium is unique for sufficiently small kR.
Similarly, the results in Galenianos and Kircher (2009) imply that the constraint binds and
a continuum of equilibria arises when kR is sufficiently large and the degree of heterogeneity
in the number of applications is sufficiently small. Although establishing the relevant case
for arbitrary kR is not feasible analytically, it is straightforward to do so numerically. If a
multiplicity occurs, the free entry condition guarantees that firms receive the same expected
payoff (i.e., zero) in each equilibrium. All other equilibrium outcomes—including worker’s
search intensities and payoffs as well as firms’ recruiting intensities—will however vary across
the equilibria.

27Galenianos and Kircher (2005) conjecture on the basis of numerical simulations that “there may be multi-
plicity of equilibria” if some workers send N applications and other workers send N + 1 applications, but do
not provide a characterization.

28In that sense, the source of the multiplicity resembles Chang (2014) and Guerrieri and Shimer (2014), who
study two-dimensional private information in—otherwise very different—models of asset markets.

29The assumption of symmetric strategies implies that all workers use the same γ in a particular equilibrium.
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This means that, in addition to productivity shocks, shocks to the equilibrium selection
rule can be a second source of fluctuations in recruiting intensity and unemployment in this
case. For example, a jump from γ = 1 to γ = 0.5 will cause fewer workers applying once to
send their application to c∗1. This lowers the acceptance probability (ξ∗1:2 < ξ∗1:1 = 1), reducing
firm entry into this submarket, which through the IC constraints has an effect on the outcomes
in all other submarkets.

More Applications. Although extending proposition 4 to arbitrary values of A is difficult,
the insight that a multiplicity can arise is robust to such an extension. For example, if the
IC constraint binds between c∗i and c∗i+1 for all i ∈ {1, . . . , A− 1}, then a worker sending
a ∈ {1, . . . , A− 1} applications is indifferent between the application portfolios {c∗1, . . . , c∗a}
and

{
c∗2, . . . , c

∗
a+1

}
. Numerical calculation of the equilibrium for arbitrary A is straightforward,

as I demonstrate below.

Shocks. The complexity of the equilibrium hinders a clear characterization of the implica-
tions of shocks to aggregate productivity and—if a multiplicity arises—the equilibrium selec-
tion rule. For aggregate productivity, the effects described in section 3.2 are, ceteris paribus,
still present in each of the submarkets. However, any statement regarding the response of
firms’ recruiting intensity should not only take into account aggregation across submarkets,
but also the fact that the productivity shock will change workers’ search intensities, their
acceptance probabilities and the set of incentive compatibility constraints, all of which affect
firms’ choices. The same holds for a jump to a different equilibrium. For this reason, I will
address the effects of these shocks by calibrating the model in the next section.

4 Calibration

In this section, I demonstrate how the model can be calibrated.30 The calibration takes place
in two steps. First, some parameters are set exogenously, after which the remaining parame-
ters are chosen to match aggregate data from the Current Population Survey (CPS) and the
Employment Opportunities Pilot Projects (EOPP) 1982 data set, which—to my knowledge—
is the only source of detailed recruiting information for a sample of US firms. Subsequently, I
describe some of the equilibrium outcomes. After establishing that the model performs well,
I analyze the effect of a shock to aggregate productivity as well as a shock to the equilibrium
selection rule, which causes agents to play a different equilibrium.

A caveat is in order: since the EOPP data mostly covers firms hiring for low-skilled jobs
between January 1980 and September 1981, the results and conclusions of the calibration

30A previous draft of this paper estimated a version of the model with binary heterogeneity using Maximum
Likelihood. The estimates for key parameters (e.g., search and recruiting costs) were similar to the ones
presented in this section. See Wolthoff (2012) for details.
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exercise may not automatically apply to other samples. For this reason, I keep the exposition
brief and refer to appendix B for additional details regarding the data and the calibration.31

4.1 Exogenous Parametrization

Confrontation of the model with the data requires that the model is extended beyond a single
period, endogenizing the number of searchers s, the value of unemployment U0 and the surplus
function S (x). A full analytical characterization of equilibrium in such an environment is
beyond the scope of this paper32, but can mostly be circumvented for the purpose of the
calibration by targeting s, U0 (or x), and S (x) directly, as I describe below.

Period Length, Discounting and Retirement. I focus on the steady state in an infinite-
horizon, discrete-time labor market in which agents play the game described in section 2 in
every period. In line with most of the literature (e.g. Menzio and Shi, 2011), I exogenously fix
the period length to one month.33 Both firms and workers discount future payoffs at a factor
β = 0.961/12 per period. Firms are infinitely-lived, but an exogenous fraction τ of the workers
retires at the end of each period. I assume τ = 0.0021, which corresponds to an average career
of 40 years. Retired workers obtain zero future payoff and are replaced by new unmatched
workers in order to keep the size of the labor force equal to 1.34

Job Destruction, Matching and Searchers. Besides retirement, job destruction is a
second source of separations. At the end of each period, an exogenous fraction δ ∈ (0, 1) of
the matches gets dissolved. Employed workers hit by the shock become unmatched. In the
next period, they can—like the u unemployed, i.e. workers who failed to find a job during the
current period—search for a new job, which they find with endogenous probability Ψ. Hence,
a worker who is employed in the current production phase may be employed at a different firm
in the production phase of the next period after being unmatched for a very short amount
of time. Discreteness of the data may cause this to look like a job-to-job transition, even
though the model does not allow for on-the-job search in the classic sense.35 In appendix B,

31By performing one aggregate calibration, I implicitly assume that all workers are identical or that labor
markets at different skill levels are scale replicas of each other (see Wolthoff, 2012, for such an implementation).
The EOPP data set is not rich enough to relax this assumption, but fundamental parameters may of course
vary considerably with skill; analyzing this seems a promising avenue for future research.

32Galenianos and Kircher (2005) provide a characterization of equilibrium for an infinite-horizon version of
their (arguably simpler) model and discuss the analytical complexities that arise.

33In theory, the data contains some information on the period length, since one application per week gives
rise to a different equilibrium than two applications per two weeks. However, identification of the period length
along these dimensions cannot be established easily and would be very indirect at best. See Wolthoff (2014)
for a model in which the period length is a parameter.

34This feature of the model and the ‘job-to-job’ transitions below are important as workers’ search intensity
will be inferred from the total number of workers searching and the total number of applications sent.

35See Menzio and Shi (2011) for regular on-the-job search in a directed search model with one application
per period. The combination of simultaneous search and on-the-job search is computationally challenging.
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I demonstrate how data from the Current Population Survey can be used to calibrate Ψ and
δ. This yields Ψ = 0.413 and δ = 0.063.36 These values—combined with the steady state
assumption—imply that a mass s = 0.144 of workers applies to jobs in each search phase.

Application Distribution. For the number of applications, I assume a (truncated) Poisson
distribution with search intensity α as its parameter. To be precise, the fraction of workers
pi (α) that sends i applications satisfies:37

pi (α) =

e−α αi−1

(i−1)! for i ∈ {1, . . . , A− 1}

1−
∑A−1

j=1 pj (α) for i = A.

A Poisson distribution is a natural choice, since it is the discrete-time equivalent of the Poisson
process typically used in continuous-time models. I set A = 15, which will prove not to be
restrictive given the equilibrium value of α.

Productivity and Surplus. As I discuss below, the fraction of qualified applicants q is
important for the calibration of the recruiting costs kR. Unfortunately however, no good
evidence on the value of q is available. I will therefore present results for two scenarios, one in
which all applicants are qualified (q = 1) and one in which half of all applicants are qualified
(q = 0.5).38

The distribution Q (x) is assumed to be log-normal with scale parameter normalized to 0

and shape parameter σ, so median productivity is 1. Periodical match output equals the sum
of match productivity x and aggregate productivity y. In the calibration, y will be normalized
to 0, but when analyzing the effect of an increase in aggregate productivity, y will take the
value 0.01. Given this setup, the surplus S (x) of a match satisfies

U0 + S (x) = x+ y + β (1− τ) [(1− δ) (U0 + S (x)) + δU∗] ,

which, using S (x) = 0, yields

S (x) =
x− x

1− β (1− τ) (1− δ)
.

36Note that δ cannot directly be compared to the estimates for the ‘employment-exit probability’ by Shimer
(2012). First, δ only describes a transition from employment to the pool of workers who will search for a
job. Unemployment only follows in case that search fails. Second, Shimer (2012) needs to control for time
aggregation because he uses a continuous-time model, whereas here the period length in the model corresponds
to the frequency of the data (1 month). Finally, I control for the age structure by calculating δ for seven
different age cohorts and averaging over them using the corresponding sample fractions.

37Recall that workers can send one application for free.
38For the EOPP data, q is bounded below by the fact that firms on average interview 5 out of 14 applicants.
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Home Production. Unemployed workers are assumed to receive a periodical payoff h from
home production. At the beginning of the next period, they can search for a job, which
provides them with a value U∗. Hence, the value of unemployment U0 equals h+ βU∗.

Equilibrium Selection. Given the above assumptions, the insights from section 3 continue
to hold. Hence, A = 15 different contracts will be offered in equilibrium and a multiplicity
may arise when the incentive compatibility constraint between any of them binds. I assume
that if this is the case, the agents select the equilibrium that arises for γ = 1.39

4.2 Matching Moments

Remaining Parameters. After making the above assumptions, five parameters (kV , kR,
kA, h, and σ) remain for which no direct evidence regarding their value is available. I calibrate
these parameters in a two-step procedure The key to understanding this procedure is to realize
that the equilibrium depends on kA and h only through α and x and that the calculation of
the former two parameters from the latter two is easier than the other way around.40 For this
reason, I calibrate (kV , kR, α, x, σ) and calculate kA and h afterwards.

Moments. The parameters are chosen to simultaneously match the following five data mo-
ments regarding recruiting and matching: 1) a monthly matching probability of 0.413 for a
worker; 2) a monthly hiring probability of 0.936 for a firm; 3) an average of 14.06 applicants
per firm, conditional on hiring; 4) an average of 4.97 interviews per firm, conditional on hiring;
and 5) an average of 6.16 hours spent on recruiting, conditional on hiring. As explained above,
the first moment follows from the CPS. The remaining four moments can be calculated from
the EOPP data, as I describe in the appendix.

Calibrated Values. Despite the high degree of non-linearity, the five parameters can match
the five moments perfectly. This fact is not obvious and adds credibility to the model with
multiple applications. After all, a model with A = 1 cannot simultaneously match (a subset
of) these moments, since 14 applicants or 5 interviews per firm imply upper bounds on workers’
matching probability equal to 0.07 and 0.20, respectively. The solution of the calibration is
displayed in table 1, for each of the two values of q.

Discussion. A few values warrant discussion. First, the estimate for the recruiting cost kR is
increasing in q, while the shape parameter σ is decreasing. This is in line with what one would

39That is, when workers are indifferent between two application portfolios, they apply to the one with the
lower wages.

40The parameters kA and h need to be calculated only once, while the parameters α and x need to be
calculated in each iteration.
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Table 1: Calibrated Parameter Values
q = 0.5 q = 1

Entry cost kV 0.139 0.122
Recruiting cost kR 0.005 0.009
Search intensity α 5.162 5.150
Cutoff type x 0.989 0.992
Shape parameter σ 0.010 0.006
Search cost kA 0.006 0.002
Home production h 0.973 0.987

expect. Firms interview on average only 5 out of 14 applicants, which can be either because
many applicants are not qualified for the job and therefore dismissed without an interview, or
because the recruiting cost is high relative to the variance in match productivity.

Second, the estimated search intensity α is almost completely insensitive to the value of
q. This is because the number of searchers and the number of vacancies are fully determined
by the targeted data moments and because the (unconditional) number of applicants per firm
must be close to 14.41 Given a virtually constant search intensity, the implied search cost kA
is naturally increasing in the degree of heterogeneity in match quality.

Finally, the value of home production is relatively high compared to Shimer (2005b) and
Hall and Milgrom (2008) but, accounting for the fact that average match productivity in my
model is larger than 1, close to the estimate by Hagedorn and Manovskii (2008). This should
not be a surprise. After all, Hagedorn and Manovskii (2008) rely on the same information
in their calibration: time spent on recruiting as reported in the EOPP data. The fact that
this number is small implies that match surplus must be small, or otherwise, in terms of my
model, firms would be willing to spend more on recruiting and interview more workers to
further increase their matching probability. Assuming that many applicants are unqualified—
i.e. the alternative rationale for the relatively small number of interviews—lowers the estimate
of h, but only slightly, since that fails to explain why firms do not simply increase their queue
lengths by posting more attractive terms of trade.42

4.3 Equilibrium Outcomes

Given the above values for the exogenous parameters, the equilibrium can be calculated. This
yields a large number of empirical predictions, some of which are displayed in table 2. It turns
out that for the calibrated parameter values, the IC constraint between c∗i and c∗i+1 binds
for all i ∈ {1, . . . , A− 1}, such that many equilibria exist. In line with the calibration, the

41The calibration forces the average number of applicants per firm conditional on hiring to be 14.06. The
relation between the unconditional and the conditional number of applicants is endogenous, but severely
constrained by the fact that firms’ matching probability is close to 1.

42The same logic explains why the dispersion in productivity is not larger.
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Table 2: Equilibrium Outcomes
q = 0.5 q = 1

Aggregate variables
Unemployment 0.085 0.085
Number of vacancies 0.064 0.064

Search variables
Search intensity 5.16 5.15
Avg. number of applications 6.16 6.15
Avg. search time (hours) 5.24 1.59

Recruiting variables
Avg. number of applicants 13.96 13.94
Avg. recruiting intensity 7.49 4.19
Avg. number of interviews 4.75 4.74
Avg. number of offers 1.18 1.17
Avg. recruiting time (hours) 6.15 6.15

equilibrium outcomes that I present here are for γ = 1. I analyze the effects of a shock to γ
in section 4.4.

Aggregate Variables. The unemployment rate implied by the model is u = 0.085, which
is close to the one observed in the data (0.082), taking into account the age structure of
the sample. Hence, the steady assumption is reasonable despite the recessive state of the
US economy in 1980 and 1981. A fraction (δ + τ − δτ) Ψ = 0.027 of the employed workers
moves from one job to the next without intermittent unemployment spell. This value is
consistent with estimates of monthly job-to-job transition rates by Fallick and Fleischman
(2004), Nagypal (2008) and Moscarini and Thomsson (2007), which range from 2.2% to 3.2%.
The measure of vacancies is 0.064, which is somewhat higher than estimates by Davis et al.
(2013) for the relevant time period.43 This difference seems to merely reflect that my definition
of a vacancy is wider than theirs, since any match in the model requires a preceding vacancy.

Search Variables. Workers choose a search intensity α which allows them to send slightly
more than 6 applications on average. If we assume that a year consists of 50 weeks of 5 days
of 8 productive hours, the time unemployed workers spend on search can be calculated as
2000
12

αkA
h , which yields 5.24 hours (of foregone home production) for q = 0.5 and 1.59 hours

for q = 1. No estimates of this number are available in the literature for the workers in my
sample, but the values I find are broadly in line with the conclusion of Krueger and Mueller

43Roughy 3%, based on an approach which combines the Conference Board’s Help-Wanted Index with the
Job Openings and Labor Turnover Survey (JOLTS).
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(2008) that unemployed workers do not dedicate a large of amount of time to search. Dividing
the total search time by the number of applications implies that the average time cost of an
application equals 0.85 hours for q = 0.5 and 0.26 hours for q = 1.

Recruiting Variables. Firms receive on average almost 14 applications and choose a re-
cruiting intensity which implies an average of almost 5 interviews. Not surprisingly, both
these numbers are (slightly) smaller than the equivalent numbers conditional on hiring, used
as targets in the calibration, since firms with more applicants or interviews are (slightly) more
likely to hire. Dividing recruiting time by the number of interviews implies that the average
time cost of an interview equals 1.30 hours of production. It is worth emphasizing that the
average number of job offers a firm makes (almost 1.2) is consistent with the EOPP data (see
appendix), even though this moment was not targeted in the calibration.

The first row of figure 1 plots the gross queue λ, the recruiting intensity r and the expected
number of interviews as a function of firms’ terms of trade. In equilibrium, the terms of trade
vary between w∗1 = 0.29 and w∗15 = 0.45 for q = 0.5 and between w∗1 = 0.09 and w∗15 = 0.24 for
q = 1. Firms posting better terms of trade receive more applications, which—ceteris paribus—
causes them to choose a higher recruiting intensity.44 However, firms’ gains from recruiting
also depend on the acceptance probability, which makes the overall relation between terms
of trade and recruiting intensity (or the number of interviews) potentially non-monotonic.
Quantitatively, the variation in recruiting intensity or the number of interviews is relatively
small across the contracts, which the average firm always interviewing between 3.9 and 5.5
workers.

Matching. The second row of figure 1 displays firms’ hiring density − ∂
∂xη (x; c) for each of

the 15 equilibrium contracts. A few things stand out. First, firms that offer better terms of
trade hire with larger probability, as indicated by the fact that the mass under the graph of
− ∂
∂xη (x; c∗i ) is increasing in i. Second, these firms also end up hiring better workers in the

sense of first-order stochastic dominance. For example, for q = 0.5, a firm posting c∗1 matches
with probability 0.88, while a firm posting c∗15 hires with probability 0.98. Their average hires
are respectively 0.76 and 1.10 standard deviations better than a random qualified applicant.45

The last row of figure 1 shows workers’ job offer probability ψ (x; c). The graph confirms
that applications to better terms of trade are less likely to result in a job offer than applications
to worse terms of trade. More importantly, the graph reveals that the difference across terms
of trade is relatively small compared to the variation caused by productivity differences. In

44Preliminary work by Faberman and Menzio (2010) suggested a negative relationship between wages and
applications in the EOPP data, but as discussed in Marinescu and Wolthoff (2012), the absence of detailed
occupational information makes omitted variable bias in this result likely.

45The corresponding numbers for q = 1 are 0.72 and 0.94 standard deviations, respectively.
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other words, the main determinant of whether an application to a position is successful is how
good of a fit the worker is for the position.

4.4 Counterfactual Experiments

After establishing that the calibrated model yields reasonable outcomes, I now perform two
counterfactual experiments. First, I analyze the effects of an increase aggregate productivity.
Subsequently, I study the model’s response to a shock to the equilibrium selection rule, causing
the agents to play a different equilibrium. The results of these exercises are displayed in table
3, along the outcomes of the original equilibrium to facilitate comparison.

Productivity Shock. The first counterfactual exercise is an increase in aggregate produc-
tivity y from 0 to 0.01, such that the median applicant becomes 1% more productive. The
new steady state outcomes for q = 0.5 and q = 1 are displayed in column II of 3. Both values
of q give qualitatively similar results, although the magnitude of all effects is larger for q = 1.

As can be seen from the table, the productivity shock causes unemployment to fall and
the number of vacancies to rise. The change in unemployment is large relative to e.g. Shimer
(2005b). Two factors contribute to this. First, the relatively high value of h creates amplifi-
cation, as pointed out by Hagedorn and Manovskii (2008). Second, in line with Davis (2011),
workers’ search intensity goes up in response to the productivity shock, magnifying the effect
on workers’ matching probability.

Firms’ recruiting intensity goes up as well. Both the direct and the indirect effect described
in section 3 contribute to this, since the average firm receives not fewer but more applications
after the productivity shock. This increase in the gross queue, despite a decline in unemploy-
ment and an increase in entry of vacancies, is again due to the increase in workers’ search
intensity.

Equilibrium Shock. The second experiment is a drop in the value of γ to 0.5, causing
the agents to play a different equilibrium. The lower value of γ implies that workers who
are indifferent between two application portfolios (c∗1, . . . , c

∗
a) and

(
c2, . . . , c

∗
a+1

)
apply more

frequently to the latter than before. Ceteris paribus, this lowers Ξ1, worsening the frictions in
the submarket with the lowest wage, which through the binding IC constraints affects all other
submarkets in a non-trivial way. Column III of table 3 presents the results.46 In response to
the shock, workers marginally reduce their search intensity, while firms slightly increase their
recruiting intensity. On balance, unemployment rises by 0.4 to 1.0 percentage points. This
means that if one believes recruiting intensity to be mostly procyclical, as documented by
Davis et al. (2013), then the model suggests that aggregate productivity shocks are a more

46Other values of γ provide qualitatively similar results. The magnitude of the effects is decreasing in γ.
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Figure 1: Equilibrium Outcomes
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Table 3: Calibration Results—Equilibrium and Comparative Statics
Baseline: γ = 1 and y = 0; Prod. Shock: γ = 1 and y = 0.01; Eqm. Shock: γ = 0.5 and y = 0.

I (Baseline) II (Prod. Shock) III (Eqm. Shock)
q = 0.5 q = 1 q = 0.5 q = 1 q = 0.5 q = 1

Aggregate variables
Unemployment 0.085 0.085 0.061 0.047 0.089 0.095
Number of vacancies 0.064 0.064 0.065 0.067 0.063 0.063

Worker variables
Search intensity 5.16 5.15 7.06 9.89 5.13 5.07
Avg. number of applications 6.16 6.15 8.05 10.72 6.13 6.07
Avg. search time (hours) 5.24 1.59 7.16 3.05 5.21 1.57
Matching probability 0.413 0.413 0.502 0.567 0.400 0.382

Firm variables
Avg. number of applicants 13.96 13.94 14.98 17.42 14.45 14.93
Avg. recruiting intensity 7.49 4.19 7.94 4.67 7.61 4.26
Avg. number of interviews 4.75 4.74 5.06 5.28 4.88 4.88
Avg. number of offers 1.18 1.17 1.27 1.31 1.18 1.16
Avg. recruiting time (hours) 6.15 6.15 6.53 6.87 6.26 6.26
Hiring probability 0.936 0.936 0.934 0.922 0.941 0.941

important source of fluctuations in recruiting intensity than shocks to the equilibrium selection
rule.

5 Discussion

This section discusses several of the key assumptions, along with a few potentially interesting
extensions.

5.1 Observability of Recruiting Intensity

The assumption that workers can observe the recruiting intensity r of each firm (in addition
to the terms of trade w) before choosing where to apply played an important role in deriving
the results of this paper. Since firms typically do not advertise recruiting intensities in real
life, one may wonder whether this assumption is too strong. However, note that workers do
not care about a firm’s recruiting intensity r per se. Instead, they care about the probability
ψ of getting a job offer. It seems reasonable to say that in real life job seekers possess some
information about this probability, even before making application decisions. What matters in
terms of the model is whether the information that the worker observes is sufficient for him to
deduce ψ. Assuming that he observes r (and w) is an analytically convenient way to guarantee
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that this is the case, but is not crucial. That is, there exists other pieces of information which
the worker can observe instead, such that the results remain unchanged. For example, the
following lemma establishes that this is the case for the expected productivity xE of the worker
that the firm will hire, i.e.,

xE =
−
´ x
x x dη (x; c)

η (x; c)
.

Proposition 5. The results in this paper remain remain unchanged if workers observe xE

(and w) instead of r (and w) for each firm.

The idea that firms communicate the type of worker that they expect to hire should not
seem unrealistic. Casual observation of job ads on CareerBuilder.com suggests that the vast
majority of them contains statements on the characteristics that a successful applicant is
expected to have.47

5.2 Constrained Efficiency

A traditional concern in much of the search literature is whether the market equilibrium is
constrained efficient. To answer this question, consider the problem of a social planner whose
objective is to maximize net social surplus, subject to the frictions of the environment. The
planner’s problem can be broken down into multiple components. First, the planner determines
entry of firms and search intensity for each workers. Second, he allocates the applications to the
firms and chooses a recruiting intensity for each firm. Finally, he specifies a matching rule for
agents to follow after the interviews have taken place. Proposition 6 analyzes these decisions
for A = 1 and establishes that the equilibrium described in proposition 2 decentralizes the
planner’s solution.

Proposition 6. For A = 1, the equilibrium is constrained efficient.

Efficiency in a directed search model with one application per worker is not a novel result
in itself. For example, Moen (1997), Shimer (2005a) and Menzio and Shi (2011) show how
the planner’s solution can be decentralized for a variety of settings. The intuition is the same
in each of these models: since workers’ equilibrium payoffs must equal the market utility, a
firm is the residual claimant on any additional surplus it creates, creating an incentive to
post a contract implementing the efficient allocation to maximize this surplus. Hence, the
crucial question is often not whether efficient contracts exist, but rather what they look like
and whether the contract space is flexible enough to allow them. The existing literature is
silent on this topic in the context of choices of recruiting intensity.48 The efficiency result of

47See Marinescu and Wolthoff (2012) for a detailed analysis of job ads on CareerBuilder.com.
48The random search literature has analyzed recruiting intensity more often, but only obtains efficiency

under a very specific functional form in which the equilibrium recruiting intensity exclusively depends on the
associated cost and is independent of worker behavior or any aggregate variable (see the discussion in Pissarides,
2000).
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proposition 6 is new in that regard.49

With 1 < A < ∞, it immediately follows from the results in Kircher (2009) that the
equilibrium is efficient if and only if firms’ hiring probability depends on the gross queue λ
only through the net queue µ (·). Inspection of proposition 1 reveals that this requirement is
equivalent to r →∞ for all equilibrium contracts, which is the case if and only if kR = 0. The
intuition for this result is the following.50 A firm is only interested in applicants that will end
up accepting their job offers, the queue of which is described by µ (·). Applicants that reject
the firm’s job offer may crowd out these more desirable candidates, unless the firm interviews
all qualified applicants (r → ∞). This crowding out is a negative externality which needs to
be priced in order for constrained efficiency to prevail. However, since applicants that turn
down the job offer never match with the firm, a wage payment is not able to fulfill this role.
Instead, as also pointed out Lester et al. (2014) in a different but related context, firms would
need to extend their contracts with application fees, to be paid by all applicants.51

5.3 Ex Ante Heterogeneity

An important assumption in the model is that workers are ex ante homogeneous in terms of
their productivity. This simplifies the analysis by avoiding that workers’ productivity affects
their search decisions. To see this, note that the literature has analyzed ex ante heterogeneity
only for two special cases. These cases are 1) firms randomly select among their applicants,
who each applied once (corresponding to A = 1 and kR →∞) and 2) firms perfectly rank all
their applicants, who each applied once (A = 1 and kR → 0). In the first case, a separating
equilibrium arises; workers will sort themselves across different submarkets based on their
productivity to avoid the crowding out of the most productive workers (see e.g. Shi, 2001).
In contrast, crowding out cannot occur in the second case, such that firms have an incentive
to attract all types of workers, leading to a pooling equilibrium (see e.g. Shimer, 2005a; Shi,
2006).

Work in progress (Lester and Wolthoff, 2014) suggests that the equilibrium is not quite as
tractable for intermediate values of kR, even when maintaining A = 1. When firms can rank
some but not all applicants, equilibrium must feature partial pooling and partial separation
across a potentially large number of submarkets; types that are sufficiently close will be pooled,
but very low types must be separated from very high types in order to prevent too much
crowding out. Allowing for simultaneous search adds another layer of complexity, as it is not
obvious whether workers who pool with one application will also pool with other applications.

49See also Lester et al. (2013, 2014) for a detailed discussion of efficiency in directed search models and for
intuition that the contracts that I consider remain optimal if we give firms access to a larger set of mechanisms.
In particular, firms cannot improve their payoffs by using applications fees or subsidies when A = 1.

50See Kircher (2009) for a detailed discussion.
51Note that when the firm’s hiring probability depends on λ only through µ (·), the distribution of the number

of interviews satisfies the invariance property of Lester et al. (2014).
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Ex ante heterogeneity is therefore left for future research.

6 Conclusion

I analyze firms’ recruiting intensity in a model in which firms compete for workers in a frictional
labor market. In particular, I focus on firms’ decision how many of their applicants to subject
to a job interview. An interview is valuable because it reveals the productivity of the applicant.
Hence, interviewing more workers allows the firm to rank more applicants and form a better
match, but a higher cost, since each interview takes time or resources away from production. I
characterize the equilibrium and show that the model’s predictions regarding firms’ recruiting
intensity crucially depend on parameter values. For example, equilibrium recruiting intensity
may increase or decrease in response to a shock to aggregate productivity. Further, it may be
subject to non-fundamental shocks because the equilibrium is not uniquely determined for a
subset of the parameter space.

To shed some first light on these effects, I demonstrate how the model can be calibrated to
aggregate data. The results of this exercise indicate that the equilibrium is not unique. Given
selection of a particular equilibrium, recruiting intensity moves counter to unemployment
in response to a productivity shock, but with unemployment in response to a shock to the
equilibrium selection rule. These results suggest that procyclical movements in recruiting
intensity, as documented for the US labor market by Davis et al. (2013), can better be explained
with changes in aggregate productivity than with shocks to the equilibrium selection rule. Of
course, a more conclusive answer requires both more detailed data regarding firms’ recruiting
decisions in recent years and a richer model.52 This seems a promising avenue for future
research.

52For example, Davis et al. (2013) document large heterogeneity in the number of vacancies and the hiring
probabilities across firms. See Kaas and Kircher (2013) for a model of these observations.
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A Proofs

A.1 Proof of Proposition 1

Consider a firm with recruiting intensity r ≥ 0 and a queue qλ > 0 of qualified applicants, and
suppose that a qualified applicant has a certain characteristic with probability φ.53 We will
first derive an expression for the probability that the firm interviews at least 1 applicant with
the characteristic and then use that to prove the lemma. To simplify notation, define ` = qλ

and ρ = r
r+1 .

Number of Interviews. Given a number of qualified applicants nQ ∼ Poi (`) and an inter-
view capacity nR ∼ Geo (ρ), the actual number of interviews equals nI = min {nQ, nR}. This
equals 0 with probability P [min {nQ, nR} = 0] = e−` and n ∈ N1 with probability

P [min {nQ, nR} = n] =

∞∑
i=n+1

e−`
`i

i!
ρn−1

1

r + 1
+ e−`

`n

n!

∞∑
i=n

ρi−1
1

r + 1

= ρn−1

[
e−`

`n

n!
+

1

r + 1

∞∑
i=n+1

e−`
`i

i!

]
.

Expectation. Conditional on n interviews, the probability to meet at least 1 applicant with
the characteristic is 1− (1− φ)n. Taking the expectation over n yields

∞∑
n=0

[1− (1− φ)n]P [min {nQ, nR} = n] =
∞∑
n=1

P [min {nQ, nR} = n]

−
∞∑
n=1

(1− φ)n ρn−1e−`
`n

n!

− 1

r + 1

∞∑
n=1

(1− φ)n ρn−1
∞∑

i=n+1

e−`
`i

i!
.

Consider each of the three terms on the right-hand side separately. The first term simplifies
to 1− e−`. The second term equals

∞∑
n=1

(1− φ)n ρn−1e−`
`n

n!
=

1

ρ

(
e−`(1−ρ+ρφ) − e−`

)
.

53In this proof, I omit arguments as much as possible to keep notation simple.
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Finally, apply a change in the order of summation in the third term to get

1

r + 1

∞∑
n=1

(1− φ)n ρn−1
∞∑

i=n+1

e−`
`i

i!
=

1

r

[
ρ (1− φ)− e−`(1−ρ+ρφ)

1− ρ+ ρφ
+ e−`

]
.

Combining the three terms gives, after some simplification,

φ

1− ρ+ ρφ

(
1− e−`(1−ρ+ρφ)

)
. (13)

Hiring Probability. Consider now the original problem. To hire a worker with productivity
greater than x, satisfying x ≥ x, a firm needs to interview at least one such applicant who, in
addition, must accept the job offer. That is, φ = Ξ (c) (1−Q (x)) = µ(x;λ,c)

qλ . Substituting this
into (13) yields (5). Workers with x < x will never be hired, hence η (x;λ, c) = η (x;λ, c) for
those productivity draws.

Job Offer Probability. The job offer probability ψ (x;λ, c) must satisfy the accounting
equation ψ (x;λ, c) dµ (x;λ, c) = dη (x;λ, c) . Substitution of (3) yields the desired expression.

A.2 Proof of Lemma 1

Monotonicity of the Hiring Probability. A few straightforward calculations yield

∂

∂λ
η (x;λ, c) =

µ (x;λ, c) e−κ(x;λ,c)

λ
> 0

and

∂

∂r
η (x;λ, c) =

(λq − µ (x;λ, c))µ (x;λ, c)
(
1− e−κ(x;λ,c) − κ (x;λ, c) e−κ(x;λ,c)

)
(r + 1)2 [κ (x;λ, c)]2

> 0.

Hence, η (x;λ, c) is strictly increasing in λ and r.

Concavity of the Hiring Probability. In a similar fashion, one obtains

∂2

∂λ2
η (x;λ, c) = −µ (x;λ, c)κ (x;λ, c)

λ2
e−κ(x;λ,c) < 0

and
∂2

∂λ∂r
η (x;λ, c) =

(λq − µ (x;λ, c))µ (x;λ, c) e−κ(x;λ,c)

λ (r + 1)2
> 0,
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while the determinant of the Hessian of η (x;λ, c) with respect to λ and r equals

2

(
µ (x;λ, c)

r + 1

)3 λq − µ (x;λ, c)

λ2 [κ (x;λ, c)]2
e−κ(x;λ,c)

(
1− e−κ(x;λ,c) − κ (x;λ, c) e−κ(x;λ,c)

)
.

This determinant is strictly positive, so η (x;λ, c) is strictly concave in λ and r with a positive
cross-partial.

A.3 Proof of Proposition 2

Simplification. As Ξ (c) = 1 for all c, expression (3) for the net queue length simplifies to
λ (c) q (1−Q (x)). That is, µ (x;λ, c) depends on the terms of trade w only through the queue
length λ (c). The same is then true for η (x;λ, c) and ψ (x;λ, c). I will slightly abuse notation
to reflect that by writing η (x;λ, r) and ψ (x;λ, r) throughout this proof.

Constraint and Payoffs. Firms posting a contract c expect to attract a queue λ (c), im-
plicitly determined by

U∗1 = U0 + wE [ψ (x;λ (c) , r)S (x)] . (14)

Solving this constraint for w yields

w =
U∗1 − U0

E [ψ (x;λ (c) , r)S (x)]
. (15)

Substituting this expression into the firm’s optimization problem yields, after some simplifi-
cation

V (c) = −
ˆ x

x
S (x) dη (x;λ (c) , r)− λ (c) (U∗1 − U0)− kV − kRr. (16)

As is common in directed search models, this payoff only depends on w through the queue
length λ (c). Hence, we can analyze the firm’s optimization problem in terms of λ and r,
instead of w and r.

First Order Conditions. Integrating (16) by parts yields

V (c) =

ˆ x

x
η (x;λ (c) , r) dS (x)− λ (c) (U∗1 − U0)− kV − kRr.

By lemma 1, this is a strictly concave function of λ and r. Combined with the fact that
the firm’s payoff tends to −∞ for λ → ∞ or r → ∞, strict concavity implies that a unique
solution to the firm’s optimization problem exists for any U∗1 . Using subscripts to indicate
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partial derivatives, this solution must satisfy the FOC with respect to λ,

ˆ x

x
ηλ (x;λ, r) dS (x) = U∗1 − U0, (17)

and either the the boundary point r = 0 or the FOC with respect to r,

ˆ x

x
ηr (x;λ, r) dS (x)− kR = 0. (18)

Optimal Queue and Recruiting Intensity. Equilibrium requires in addition that U∗1 and
the chosen solution are consistent with the free entry condition, which after substitution of
(17) simplifies to

ˆ x

x
[η (x;λ, r)− ληλ (x;λ, r)] dS (x)− kV − kRr = 0. (19)

To see that there exists a unique combination of λ∗1 and r∗1 that solves these conditions,
distinguish two cases, r∗1 = 0 and r∗1 > 0.

First, consider r∗1 = 0. In that case, the derivative of (19) with respect to λ equals

−λ
ˆ x

x
ηλλ (x;λ, 1) dS (x) > 0.

Hence, the Intermediate Value Theorem implies that there exists a unique solution λ∗1. Equa-
tions (15) subsequently imply r∗1 and w∗1, respectively.

Second, consider r∗1 > 0. In this case, (18) holds. Its solution r̂ (λ) varies with λ. By the
Implicit Function Theorem, we get

∂r̂ (λ)

∂λ
= −

´ x
x ηλr (x;λ, r̂ (λ)) dS (x)´ x
x ηrr (x;λ, r̂ (λ)) dS (x)

> 0. (20)

The derivative of (19) with respect to λ therefore equals

ˆ x

x

[
−ληλλ (x;λ, r̂ (λ)) + ηr (x;λ, r̂ (λ))

∂r̂ (λ)

∂λ
− ληλr (x;λ, r̂ (λ))

∂r̂ (λ)

∂λ

]
dS (x)− kR

∂r̂ (λ)

∂λ
,

which after substitution of (18) and (20) simplifies to

−λ
ˆ x

x
ηλλ (x;λ, r̂ (λ)) dS (x) + λ

[´ x
x ηλr (x;λ, r̂ (λ)) dS (x)

]2
´ x
x ηrr (x;λ, r̂ (λ)) dS (x)

.
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This expression is again strictly positive by lemma 1. Hence, the Intermediate Value Theo-
rem implies that there exists a unique solution λ∗. Equations (18) subsequently implies the
equilibrium recruiting intensity r∗1 = r̂ (λ∗1).

Terms of Trade and Entry. Given λ∗1 and r∗1, the equilibrium terms of trade w∗1 follow
directly from equation (15). The measure v∗ of firms entering the market is determined by
v∗ = s

λ∗1
.

A.4 Proof of Proposition 3

To formalize the idea that the increase in aggregate productivity y causes a parallel upward
shift in the surplus function, define—with a slight abuse of notation—S (x) = S̃ (x) + y. For
a given λ∗1, applying the Implicit Function Theorem to equation (18) then yields

∂r∗1
∂y

= − ηr (x;λ∗1, r
∗
1)´ x

x ηrr (x;λ∗1, r
∗
1) dS (x)

> 0,

since ∂S(x)
∂x

∂x
∂y = −1. Likewise, for a given r∗1, equation (19) implies

∂λ∗1
∂y

=
[η (x;λ∗1, r

∗
1)− λ∗1ηλ (x;λ∗1, r

∗
1)]

λ∗1
´ x
x ηλλ (x;λ∗1, r

∗
1) dS (x)

< 0.

A.5 Proof of Lemma 2

Ordering of Queue Lengths. I start by showing that the indifference curves of applicants
pin down queue lengths for each contract. Given U∗i and acceptance probabilities Ξ (c), define
λi (c) ≥ 0 as the gross queue length that solves

U∗i ≥ E
[
ψ (x; c) (U0 + wS (x)) + (1− ψ (x; c))U∗i−1

]
, (21)

with complementary slackness. As workers’ job offer probabilities are strictly decreasing in
λ, a unique solution exists for each i and c. Denote the corresponding effective queue length
by κi (x; c). As applicants are willing to apply to a firm until (21) binds, a firm posting a
contract c expects to attract a gross queue λ (c) = maxi {λi (c)}. Likewise, define κ (x; c) =

maxi {κi (x; c)}.54

Single Crossing. Next, consider how the queue lengths vary with w. While Ξ (c) and λi (c)

do not need to be differentiable with respect to w, κi (x; c) must be, because the right-hand side
of (21) depends on endogenous variables only through this variable. Implicit differentiation of

54Note that the ordering of κi (x; c), i ∈ {1, . . . , A}, is independent of x as λ (c) does not depend on x.
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(11) reveals that κi (x; c) is increasing in w.55 Moreover, the slope is increasing in i, because
U∗i−1 is increasing in i. This implies a single-crossing condition: if κi (x; c) = κi+1 (x; c) for
some x and c = (r, w), then κi+1 (x; c̃) > κi (x; c̃) for all c̃ = (r, w̃) satisfying w̃ > w.

Application Regions. We can then define subsets Ci of the contract space, consisting of
the contracts for which κi (x; c) is strictly larger than all other κj (x; c), i.e.

Ci =

{
c ∈ C|κi (x; c) > max

j 6=i
{κj (x; c)}

}
.

These subsets have a number of useful properties. First, by construction, if there exist contracts
in Ci which are part of an equilibrium, they can only receive the i-th application of workers.
Second, since a worker’s payoff only depends on r through κ, each Ci can be written as R×Wi,
whereWi is an appropriately defined subset ofW. Third, the single-crossing condition implies
that each Wi is a open interval, which can be denoted by (wi−1, wi), where w0 is the lowest
wage that would receive applications, wi is the highest wage that provides workers applying i
times with a payoff U∗i , and wA = 1.56

Application Behavior. By construction, a worker must now send his i-th application to
contracts in the closure of Ci, i.e. cl (Ci) = R × [wi−1, wi]. After all, a contract c̃ = (r̃, w̃)

that offers w̃ > wi or w̃ < wi−1 attracts an effective queue κ (x; c̃) > κi (x; c̃). Such a contract
would provide the worker with an expected payoff that is strictly lower than U∗i , which violates
the equilibrium conditions.

Acceptance Probability. Firms and workers need to form beliefs regarding the probability
Ξ (c) that a job offer from a firm posting c will get accepted. While it is straightforward to
derive this probability for the equilibrium contracts, its value off the equilibrium path requires
a more careful analysis. Galenianos and Kircher (2009) analyze this issue in detail and prove
formally using the trembles in firms’ behavior described in section 3.1 that the acceptance
probability is constant within each Wi. Although their model does not include a choice of
recruiting intensity, their proof trivially extends to all contracts in Ci = R×Wi, as acceptance
decisions are independent of the recruiting intensity.

A more informal—but perhaps more intuitive—argument is the following. Any contract
c ∈ Ci, whether part of an equilibrium or not, can expect to attract a queue λi (c) of applicants
who will all be sending their i-th application. Hence, each of these contracts provides applicants
with the same payoff U∗i . Conditional on U∗i , a worker’s decision where to send application

55Contracts for which κ (x; c) = 0 can never be part of an equilibrium and will therefore be ignored in the
remainder of the proof.

56For notational convenience, I do not include w = 1 in the subsets. This is without loss of generality as
w = 1 can never be part of an equilibrium.
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j > i does not depend on the exact contract c ∈ Ci to which he sent his i-th application.
Hence, all contracts c ∈ Ci face the same acceptance probability Ξ (c) = Ξi.

Further, if a contract (r, wi) is part of an equilibrium, then Ξ (r, wi) must equal Ξi+1, or
else a deviation to c̃ = (r, wi + ε) would be profitable by providing the firm a discretely higher
hiring probability. To see this, note that a firm’s hiring probability can be written as

η (x;λ, c) =
Ξ (c) (1−Q (x))

1
r + r−1

r Ξ (c) (1−Q (x))

(
1− e−κ(x;λ,c)

)
.

Since κ (x; c) is continuous in wi, right-continuity of η (x;λ, c) in wi requires right-continuity
of Ξ (c) in this point.

Optimization Problem. The above results imply that equilibrium will give rise to at least
one contract in each Ci ≡ R × [wi−1, wi). We can write the optimization problem of a firm
posting a contract in Ci as

maxc∈Ci − (1− w)

ˆ x

x
S (x) dη (x;λi (c) , r)− kV − kRr (22)

s.t. U∗i = E
[
ψ (x;λi (c) , r) (U0 + wS (x)) + (1− ψ (x;λi (c) , r))U∗i−1

]
.

Solving the constraint for w yields

w =
E
[
∆∗i + ψ (x;λi (c) , r)

∑i−1
j=1 ∆∗j

]
E [ψ (x;λi (c) , r)S (x)]

, (23)

where ∆∗i represents the marginal payoff of the i-th application, i.e. ∆∗i ≡ U∗i −U∗i−1. Substi-
tuting this into the objective (22) and applying (6) yields

max
c∈Ci
−
ˆ x

x

S (x)−
i−1∑
j=1

∆∗j

 dη (x;λi (c) , r)− λi (c) Ξi∆
∗
i − kV − kRr. (24)

Properties. Expression (24) resembles (16) in two important ways. First, it only depends
on w through the queue length λ (c), such that we can again analyze the firm’s optimization
problem in terms of λ and r, instead of w and r. Second, by lemma 1, it is strictly concave in
λ and r, implying that exactly one contract will arise in each Ci in equilibrium.

Proof of Proposition 4

High-Wage Contract. In order to derive the optimal contract in C2, it is useful to distin-
guish two cases, one in which the IC constraint binds (w∗2 = w1) and one in which it does not
(w∗2 > w1). I will consider these cases in reverse order.
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Interior Solution. First, consider the case in which w∗2 > w1. The optimal contract
c∗2 ∈ C2 can then be derived in a way analogous to the proof of proposition 2, except for the
fact that the solution will depend on the endogenous variable ∆1. That is, given ∆1, the
optimal λ∗2 and r∗2 are uniquely determined by the first order conditions of (24) with respect
to λ and r , subject to the restriction r∗1 ≥ 0, and the free entry condition that (24) should
equal zero. The terms of trade w∗2 follow from (23). A higher value of ∆1 diminishes entry as
well as recruiting intensity in C2, lowering ∆∗2.

Boundary Solution. Next, consider the case in which w∗2 = w1. The optimal contract
c∗2 ∈ C2 is determined—for a given ∆1—by the boundary constraint U∗1 = U1 (c∗2), the first
order condition of (24) with respect to r, subject to the restriction r∗1 ≥ 0, and the free entry
condition that (24) should equal zero. To see this, note that U∗1 = U1 (c∗2) implies

w∗2 =
∆1

E [ψ (x;λ∗2, c
∗
2)S (x)]

and ∆∗2 = (1− E [ψ2 (x;λ (c) , r)]) ∆1. Substitution of ∆∗2 into (24) yields

−
ˆ x

x
S (x) dη2 (x;λ, r)− λ∆1 − kV − kRr = 0.

This expression is strictly decreasing in λ, and together with the first order condition of (24)
with respect to r, it implies a unique solution (r∗2, λ

∗
2) for a given ∆1.

Low-Wage Contract. The optimal contract in C1 is always interior and can be derived in a
similar fashion as the corresponding solution for c∗2, except that it depends on the endogenous
variable Ξ1 instead of ∆1. That is, given Ξ1, the solution of a firm posting a contract in C1 is
uniquely determined by the first order conditions of (24) with respect to λ and r, subject to
the restriction r∗1 ≥ 0, and the free entry condition that (24) should equal zero. A higher value
of Ξ1 stimulates entry and increases ∆1. Hence, we can write ∆1 = ∆̂ (Ξ1) with ∆̂′ (Ξ1) > 0.
Note that ∆̂ (0) = 0 and that ∆̂ (1) equals some intermediate value.

Acceptance Probability. The acceptance probability for firms posting contracts in C1
crucially depends on whether the interior or the boundary solution for c∗2 emerges. If w∗2 = w1,
workers who apply once are indifferent between c∗1 and c∗2, i.e. U∗1 = U0 +w∗2E [ψ (x; c∗2)S (x)].
Let γ denote the fraction of these workers applying to c∗1. In that case, Ξ∗1 equals

Ξ∗1 =
γp1 (α∗) + p2 (α∗) (1− E [ψ (x;λ∗2, c

∗
2)])

γp1 (α∗) + p2 (α∗)
.
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However, if w∗2 > w1, workers who apply once must send their application to c∗1 and γ must
equal 1.

Through λ∗2 and c∗2, the expression for Ξ∗1 is increasing in ∆1. Hence, we can write Ξ1 =

Ξ̂ (∆1;α, γ), with Ξ̂′ (∆1;α, γ) > 0. The acceptance probability is strictly positive for ∆1 equal
to zero and reaches 1 when applicants to c∗1 capture the entire surplus and no entry in C2 is
feasible.

Solution. The solutions for c∗1 and c∗2 provide two relations between ∆1 and Ξ1. Although
both relations are positive, ∆̂−1 (∆1) is steeper than Ξ̂ (∆1;α, γ) and a unique intersection
(∆∗1,Ξ

∗
1) exists. This intersection and the above results pin down the equilibrium contracts c∗1

and c∗2 for a given α and γ.

Search Intensity. Equilibrium search intensity must maximize (9). Substituting p2 (α) =

1− p1 (α) in (9) and rewriting the resulting expression yields

U (α) = U∗2 − p1 (α) ∆∗2 − kAα.

Hence, given ∆∗2, all workers choose the same search intensity α∗, satisfying the first order
condition

−p′1 (α∗) ∆∗2 = kA. (25)

This solution and Ξ̂ (∆1;α, γ) provide two relations between ∆1 and α. A higher value of
∆1 implies a smaller value of ∆∗2 and therefore a decrease in α∗. Hence a unique intersection
exists.

Entry. Given λ∗i and α∗, the measure v∗i of firms entering submarket i follows from

v∗i =
[γip1 (α∗) + p2 (α∗)] s

λ∗i
,

which concludes the proof.

A.6 Proof of Proposition 5

In order to obtain the directed search equilibrium, the information that a firm provides must
allow a worker to infer the firm’s gross queue λ. When the worker observes both the recruiting
intensity r and the terms of trade w, he can immediately infer λ. This is no longer possible if r
is unobserved, since various combinations of λ and r imply the same expected payoff for given
terms of trade w. It follows from earlier results that these combinations describe a positive
relationship between the two variables.
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To prove the lemma, it is then sufficient to show that only one of these combinations will
imply an expected productivity equal to xE. To show that this is the case, I prove that a
constant expected productivity describes a negative relationship between λ and r, such that
only one point of intersection between the two curves exists. Again borrowing the notation
η (x;λ, r) = η (x;λ, r, w) ∀w from the proof of proposition 2 and using integration by parts,
the expected productivity of a hire can be written as

xE = x+

ˆ x

x

η (x;λ, r)

η (x;λ, r)
dx.

Omitting arguments to simplify notation, some tedious algebra yields

∂2

∂λ∂x
log η = e−κ

κ− 1 + e−κ

(1− e−κ)2
r

r + 1
F ′ > 0

and

∂2

∂r∂x
log η =

(
(1− e−κ)

2 − e−κκ2
)
κxκr − (1− e−κ)κ (1− e−κ − κe−κ)κrx

(1− e−κ)2 κ2
> 0.

Consequently, ∂xE

∂λ > 0 and ∂xE

∂r > 0, after which the Implicit Function Theorem yields the
desired result.

A.7 Proof of Proposition 6

As described in the main text, the planner’s problem can be broken down into decisions regard-
ing 1) entry and search intensity; 2) queue lengths and recruiting intensity; and 3) matching.
I solve these decisions in reverse order, borrowing the notation η (x;λ, r) = η (x;λ, r, w) ∀w
from the proof of proposition 2.

Matching Rule. After one or more interviews, surplus is clearly maximized when the firm
matches with the most productive applicant it has identified, as long as the match surplus
is positive. Hence, the threshold productivity below which no matching takes place solves
S (x) = 0, which coincides with the market equilibrium.

Queue Lengths and Recruiting Intensity. Moving one step back, consider the choice
of queue lengths and recruiting intensity. Let Λ denote the average number of applicants per
firm. Given a number of firms v and a total number of applications vΛ, the planner chooses
λj and rj for each firm j ∈ [0, v] to maximize total surplus, subject to the constraint that the
integral of the queue lengths must equal the number of applications,

´ v
0 λjdj = vΛ. Hence,
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ignoring sunk costs, the planner’s objective function equals

max
{λj ,rj}

ˆ v

0

[ˆ x

x
η (x;λj , rj) dS (x)− kRrj

]
dj. (26)

It follows from the proof of proposition 2 that this expression is strictly concave in λ and r.
Hence, the planner chooses the same recruiting intensity rP and the same queue length λP at
each firm. This queue length equals λP = Λ, after which the recruiting intensity rP equals
either the the boundary point, rP = 0, or satisfies the FOC with respect to r, which coincides
with (18).

Search Intensity and Entry. Finally, the planner chooses entry v by solving

max
v,α

v

[ˆ x

x
η
(
x;λP , rP

)
dS (x)− kV − kRrP

]
,

where λP = Λ = s
v . Denote the solution by vP . By the envelope theorem, the FOC with

respect to v equals

ˆ x

x

[
η
(
x;λP , rP

)
− λP ηλ

(
x;λP , rP

)]
dS (x)− kV − kRrP = 0, (27)

which is identical to the equilibrium condition (19). Hence, a unique solution exists and this
solution corresponds to the market equilibrium, λP = λ∗1, rP = r∗1, and vP = v∗. That is, the
market equilibrium is efficient.

B Calibration

B.1 EOPP Data

Background. The Employment Opportunities Pilot Project—developed by the Office of the
Assistant Secretary for Policy, Evaluation and Research, and funded by the Department of
State’s Employment and Training Administration—was introduced in the summer of 1979.57

It consisted of an intensive job search program combined with a work and training program,
organized at 10 pilots sites throughout the country. Each pilot site consisted of a small number
of neighboring counties. The program was aimed at unemployed workers with a low family
income, and tried to place eligible workers in private-market jobs at one of the pilot sites
during a job search assistance program. If these attempts failed, the worker was offered a

57Several other authors have used the EOPP data set, e.g. Barron et al. (1985), Barron et al. (1987), and
Burdett and Cunningham (1998). See these papers and Wolthoff (2012) for additional information about the
survey.

42



federally-assisted work or training position. The program was in full operation by the summer
of 1980, but was phased out during 1981 by the new Administration.

In order to evaluate the program, a survey was sent to firms at the ten pilot sites and
twenty control sites which where selected on the basis of their similarity to the pilot sites.
The first wave of the survey took place between March and June 1980. The second wave was
conducted between February and July 1982 and aimed to re-interview all respondents to the
first survey. The response rate was about 70%.

Representativeness. The data set is not representative of the entire US labor market.
Workers in the sample are relatively young and due to the nature of the labor market program,
low incomes are overrepresented. Moreover, the pilot sites are disproportionally concentrated
in Gulf Coast cities and underrepresent cities in the Northeast of the US. Further, the data
set does not include workers in government and non-profit organizations. The probability for
a firm in one of the sites to be included in the survey depended on its size and location and
varied between 0.006 for the smallest establishments to close to 1 for establishments with more
than 200 employees (see Barron et al., 1985, for more details). The data set contains sample
weights to account for the heterogeneity in the sampling probability, which I use throughout.

Data and Sample. The survey sent to the firms included various questions on the recruit-
ment process for the last hired worker who was a participant in the labor market program
and for the last hired worker who was not a participant. I only use the latter group in my
analysis. The second survey was a lot more comprehensive than the first one. For this reason,
I only utilize the 1982 data in this paper, which contains detailed information on recruitment
process for the last hire, conditional on the hiring taking place between January 1980 and
September 1981. The data set contains information on both the last subsidized and the last
non-subsidized hire. I restrict the sample to the latter group. For example, the data reports 1)
the number of applications the firm received; 2) the number of interviews the firm conducted;
3) the number of job offers the firm made; 4) the wage the firm paid to the worker it hired;
5) the amount of time the firm spent screening applicants; 6) the vacancy duration; and 7)
some characteristics of the hire. I restrict the sample by omitting observations with missing
or unreliable values.58 This results in a sample of 640 observations. Table 4 presents means
and standard deviations for some of the key variables.59

58I omit outliers (top 0.5% of the distribution) in the number of applications, interviews and job offers. This
does not affect the results.

59A larger set of descriptive statistics is available in Wolthoff (2012).
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Variable Mean Std.dev.
Number of applicants 14.06 22.66
Number of interviews 4.97 6.80
Number of offers 1.20 0.60
Hours spent on screening 6.16 7.48
Fraction of firms hiring within 30 days 0.936 0.246

Table 4: Descriptive statistics of the EOPP sample.

B.2 Derivations

Job Destruction and Matching. Using the subscript t to indicate time, unemployment
evolves according to ut+1 = ut (1−Ψt)+ust+1, where ust+1 ≡ (1− ut) (δt + τ − δtτ) (1−Ψt+1)

denotes the number of short-term unemployed workers at time t + 1, i.e. the number of
workers who were not unemployed yet at time t. Using data from the Current Population
Survey, Shimer (2005b, 2012) constructs time series for both ut and ust . These can be used to
calculate the workers’ matching probability Ψt+1 and the job destruction rate δt according to

Ψt+1 = 1−
ut+1 − ust+1

ut
(28)

and

δt =
1

1− τ

(
ust+1

1− ut
ut

ut+1 − ust+1

− τ
)
,

respectively. After averaging over the relevant time interval and taking into account the age
structure of the sample, I find Ψ = 0.413 and δ = 0.063.

Unemployment and Searchers. Steady state unemployment u follows from equating out-
flow, uΨ, to inflow, (1− u) (δ + τ − δτ) (1−Ψ). This implies

u =
(δ + τ − δτ) (1−Ψ)

Ψ + (δ + τ − δτ) (1−Ψ)
.

Evaluating this in the chosen values for δ, τ and Ψ gives u = 0.085. The number of searchers
is then equal to

s = u+ (1− u) (δ + τ − δτ)

=
δ + τ − δτ

Ψ + (δ + τ − δτ) (1−Ψ)
,

which yields s = 0.144.
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Number of Interviews, Conditional on Hiring. Let v∗j denote the mass of firms posting
equilibrium contract c∗j for all j ∈ {1, . . . , A} and let nI denote the number of interviews that a
firm conducts. Applying Bayes’ Rule twice then implies that the expected number of interviews
conditional on hiring equals

E [nI |hire] =

∑A
j=1

∑∞
n=1 nP

[
nI = n|hire, c∗j

]
P
[
hire|c∗j

]
v∗j∑A

j=1 v
∗
jP
[
hire|c∗j

]
=

∑A
j=1 v

∗
j

∑∞
n=1 nP

[
hire|nI = n, c∗j

]
P
[
nI = n|c∗j

]
∑A

j=1 v
∗
jP
[
hire|c∗j

] .

Note that P [hire|nI = n, c] and P [nI = n|c] were provided in the proof of proposition 1 and
P [hire|c] equals η (x; c).

Number of Interviews. The (unconditional) expected number of interviews per firm equals

E [nI ] =

∑A
j=1

∑∞
n=1 nP

[
nI = n|c∗j

]
v∗j∑A

j=1 v
∗
j

,

where P [nI = n|c] is again provided in the proof of proposition 1. Some algebra gives

∞∑
n=1

nP [nI = n|c] = (r + 1)

(
1− e−

λ(c)
r+1

)
≤ r + 1.

Number of Applications, Conditional on Hiring. In a similar fashion, the expected
number of applicants nA conditional on hiring equals

E [nA|hire] =

∑A
j=1 v

∗
j

∑∞
n=1 nP

[
hire|nA = n, c∗j

]
P
[
nA = n|c∗j

]
∑A

i=1 v
∗
i P
[
hire|c∗j

]
=

∑A
j=1 v

∗
j

∑∞
n=1 n

∑n
i=1 P

[
hire|nI = i, c∗j

]
P
[
nI = i, nA = n|c∗j

]
∑A

j=1 v
∗
jP
[
hire|c∗j

] .

To calculate P [nI = i, nA = n|c], let nQ and nR denote the firm’s number of qualified appli-
cants and interview capacity, respectively. Then

P [nI = i, nA = n|c] = P [nI = i|nA = n, c]P [nA = n|c] ,
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where P [nA = n|c] = e−λ(c) [λ(c)]
n

n! and

P [nI = i|nA = n, c] = P [nQ = i, nR ≥ i|nA = n, c] + P [nQ > i, nR = i|nA = n, c]

=

(
r

r + 1

)i−1 [(n
i

)
qi (1− q)n−i +

n∑
m=i+1

(
n

m

)
qm (1− q)n−m 1

r + 1

]
.

Recruiting Cost, Conditional on Hiring. A firm posting a contract c spends kRr on
recruiting. Assume that a year consists of 50 weeks of 5 days of 8 productive hours and let
xavg (c) denote the average match quality given c, such that the time cost of recruiting can be
calculated as

T (c) =
2000

12

kRr

xavg (c)
.

Then, the expected time spent on recruiting conditional on hiring equals

E [T |hire] =

∑A
j=1 v

∗
jP
[
hire|c∗j

]
T
(
c∗j

)
∑A

j=1 v
∗
jP
[
hire|c∗j

] .

Number of Job Offers. The expected number of job offers nO per firm equals

E [nO] =

∑A
j=1

∑∞
n=1 nP

[
nO = n|c∗j

]
v∗j∑A

j=1 v
∗
j

,

where aggregate consistency requires
∑∞

n=1 nP [nO = n|c] = λ (c)E [ψ (x; c)].
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