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TESTING LATE ASSUMPTIONS

ISMAEL MOURIFIÉ† AND YUANYUAN WAN‡

ABSTRACT. In this paper, we discuss the key conditions for the identification and estimation of the

local average treatment effect (LATE, Imbens and Angrist, 1994): the valid instrument assumption

(LI) and the monotonicity assumption (LM). We show that the joint assumptions of LI and LM have

a testable implication that can be summarized by a sign restriction defined by a set of intersection

bounds. We propose an easy-to-implement testing procedure that can be analyzed in the framework of

Chernozhukov, Lee, and Rosen (2013) and implemented using the Stata package of Chernozhukov,

Kim, Lee, and Rosen (2013). We apply the proposed tests to the “draft eligibility” instrument in

Angrist (1991), the “college proximity” instrument in Card (1993) and the “same sex” instrument in

Angrist and Evans (1998).

Keywords: LATE, hypothesis testing, intersection bounds, conditionally more compliers.

1. INTRODUCTION

The instrumental variable (IV) method is one of the most-used techniques in applied economics

to identify the causal effect of an endogenous treatment on a particular outcome. In the framework

of potential outcome models, a valid instrument must be independent of all potential outcomes and

potential treatments but be dependent on the observed treatment; in the meantime, it must have no

effect on the observed outcome beyond its effect on the observed treatment. In the presence of a

valid instrument, Holland (1988) shows that the causal effect can be consistently estimated using

the Wald estimand when the treatment effect is homogeneous that is, the effect of the treatment is

constant across individuals. Imbens and Angrist (1994, IA1994 hereafter) showed, however, that a
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valid instrument itself does not ensure the “no sign reversal property” of the Wald estimand when

the treatment effect is heterogeneous, meaning that when the effect of the treatment is non-constant

across individuals, the Wald estimand can be zero, positive, or negative, even if the causal effect of

the treatment on the outcome is strictly positive for every individual. To deal with this issue, IA1994

introduced the treatment monotonicity assumption (LM, also known as the “no defiers” assumption),

which assumes that the instrument affects the treatment decision in the same direction for every

individual. Whenever both instrument validity (LI) and LM hold, IA1994 showed that the Wald

estimand is no longer sign reversal and can be used to consistently estimate the average treatment

effect (ATE) for the subpopulation of compliers, namely, the local average treatment effect (LATE).

Although the results of IA1994 have being widely influential in the applied economics literature,

there are concerns about the validity of the key assumptions. For instance, Dawid (2000) discussed

applications where LM is likely to be violated. Such concerns, however, cannot be directly verified

because LM itself is not testable. Balke and Pearl (1997) and Heckman and Vytlacil (2005) first

discussed testable implications of the joint assumptions of LI and LM. Based on these insights,

Kitagawa (2008) first proposed a specification test for testing the joint assumptions of LM and LI

in the binary treatment case. Machado, Shaikh, and Vytlacil (2013) proposed tests for LM and/or

outcome monotonicity (in treatment) in a binary treatment, binary instrument and binary outcome

setup while maintaining the LI assumption. Huber and Mellace (2013) considered a model in

which the instrument respects mean independence rather than full independence and proposed a

specification test based on a different set of testable implications.

In this paper, we revisit the existing discussions on testing joint validity of LM and LI and

propose a new and easy-to-implement test. In particular, we show that LI and LM imply a set

of conditional moment inequalities; and show that this set of conditional moment inequalities is

a sharp characterization of LM and LI, in the sense that, whenever it holds, there always exists

another observationally equivalent model in which LI and LM hold. The novelty and a nice feature

of these restrictions is that the outcome variable enters the inequalities as a conditioning variable,

and one can easily incorporate additional covariates into the moment inequalities as additional

conditioning variables. The test we propose can be analyzed under the intersection bounds framework

of Chernozhukov, Lee, and Rosen (2013). A Stata package provided by Chernozhukov, Kim, Lee,

and Rosen (2013) is readily available for empirical researchers to use.
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As an extension to LM, we discuss an alternative testable condition of conditionally more compliers

(CMC), which is also discussed in Chaisemartin (2013). CMC is weaker than LM because it does not

rules out the existence of defiers, instead, it only requires that the proportion of defiers is no greater

than the proportion of the compliers in every subpopulations (strata) defined by the potential outcome

variable. Chaisemartin (2013) referred to it as “weak more compliers than defiers” (WMC); we name

it as conditionally more compliers to emphasize that it is a restriction imposed on subpopulations. In

addition to the discussion in Chaisemartin (2013), we show that CMC and LI have the same testable

implication as LM and LI. We further show that when LI holds, the testable implication of LM is

equivalent to CMC. In other words, CMC is testable when LI holds. Therefore, our test can be

interpreted as test for “more compliers than defiers" whenever LI holds. We also show that when

CMC+LI hold, the Wald estimand is still no sign reversal for a class of potential outcomes models

which allow for heterogeneous treatment effect.

There are other weaker notions of monotonicity. Small and Tan (2007) discussed the stochastic

monotonicity (SM) condition, which requires the proportion of defiers to be smaller than compliers

in every subpopulation defined by the vector of two potential outcomes. Compared with SM, CMC

only requires this holds in subpopulations defined by a single potential outcome. SM is therefore

weaker than LM but stronger than CMC. Chaisemartin (2013) proposed a “compliers-defiers” (CD)

assumption and showed that the IV can still be a relevant estimator under CD. CD also allows for the

existence of defiers, but it requires that a subgroup of compliers exists that has the same size and

same marginal distribution of both potential outcomes as defiers. Unlike CMC, neither SM nor CD

is directly testable even when LI holds.

From the testing perspective, our paper complements but differs from the work of Kitagawa (2008,

2013) in the following aspects. Indeed, the latter papers focus on restrictions of the joint distribution

of the outcome and treatment variables conditional on the instrument. For this approach, the number

of restrictions (inequalities) needs to be checked equals to the number of all subsets of the support

of the observable outcome. The computational cost is very high when the support contains a large

number of values. As a matter of fact, when the observable outcome is continuously distributed,

the problem becomes infinite dimensional. One way to solve this issue is to find the smallest core

determining class, 1 which is defined as a suitably lowest cardinality class of sets that are sufficient to

1See Galichon and Henry (2006, 2011) for detailed discussions.
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characterize all the restrictions imposed by the joint LI and LM assumptions on the observables. The

smallest core determining class has not been discussed in Kitagawa (2008, 2013). The inferential

method they used relies on a set of restrictions that is not guaranteed to exhaust all the restrictions

implied by the joint LI and LM assumption and hence does not guaranteed the test to be consistent

against all fixed alternatives (more discussions in Section 4). On the other hand, we propose, first, a

new characterization of the testable implication that avoids the research of a core determining class.

Second, our test is consistent against any fixed alternatives. Third, our test is also consistent against

a class of local alternatives, whereas Kitagawa (2008, 2013) did not establish such results. Finally,

as we mentioned earlier, our testing procedure can be easily implemented using the Stata package

provided by Chernozhukov, Kim, Lee, and Rosen (2013).

Our last contribution is empirical. We apply the proposed test to three well-known instruments

used in the literature: the “draft eligibility” instrument, the “college proximity” instrument and the

“same sex” instrument. Angrist (1991) analyzed the effect of veteran status on civilian earnings

using the binary indicator of the draft eligibility as instrument. Card (1993) analyzed the effect of

schooling on earning using a binary indicator of whether an individual was born close to a four year

college. Angrist and Evans (1998) studied the causal relationship between fertility and women’s

labor income using whether the first two children are of the same sex as the instrument. Our test

does not reject the testable implication of LI+LM for “drat eligibility” and “same sex” instrument.

We do, however, find that the implication is rejected for the “college proximity” instrument on the

subgroup of non-black men who lived in metro area of southern states. The rejection mainly takes

place among the individuals with higher labor income.

The rest of the paper is organized as follows. Section 2 presents the analytical framework. In

Section 3, we revisit the testable implications of the LATE assumptions, followed by Section 4,

which presents our testing procedure. Section 5 propose the CMC condition. We illustrate our test by

simulation examples in Section 6. We discuss empirical applications in Section 7.

2. ANALYTICAL FRAMEWORK

We adopt the potential outcome model of Vytlacil (2002). Let Y = Y1D + Y0(1− D), where Y

is the observed outcome taking values from the support Y , D ∈ {0, 1} is the observed treatment

indicator, and (Y1, Y0) are potential outcomes. Let Z be the instrumental variable. For the sake of
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simplicity, we assume Z ∈ Z = {0, 1}, but our analysis can be extended to allow for multi-valued

Z. For each z ∈ Z , let Dz be the potential treatment had the Z been exogenously set to z. With this

notation, we can also write the observed treatment D = D1Z + D0(1− Z).

The two well-known identification assumptions for LATE as introduced by IA1994 are restated as

the following:

Assumption 1 (LATE Independence -LI). For all z ∈ {0, 1}, Z ⊥ (Y1, Y0, D0, D1) and P(D =

1|Z = 0) 6= P(D = 1|Z = 1).

Assumption 2 (LATE Monotonicity -LM). Either D0 ≤ D1 almost surely or D0 ≥ D1 almost

surely.

For each d and z, let D−1
z (d) denote the subset of the individuals in the population who would

select treatment d had the instrument been exogenously set to z. LM then implies that we have either

D−1
0 (1) ⊆ D−1

1 (1) or D−1
1 (1) ⊆ D−1

0 (1). Without loss of generality (w.l.o.g.), we focus on the

direction of D0 ≤ D1 in the rest of the paper.

3. TESTABLE IMPLICATIONS OF THE LATE ASSUMPTIONS

In this section, we derive a set of testable implications of the LATE assumptions (LI and LM) and

show that these testable implications are “sharp” characterization of the LATE assumptions.

For the ease of exposition, we first list in Table 1 the standard notion of four subpopulations

defined by the potential treatments: always-takers, defiers, compliers, and never-takers.

TABLE 1. Subpopulations

D0 D1 Proportion
a: Always-takers 1 1 π11
def: Defiers 1 0 π10
c: Compliers 0 1 π01
n: Never-takers 0 0 π00
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Every observed subgroup {D = d, Z = z} for d, z ∈ {0, 1} is composed of a mixture of

unobserved subpopulations. Indeed,

P(D = 0|Z = 0) = P(D1Z + D0(1− Z) = 0|Z = 0) = P(D0 = 0|Z = 0)

= P(D0 = 0, D1 = 0) + P(D0 = 0, D1 = 1) = π00 + π01,

where the third inequality holds under Assumption 1. By a similar derivation, we can obtain the

other three conditional probabilities, as summarized in Table 2. Notice that, by definition, we can

TABLE 2. Observed subgroups and unobserved subpopulations

Z = 0 Z=1
D = 0 π00 + π01 π00 + π10
D = 1 π10 + π11 π01 + π11

easily see that LM is equivalent to the nonexistence of defiers (i.e. π10 = 0). LM and LI necessarily

imply that for an arbitrary A ∈ BY ,

P(Y ∈ A, D = 1|Z = 0) = P(Y1 ∈ A, D = 1|Z = 0) = P(Y1 ∈ A, D0 = 1|Z = 0)

= P(Y1 ∈ A, D0 = 1) ≤ P(Y1 ∈ A, D1 = 1) = P(Y ∈ A, D = 1|Z = 1), (1)

where the third and fourth equalities hold by LI, and the first inequality holds by LM. Similarly, we

have

P(Y ∈ A, D = 0|Z = 1) ≤ P(Y ∈ A, D = 0|Z = 0). (2)

Therefore, as soon as there exists A ⊆ BY such that either Equation (1) or (2) is violated, we

must reject the joint assumptions of LM + LI assumptions. Note that Equations (1) and (2) are not

sufficient for the joint assumptions to hold in the sense that there could exist a potential outcome

model in which both Equations (1) and (2) hold but LM+LI is violated.

Equations (1) and (2) need not be the only set of testable implications of LM and LI. Theorem 1

shows, however, that they are the sharp characterization of LI and LM in the sense that, whenever

Equations (1) and (2) hold, there always exists another potential outcome model compatible with the

data in which LI and LM hold.
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Theorem 1 (Sharp characterization of the LATE assumptions). Let Y, D1, D0, Y1, Y0, Z define a

potential outcome model Y = Y1D + Y0(1− D). (i) If LM and LI hold, then Equations (1) and (2)

hold. (ii) If Equations (1) and (2) hold, there exists a joint distribution of (D̃1, D̃0, Ỹ1, Ỹ0, Z) such

that LM and LI hold, and (Ỹ, D̃, Z) has the same distribution as (Y, D, Z).

Proof. See Appendix A.1. �

Theorem 1 is essentially equivalent to, but presented in a different way from, Kitagawa (2013,

Proposition 2). The sharpness result shows that Equations (1) and (2) are the most informative

observable restrictions we have to assess the validity of the joint LI and LM assumptions.

Kitagawa (2013) developed a Kolmogorov-Smirnov type test based on Equations (1) and (2).

However, whenever the cardinality of the outcome space is large, the number of inequalities to visit

is very high because the number of inequalities to be checked is equal to the number of subsets of

the set of observable outcomes. When Y is continuous, there are infinite many elements in BY . In

practice, the performance of a test also depends on the subsets we search through, especially when

many of the inequalities are redundant. One solution is to follow Galichon and Henry (2006, 2011)

and find the (smallest) core determining class, defined as a low (lowest) cardinality class of sets that

are sufficient to characterize all the restrictions imposed by Equations (1) and (2). To the best of our

knowledge, the issue of finding the smallest core determining class in a generic setup remains open.

Kitagawa (2013) proposed, without providing theoretical justification, to consider the half lines and

intervals (with interval length bounded below by some fixed constant). It is not clear if this class is a

core determining class; if not, it could neglect some subsets of Y on which the testable implication is

violated.

To deal with this important issue, we propose to use an alternative representation. Since for every

A ∈ BY , there is

P(Y ∈ A, D = 1|Z = 1) =
P(D = 1, Z = 1|Y ∈ A)

P(Z = 1)
P(Y ∈ A),

Equations (1) and (2) can be written as

P(D = 1, Z = 0|Y = y)P(Z = 1) ≤ P(D = 1, Z = 1|Y = y)P(Z = 0), (3)
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and

P(D = 0, Z = 1|Y = y)P(Z = 1) ≤ P(D = 0, Z = 0|Y = y)P(Z = 0). (4)

for all y ∈ Y , respectively. The equivalence holds because P(D = 1, Z = 1|Y ∈ A) =

1
P(Y∈A)

∫
A P(D = 1, Z = 1|Y = y)dP(Y ≤ y). We further define the following pair of functions

of y  θ(y, 1) ≡ E[c11{D = 1, Z = 0} − c01{D = 1, Z = 1}|Y = y]

θ(y, 0) ≡ E[c01{D = 0, Z = 1} − c11{D = 0, Z = 0}|Y = y]
(5)

where ck = P(Z = k) for k = 0, 1. Let V = Y × {0, 1}, and then the null hypothesis can be

formulated as

H0 : θ0 ≡ sup
v∈V

θ(v) ≤ 0, H1 : θ0 > 0. (6)

The advantage of considering the hypothesis stated in Equation (6) is to facilitate implementation.

With our formulation, researchers do not have to find a core determining class and can simply

apply the existing inference methods in Chernozhukov, Lee, and Rosen (2013), as explained in the

following section.

4. TESTING PROCEDURES

In this section, we formalize a testing procedure for the hypotheses specified in Equation (6), that

is,

H0 : θ0 ≡ sup
v∈V

θ(v) ≤ 0, H1 : θ0 > 0,

where v ∈ Y × {0, 1}. We propose to use the intersection bounds framework of Chernozhukov,

Lee, and Rosen (2013), which provides an inference procedure for bounds defined by supremum

(or infimum) of a nonparametric function. To be more specific, let 0 < α < 1
2 be the pre-specified

significance level, and we reject the H0 if θ̂α > 0, where

θ̂α ≡ sup
v∈V
{θ̂(v)− s(v)kα},

and θ̂(·) is the local linear estimator for θ(·). s(·) and kα are estimates for “point-wise standard

errors” and “critical value,” respectively. For the purpose of implementation, one does not have to

calculate θ̂, s, and kα explicitly; therefore, we leave their expressions in Appendix A.2 for the sake of

exposition. The testing procedure can be easily implemented in Stata as follows.
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Implementation:

(1) Estimate c0 and c1 by ĉ1 = 1
n ∑n

i=1 Zi and ĉ0 = 1− ĉ1, respectively.

(2) Let L1
i = ĉ1Di(1− Zi)− ĉ0DiZi and L0

i = ĉ0(1− Di)Zi − ĉ1(1− Di)(1− Zi).

(3) Implement the CLRtest command with two conditional moment inequalities. Specify L1
i and

L0
i as the dependent variables for each conditional inequality, respectively. Specify Yi as the

conditioning variable for both inequalities. See Chernozhukov, Kim, Lee, and Rosen (2013)

for the full set of options. �

We make the following assumptions:

Assumption 3. {(Di, Yi, Zi)}n
i=1 are i.i.d observations.

Assumption 4. The density of Y given (D, Z) is bounded away from zero and continuously differen-

tiable over its convex and compact support Y .

Assumption 5. K(·) has support on [−1.1], is symmetric and twice differentiable, and satisfies∫
K(u)du = 1.

Assumption 6. nh4 → ∞, and nh5 → 0 at polynomial rates in n.

Assumption 3 is standard. In this paper, we focus on the case where Y is continuous and make

Assumption 4. If Y is discrete, the conditional inequalities in Equation (5) can be represented by a

finite number of unconditional expectations, and the test can be conducted on each of the support

points of Y. Assumptions 5 and 6 are conditions on the choice of kernel and bandwidth. Note that

Assumption 6 requires under-smoothing because the conditioning variable Y is univariate.

Proposition 1 is an application of Chernozhukov, Lee, and Rosen (2013, Theorem 6), which

verifies the consistency and validity of the proposed testing procedure.2

Proposition 1. Suppose that Assumptions 3 to 6 are satisfied, then (1) under H0, P(θ̂α > 0) ≤

α + o(1); (2) if θ(y, k) = 0 for all y ∈ Y and k ∈ {0, 1} , then P(θ̂α > 0) → α; and (3) if there

exists a set Ya ⊆ Y with positive Lebesgue measure such that supy∈Ya,k∈{0,1} θ(y, k) > µn
√

1/nh

for any µn
p→ ∞, then P(θ̂α > 0)→ 1.

2Chernozhukov, Lee, and Rosen (2013, Theorem 6) holds uniformly over drafting sequences of DGPs. Here we only focus
on pointwise results.
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Proof. See Appendix A.2

We have a few comments. First, our test is a type of sup-tests based on conditional moment

inequalities specified in Equation (5) and hence does not require researchers to find a core determining

class. Our test is consistent against any fixed alternatives and a class of local alternatives. This result

is different from Kitagawa (2013), who did not use the core determining class and only established

the consistency against a class of fixed alternatives.3 Consistency against local alternatives is not

established either. Second, Kitagawa (2013) did not discuss how to incorporate continuous covariates

into his test. For the test we consider here, continuous covariates can be easily incorporated as

additional conditioning variables. Finally, because of the availability of the STATA package, our test

can be easily applied by empirical researchers to assess the validity of the LATE assumptions.

In the following section, we will proceed and address two important questions. (i) What types of

restrictions do the Equations (1) and (2) impose on the (unobserved) model primitives, for example,

the distributions of the subpopulations of compliers, defiers, always-takers, and never-takers? (ii)

Does the Wald estimand still a policy relevant estimand whenever Equations (1) and (2) hold and

LM is violated?

5. CONDITIONALLY MORE COMPLIERS

In many empirical studies, the LI assumption seems to be reasonable. See Korn, Baumrind, et al.

(1998); Abadie, Angrist, and Imbens (2002); Kling, Liebman, and Katz (2007); and Hahn, Todd,

and Van der Klaauw (2001); among others, for discussions of models where LI is plausible. On

the other hand, several concerns about the validity of LM have been mentioned in the literature, for

instance, in Dawid (2000); Heckman and Vytlacil (2005); Small and Tan (2007). In this section,

we propose a weaker condition, namely conditionally more compliers (CMC) as an extension of

LM. Unlike LM, which imposes on the model to have no defiers, the CMC assumption only restricts

the proportion of compliers to be bigger or equal to the proportion of defiers, for all subpopulations

(strata) characterized by a single potential outcome Yd. This condition imposes a restriction on the

aggregate behavior of individuals relative to their reaction to the treatment when the instrument Z is

3For example, Kitagawa (2013) proposed to consider the class of closed intervals {[y, y + h]}, where y ∈ Y and h is the
interval length satisfying h ≥ hmin > 0. hmin is a fixed positive constant chosen by researchers and does not converge to
zero as sample size increases. If the H0 is violated over an interval whose length is smaller than hmin/2, then Kitagawa
(2013)’s test may not be able to detect such violations based on this interval class. In our test, the bandwidth h→ 0, such
alternatives will be rejected with probability approaching one.
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externally set to different values 0 or 1, while the restriction imposed by the LM assumption is on

the behavior of every individual. Interestingly, CMC is equivalent to Equations (1) and (2) when LI

holds.

Proposition 2 (Conditionally More Compliers). Under Assumption 1, Equations (1) and (2) are

equivalent to

(a) P(D0 = 1|Y1 = y) ≤ P(D1 = 1|Y1 = y) for all y,

(b) P(D1 = 0|Y0 = y) ≤ P(D0 = 0|Y0 = y) for all y,

or equivalently to

(a’) π10|Y1=y1
≤ π01|Y1=y1

for all y1,

(b’) π10|Y0=y0
≤ π01|Y0=y0

for all y0,

where π10|Yd=yd
(π01|Yd=yd

) denotes the proportion of defiers (compliers) within the strata of indi-

viduals with potential outcomes Yd = yd for d = 0, 1.

Proof. See Appendix A.3.

We name the implied restrictions (a-b) or (a’,b’) in Proposition 2 as Conditionally More Compliers

(CMC). Chaisemartin (2013) referred to it as “weak more compliers than defiers” (WMC); we name

it as CMC to emphasize that it is a restriction imposed on subpopulations. Note that LM implies

CMC since π10|Yd=y = 0 for all y.

Corollary 1. (LM and LI) and (CMC and LI) have the same testable implication which is character-

ized by Equations (1) and (2).

The proof of Corollary 1 is straightforward and hence omitted. If we reject the null hypothesis

H0 : θ0 ≡ supv∈V θ(v) ≤ 0, then what we actually reject is CMC+LI, which implies the rejection

of LM+LI; on the other hand, if we do not reject H0 and if LI holds, then we shall conclude that we

can not reject CMC. Note that LM may not hold even we do not reject CMC. Another difference is

that CMC is indeed testable when LI holds.

5.1. Discussion on the plausibility of the CMC assumption. To fix the idea, let us discuss an

instrument that is widely used in labor economics: the same-sex siblings composition. This instrument

was first used in Angrist and Evans (1998) who studied the relationship between fertility and labor
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income. This study was complicated by the endogeneity of the fertility. Angrist and Evans (1998)

proposed to use the sibling-sex composition to construct the IV estimator of the effect of childbearing

on the labor supply. Because sex mix is virtually randomly assigned, a dummy for whether the

sex of the second child matches the sex of the first child is likely to satisfy the LI assumption.

However, the validity of LM is unclear. The suggestive argument proposed by Angrist and Evans

(1998) was based on the empirical observation that the proportion of families with either two

boys or two girls that have a third birth in the United States was lower to the proportions of

families with one boy and one girl have a third child. This empirical observation just shows that

P(Y ∈ Y , D = 1|Z = 0) ≤ P(Y ∈ Y , D = 1|Z = 1), where Y is the women’s labor income, and

D is a dummy for having had a third child. However, this latter inequality is not sufficient to ensure

CMC, which requires that for every subpopulation of parents with specific outcome there are more

parents who have mixed sibling-sex composition preferences than parent who have same sibling-sex

composition preferences. Our contribution is to show that for such empirical applications, one can

actually test the validity of CMC by visiting all the possible subsets A of BY .

Compared with LM, CMC allows for more heterogeneity in the population than the deterministic

LM. Indeed, in that context, LM imposes that there is no individual who has strict preference for

the same sibling-sex composition, while CMC suggests that such an individual could exist. CMC

imposes that for every subpopulation of parents with specific outcome there are more parents who

have mixed sibling-sex composition preferences than parent who have same sibling-sex composition

preferences.

There are other weaker notion of monotonicity than LM. Small and Tan (2007) introduced the

stochastic monotonicity condition (SM) as a relaxation of LM. The SM assumption restricts the

model to have more compliers than defiers for every strata defined by (Y1, Y0), while CMC imposes

this restriction separately on the strata defined by either Y1 or Y0. From this perspective, CMC

weakens the SM assumption. Chaisemartin (2013) showed that for the purpose of identifying LATE,

the LM assumption can be replaced by a weaker one called “compliers-defiers" (CD), which requires

that a subgroup of compliers have the same size and the same distribution of potential outcomes as

defiers. Both SM and CD provide interesting insight on the identification of LATE. Unfortunately,

like LM, SM, and CD are not testable even when LI holds.

12



5.2. Is the Wald estimand no sign reversal under CMC and LI?. An interesting question is

what can we say about the Wald (IV) estimand under heterogeneous treatment models if we do

not reject Equations (1) and (2)? We know that under LM+LI assumption, the (IV) estimand

β IV ≡ E[Y|Z=1]−E[Y|Z=0]
E[D|Z=1]−E[D|Z=0] respects the no sign reversal property4. Indeed, under LI, we have

E[Y|Z = 1]−E[Y|Z = 0] = E[Y1 −Y0|c]π01 −E[Y1 −Y0|de f ]π10.

Therefore, in the case of heterogeneous treatment (the individual gain of the treatment varies across

individual; i.e. Y1 − Y0 6= cste), the (IV) estimand can be zero, positive, or negative, even if the

causal effect of D on Y is strictly positive for every individual. However, under the LM assumption,

we have β IV = E[Y1 −Y0|c] and then no possibility to violate the no sign reversal property.

Since CMC does not rule out the existence of defiers, it is not clear that the (IV) estimand still

respect the no sign reversal property whenever CMC holds. In the following, we show that there

exists a wide range of potential outcome models for which the (IV) estimand still respect the no sign

reversal property when CMC holds even in the presence of defiers. Let us impose the following

restriction on the potential outcomes.

Assumption 7. Yd = G(d, U) where G(d, u) is strictly monotone in u for d ∈ {0, 1}.

This assumption imposes three main restrictions on the potential outcome model but encompasses

most of the structures used in applied economics so far.

First, we restrict the dimension of the unobservable U to be one. This might be restrictive in

some cases as explained in Kasy (2013), but it is usually maintain in many of the research papers

considering binary endogenous treatment. Indeed, practitioners use additive separable structure

for the potential outcome which imposes one-dimensional unobserved heterogeneity. Recently,

the literature on the identification of treatment effect using non-separable potential outcome has

been widely developing, and most of them are using model with one-dimensional unobserved

heterogeneity, see e.g. Chernozhukov and Hansen (2005), Chesher (2005), Jun, Pinkse, and Xu

(2011) among many others. Note also that the strand of the literature that allows multi-dimensional

unobserved heterogeneity often considers continuous treatment and impose additional restrictions on

4An estimator satisfies the no sign reversal property if whenever the sign of the treatment effects (+,0 or -) is the same for
every subject in the population, then the sign of the estimator converges in probability to the sign of the treatment effects.
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the treatment, see Imbens and Newey (2009) and Kasy (2013), whereas we consider, here, a model

with discrete treatment.

Second, Assumption 7 excludes the treatment-specific unobserved heterogeneity i.e. Yd =

G(d, Ud) with U0 6= U1. One important special application of such a model is the Roy model.

However, the pure Roy model imposes particular selection process which is not compatible with

the model used here. Indeed, the pure Roy model assume that D = 1{Y1 > Y0} which does not

allow the existence of an instrument. Identification of treatment effect in such model need different

types of analysis. A first approach is the one used by Heckman and Honoré (1990) which imposes

additional restrictions in the model in order to achieve identification. A second approach used in

Henry and Mourifié (2014) is a partial identification approach which provides sharp bounds on

the average treatment effect (ATE). One way to incorporate an instrument in such a model is to

consider the generalized Roy model where the treatment selection takes a more general form i.e.

D = 1{h(Y1, Y0, Z, V) > 0} where V is another source of heterogeneity. However, Heckman and

Vytlacil (2005) pointed out that the (IV) estimand does not identify interesting policy effect in such a

model.

Third, the “strict" monotonicity could be restrictive. The monotonicity by itself is a standard

assumption in such models, but imposing to be “strict" rules out the possibility to have discrete

outcome.

Now, let us show that under CMC+LI and Assumption 7, the (IV) estimand still respect the no

sign reversal property. Let denote ∆(U) ≡ Y1 −Y0, under LI we have

β IV ≡
E[Y|Z = 1]−E[Y|Z = 0]
E[D|Z = 1]−E[D|Z = 0]

=
E[∆(U)(D1 − D0)]

E[D1 − D0]
=

E[∆(U)E[D1 − D0|U]]

E[D1 − D0]
.

Since CMC holds, E[D1 − D0|Yd] ≥ 0 almost surely (a.s) in Yd, then E[D1 − D0|U] ≥ 0 a.s. in

U under Assumption 7. Recall that, β IV is well defined only when P(D = 1|Z = 1) 6= P(D =

1|Z = 0), then there exists a set AU ⊆ Y with positive measure under the distribution of U such

that E[D1 − D0|U = u] > 0 for all u ∈ AU . Then, if ∆(U) > 0 a.s. in U, then β IV > 0. The

results is summarized in the following Proposition 3.

Proposition 3. Suppose that Assumption 7, and CMC + LI hold and P(D = 1|Z = 1) 6= P(D =

1|Z = 0), then the Wald estimand is no sign reversal.
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6. SIMULATION

We consider three data generating processes (DGPs). In all three designs, Z ∈ {0, 1} with

P(Z = 1) = 0.5, Y = D + U, and (U + 1, V) ∼ N(0, 0.25, ρ). The three DGPs differ in the

treatment functions. In DGP1, we set D = 1{V ≤ 2Z− 0.5}; in DGP2, we set D = 1{V ≤ 0.25};

in DGP3, we set D = 1{|V − Z + 0.5| ≥ 1}. Therefore, DGP1 belongs to “the interior” of H0,

DGP2 is a least favorable null (the knife-edge case), and DGP3 violates the CMC (note that LI holds

in all three DGPs). Let α ∈ (0, 0.5) be a pre-specified significance level; we then expect that the

rejection frequencies in those three DGPs shall be close to 0, α and 1, respectively.

TABLE 3. Rejection Frequency (clrtest)

Parametric Local
Sig. level 10% 5% 1% 10% 5% 1%
DGP1
n = 200 0% 0% 0% 0% 0% 0%
n = 400 0% 0% 0% 0% 0% 0%
n = 800 0% 0% 0% 0% 0% 0%
DGP2
n = 200 10.8% 5.8% 1.5% 13.9% 7.7% 2.6%
n = 400 10.2% 5.9% 0.7% 11.5% 5.7% 1.2%
n = 800 10.0% 5.8% 1.4% 11.5% 5.9% 0.9%
DGP3
n = 200 89.9% 83.6% 59.6% 55.5% 40.5% 19.3%
n = 400 99.4% 88.1% 91.6% 75.5% 63.4% 26.7%
n = 800 100% 100% 99.8% 91.4% 83.8% 63.3%

Based on 1000 replications.

Table 3 lists the preliminary simulation results of our test based on the “clrtest” command under

difference choices of sample size and DGPs. In addition to the local linear regression, we also

investigate the rejection frequency using the “parametric regression” option. For detailed descriptions

of the Stata package, see Chernozhukov, Kim, Lee, and Rosen (2013). All results are computed

based on 1000 replications. For DGP3 where the CMC fails to hold, the null hypothesis of LM is

rejected with high probability even when the sample size is small, for example when n = 200. For

DGP2, considered as the least favorable null, the rejection rate is close to the target levels. It is not

surprising to see the test does not reject DGP1 since it is in the “interior” of the H0.
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7. APPLICATIONS

In this section we apply our test to three well-known instruments used in the literature: the “same

sex” instrument in Angrist and Evans (1998), the “draft eligibility” instrument in Angrist (1991) and

the “college proximity” instrument in Card (1993).

7.1. The “same-sex” instrument. The context of the use of the same sex instrument in Angrist

and Evans (1998) has been discussed in the Section 5. To reiterate, D = 1 denotes the household

had a third child and Z = 1 denotes the first two children are of the same sex. The direction of

monotonicity under testing is D1 ≥ D0.

We consider a sample of 620, 573 individuals from the 1990 Census Public Micro Samples

(PUMS). The data contain information on age, gender, race, education, labor income and the number

of children for women with more than two children and between 21 and 50 years old. The outcome

variable of interest is log wage. Summary statistics for the sample are given in Table 4.

TABLE 4. Summary Statistics of Micro Census Data 1990 from Angrist and Evans (1998)

Total D=1 Z=1
Observations 620,573 209,782 312,825

Age 33.431 (5.497) 33.540 (5.092) 33.440 (5.500)
Years of Schooling 10.850 (2.468) 10.426 (2.645) 10.850 (2.464)
Race (Non White) 0.180 (0.385) 0.221 (0.415) 0.180 (0.384)
Having the third child (D=1) 0.338 (0.473) 1.000 (0.000) 0.368 (0.482)
First two same sex (Z=1) 0.504 (0.499) 0.549 (0.497) 1.000 (0.000)
Log Wage 5.853 (4.413) 5.003 (4.465) 5.824 (4.419)

Average and standard deviation (in the parentheses)

TABLE 5. Subgroups of PUMS (1990)

21-28 29-35 36-42 43-50
White, <HS 21,478 26,272 9,013 1,577
White, HS 59,742 138,830 81,181 10,223
White, >HS 10,346 63,158 72,206 14,571
Non-white, <HS 11,676 14,684 6,134 1,202
Non-white, HS 15,964 26,181 12,143 1,640
Non-white, >HS 1,933 8,892 9,244 2,283
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We divided the sample of 620, 573 observations into 24 subgroups according to race (white or

non-white), education (lower than HS, HS or higher than HS) and age (21-28, 29-35, 36-42, 43-50)

and conducted tests on each of these groups.5 The subgroups sizes are reported in Table 5. Since

the CKLR2013 Stata command does not allow us to work with more than 11,000 observations.

Therefore, we randomly drew a subsample of 11,000 individuals from subgroups whose size is over

11,000.

TABLE 6. Same sex local method, truncated sample, [q2.5, q97.5] (clrtest)

21-28 29-35 35-42 43-50
10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

White, <HS NR NR NR NR NR NR NR NR NR NR NR NR
White, HS NR NR NR NR NR NR NR NR NR NR NR NR
White, >HS NR NR NR NR NR NR NR NR NR NR NR NR
Non-white, <HS NR NR NR NR NR NR NR NR NR NR NR NR
Non-white, HS NR NR NR NR NR NR NR NR NR NR NR NR
Non-white, >HS NR NR NR NR NR NR NR NR NR NR NR NR

“R” stands for rejection and “NR” stands for no rejection.
All observations with zero log-income are excluded.

Throughout this section, we use the default choices of bandwidth and kernel functions recom-

mended in Chernozhukov, Lee, and Rosen (2013) and Chernozhukov, Kim, Lee, and Rosen (2013),

that is, K(u) = 15
16 (1− u2)21{|u| ≤ 1} and hROT × ŝ × n

1
5 × n−

2
7 , where hROT is the rule of

thumb choice given by Fan and Gijbels (1996). To avoid the boundary issue, for each subgroup,

we compute the maximum in the test statistics over the interval [Q2.5%, Q97.5%], where Qα is the

α-quantile of the subgroup under testing.

Since we conducted tests on 24 subpopulations s ∈ {1, 2, 3, · · · , 24}, we can view H0 =

H(1)
0 ∪ H(2)

0 ∪ · · · ∪ H(24)
0 , where H0 is defined as “Equation (5) holds for every subpopulation”

and H(s)
0 is defined as “Equation (5) holds for the subpopulation s”. Rejection of any of H(s)

0

implies rejection of H0. Since we are checking a large number of subpopulations, it is desirable

to ensure that the Familywise Error Rate (FWER) is controlled at targeted levels. We adapt the

multiple testing procedure of Holm (1979), which is a suitable framework to consider (see also an

empirical implementation in Bhattacharya, Shaikh, and Vytlacil, 2012). One difficulty is that the

Stata command does not report p-value for the “clrtest” and hence we can not formally implement the

5The reason is that the Stata command only allows one conditioning variable in the moment inequalities.
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multiple testing procedure. However, we are able to indirectly verify whether the FWER is controlled

at targeted levels. Table 6 reports the testing results for each H(s)
0 . The testing results imply that

the smallest p-values is greater than 0.42%. Therefore we can conclude that the multiple testing

procedures rejects no null hypothesis at 0.42%× 24 ≈ 10% level.6 Because sex mix is virtually

randomly assigned, this result can be interpreted as an evidence of the relative preference for the

mix-sibling sex over the same sex within our population of interest.

As a robust check, we also conducted the test using the “parametric regression” method,7 using the

three demographic variables as regressors. The null hypothesis is not rejected at all three significance

levels (see Table 7), which is consistent with the results obtained from the local linear methods.

TABLE 7. Application results: Parametric (clrtest)

AE1998 same sex Angrist1991 lottery Card1993 proximity
10% 5% 1% 10% 5% 1% 10% 5% 1%
NR NR NR R R R R R R

“R” stands for rejection and “NR” stands for no rejection.

7.2. The “draft eligibility” instrument. Our second empirical application is about the “draft

eligibility” instrument in Angrist (1991), who studied the effect of veteran status on civilian earnings.

Endogeneity arises since enrollment for military service possibly involves self-selection. To deal with

the issue, Angrist (1991) constructed the binary indicator of draft eligibility, which is theoretically

randomly assigned based on one’s birth date through the draft lotteries. In this application, D =

1 denotes the veteran status and Z = 1 denotes the individual was drafted. The direction of

monotonicity under testing is D1 ≥ D0.

We used a sample of 3,071 individuals from the 1984 Survey of Income and Program Participation

(SIPP)8. We divided the sample in 6 different groups according to race (white or non-white) and

their educations levels (lower than HS, HS, or higher than HS), where HS stands for high school

6In the sample, there are 35.06% of observations with missing wage. We excluded those observations. We also conducted
a pointwise test conditional on the missing wage subsample. The null hypothesis is not rejected either.
7In Chernozhukov, Lee, and Rosen (2013), “parametric regression” means that θ(y, k) is a known function (up to finite
dimensional parameters) of y for each k. In the Stata package, “parametric regression” specifically means θ(y, k) is linear
in y for each k. It is worth noting that the Stata “parametric regression” option has the advantage to allow for multiple
conditioning variables.
8The data is available from Angrist’s website. 3,071 is the number of individuals after removing all entries with missing
information.
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TABLE 8. Summary Statistics of SIPP Data from Angrist (1991)

Total Draft Eligible (Z=1) Veteran (D=1)
Observations 3027 1379 994

Age 34.063 (2.804) 34.685 (2.607) 35.064 (2.494)
Veteran (D=1) 0.328 (0.470) 0.403 (0.491) 1.000 (0.000)
Draft Eligible (Z=1) 0.456 (0.498) 1.000 (0.000) 0.560 (0.497)
Years of Schooling 13.522 (2.864) 13.578 (2.834) 13.443 (2.260)
Race (Non White) 0.118 (0.322) 0.116 (0.320) 0.080 (0.272)
log (Weekly Wage) 2.217 (0.532) 2.247 (0.534) 2.248 (0.498)

Average and standard deviation (in the parentheses)

graduation. We then performed our test using the local method for each group. Again, we compute

the maximum in the test statistics over the interval [Q2.5%, Q97.5%].

TABLE 9. Lottery local method (clrtest)

W,<HS W,=HS W,>HS NW,<HS NW,=HS NW,>HS
Subgroup ID. 1 2 3 4 5 6
Obs. 320 867 1482 56 129 173
10% NR NR NR NR R NR
5% NR NR NR NR R NR
1% NR NR NR NR NR NR

“R” stands for rejection and “NR” stands for no rejection.

Testing results for individual groups reported in Table 9. Note that the null hypothesis (H(5)
0 ) is

rejected at subgroup 5 of non-white person with high school education at the 90% and 95% levels,

respectively, but not at the 99% level. However, as shown in Figure 1, it is likely due to the boundary

issue and/or small subgroup size. Therefore we do not consider this as strong evidence against H(5)
0 .

Following the similar arguments as in the “same sex” application, we can indirectly verify that we

reject no null hypothesizes with FWER controlled at 10%.9 Kitagawa (2013) obtained the same

result without conditioning on subgroups.

7.3. The “college proximity” instrument. Card (1993) studied the causal effect of schooling on

earning and used college proximity as the exogenous source of variation in eduction outcome. In this

application, Z = 1 denotes there is a 4-year college in the local labor market where the individual

9The testing procedure with parametric regression method, however, rejects the null hypothesis at all three levels (see
Table 7).

19



1 1.2 1.4 1.6 1.8 2 2.2
0

5

10

15

20
NW,=HS,log wage

1 1.2 1.4 1.6 1.8 2 2.2

−0.2

−0.1

0

0.1

0.2

NW,=HS,n=129

 

 

estimates
lower conf. band

FIGURE 1. θ̂(·, 1) and θ̂(·, 1)− s(·, 1)× ĉV̂,0.95

was born, and D = 1 denotes the individual has at least 16 years education. The outcome variable is

the log wage in 1976. The monotonicity under testing is D1 ≥ D0.

TABLE 10. Summary Statistics of NLSYM Sample

Total D = 1 Z = 1
Observations 3005 2048 816

Lived in metro area in 1966 0.651 (0.476) 0.693 (0.461) 0.801(0.399)
Lived in southern states in 1966 0.414 (0.492) 0.313 (0.464) 0.329 (0.470)
Black 0.232 (0.422) 0.099 (0.299) 0.209 (0.407)
Years of Schooling in 1976 13.26 (2.675) 16.692 (0.849) 13.532 (2.577)
D (eduction ≥ 16) 0.271 (0.444) 1.000 (0.000) 0.293 (0.455)
Z (college proximity) 0.681 (0.465) 0.736 (0.015) 1.000 (0.000)
Y (log wage in 1976) 6.261 (0.444) 6.428 (0.433) 6.311 (0.440)

Average and standard deviation (in the parenthesis)

The data is from the National Longitudinal Survey of Young Men (NLSYM) began in 1966 with

men age 14-24 and continued with follow-up survey until 1981. Some summary statistics are reported

in Table 10.10 We considered three binary control variables: lived in southern states in 1966, lived in

metro area in 1966 and being black. Table 11 reports the corresponding subgroup sizes.

10We dropped 608 observations with missing wages.
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TABLE 11. Subgroup sizes of Card (1993)

Non-Black (NB) Black (B)
Non-Southern (NS) & Non-Metro (NM) 429 5
Non-Southern (NS) & Metro (M) 1191 138
Southern (S) & Non-Metro (NM) 307 314
Southern (S) & Metro (M) 380 246

Southern (south66): lived in southern states in 1966. Metro (smsa66r): lived in urban area in 1966.

TABLE 12. College proximity, local method (clrtest)

NB,NS,NM NB,NS,M NB,S,NM NB,S,M B,NS,M B,S,NM B,S,M All
Subgroup ID 1 2 3 4 5 6 7
Obs. 429 1191 307 380 138 314 246 3005
5% NR NR NR R NR NR NR R
1% NR NR NR R NR NR NR R
0.5% NR NR NR R NR NR NR R

“R” stands for rejection and “NR” stands for no rejection.

We conduct the test on seven subgroups (exclude the one with only 5 observations). The null

hypothesis H(4)
0 is rejected for at subgroup 4 of Non-black men who lived in metro area of southern

states as well as for the whole sample at 0.5% level. No rejection happens with other subgroups even

at 10% level. The results in Table 12 imply that the multiple testing procedure of Holm (1979) would

conclude that H0 is rejected with the FWER be controlled by no more than 0.5%× 7 = 3.5%. The

testing procedure with parametric method gives the same results.

Now it will be interesting to known on which subsets of Y the null hypothesis is violated. Figure 2

plots the θ̂(·, 0) and θ̂(·, 0)− s(·, 0)× ĉV̂,0.95 for the subgroup 4 and the whole sample, respectively.

It is quite interesting to note that θ0 is in general increasing in Y and the rejection takes place on

higher income subpopulations, e.g. for subpopulations whose observed log wage is around 7. Note

that the density of log wage is reasonably high at this point, and therefore the rejection is unlikely

due to boundary issue of the local linear estimation.

To summarize, our result suggests that the Wald estimator in such a case would be sign reversal.

Thereby, although the “college proximity” seems to be a good instrument, researchers have to be

aware that this instrument would not be a good one to use when the treatment effect is heterogenous.
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FIGURE 2. θ̂(·, 0) and θ̂(·, 0)− s(·, 0)× ĉV̂,0.95

8. CONCLUSION

In this paper we proposed an easy-to-implement test for testing the (sharp) testable characterization

of LI and LM, the key identification conditions for the local average treatment effect. Interestingly,

our testing procedure can be easily implemented using the Stata package provided by Chernozhukov,

Kim, Lee, and Rosen (2013). Applying our test to the “same sex” instrument, the “draft eligibility”

instrument and the “college proximity” instrument, respectively, we found that the joint assumption

of LI and LM is rejected for “college proximity” instrument over some subgroups.
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A.1. Proof of Theorem 1. (i) is proved in the main text. We show (ii) is true. First, we construct

potential treatment (D̃0, D̃1) which respects the LM assumption. For each z, let

π̃10|z = P(D̃0 = 1, D̃1 = 0|Z = z) = 0, (7)

π̃11|z = P(D̃0 = 1, D̃1 = 1|Z = z) = P(D = 1|Z = 0), (8)

π̃00|z = P(D̃0 = 0, D̃1 = 0|Z = z) = P(D = 0|Z = 1), (9)

π̃01|z = P(D̃0 = 0, D̃1 = 1|Z = z) = 1− π̃11 − π̃00. (10)

Since there is no defiers, LM holds. Next, we construct the joint distribution of Yk and the

individual types (compliers, defiers or always takers). For all y ∈ Y and z ∈ {0, 1}, let

P(Ỹ1 ≤ y, c̃|Z = z) = P(Y ≤ y, D = 1|Z = 1)−P(Y ≤ y, D = 1|Z = 0), (11)

P(Ỹ1 ≤ y, ã|Z = z) = P(Y ≤ y, D = 1|Z = 0), (12)

P(Ỹ1 ≤ y, ñ|Z = z) = P(D = 0|Z = 1)P(Y ≤ y), (13)

P(Ỹ0 ≤ y, c̃|Z = z) = P(Y ≤ y, D = 0|Z = 0)−P(Y ≤ y, D = 0|Z = 1), (14)

P(Ỹ0 ≤ y, ñ|Z = z) = P(Y ≤ y, D = 0|Z = 1), (15)

P(Ỹ0 ≤ y, ã|Z = z) = P(D = 1|Z = 0)P(Y ≤ y). (16)

We now show that Equations (11)–(13) characterize well defined distribution functions for Ỹ1.

Note that

P(Ỹ1 ≤ y|Z = z) = P(Ỹ1 ≤ y, c̃|Z = z) + P(Ỹ1 ≤ y, ã|Z = z) + P(Ỹ1 ≤ y, ñ|Z = z).

It is easy to verify that P(Ỹ1 ≤ y|Z = z) = 0 and P(Ỹ1 ≤ y|Z = z) = 1. It remains to verify

that P(Ỹ1 ≤ y|z) is nondecreasing in y. Since P(Ỹ1 ≤ y, ã|Z = z) and P(Ỹ1 ≤ y, ñ|Z = z) is

nondecreasing by definition, it is sufficient to show that P(Ỹ1 ≤ y, c̃|Z = z) is nondecreasing. Let

y′ < y′′, then

P(Ỹ1 ≤ y′′, c̃|Z = z)−P(Ỹ1 ≤ y′, c̃|Z = z)

= P(Y ∈ (y′, y′′], D = 1|Z = 1)−P(Y ∈ (y′, y′′], D = 1|Z = 0) ≥ 0,
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where the last inequality holds by Equation (1). Similarly, Equations (14), (15) and (16) characterize

a well defined distribution function for Ỹ0.

By construction, both LI and LM are satisfied. It therefore remains to show that D̃1, D̃0, Ỹ1, Ỹ0, Z

is observationally equivalent to D1, D0, Y1, Y0, Z. Let consider the two following set of potential

outcome models Y = Y1D + Y0(1− D), D = D1Z + D0(1− Z) and Ỹ = Ỹ1D̃ + Ỹ0(1− D̃),

D̃ = D̃1Z + D̃0(1− Z). For z ∈ {0, 1}, Equations (11)–(16) imply that for all A ∈ BY ,

P(Ỹ ∈ A, D̃ = 1|Z = 1) = P(Ỹ1 ∈ A, D̃1 = 1|Z = 1)

= P(Ỹ1 ∈ A, D̃1 = 1, D̃0 = 0|Z = 1) + P(Ỹ1 ∈ A, D̃1 = 1, D̃0 = 1|Z = 1)

= P(Ỹ1 ∈ A, c̃|Z = 1) + P(Ỹ1 ∈ A, ã|Z = 1) = P(Y ∈ A, D = 1|Z = 1),

P(Ỹ ∈ A, D̃ = 0|Z = 1) = P(Ỹ0 ∈ A, D̃1 = 0|Z = 1)

= P(Ỹ0 ∈ A, D̃1 = 0, D̃0 = 0|Z = 1) + P(Ỹ0 ∈ A, D̃1 = 0, D̃0 = 1|Z = 1)

= P(Ỹ0 ∈ A, ñ|Z = 1) = P(Y ∈ A, D = 0|Z = 1).

P(Ỹ ∈ A, D̃ = 1|Z = 0) = P(Ỹ1 ∈ A, D̃0 = 1|Z = 0)

= P(Ỹ1 ∈ A, D̃1 = 1, D̃0 = 1|Z = 0) + P(Ỹ1 ∈ A, D̃1 = 0, D̃0 = 1|Z = 0)

= P(Ỹ1 ∈ A, ã|Z = 0) = P(Y ∈ A, D = 1|Z = 0),

P(Ỹ ∈ A, D̃ = 0|Z = 0) = P(Ỹ0 ∈ A, D̃0 = 0|Z = 0)

= P(Ỹ0 ∈ A, D̃1 = 1, D̃0 = 0|Z = 0) + P(Ỹ1 ∈ A, D̃1 = 0, D̃0 = 0|Z = 0)

= P(Ỹ0 ∈ A, c̃|Z = 0) + P(Ỹ0 ∈ A, ñ|Z = 0) = P(Y ∈ A, D = 0|Z = 0),

This completes the proof. �

Lemma 1. Let c0 = P(Z = 0), m(y) = E[c0DZ|Y = y], m̃(y) be the infeasible local linear

estimator which takes c0 as known, and m̂(y) be the feasible local linear estimator of m(y) in which

26



c0 is replaced by its frequency count ĉ0, then

sup
y∈Y
|m̂(y)− m̃(y)| = Op

(
1√
n

)
.

Proof. The conclusion follows from the the fact that ĉ0 does not depend on y and supy∈Y |m̃(y)| <

∞ with probability one. �

A.2. Proof of Proposition 1. First note that by Lemma 1, it is sufficient to treat c0 and c1 as if they

were known. Let U(Wi, 1) = c1Di(1− Zi) − c0DiZi − θ(Yi, 1), U(Wi, 0) = c0(1− Di)Zi −

c1(1− Di)(1− Zi)− θ(Yi, 0), Û(Wi, 1) = c1Di(1− Zi)− c0DiZi − θ̂(Yi, 1) and Û(Wi, 0) =

c0(1− Di)Zi − c1(1− Di)(1− Zi)− θ̂(Yi, 0). Define function gv(U, Y) as

g(y,k)(U, Y) =
U(W, k)√

h f (y)
K
(

Y− y
h

)
.

ĝv is defined similarly as gv with U and f being replaced by Û and f̂ , respectively. Furthermore, let

B(gv) be a P-Brownian bridge with continuous sample path on Y for each k.

Gn(v) =
θ(v)− θ̂(v)

σ(v)
, σ2(v) =

1
nh

E[g2
v(U, Y)], G∗n(v) =

B(gv)

E[g2
v(U, Y)]

and for i.i.d. ηi ∼ N(0, 1) independent with data Wn, define

Go(ĝv) =
1√
n

n

∑
i=1

ηi ĝv(U, Yi), G?
n(v) =

Go(v)√
nhs(v)

, s2(y, k) =
1

nh2

n

∑
i=1

Û2(Wi, k)
f̂ 2(y)

K2
(

y−Yi

h

)
.

Given these notation, we will verify the conditions NK of CLR2013 based on these notation,

which is in turn sufficient to verify conditions (i)-(vi) in CLR2013, Appendix F. Conditions (i)

and (ii) hold by Assumption 4. U(Wi, k) is bounded because Y, D and Z are bounded, therefore

condition (iii) holds. Since the density of Y is continuous, the density of U(Wi, k) is a finite mixture

of continuous densities and hence exists. Again by Assumption 4 it is bounded from above and below.

This verifies condition (iv). Condition (v) on kernel function and condition (vi) on bandwidth follows

from Assumptions 5 and 6 with p = 1. Condition NK(ii) holds by the standard Kernel estimation

methods.

Given this, part (1) of Proposition 1 hold by Theorem 6, (a)-(i) of CLR2013; part (2) holds by

Theorem 6 (b)-(i,iii) because the contact set V0 = V , therefore condition V and Equation 4.6 of

CLR2013 hold with ρn = 1, cn = ∞.
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A.3. Proof of Proposition 2. Indeed, for all A ⊆ BY we have

P(Y ∈ A, D = 1|Z = 1) = P(Y1 ∈ A, D = 1|Z = 1)

= P(D = 1|Y1 ∈ A, Z = 1)P(Y1 ∈ A|Z = 1) = P(D = 1|Y1 ∈ A, Z = 1)P(Y1 ∈ A)

= P(D1 = 1|Y1 ∈ A)P(Y1 ∈ A).

The third and fourth equalities hold under Assumption 1. Therefore,

P(Y ∈ A, D = 1|Z = 0) ≤ P(Y ∈ A, D = 1|Z = 1) for all A ⊆ BY (17)

is equivalent to

P(D0 = 1|Y1 ∈ A) ≤ P(D1 = 1|Y1 ∈ A) for all A ⊆ BY . (18)

which is equivalent to

P(D0 = 1|Y1 = y) ≤ P(D1 = 1|Y1 = y) for all y. (19)

While the first equivalence is obvious the last one need more explanations. Indeed, (18) ⇒ (19)

since (19) is a particular case of (18) and the reverse (18)⇐ (19) is also true since P(D1 = 1|Y1 ∈

A) = 1
P(Y1∈A)

∫
A P(D1 = 1|Y1 = y)dFY1(y).
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