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Abstract

This paper proposes a nonparametric test of exogenous participation in first-price auctions.

Exogenous participation means that the valuation distribution does not depend on the

number of bidders. Our test is motivated by the fact that two valuation distributions are

the same if and only if their generalized Lorenz curves are the same. Our method avoids

estimating unobserved valuations and does not require smooth estimation of bid density.

We show that our test is consistent against all fixed alternatives and has power against

root-n local alternatives. Monte Carlo experiments show that our test performs well in finite

samples. We implement our method on data from the U.S. Forest Service timber auctions.

We also discuss how our test can be adapted to other testing problems in auctions.
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1 Introduction

The distinction of different models is important for choosing empirical approaches and

making policy recommendations. From an empirical point of view, models with certain

restrictions are usually simpler to work with. Moreover, identification of the models relies on

behavioral assumptions and on assumptions about the underlying demand and information

structure. However, their relevance has to be decided through formal testing procedures.

This paper proposes a nonparametric test of exogenous participation in first-price auctions.

Exogenous participation means that the valuation distribution does not depend on the

number of bidders (Athey and Haile, 2002). Assuming exogenous participation has been

used to identify various auction models, such as first-price auctions with risk aversion

(Guerre, Perrigne, and Vuong, 2009), first-price auctions under ambiguity (Grundl and Zhu,

2013), and ascending auctions (Aradillas-López, Gandhi, and Quint, 2013). Many testing

problems in auctions reduce to the standard form of testing exogenous participation, such as

detecting collusion (Aryal and Gabrielli, 2012), distinguishing private value and common

value auctions (Haile, Hong, and Shum, 2003), testing different models of entry (Marmer,

Shneyerov, and Xu, 2013).

Testing equality of distributions is a standard problem in statistics. Classic examples are

the Kolmogorov-Smirnov test, the Cramer-von Mises test, and the Anderson-Darling test. In

first-price auctions, complications arise from the fact that valuations are estimated rather than

observed directly. The seminal paper by Guerre, Perrigne, and Vuong (2000) transformed

the First-Order Conditions (FOC) for optimal bids to express a bidder’s value as an explicit

function of the submitted bid, the Probability Density Function (PDF) and Cumulative

Distribution Function (CDF) of bids. Thus, value density function can be estimated using

constructed pseudo values. Although their estimator converges to the true value at the

optimal rate with an appropriate choice of the bandwidth, the asymptotic distribution of this

estimator is as yet unknown. A key difficulty is that both steps of the Guerre, Perrigne, and

Vuong (2000) method are nonparametric with estimated values entering the second stage.

This paper proposes a nonparametric test of equality of valuation distributions without

constructing pseudo valuations in auctions. It is motivated by a simple idea: two valuation

distributions are the same if and only if their generalized Lorenz curves are the same. 1 We

show that the bidders’ FOC allows us to express the generalized Lorenz curve of a valuation

distribution as a simple linear functional of the quantile function of the bids. In light of

this observation, we propose a test statistic measuring the L1-distance between the sample

analogues of this linear functional for two bid samples. Consequently, our test statistic only

involves the two empirical quantile functions of the bids.

Our test has two attractive features. First, the test statistic is calculated in one step,

which allows us to characterize its asymptotic properties under regularity conditions. In

particular, we show that the test statistic converges to the L1-norm of a Gaussian process

1Recently, Barrett, Donald, and Bhattacharya (2014) proposed nonparametric tests for Lorenz dominance.
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with mean zero at a parametric rate under the null hypothesis. We also show that our test

is consistent against any fixed alternative and can detect local alternatives converging to

the null hypothesis at a rate of root-n. Second, our test statistic is easy to calculate, as it

involves no density estimation. Moreover, since the empirical quantile function of bids is a

step function, the empirical counterpart of the generalized Lorenz curve is piecewise linear.

Therefore, the test statistic, i.e., the L1-distance between two empirical counterparts, is simply

the total area of a finite number of trapezoids and triangles. This feature makes our test easy

to implement in practice.

In the auction literature, there has been an increase in attention paid to the development

of statistical tests. Examples include tests for affiliation such as Li and Zhang (2010) and Jun,

Pinkse, and Wan (2010), for monotonicity of bid function such as Liu and Vuong (2013), for

discriminating entry models such as Marmer, Shneyerov, and Xu (2013) and for risk aversion

such as Fang and Tang (2014).

Although our testing approach is new, we are not the first to use quantile-based ap-

proaches in auctions. Marmer and Shneyerov (2012) and Marmer, Shneyerov, and Xu (2013)

propose a quantile-based estimator in first-price auctions and a quantile-based test for distin-

guishing different entry models, respectively. Liu and Vuong (2013) provide a quantile-based

test of monotonicity of bidding strategy in first-price auctions. For nonlinear pricing models,

Luo, Perrigne, and Vuong (2014) propose a quantile-based estimator which achieves root-n

consistency.

The reminder of the paper is organized as follows. In Section 2, we describe our testing

problem and introduce the test statistic. We then derive the asymptotic properties (i.e.,

asymptotic distribution under the null hypothesis, size and power) of the test in Section

3. In Section 4, we report the results of a Monte Carlo study for moderate sample sizes.

Section 5 discusses applications of our test to auctions with risk aversion, auction-specific

heterogeneity and entry. In Section 6, we apply our method to data from the U.S. Forest

Service timber auctions. Section 7 summarizes our results and indicates some future lines of

research. All the proofs are gathered in the Appendix.

2 Exogenous Participation Test in First-Price Auctions

We briefly present the first-price sealed-bid auction model with independent private values.

A single and indivisible object is auctioned. I potential bidders are symmetric and risk

neutral. Their private values are i.i.d. drawn from a common distribution F(·), which is

absolutely continuous with density f (·) and support [v, v]. The equilibrium bid function

takes the form of:

b = s(v|F, I) ≡ v− 1
F(v)I−1

∫ v

0
F(x)I−1dx.
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2.1 Motivation

The seminal paper Guerre, Perrigne, and Vuong (2000) shows that a bidder’s value can be

expressed as an explicit function of the submitted bid, the PDF and CDF of bids

v = ξ(b) ≡ b +
1

I − 1
G(b)
g(b)

, (1)

which can be rewritten in terms of the quantile functions of values and bids as

v(α) = b(α) +
1

I − 1
α

g(b(α))
, (2)

where v(α) and b(α) are the α quantiles of the valuations and bids, respectively. Marmer

and Shneyerov (2012) use the well-known formula f (v) = 1/v′(F(v)) to estimate f (·).
Haile, Hong, and Shum (2003) and Marmer, Shneyerov, and Xu (2013) exploit this quantile

relationship to construct tests for detecting common value and to distinguish entry models,

respectively. Note that the bid density g(·) is involved in both Equations (1) and (2). Thus,

estimating the valuation distribution (quantile) function requires estimating both the bid

distribution (quantile) function and the density function. Recovering the latter could be

troublesome, as we need to choose a tuning parameter, namely, some bandwidth h, in density

estimation.

To motivate our test, we focus on the integral of the quantile function (generalized Lorenz

curve) of valuations. In particular, we rewrite the quantile relationship as follows:

v(α) =
I − 2
I − 1

b(α) +
1

I − 1
[b(α) +

α

g(b(α))
]

=
I − 2
I − 1

b(α) +
1

I − 1
d(b(α) · α)

dα
.

Taking integration on both sides from 0 to β leads to our basic formula:

V(β) ≡
∫ β

0
v(α)dα =

I − 2
I − 1

∫ β

0
b(α)dα +

1
I − 1

b(β)β. (3)

Note that the right-hand side involves only the bid quantile function b(·), which can be

nonparametrically estimated at a
√

N rate.

2.2 Test Statistic

We now introduce our testing problem formally. We observe two independent i.i.d. samples

{B1,1, . . . , B1,N1} and {B2,1, . . . , B2,N2}, where Nk = Ik × Lk is the number of bids generated

from Lk first-price auctions with Ik bidders and valuation distribution F(·|Ik) for k = 1, 2.

We want to test whether the two valuation distributions F(·|I1) and F(·|I2) are the same.
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Specifically, our hypothesis of interest is:

H0 : F(v|I1) = F(v|I2), ∀v ∈ [v, v] v.s. H1 : F(v|I1) 6= F(v|I2), for some v ∈ [v, v].

Denote v(·|Ik) as the corresponding quantile function of F(·|Ik), where k = 1, 2. Define

Vk(·) ≡
∫ ·

0 v(α|Ik)dα. Our testing problem is equivalent to

H0 : V1(β) = V2(β), ∀β ∈ [0, 1] v.s. H1 : V1(β) 6= V2(β), for some β ∈ [0, 1]

where functions V1(·) and V2(·) can be expressed in terms of bid quantile functions

Vk(β) ≡
∫ β

0
v(α|Ik)dα =

Ik − 2
Ik − 1

∫ β

0
b(α|Ik)dα +

1
Ik − 1

b(β|Ik)β,

where b(·|Ik) is the quantile function of bids generated from auctions with Ik bidders and

valuation distribution F(·|Ik).

Under the null hypothesis, V1(·) and V2(·) are identical on the whole domain [0, 1]. In

other words, the distance between V1(·) and V2(·) is zero under the null and positive under

the alternative. Naturally, we propose a test statistic which measures the distance between

their sample analogue

t ≡

√
N1 · N2

N1 + N2
·
∫ 1

0

∣∣∣V̂1(β)− V̂2(β)
∣∣∣ dβ (4)

where V̂1(·) and V̂2(·) are the sample analogues of V1(·) and V2(·), respectively. When sample

size is large, V̂1(·) and V̂2(·) will be close to their true functions. Thus, the test statistic has

a small value under the null hypothesis. It will, however, diverge to infinite under the

alternative. Consequently, our test rejects the null hypothesis when the test statistic is large

enough.

V̂k(·) is piecewise linear with possible jumps at {1/Nk, 2/Nk, . . . , Nk/Nk}. To see this, we

order the bids in each sample. Denote B1,(1) ≤ . . . ≤ B1,(N1) and B2,(1) ≤ . . . ≤ B2,(N2) as the

order statistics of sample 1 and 2, respectively. Simple algebra yields

V̂k(β) = Bk,(ik(β)) × β +
Ik − 2

Nk(Ik − 1)

[ ik(β)

∑
j=1

Bk,(j) − ik(β)× Bk,(ik(β))

]
,

where ik(β) is chosen such that ik(β)−1
Nk

< β ≤ ik(β)
Nk

.2

Thanks to this property, our test statistic is easy to implement in practice. The knots

2For a given sample X1, . . . , Xn, we define the empirical quantile function F−1
n as the inverse mapping of the

empirical distribution function Fn, i.e.

F−1
n (α) = in f {x : Fn(x) ≥ α} = X(i)

where i is chosen such that i−1
n < α ≤ i

n , and X(1), . . . , X(n) are the order statistics of the sample, that is, X(1) ≤
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{1/N1, 2/N1, . . . , N1/N1} and {1/N2, 2/N2, . . . , N2/N2} divide the interval (0, 1] into subin-

tervals. Denote these subintervals as {(τ`, τ`+1]}N0−1
`=0 , where τ` < τ`+1, τ0 = 0 and τN0 = 1.

Since V̂1(·) and V̂2(·) are both linear in (τ`, τ`+1], the integral
∫ τ`+1

τ`

∣∣∣V̂1(β)− V̂2(β)
∣∣∣ dβ is es-

sentially the area of a trapezoid if the curves of V̂1(·) and V̂2(·) do not cross in (τ`, τ`+1] or

two similar triangles otherwise. The area is bounded by the curves of V̂1(·) and V̂2(·) and the

two lines β = τ` and β = τ`+1. Denote d−` ≡ V̂1(τ`−)− V̂2(τ`−) and d+` ≡ V̂1(τ`+)− V̂2(τ`+),

where V̂k(β−) ≡ limu↑β V̂k(u) and V̂k(β+) ≡ limu↓β V̂k(u) . Our test statistic has an explicit

formula:

t =

√
N1N2

N1 + N2
·

N0−1

∑
`=0

(
τ`+1 − τ`

2
) ·
(
|d+` |+ |d

−
`+1| − 1

(
d+` · d

−
`+1 < 0

)
·

2|d+` | · |d
−
`+1|

|d+` |+ |d
−
`+1|

)
.

Figure 1: Integration of Empirical Bid Quantile Function
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3 Asymptotic Properties

Following the literature, we make the following regularity assumptions on how the bids are

generated:

. . . ≤ X(n) and (X(1), . . . , X(n)) is a permutation of the sample X1, . . . , Xn. As Figure 1 shows,

∫ β

0
F−1

n (α)dα = X(i)(β− i− 1
n

) +
1
n

i−1

∑
k=1

X(k).

6



Assumption 1. For any I ∈ {I1, I2}, the random variables B1, . . . , BI are independent and identi-
cally distributed (i.i.d.) with common true distribution G(·|I).

Assumption 1 is a regularity assumption on the bid data generation process. In addition,

we impose some specific properties on the bid distribution in Assumption 2.

Assumption 2. For any I ∈ {I1, I2}, the bid distribution G (· | I) is absolutely continuous with a
positive density g (· | I) on a support of

[
b, b
]
.

Assumption 2 requires that the bid distribution has a density function bounded away from

zero on a compact support. It guarantees that the inverse bid function ξ(b) = b + 1
I−1 ·

G(b|I)
g(b|I)

is well defined on the whole support of bid distribution.

Assumption 3. N1
N1+N2

→ λ ∈ [0, 1] as min{N1, N2} → ∞.

Assumption 3 means that the size of the first bids sample is proportional to the second

one in the limit when the parameter λ is in the interior of [0, 1]. The second sample tends to

have many more (fewer) observations than the first one when the parameter λ is 0 (is 1).

3.1 Asymptotic Distribution under the Null Hypothesis

In this subsection, we provide the asymptotic null distribution of our test statistic. First, we

define two mappings Tk, k = 1, 2, as

Tk( f )(β) =
Ik − 2
Ik − 1

∫ β

0
f (α)dα +

1
Ik − 1

· f (β) · β, β ∈ [0, 1], (5)

where f (·) is any integrable function defined on [0, 1]. The following lemma show that the

mappings Tk, k = 1, 2 are linear.

Lemma 1. The mappings Tk, k = 1, 2, defined in Equation (5) are linear, i.e., for any c ∈ R and any
integrable functions f (·) and h(·) defined on [0, 1],

Tk (c · f + h) (β) = c · Tk( f )(β) + Tk(h)(β), ∀β ∈ [0, 1].

Proof. See Appendix A.1.

Since a linear mapping of a Gaussian process is still Gaussian process, we now show that

the null asymptotic distribution of our test statistic is the L1-norm of a Gaussian process. This

Gaussian process is the sum of two independent Gaussian processes generated by applying

T1 and T2 on two quantile processes. Denote Gk(·) ≡ B(·)
g(b(·|Ik)|Ik)

for k = 1, 2.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold. Then under H0, the test statistic t d−→∫ 1
0

∣∣G(β)
∣∣dβ as min{N1, N2} → ∞, where G is a Gaussian process with a mean of zero and a

covariance function of

cov (G(t), G(s)) = (1− λ) · cov (T1 (G1) (t), T1 (G1) (s)) + λ · cov (T2 (G2) (t), T2 (G2) (s)) .

7



Proof. See Appendix A.2.

Theorem 1 provides the asymptotic distribution of our test statistic under the null hy-

pothesis. It states that our test statistic converges in distribution to the L1-norm of a Gaussian

process with mean zero when sample sizes are large enough. Theorem 1 is important for

two reasons. First, the test statistic converges to the asymptotic distribution at a parametric

rate, although our testing procedure is fully nonparametric. This feature makes our test

applicable in data sets with moderate sample sizes. Second, the asymptotic distribution of

the test statistic under the null hypothesis can be well characterized since it is essentially the

integral of the absolute value of a Gaussian process.

3.2 Asymptotic Critical Value

Next, we give asymptotic critical value based on the asymptotic null distribution.

We propose a plug-in type of critical value c1−α as

{c1−α : c1−α is the (1− α)-th quantile of the distribution of
∫ 1

0

∣∣Ĝ(β)
∣∣dβ},

where Ĝ(·) is obtained by replacing g(b(·|Ik)|Ik) with its nonparametric estimate ĝ(b̂(·|Ik)|Ik)

in G(·).
We then show its properties in the following theorem:

Theorem 2. Suppose Assumptions 1, 2 and 3 hold. Then the asymptotic critical value c1−α satisfies:

1. For any (b(·|I1), b(·|I2)) ∈ H0, limN1,N2→∞ Pr(t > c1−α) = α for any α ∈ (0, 1);

2. For any (b(·|I1), b(·|I2)) ∈ H1, limN1,N2→∞ Pr(t > c1−α) = 1 for any α ∈ (0, 1).

Proof. See Appendix A.3.

Theorem 2 shows that the asymptotic critical value has two properties. Property 1 says

that the critical value has the correct size asymptotically, and Property 2 shows that, as

sample sizes are large enough, the test based on the asymptotic critical value will reject

almost surely for any size value and any Data Generation Process (DGP) in the alternative.

Consequently, our test based on the asymptotic critical value has correct size asymptotically

and is also consistent.

3.3 Bootstrap Critical Value

We investigate the properties of critical value for the test statistic from bootstrapping in this

subsection. The bootstrap treats the given data as if they were the population. It develops the

bootstrap empirical distribution of the test statistic by repeatedly sampling the given data

and computing the test statistic from the resulting bootstrap samples.
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Specifically, we can bootstrap by independently drawing samples of size Nk with re-

placement from each of the two original samples for k = 1, 2. Let {Bm
1,1, . . . , Bm

1,N1
} and

{Bm
2,1, . . . , Bm

2,N2
} be the pair of bootstrap samples, where m = 1, . . . , M and M is the number

of bootstrap sample pairs. For each bootstrap sample pair m, we can compute a value of the

bootstrap test statistic as

tm =

√
N1 · N2

N1 + N2
·
∫ 1

0

∣∣∣(V̂1
m
(β)− V̂2

m
(β)
)
−
(

V̂1(β)− V̂2(β)
)∣∣∣ dβ,

where V̂k
m
(·) is computed by the mth bootstrap sample drawn from original sample k, and

V̂k(·) is computed by the original sample k. We then define the bootstrap critical value as

{cM
α : α-quantile of bootstrap statistics{t1, . . . , tM}},

whose asymptotic properties are given in the following theorem:

Theorem 3. Suppose Assumptions 1, 2 and 3 hold. Then the bootstrapping critical value cM
α satisfies:

1. For any (b(·|I1), b(·|I2)) ∈ H0, limN1,N2→∞ Pr(t > cM
1−α) = α for any α ∈ (0, 1);

2. For any (b(·|I1), b(·|I2)) ∈ H1, limN1,N2→∞ Pr(t > cM
1−α) = 1 for any α ∈ (0, 1).

Proof. See Appendix A.4.

Theorem 3 establishes that the bootstrap critical value has the correct size asymptotically

and is consistent. Consequently, our bootstrap critical value is asymptotically valid.

3.4 Asymptotic Local Power

We now study the asymptotic local power properties of our test. We consider the following

class of local alternatives,

H1n : V2(β) = V1(β) + n−γ · h(β), ∀β ∈ [0, 1],

where n = N1·N2
N1+N2

and h(·) is nonzero for some β and is differentiable on [0, 1]. 3 These local

alternatives are equivalent to v(·|I2) = v(·|I1) + n−γh′(·). If h(·) = 0, they degenerate to

the null hypothesis H0. The following theorem describes the local alternatives our test can

detect.

Theorem 4. Suppose that the DGPs satisfy the local alternative hypothesis H1n. Then the following
statements hold: Let n→ ∞,

1. If γ < 1
2 , then the test statistic t

p−→ +∞;

3 Notice that h(0) = 0 since V1(0) = V2(0) = 0. Moreover, the differentiability of h(·) is due to the differentiabil-
ity of V1(·) and V2(·) under Assumption 2.

9



2. If γ = 1
2 , then t d−→

∫ 1
0 |G(β)− h(β)|dβ, where G(·) is the process defined by Theorem 1;

3. If γ > 1
2 , then the test statistic t converges in distribution to

∫ 1
0 |G(β)|dβ, which is the

asymptotic distribution of t under H0.

Proof. See Appendix A.5.

Theorem 4 shows that, despite our test being fully nonparametric, it has non-trivial power

against local alternatives approaching to the null hypothesis at a rate of root-n.

4 Finite Sample Performance

To study the finite sample performance of our testing procedure, we conduct Monte Carlo

experiments. We consider two groups of auctions: one group has I1 = 3 bidders, and the

other group has I2 = 7 bidders. The true valuation distribution of group k is

F(v|Ik) =


0 if v < 0,

vγk if 0 ≤ v ≤ 1,

1 if v > 1,

(6)

where γk > 0 and k = 1, 2. 4 Such a choice of private value distributions is convenient since

the distributions correspond to linear bidding strategies as:

s(v|Ik) =
(
1− 1

γk(Ik − 1) + 1
)
· v. (7)

The number of Monte Carlo replications is 1000. For each replication, we first generate

randomly N1 = I1 · L1 and N2 = I2 · L2 private values from F(·|I1) and F(·|I2), respectively.

Second, we calculate the corresponding bids B1,i and B2,i using the linear bidding strategies

in Equation (7). Third, we compute the one-step test statistic t using Equation (4). Fourth,

we obtain the bootstrap critical value by applying the bootstrapping procedure described

in Section 3.3 with 1000 pairs of bootstrap samples. Comparing the test statistic and the

bootstrap critical value, we conclude whether the null hypothesis H0 can be rejected for this

Monte Carlo replication. We can then obtain the simulated rejection rate by the rejection rate

of these 1000 Monte Carlo replications.

We now conduct several experiments to study the size and local power of our test in finite

samples.

4.1 Size

We first study the size of our test, that is, the probability that the test will reject the null

hypothesis when it is true. In this experiment, we consider γ1 = γ2 ∈ {0.25, 0.50}, N1 =

4We adopt the setup of the Monte Carlo simulations from Marmer and Shneyerov (2012).
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N2 ∈ {105, 525, 735}, and the size α ∈ {0.10, 0.05, 0.01}. The results are summarized in

Table 1.

Table 1: Simulated size for I1 = 3, I2 = 7 and γ1 = γ2 = γ

N = 105 N = 525 N = 735

Nominal size 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

γ = 0.25 0.0980 0.0460 0.0110 0.1200 0.0630 0.0160 0.1030 0.0550 0.0120

γ = 0.5 0.1070 0.0510 0.0090 0.0950 0.0510 0.0140 0.1070 0.0580 0.0160

Table 1 shows that our test has good performance in terms of size with moderate sample

sizes. Consider γ1 = γ2 = 0.5. When N1 = N2 = 105 (i.e., the number of auctions L1 = 35

and L2 = 15), the simulated rejection rates are 0.1070, 0.0510 and 0.0090, respectively. They

are close to their nominal values.

4.2 Power

We now study the power of our test, namely, the probability that the test will reject the null

hypothesis when it is false. First, we show the power of our tests against fixed alternatives.

Figure 2 displays the simulated rejection rate for a nominal size of α = 0.10. We fix γ1 = 0.5,

and let γ2 vary between 0.25 and 0.75 with a step size of 0.05 and sample size N1 = N2 ∈
{105, 315}.

Figure 2: Simulated Rejection Rate (γ1 = 0.5, γ2 ∈ [0.25, 0.75], α = 0.10)

As shown in Figure 2, for a given sample size, the rejection rate converges to 100% when
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γ2 moves further away from γ1 = 0.5, and for a given value of γ2, the rejection rate is higher

when the sample size is larger.

We then show the results for the local power, that is, the power of the test when the

alternatives are approaching to the null at some rate when the sample size increases. In

particular, we fix γ1 = 0.5 and let γ2 approach γ1 as the sample size increases

γ2 = 0.5 +
1

Nd ,

where N1 = N2 = N. Note that v2(β) = β1/γ2 . Consider a large N. Taylor expansion gives

v2(β) ≈ v1(β)− β1/γ1 log β

γ2
1

1
Nd . Thus, Theorem 4 applies. We let the significance level α = 0.10,

and th sample size N increase from 315 to 3465 with an increment of 630. Figure 3 displays

Figure 3: Simulated Local Power (γ1 = 0.5, γ2 = 0.5 + 1/Nd, α = 0.10)

the simulated local power of our test for d = 0.5 in solid line and d = 0.4 in dashed line.

The former shows the probabilities of detecting the root-n local alternatives. The simulated

rejection rate is higher than 40%, which is significantly higher than the nominal size α = 0.10.

When d = 0.4, the rejection rate increases towards 100% as the sample size N increases. In

sum, Figure 3 shows some evidence that our test can detect the local alternatives converging

to the null hypothesis at a rate of root-n.

5 Extensions

In this section, we discuss how to adapt our test to a variety of auction settings. First, we

consider testing exogenous participation, allowing for risk aversion and observed auction

heterogeneity. Second, we consider adapting our method to other testing problems, such as

discriminating entry models of auctions and detecting risk aversion.

12



5.1 Auction Models with Risk Averse Bidders

We can generalize our test to allow for risk averse bidders.5 We consider the bidders having a

Constant Relative Risk Aversion (CRRA) vNM utility function U(ω) = ω1−c where 0 ≤ c < 1

and ω ∈ [0,+∞). Guerre, Perrigne, and Vuong (2009) obtain the inverse bidding function as

ξ(b) = b + (1− c) · 1
I − 1

· G(b)
g(b)

,

which yields the following integration of private value quantile functions:

Vk(β) =
Ik − 2 + c

Ik − 1
·
∫ β

0
b(α|Ik)dα +

1− c
Ik − 1

· b(β|Ik) · β.

Therefore, our test applies with a slight modification.

5.2 Auction Models with Auction-Specific Heterogeneity

In this subsection, we discuss how to generalize our testing procedure to allow for auction-

specific heterogeneity. Let X ∈ Rd be a random vector that describes the heterogeneity of

auctions. The bidders’ inverse bidding function in an auction with characteristic x is 6

v = ξ(b|x) ≡ b +
1

I − 1
G(b|x)
g(b|x) ,

where I is the number of bidders. After some algebra, we obtain:

Vk(β|x) ≡
∫ β

0
v(α|Ik, x)dα =

Ik − 2
Ik − 1

∫ β

0
b(α|Ik, x)dα +

1
Ik − 1

b(β|Ik, x)β, k = 1, 2.

It is then fairly straightforward to give a testing procedure of exogenous bidders’ participation

in auctions with heterogeneity. Notice that our testing procedure involves the curse of

dimensionality due to the estimation of conditional quantile function b(·|Ik, x). However, its

convergence rate is still faster than estimating g(·|Ik, x) if one were to compare the valuation

distribution (quantile) functions.

Alternatively, if we impose an additively separable structure on the valuation, we can

“homogenize” the bids and then implement our test in a two-stage procedure following Haile,

Hong, and Shum (2003).7 In particular, assume that

v(w, I, x) = δ(x) + v(w, I),

5Risk aversion has been shown to be an important component of bidders’ behavior in auctions by both the
empirical and experimental literature (see, for example, Athey and Levin (2001), Lu and Perrigne (2008) and Campo,
Guerre, Perrigne, and Vuong (2011) for empirical literature, and Cox, Smith, and Walker (1988) and Bajari and
Hortaçsu (2005) for experimental literature).

6We denote a random variable/vector by an uppercase letter and its realization by a lowercase letter.
7A similar approach applies to a multiplicatively separable structure on the valuation.
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where w is bidder’s private value, and bidder’s private value W is independent of auction

heterogeneity X. Haile, Hong, and Shum (2003) show that bidders’ bidding strategy satisfies

b(w|Ik, x) = δ(x) + b(w|Ik),

which we rewrite as

b(w|Ik, x) = δ0 + b0(Ik) + δ̃(x) + b̃(w|Ik),

where δ0 = E[δ(X)], b0(Ik) = E[b(W|Ik)|Ik], δ̃(x) = δ(x)− δ0 and b̃(w|Ik) = b(w|Ik)− b0(Ik).

b∗(w|Ik) ≡ δ0 + b0(Ik) + b̃(w|Ik) is the bid that a bidder would have submitted in equilibrium

if she were in an “average” auction (i.e., δ(x) = E[δ(X)]) with Ik bidders. Moreover, the term

b̃(W|Ik) has mean zero conditional on (Ik, X) by independence of X and W. In the first stage,

we regress bids on X and calculate the homogenized bids as b̂∗(w|Ik) = b(w|Ik, x)− ̂̃δ(x),
where ̂̃δ(x) is the estimate of δ̃(x) from the regression. In the second stage, we apply our

testing procedure to the “homogenized” bids b̂∗ as if they were from a sample of auctions of

identical goods. With such a two-stage procedure, we can avoid smoothing over X when

estimating quantiles of bids in the test statistic.

5.3 Auction Models with Entry

We can adapt our test to discriminate the auction models with entry studied in Marmer,

Shneyerov, and Xu (2013). They consider the selective entry model (SEM), which nests the

Levin and Smith (1994) model of entry (LS) and the Samuelson (1985) model (S). In a selective

entry model, a potential bidder observes a private signal correlated with his valuation of the

good at the entry stage, which can be learned upon incurring entry cost. The inverse bidding

strategy is identifiable as

ξ(b|I) = b +
1

I − 1
(G∗(b|I)

g∗(b|I) +
1− p(I)

p(I)
1

g∗(b|I)
)
,

where p(I) is the equilibrium probability of bidding and G∗(·|I) is the conditional distribu-

tion of active bidder’s bids.

Marmer, Shneyerov, and Xu (2013) show that as the number of potential bidders increases,

those who enter tend to have larger valuations. From this selection effect, the restriction of

the SEM and LS model can be stated as: if I1 < I2,

HLS : v(β|I1) = v(β|I2),

HSEM : v(β|I1) ≤ v(β|I2).

They propose a test statistic based on pairwise differences between the sample quantiles

corresponding to different numbers of potential bidders, which are estimated by plugging in

nonparametric estimators of the inverse bidding strategy and conditional bid quantile func-
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tion. Thus, the test statistic requires multiple steps and involves kernel density estimators.

After some algebra, we obtain: for β ∈ [0, 1] and k = 1, 2,

Vk(β) ≡
∫ β

0
v(α|Ik)dα =

Ik − 2
Ik − 1

∫ β

0
b(α|Ik)dα +

1
Ik − 1

b(β|Ik)
[
β +

1− p(Ik)

p(Ik)

]
Therefore, our method can be an alternative to distinguish auction models with entry.

5.4 A Nonparametric Test of Risk Aversion

We can construct a nonparametric test of risk aversion in the framework of Guerre, Perrigne,

and Vuong (2009). They show how to identify risk aversion nonparametrically in first-price

auctions under exogenous participation and characterize all the theoretical restrictions. The

key idea is that the invariance of the quantile v(α) for two different numbers of bidders I1

and I2 leads to the compatibility conditions:

b1(α) + λ−1
( 1

I1 − 1
α

g1(b1(α))

)
= b2(α) + λ−1

( 1
I2 − 1

α

g2(b2(α))

)
(8)

where α ∈ [0, 1] and λ(·) = U(·)/U′(·). Note that the risk neutral case is obtained when U(·)
is the identity function, in which case both λ(·) and λ−1(·) are also the identity function.

Under exogenous participation, the auction model implies stochastic dominance between

any two observed bid distributions regardless of bidders’ risk attitude. Maintaining both of

the exogenous participation and stochastic dominance assumptions, our test applies to detect

risk aversion nonparametrically: (i) if bidders are risk neutral, we obtain our hypothesis

of neutrality H0 by replacing λ−1(·) with the identity function in Equation (8); and (ii) if

bidders are risk averse, the compatibility conditions are not satisfied when we replace λ−1(·)
with the identity function in Equation (8); otherwise, bidders are risk neutral for that the

compatibility conditions lead to identification of λ−1(·) as shown in Guerre, Perrigne, and

Vuong (2009). Consequently, the detection of risk aversion is equivalent to discriminating the

following two hypotheses:

H0 : b1(α) +
1

I1 − 1
α

g1(b1(α))
= b2(α) +

1
I2 − 1

α

g2(b2(α))
, ∀α ∈ [0, 1] v.s. H1 : not H0.

Our testing approach can be applied after integrating H0 with respect to α.

6 Application

In this section, we implement our test to some real life data. We study the U.S. Forest Service

timber auctions, which sell the timber harvesting rights from publicly owned forests. In

particular, we analyze the sealed-bid auction data used in Lu and Perrigne (2008). It covers

the western half of the U.S. in 1979.
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There are N1 = 107 auctions with 2 bidders and N2 = 108 auctions with 3 bidders. For

each auction, the data contain the estimated total volume of the timber, the appraisal value

per unit of timber, the identity of the bidders and their bids per unit of timber. We calculate

the FS estimate by multiplying the total volume by the appraisal value. Similarly, we obtain

the total bid amount by multiplying the bid per unit by the total volume. Table 2 gives some

basic statistics on these variables.

Table 2: Summary Statistics
Variable Mean Std. Dev. Min. Max.

I = 2

total bid 77417.7 191996.5 2234 1700522
FS estimate 50489.76 145024.4 425.0198 1333586

logb 9.9823 1.4933 7.7115 14.3465
logX 9.5596 1.4474 6.0521 14.1034

bidnew 27231.99 31988.8 13190.1 284547.7

I = 3

total bid 96747.53 159255.8 1066.502 1170227
FS estimate 48665.83 80497.11 1020 415506.8

logb 10.4073 1.5157 6.9721 13.9727
logX 9.7369 1.4552 6.9276 12.9373

bidnew 54180.64 98493.89 12592.48 968014.3

Following Haile, Hong, and Shum (2003), we homogenize the total bids before imple-

menting our method to control for observable heterogeneity. In particular, for each sample

(number of bidders = 2 or 3), we regress the logarithm of the total bids (logb) on the loga-

rithms of the FS estimate (logX). Table 3 displays the results. The FS estimate explains a large

amount of the variation in the total bids.

Table 3: Homogenization of Bids
I=2 I=3

logX 0.9584*** 0.8929***
(0.0277) (0.0333)

Adjusted R2 0.8622 0.7341

The homogenized bids (bidnew) are calculated as the exponential of the differences between

the logarithm of the original total bids and the demeaned fitted values of the regression. Table

2 presents some summary statistics of the homogenized bids. Under exogenous participation,

the auction model implies stochastic dominance between the observed bid distributions, i.e.,

G3(·) > G2(·). Figure 4 displays the two empirical distributions of bidnew. Eyeballing does

not reject that Ĝ3(·) stochastic dominates Ĝ2(·).
We now implement our test on the “homogenized” bid samples. The test statistic is

calculated to be 91479.3318 with a p-value of 0.025. Therefore, our test rejects the null

hypothesis of exogenous participation at the 5% significance level.
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Figure 4: Ĝ2(·) and Ĝ3(·))

7 Conclusion

This paper develops a generalized Lorenz curve-based nonparametric test for exogenous

participation in first-price auctions. The exogenous participation assumes that the bidders’

private value distributions are the same across auctions with different numbers of bidders.

Our test is convenient in practice since it only involves one step estimation of quantile

functions of bids. We show that, at a parametric rate, the test statistic converges to the

L1-norm of a Gaussian process with mean zero under the null hypothesis. We propose both

asymptotic and bootstrap critical values, and we show that our test has the correct size

and is consistent against all fixed alternatives. Moreover, our test detects local alternatives

approaching the null at a parametric rate, despite the nonparametric nature of our test. Our

simulation results show that our test behaves well in finite samples. Additionally, we extend

our test to allow for CRRA utility and observable auction-specific heterogeneity. We also

adapt our test to distinguish auction models with entry and to detect risk aversion in auctions

under exogenous participation.

There are several directions in which this work may be extended. First, we have shown

that our test can be generalized to auctions with risk averse bidders for CRRA utility. Further

study is needed to extend it to auctions with risk averse bidders for nonparametric utility.

Second, our testing procedure assumes that we observe all auction-specific heterogeneity.

It is interesting but challenging to allow for unobserved heterogeneity, that is, something

bidders observe but econometricians do not. We leave these extensions for future research.
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A Proofs

A.1 Proof of Lemma 1
For any β ∈ [0, 1], any c ∈ R, and any integrable functions f (·) and h(·) defined on [0, 1], by
definition, we have

Tk (c · f + h) (β) =
Ik − 2
Ik − 1

∫ β

0
[c · f (α) + h(α)] dα +

1
Ik − 1

· [c · f (β) + h(β)] β

= c ·
[

Ik − 2
Ik − 1

∫ β

0
f (α)dα +

1
Ik − 1

· f (β)β

]
+

Ik − 2
Ik − 1

∫ β

0
h(α)dα +

1
Ik − 1

· h(β)β

= c · Tk( f )(β) + Tk(h)(β),

which says that Tk is linear.

A.2 Proof of Theorem 1
Proof. Under the null hypothesis H0, we have V1(β) = V2(β) for any β ∈ [0, 1]. Consequently,
we can rewrite the test statistic as

t =
∫ 1

0

√
N1 · N2

N1 + N2
·
∣∣∣V̂1(β)− V̂2(β)

∣∣∣ dβ

=
∫ 1

0

√
N1 · N2

N1 + N2
·
∣∣∣V̂1(β)−V1(β)−

(
V̂2(β)−V2(β)

)∣∣∣ dβ

=
∫ 1

0

∣∣∣∣∣ I1 − 2
I1 − 1

∫ β

0

√
N1 · N2

N1 + N2

(
b̂(α|I1)− b(α|I1)

)
dα +

1
I1 − 1

·

√
N1 · N2

N1 + N2

(
b̂(β|I1)− b(β|I1)

)
β

− I2 − 2
I2 − 1

∫ β

0

√
N1 · N2

N1 + N2

(
b̂(α|I2)− b(α|I2)

)
dα− 1

I2 − 1
·

√
N1 · N2

N1 + N2

(
b̂(β|I2)− b(β|I2)

)
β

∣∣∣∣∣ dβ,

where the second equality holds due to V1(β) = V2(β) for any β ∈ [0, 1] under the null H0,
and the last equality comes from the definitions of V̂k(·) and Vk(·) for k = 1, 2.

The test statistic can then be rewritten as

t =
∫ 1

0

∣∣∣∣∣
√

N2

N1 + N2
· T1

(
Ĝ1

)
(β)−

√
N1

N1 + N2
· T2

(
Ĝ2

)
(β)

∣∣∣∣∣ dβ,

where Ĝk(·) ≡
√

Nk

(
b̂(· | Ik)− b(· | Ik)

)
, k = 1, 2, are the empirical quantile processes.

Notice that the empirical quantile processes Ĝk(·) ⇒ B(·)/g(b(· | Ik) | Ik) on (0, 1) as
Nk → ∞. In addition, both mappings T1 and T2 are linear by Lemma 1, and the empirical
quantile processes Ĝ1(·) and Ĝ2(·) are independent of each other because the bids under
I = I1 are independent of bids under I = I2. Consequently,√

N2

N1 + N2
· T1

(
Ĝ1

)
(·)−

√
N1

N1 + N2
· T2

(
Ĝ2

)
(·)⇒ G(·) on (0, 1),
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where G(·) is a Gaussian process with mean zero and covariance function of

cov (G(t), G(s)) = (1− λ) · cov (T1 (G1) (t), T1 (G1) (s)) + λ · cov (T2 (G2) (t), T2 (G2) (s)) ;

and Gk(·) ≡ B(·)
g(b(·|Ik)|Ik)

for k = 1, 2.

By continuous mapping theorem, our test statistic t d→
∫ 1

0 |G(β)| dβ.

A.3 Proof of Theorem 2
Proof. Let n denote the minimum of N1 and N2. We first show part 1. Note that, for any fixed
α ∈ (0, 1), the critical value c1−α is continuous in ĝ(q̂(·|I1)|I1) and ĝ(q̂(·|I2)|I2) . Consequently,
under the null hypothesis H0,

lim
n→∞

Pr (t ≥ c1−α)

= 1− lim
n→∞

[Pr(t ≤ c1−α)− Pr(t∞ ≤ c1−α)]− lim
n→∞

Pr(t∞ ≤ c1−α)

= 1− lim
n→∞

Pr(t∞ ≤ c1−α)

= α

where t∞ has a distribution the same as the asymptotic distribution of t; the second-to-last
equality holds by Polya’s theorem since the asymptotic distribution of t is continuous; and
the last equality holds due to the continuity of c1−α in ĝ(b̂(·|I1)|I1) and ĝ(b̂(·|I2)|I2). The
conclusion of part 1 therefore follows.

We then show part 2. Under the alternative hypothesis H1, there exists a β in [0, 1],
denoted as β∗, such that V1(β∗) 6= V2(β∗). Consequently, there must exist an interval C∗
with positive measure around β∗ such that V1(β) 6= V2(β) for β ∈ C∗, since V1 and V2 are
continuous by Assumption 2. We therefore have

t =
∫ 1

0

√
N1 · N2

N1 + N2
·
∣∣∣V̂1(β)− V̂2(β)

∣∣∣ dβ

≥
∫
C∗

√
N1 · N2

N1 + N2
·
∣∣∣V̂1(β)− V̂2(β)

∣∣∣ dβ

=
∫
C∗

∣∣∣∣∣
√

N1N2

N1 + N2
[V̂1(β)−V1(β)]−

√
N1N2

N1 + N2
[V̂2(β)−V2(β)] +

√
N1N2

N1 + N2
[V1(β)−V2(β)]

∣∣∣∣∣ dβ

(9)

where the first two terms on the right-hand side of last equality in Equation (9) are stochas-
tically bounded, but its third term diverges to infinity as n → ∞ since V1(β) 6= V2(β) for
any β in the positively measured interval C∗. Thus, the right-hand side of last equality in
Equation (9) diverges to +∞ as n goes to infinity, which implies that the statistic t goes to
+∞ as n→ ∞. We therefore have that, for any α ∈ (0, 1),

lim
N1,N2→∞

Pr(t ≥ c1−α) = 1

under the alternative hypothesis H1. Part 2 follows immediately.
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A.4 Proof of Theorem 3
Proof. Lemma 1 shows that the mapping Tk is linear for k = 1, 2. In addition, the quantile
function is a Hadamard differentiable functional of the cumulative distribution function.
Consequently, Vk(·) is a Hadamard differentiable functional of the cumulative distribution
function. By functional delta method, it suffices to show that the bootstrap applied to the
empirical distributions yields processes with the same asymptotic covariance properties as
those for the empirical distributions of the original sample.

Notice that the bootstrap empirical processes are (for details, see Chapter 3.6 of van der
Vaart and Wellner (1996)),

G∗1(b1) =
1√
N1

N1

∑
j=1

1{Bm
1,j ≤ b1} − Ĝ1(b1) =

1√
N1

N1

∑
j=1

(
M1j − 1

)
· 1{B1,j ≤ b1},

G∗2(b2) =
1√
N2

N2

∑
j=1

1{Bm
2,j ≤ b2} − Ĝ2(b2) =

1√
N2

N2

∑
j=1

(
M2j − 1

)
· 1{B2,j ≤ b2},

where M1j and M2j are independent multinomial random variables with N1 and N2 cells
and success probabilities of 1/N1 and 1/N2, respectively. Notice that M1j and M2j are also
independent of the original sample. It is easy to show that, given the original sample, G∗1(·)
and G∗2(·) are independent mean zero processes with covariance kernels of:

E
(
G∗k (bk)G∗k (b

′
k)|Bk,1, . . . , Bk,Nk

)
= Ĝk(bk)− Ĝk(bk)Ĝk(b′k),

for bk ≤ b′k and k = 1, 2. Such covariance kernels converge to the ones of the limiting
processes of the corresponding empirical processes. Consequently, the bootstrap empirical
processes G∗1(·) and G∗2(·) have the same limiting processes as the empirical processes based
on the corresponding empirical distributions of the original sample.

Following the delta method for bootstrap as shown by Theorem 3.9.11 of van der Vaart
and Wellner (1996) and the continuous mapping theorem, we can show that, given the
original sample, the bootstrap test statistic

tm d−→
∫ 1

0

∣∣G(β)
∣∣dβ.

Consequently, the bootstrap test statistic has the same limiting distribution as the original
test statistic. The desired conclusion therefore follows by Theorems 1 and 2.

A.5 Proof of Theorem 4
Proof. Notice that there must exist an interval C∗ with positive measure such that h(β) 6= 0
for any β ∈ C∗, because that h(·) is nonzero and is differentiable on [0, 1]. Under the local
alternative hypothesis H1n, we can rewrite the test statistic t as follows:

t =
∫ 1

0

√
n ·
∣∣∣V̂1(β)− V̂2(β)

∣∣∣ dβ

=
∫ 1

0

∣∣∣√n
(

V̂1(β)−V1(β)
)
−
√

n
(

V̂2(β)−V2(β)
)
− n

1
2−γ · h(β)

∣∣∣ dβ
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As shown by the proof of Theorem 1 in Appendix A.2,

√
n
(

V̂1(·)−V1(·)
)
−
√

n
(

V̂2(·)−V2(·)
)
⇒ G(·) on (0, 1).

Consequently, if γ < 1
2 , then the test statistic t

p−→ +∞, since n
1
2−γ · h(β) −→ ∞ for all

β ∈ C∗; and by the continuous mapping theorem, if γ = 1
2 , then tn

d−→
∫ 1

0 |G(β)− h(β)|dβ,

due to the fact that n
1
2−γ · h(β) = h(β) for all β ∈ [0, 1]; if γ > 1

2 , then tn
d−→
∫ 1

0 |G(β)|dβ for
that n

1
2−γ · h(·)→ 0 uniformly on [0, 1]. The desired result therefore follows.
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