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2 BINARY ROY MODEL

Introduction

A large literature has developed since Heckman and Honoré (1990) on the empirical content of the

Roy model of sectorial choice with sector specific unobserved heterogeneity. Most of this literature,

however, concerns the case of continuous outcomes and many applications, where outcomes are

discrete, fall outside its scope. They include analysis of the effects of different training programs

on the probability of renewed employment, of competing medical treatments or surgical procedures

on the probability of survival, of higher education on the probability of migration and of competing

policies on schooling decisions in developing countries among numerous others. The Roy model is still

highly relevant to those applications, but very little is known of its empirical content in such cases.

Sharp bounds are derived in binary outcome models with a binary endogenous regressor in Chesher

(2010), Shaikh and Vytlacil (2011), Chiburis (2010), Jun, Pinkse, and Xu (2010) and Mourifié (2011)

under a variety of assumptions, which all rule out sector specific unobserved heterogeneity. Finally,

Heckman and Vytlacil (1999) derive identification conditions in a parametric version of the binary

Roy model.

We consider three distinct versions of the binary Roy model: the original model, where selection is

based solely on the probability of success; the extended Roy model (in the terminology of Heckman

and Vytlacil (1999)), where selection depends on the probability of success and a function of observ-

able variables (sometimes called “nonpecuniary component”); and the generalized Roy model (in

the terminology of Heckman and Honoré (1990)), with selection specific unobservable heterogeneity.

When considering the generalized Roy model, we further distinguish restrictions on the selection

equation and restrictions on the joint distribution of sector specific unobserved heterogeneity. We

specifically consider the case, where selection variables are independent of sector specific unobserved

heterogeneity and the case, where sector specific unobserved heterogeneity follows a factor structure

proposed in Aakvik, Heckman, and Vytlacil (2005).

Following Heckman, Smith, and Clements (1997), we apply results from optimal transportation

theory to derive sharp bounds on the structural parameters, from which a range of treatment pa-

rameters can be derived. More specifically, we apply Theorem 1 of Galichon and Henry (2011)

(equivalently Theorem 3.2 of Beresteanu, Molchanov, and Molinari (2011)) to derive bounds for the

generalized binary Roy model. The latter Theorem was recently applied in a similar context by

Chesher, Rosen, and Smolinski (2013) to derive sharp bounds for instrumental variable models of

discrete choice. We spell out the point identification implications of the bounds under certain exclu-

sion restrictions. The bounds are simple enough to lend themselves to existing inferential methods,

specifically Chernozhukov, Lee, and Rosen (2013) and Andrews and Shi (2013) in the instrumental

variables case.

We implement the inference method proposed in Chernozhukov, Lee, and Rosen (2013) to bring

a new light on the Connors, Speroff, Dawson, and Thomas (1996) Swan Ganz catheterization data
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set and analyze treatment effect in a framework with treatment specific unobserved effects. We

achieve two main objectives in doing so. First, we illustrate how simple inference on the bounds

proposed here can be using the STATA routines developed for Chernozhukov, Lee, and Rosen (2013)

in Chernozhukov, Kim, Lee, and Rosen (2013). Second, we propose new results and reinterpret

previous ones on the effect of Swan-Ganz catheterization on survival outcomes. In particular, when

allowing for treatment selection on treatment specific unobservable heterogeneity and assuming the

instrument proposed in Bhattacharya, Shaikh, and Vytlacil (2011) is valid, we show that we cannot

reject the hypothesis that medical staff select treatment to maximize survival probability, i.e., that

the conditional average treatment on the treated (resp. non treated) is non negative (resp. non

positive), except in the case of patients admitted for chronic obstructive pulmonary disease. In

addition, we find that even in the cases, where this hypothesis of “correct treatment decision” is

not rejected, bounds on survival probabilities under treatment are systematically dominated by

bounds on survival probabilities without treatment. In several cases, the sign of conditional average

treatment effect is identified and negative. This leads to the interpretation that previous findings

of negative treatment effects may be driven by restrictive assumptions on treatment selection in

previous work and are in fact compatible with “correct treatment decision”.

The remainder of the paper is organized as follows. Section 1 clarifies the analytical framework

and the objectives. In Section 2, sharp bounds are derived for the binary Roy model, when selection

depends only on the probability of success and possibly on observable variables. Identification impli-

cations are spelled out under exclusion restrictions. Section 3 considers the generalized binary Roy

model, Section 4 presents inference results on survival outcomes following Swan-Ganz catheterization

and the last section concludes.

1. Analytical framework

We adopt the framework of the potential outcomes model Y = Y1D + Y0(1 − D), where Y is

an observed outcome, D is an observed selection indicator and Y1, Y0 are unobserved potential

outcomes. Heckman and Vytlacil (1999) trace the genealogy of this model and we refer to them for

terminology and attribution. Potential outcomes are as follows:

Yd = 1{Y ∗

d > 0} = 1{F (d,Xd, ud) > 0}, d = 1, 0, (1.1)

where 1{.} denotes the indicator function and F is an unknown function of the vector of observable

random variables Xd and unobserved random variable ud. We make the following assumptions

throughout Sections 2 and 3.

Assumption 1 (Weak separability). Potential outcomes can then be written Yd = 1{fd(Xd) > ud}

for some unknown (measurable) functions fd, d = 0, 1. As can be shown by appropriately adapting
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arguments in Vytlacil (2002), the latter is implied by weak separability of the functions F (d,Xd, ud),

d=1,0.

Assumption 2 (Regularity). The sector specific unobserved variables ud, d = 1, 0, are uniformly

continuous with respect to Lebesgue measure, so that they may be assumed without loss of generality

to be distributed uniformly on [0, 1].

The normalization of Assumption 2 is very convenient, since it implies fd(xd) = E(Yd|xd) and

bounds on treatment effects parameters can be derived from bounds on the structural parameters

f1 and f0.

Assumption 3 (Instruments). Observable variables Xd, d = 1, 0, and instruments Z are inde-

pendent of (u1, u0). Common components of X1 and X0 will be dropped from the notation in the

remainder of the paper and by slight abuse of notation, Xd will refer only to the variables that are

excluded from the equation for Y1−d and Z to variables that are excluded from both outcome equations

(when the case arises).

In all the paper, we shall use the notation P(i, j|X) for P(Y = i,D = j|X) and W = (Z,X1, X0),

ω = (z, x1, x0).

Our objective is to characterize all the information that can be gathered from the distribution of

observed variables (Y,W ) about the unknown elements of the model, namely the functions f1 and

f0 and the joint distribution (or copula, since the marginals are normalized) of the sector specific

heterogeneity vector (u1, u0). We shall call this characterizing the empirical content of the model.

The empirical content of the model, relative to the unknown functions f1 and f2 will be of primary

interest and will take the form of sharp bounds such as:

G(ω) ≤ fd(xd) ≤ Ḡ(ω), (1.2)

in which case, exhibiting the functions G and Ḡ will be the object of the analysis. In the case of

a linear specification of the binary Roy model fd(xd) = f̃d(β
′

dxd), where f̃d : R → [0, 1] is a known

invertible function of the single index β′

dxd and the unknown parameter vector βd is the object of

analysis, we can derive sharp bounds on βd from (1.2) straighforwardly. From G(ω) ≤ f̃d(β
′

dxd) ≤

Ḡ(ω), we derive f̃−1

d G(ω) ≤ β′

dxd ≤ f̃−1

d Ḡ(ω). Hence, the bounds on the parameter vector βd will

be given by the projections of f̃−1

d G(ω) and f̃−1

d Ḡ(ω) on xd.

2. Sharp bounds for the binary Roy and extended Roy models

2.1. Simple binary Roy model. As in the original model proposed by Roy (1951), the sector

yielding the highest outcome is selected.

Assumption 4 (Binary Roy Model). Agents select the sector yielding the highest latent outcome,

i.e., Y ∗

1
> Y ∗

0
⇒ D = 1 and Y ∗

1
< Y ∗

0
⇒ D = 0.
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The empirical content of the model under this selection rule is characterized in Figures 1 and 2.

Figure 1. Characterization of the empirical content of the simple binary Roy model

in the unit square of the (u1, u0) space.

1

f0f0

f1

f1

(Y = 1, D = 1)

(Y = 0, D = 0)

(Y = 1, D = 0)

f0 − f1

1 − f0 + f1

(Y = 0, D = 1)

0 1

Figure 2. Characterization of the empirical content of the simple binary Roy model

in the unit square of the (u1, u0) space in case f0 = 0.
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f1
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0 1
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2.1.1. Bounds on the structural functions. For each value of the exogenous observable variables

and each value of the pair (u1, u0), the outcome is uniquely determined. If the joint distribution

were known, the likelihood of each of the potential outcomes (Y = 1, D = 1), (Y = 1, D = 0),

(Y = 0, D = 1) and (Y = 0, D = 0) would be determined. However, only the marginal distributions

of u1 and u0 are fixed, not the copula, so that only the probability of vertical and horizontal bands

in Figures 1 and 2 are uniquely determined. Thus we see for instance that f1 = P(Y = 1, D = 1)

is identified when f0 = 0 (as in Figure 2) and f0 = P(Y = 1, D = 0) is identified when f1 = 0 in a

way that is akin to identification at infinity, as in Heckman (1990), when fd(x) follows a single index

restriction. But in other cases (as in Figure 1), we only know P(Y = 1, D = 1) ≤ f1 ≤ P(Y = 1)

and P(Y = 1, D = 0) ≤ f0 ≤ P(Y = 1). The following proposition, proved in the Appendix, shows

that these bounds are jointly sharp.

Proposition 1 (Roy model). Under Assumptions 1-4 in Model (1.1), the following inequalities

characterize the identified set for (f1, f0).

sup
x0

P(1, 1|x1, x0) ≤ f1(x1) ≤ inf
x0

[

P(1, 1|x1, x0) + P(1, 0|x1, x0)
]

(2.1)

sup
x1

P(1, 0|x1, x0) ≤ f0(x0) ≤ inf
x1

[

P(1, 0|x1, x0) + P(1, 1|x1, x0)
]

(2.2)

where the infima and suprema are taken over the domains of the excluded variables X1 or X0 as

indicated and when they exist.

The validity of the bounds was shown above. To prove sharpness, we show in Appendix A

that we can construct joint distributions for (u1, u0) such that each point in the identified region

for (f1(x1), f0(x0)) defined by (2.1) and (2.2) is attained. Since the bounds in Proposition 1 are

obtained as intersections over the domains of the excluded variables, they are called “intersection

bounds”. They are also semiparametric in the non excluded variables. Inference on such bounds

can be conducted with existing methods described in Chernozhukov, Lee, and Rosen (2013) or in

Andrews and Shi (2013).

A simple implication of Assumption 4 is that actual success is more likely than counterfactual

success.

Assumption 5 (Positive ATT). E(Yd|D = d,X1, X0) ≥ E(Y1−d|D = d,X1, X0) for d = 1, 0.

Assumption 5 has the simple interpretation of requiring nonnegative (resp. nonpositive) condi-

tional average treatment effects for the treated (resp. untreated). Under Assumption 5, omitting
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conditioning variables for ease of notation,

fd = E[Yd]

= E[Yd|D = d]P(D = d) + E[Yd|D = 1− d]P(D = 1− d)

≤ P[Y = 1, D = d] + E[Y1−d|D = 1− d]P(D = 1− d)

= P(Y = 1, D = d) + P(Y = 1, D = 1− d).

Moreover, if fd > 0 and f1−d = 0, P(Y = 1, D = 1− d) = 0. This implies that

P(1, d|x1, x0) ≤ E[Yd|x1, x0] ≤ P(1, d|x1, x0) + P(1, 1− d|x1, x0)

characterizes the empirical content of the potential outcomes model Y = Y1D + Y0(1 − D) in all

generality (i.e., without weak separability and without assumptions on the dimension of unobservable

heterogeneity). It also shows that the simple binary Roy model has no empirical content relative to

(f1, f0) beyond Assumption 4. More precisely, the identified set for (f1, f0) under Assumption 5 is

the same as under Assumption 1-4. Indeed, bounds (2.1) and (2.2) still hold under Assumption 5.

They are also sharp, since Assumption 4 implies Assumption 5.

Corollary 1. The identified set for (f1, f0) under Assumptions 1-3 and 5 is characterized by in-

equalities (2.1) and (2.2).

In case of exclusion restrictions, an immediate corollary to Proposition 1 gives conditions for

identification of the outcome equations. This identification result is related to Heckman (1990)’s

identification at infinity in the following sense: in the special case of a single index model, where

f0(x0) = φ(x0β), where φ is a distribution function and β is a conformable vector of parameters, if

x0j → −∞ for some element x0j of x0 such that βj > 0, then f0(x0) → 0.

Corollary 2 (Identification). Under Assumptions 1-3 and 5, the following hold (writing ω =

(z, x1, x0) as before).

a. If there is x0 ∈ Dom(X0) such that f0(x0) = 0, then f1 is identified over Dom(X1).

b. If there is x1 ∈ Dom(X1) such that f1(x1) = 0, then f0 is identified over Dom(X0).

a’. Take x1 ∈ Dom(X1). If there is x0 ∈ Dom(X0) such that P(1, 0|x1, x0) = 0, then f1(x1) is

identified.

b’. Take x0 ∈ Dom(X0). If there is x1 ∈ Dom(X1) such that P(1, 1|x1, x0) = 0, then f0(x0) is

identified.

The existence of valid instruments or exclusion restrictions is often problematic in applications of

discrete choice models. However, in the Roy model of sectorial choice with sector specific unobserved

heterogeneity, it is natural to expect some sector specific observed heterogeneity as well. Such sector

specific observed heterogeneity would provide exclusion restrictions in the form of variables affecting
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outcome equation for Yd without affecting outcome equation for Y1−d. Such exclusion restrictions

would yield intersection bounds in Proposition 1. Of course, even if it exists, sector specific observed

heterogeneity may not satisfy a. or b. of Corollary 2. However, the availability of an exclusion

restriction as in a. or b. of Corollary 2 is consistent with the spirit of a model of sector specific

heterogeneity.

Although a source of variation in selection indicator D, which does not affect outcome equa-

tions conditionally on treatment, is incompatible with the structural assumption 4, the effect of an

instrument Z satisfying Assumption 3 may be entertained in an extention of Assumption 5:

Assumption 6 (Instrumental Variables). E(Yd − Y1−d|D = d,X1, X0, Z) ≥ 0 for d = 1, 0.

The latter assumption strengthens non negativity of treatment effect on the treated, now required

to hold conditionally on instrument Z, which narrows the bounds on the average structural functions

according to the following straightforward corollary of Proposition 1.

Corollary 3 (Instrumental variable bounds). Under Assumptions 1-3 and Assumption 6 in Model (1.1),

the following inequalities characterize the identified set for (f1, f0).

sup
x0,z

P(1, 1|x1, x0, z) ≤ f1(x1) ≤ inf
x0,z

[

P(1, 1|x1, x0, z) + P(1, 0|x1, x0, z)
]

(2.3)

sup
x1,z

P(1, 0|x1, x0, z) ≤ f0(x0) ≤ inf
x1,z

[

P(1, 0|x1, x0, z) + P(1, 1|x1, x0, z)
]

(2.4)

where the infima and suprema are taken over the domains of the excluded variables X1 or X0 and

Z as indicated and when they exist.

In addition to narrowing the bounds, the availability of an instrument Z recovers testability of

the model, i.e., possibility of upper and lower bounds crossing, even in the absence of variables X1

or X0 that selectively affect a single sector.

2.1.2. Bounds on the joint distribution of sector specific heterogeneity. The bounds proposed in

Proposition 1 are joint sharp bounds on the structural functions, hence on treatment effects. To

derive them, we treated the joint distribution of sector specific heterogeneity as a nuisance param-

eter. One may also be interested in the empirical content of the model relative to sector specific

heterogeneity. Since the distributions of u1 and u0 are both normalized and assumed uniform on

[0, 1], the joint distribution satisfies Fréchet bounds:

max(f1(x1) + f0(x0)− 1, 0) ≤ P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) ≤ min(f1(x1), f0(x0)).

The relevant question, therefore, is whether the Roy model assumption on selection, i.e., Assump-

tion 4, holds empirical content relative to the distribution of unobserved sector specific heterogeneity

beyond Fréchet bounds. In Figure 1, P(Y = 1) is equal to the L-shaped region on the left side of the

graph. The area of the left vertical band is f1 and the area of the lower horizontal band is f0. These
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two bands overlap on the lower left rectangle, whose area is equal to P(u1 ≤ f1, u0 ≤ f0). Hence

f1 + f0 = P(Y = 1) + P(u1 ≤ f1, u0 ≤ f0). Adding conditioning variables, we have the following

bounds on the joint distribution of sector specific heterogeneity:

P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) = f1(x1) + f0(x0)− P(Y = 1|x1, x0). (2.5)

This yields a sharper lower bound than the Fréchet bounds whenever P(Y = 1|x1, x0) < 1. In

particular, perfect negative correlation between u1 and u0 is ruled out. Note however, that the

above constraint no longer holds when we replace the Roy selection hypothesis, i.e., Assumption 4,

by Assumption 5. Hence the conclusion that the latter two assumptions hold the same empirical

content is valid when considering empirical content relative to the structural functions and the

treatment effects, but not when considering empirical content relative to the joint distribution of

unobserved heterogeneity.

2.2. Extended binary Roy model.

2.2.1. Extended selection assumption. Assumption 4 is very restrictive and recent research by Hault-

foeuille and Maurel (2013) and Bayer, Khan, and Timmins (2011) on the Roy model with continuous

outcomes has focused on an extended version according to the terminology of Heckman and Vytlacil

(1999), where selection depends on Y ∗

1
− Y ∗

0
and a function of observable variables g(Z,X1, X0)

sometimes called “non pecuniary component”. We now investigate the implications of this selection

assumption in the binary case.

Assumption 7 (Observable heterogeneity in selection). Y ∗

1
− Y ∗

0
> g(Z,X1, X0) ⇒ D = 1 and

Y ∗

1
− Y ∗

0
< g(Z,X1, X0) ⇒ D = 0 for some unknown function g of the vectors of observable

variables Z, X1 and X0.

Assumption 7 includes separability of the structural selection function in Y ∗

1
−Y ∗

0
and g(Z,X1, X0).

The more general case without separability of the selection function is considered in Section 2.2.5.

Under Assumptions 1-3 and 7, we may still characterize the empirical content of the model graph-

ically, in Figures 3 and 4. We drop Z, X1 and X0 from the notation in the discussion below.

For each value of (u1, u0), the outcome is uniquely determined by f1, f0 and g. Again, the missing

piece to compute the likelihood of outcomes P(i, j), i, j = 1, 0, is the copula for (u1, u0). From the

knowledge of the probabilities of horizontal and vertical bands in the (u1, u0) space, we can derive

the sharp bounds on structural parameters f1, f0 and g. Four cases are considered below to explain

the bounds, which are derived formally in Proposition 2.

a. Case where g ≥ f1 in Figure 4. The probability of outcome (Y = 1, D = 0) is seen to be

exactly equal to the area of the lower horizontal band. Hence f0 = P(1, 0) is identified.

Moreover, the area of the horizontal band (f0, f0 − f1 + g) is smaller than the probability
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Figure 3. Characterization of the empirical content of the extended binary Roy model

in the unit square of the (u1, u0) space in case 0 ≤ g < f1.

1

(Y = 0, D = 0)

(Y = 1, D = 0)

f0f0

f1

f1 1 − f0 + f1 − g

(Y = 1, D = 1)

(Y = 0, D = 1)

f0 − f1 + g

0 1

Figure 4. Characterization of the empirical content of the extended binary Roy model

in the unit square of the (u1, u0) space in case g ≥ f1.
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of outcome (Y = 0, D = 0). Hence g ≤ f1 +P(0, 0). Similar reasoning yields P(1, 1) ≤ f1 ≤

P(Y = 1) + P(0, 0).
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b. Case where 0 ≤ g < f1 in Figure 3. The area of the lower horizontal band (0, f0 − f1 + g)

is smaller than the probability of outcome (Y = 1, D = 0). Hence g ≤ f1 − f0 + P(1, 0).

Moreover, the area of the horizontal band (0, f0) is larger than the probability of outcome

(Y = 1, D = 0) and smaller than the probability of outcome (Y = 1). Hence P(1, 0) ≤ f0 ≤

P(Y = 1). Finally, P(1, 1) ≤ f1 ≤ P(Y = 1) + P(0, 0) still holds.

c. Case where −f0 < g ≤ 0. Similarly to Case b., we obtain bounds g ≥ f1 − f0 + P(1, 1),

P(1, 0) ≤ f0 ≤ P(Y = 1) + P(0, 1) and P(1, 1) ≤ f1 ≤ P(Y = 1).

d. Case where g ≤ −f0. Similarly to Case a., f1 = P(1, 1) is identified and P(1, 0) ≤ f0 ≤

P(Y = 1) + P(0, 1) and g ≥ −f0 − P(0, 1).

In addition, in both cases a. and b., where g > f1−f0, corresponding to Figures 4 and 3, the marginal

constraint on u1 fixes the probability mass in the thin right vertical band to f0 − f1 + g. Hence the

maximum probability mass that can be shifted to the left of f1 is p11 + p10 + p00 − (f0 − f1 + g), so

that we have the additional constraint f0 ≤ p11 + p10 + p00 − g. Symmetrically, in case g < f1 − f0,

we have the constraint f1 ≤ g+p11+p10+p00. Since g > f1−f0 also implies f1 ≤ g+p11+p10+p00

and g < f1− f0 also implies f0 ≤ p11+p10+p00− g, the two constraints f0 ≤ p11+p00+p10− g and

f1 ≤ g+ p11+ p10+ p01 always hold. Proposition 2 shows validity of the bounds discussed above for

the triplet (f1(x1), f0(x0), g(ω)).

Proposition 2 (Bounds for the extended binary Roy model). Under Assumptions 1-3 and 7, the

following bounds for (f1, f0, g) hold (writing ω = (z, x1, x0) as before).

f1(x1) ∈
[

sup
z,x0

P(1, 1|ω), inf
z,x0

[P(1, 1|ω) + P(0, 0|ω)1{g(ω) > 0}

+min[min(P(1, 0|ω), f0(x0) + g(ω))1{g(ω) > −f0(x0)}),

g(ω) + P(1, 0|ω) + P(0, 1|ω)]]
]

,

f0(x0) ∈
[

sup
z,x1

P(1, 0|ω), inf
z,x1

[P(1, 0|ω) + P(0, 1|ω)1{g(ω) < 0}

+min[min(P(1, 1|ω), f1(x1)− g(ω))1{g(ω) < f1(x1)}),

P(1, 1|ω) + P(0, 0|ω)− g(ω)]]
]

(2.6)

and

g(ω) ∈
([

−f0(x0)− P(0, 1|ω),−f0(x0)
]

∪
[

f1(x1)− f0(x0)− P(1, 1|ω),

f1(x1)− f0(x0) + P(1, 0|ω)
]

∪
[

f1(x1), f1(x1) + P(0, 0|ω)
])

∩
[

f1(x1)− P(1, 1|ω) − P(1, 0|ω) − P(0, 1|ω),P(1, 1|ω) + P(1, 0|ω) + P(0, 0|ω) − f0(x0)
]

(2.7)

where the infima and suprema are taken over the domain of Z, X1 or X0 as indicated and when

they arise.

2.2.2. Identification implications of exclusion restrictions. Simple identification conditions can be

derived for f1 and f0 from the bounds of Proposition 2 under exclusion restrictions. However,
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it can be seen immediately that exclusion restrictions cannot identify g( ), since it would require

P(Y = 1, D = 1|ω), P(Y = 0, D = 1|ω), P(Y = 1, D = 0|ω) and P(Y = 0, D = 0|ω) to simultaneously

equal zero.

Corollary 4 (Identification). Under Assumptions 1-3 and 7, the following hold (writing ω =

(z, x1, x0) as before).

a. If there is z ∈ Dom(Z) and x0 ∈ Dom(X0) such that g(ω) ≤ −f0(x0), then f1(x1) =

P(1, 1|ω) is identified.

b. If there is z ∈ Dom(Z) and x1 ∈ Dom(X1) such that g(ω) ≥ f1(x1), then f0(x0) = P(1, 0|ω)

is identified.

a’. Take x1 ∈ Dom(X1). If there is x0 ∈ Dom(X0) or z ∈ Dom(Z) such that P(1, 0|ω) =

P(0, 0|ω) = 0, then f1(x1) is identified.

b’. Take x0 ∈ Dom(X0). If there is x1 ∈ Dom(X1) or z ∈ Dom(Z) such that P(1, 1|ω) =

P(0, 1|ω) = 0, then f0(x0) is identified.

2.2.3. Sharp bounds in the extended Roy model. When the object of interest is treatment parameters

only, the three dimensional identification region defined by the sharp bounds on (f1, f0, g) is projected

on the two-dimensional space (f1, f0) as follows.

Proposition 3 (Sharp bounds for the extended Roy model). Under Assumptions 1-3 and 7, the

identified set for (f1, f0) is characterized by the following bounds, where λ ∈ {0, 1} and ε > 0 is

arbitrarily small:

sup
z,x0

P(1, 1|ω) ≤ f1(x1) ≤ inf
z,x0

[P(1, 1|ω) + P(1, 0|ω) + λmax(0,P(0, 0|ω)− ε)]

sup
z,x1

P(1, 0|ω) ≤ f0(x0) ≤ inf
z,x1

[P(1, 0|ω) + P(1, 1|ω) + (1− λ)max(0,P(0, 1|ω)− ε)]
(2.8)

The binary λ ensures joint sharpness of the bounds on f1 and f0. It reflects the fact that in

Figure 3 the diagonal sperating the D = 1 from the D = 0 regions is either on the right of the point

(f1, f0), in which case the sharper bound on f1 holds, or on the left of point (f1, f0), in which case

the sharper bound on f0 holds, but not both at the same time. The presence of ε > 0 in the bounds

reflects the fact that if, as in Figure 3, the diagonal is on the right of the point (f1, f0), i.e., λ = 1,

then f1 could only attain the upper bound p11 + p10 + p00 if all the mass corresponding to Region

(Y = 0, D = 0) was shifted into the triangle below the diagonal, above f0 and left of f1. However,

this is impossible since the vertical band on the right has non zero mass by the uniform marginal

constraint on u1. Hence, the presence of ε in the bounds is due to the linearity of the boundary

between Regions D = 0 and D = 1. This explains why it disappears in the nonseparable case of the

next section.

If the object of interest is the non pecuniary component g, the three dimensional identifica-

tion region is projected on the one-dimensional space for g into the single interval [−P(1, 1|ω) −
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P(1, 0|ω),P(1, 1|ω) + P(1, 0|ω)], since the bounds in (2.6) cross at those values. In the presence of

instruments (or exclusion restrictions), the projections on (f1, f0) and on g can be much tighter and

the projection on (f1, f0) may even be reduced to a point, as in Corollary 4.

2.2.4. Testing the Roy selection assumption. As we have just seen, in the absence of exclusion re-

strictions, the identified region always contains the hyperplane g = 0, so that it is impossible to

test the classical Roy selection hypothesis. However, in the presence of exclusion restrictions, the

hypothesis g(ω) = 0 may become testable. There is a non zero non pecuniary component in the

selection equation if the hyperplane g(ω) = 0 does not intersect the three dimensional identification

region for (f1(x1), f0(x0), g(ω)) defined by the bounds in Proposition 2. This implies the crossing of

the intersection bounds in Proposition 1, in the sense that

sup
x0

P(1, 1|x1, x0) > inf
x0

[

P(1, 1|x1, x0) + P(1, 0|x1, x0)
]

or

sup
x1

P(1, 0|x1, x0) > inf
x1

[

P(1, 0|x1, x0) + P(1, 1|x1, x0)
]

so that by Proposition 1, the simple Roy model is rejected. In practice, the test for the existence of a

non pecuniary component would be carried out by constructing a confidence region according to the

methods proposed in Chernozhukov, Lee, and Rosen (2013) or Andrews and Shi (2013) and checking,

whether the hyperplane g(ω) = 0 intersects the confidence region. If it does, we fail to reject the

hypothesis of existence of a non pecuniary component and if it doesn’t, we reject the hypothesis

at significance level equal to 1 minus the confidence level chosen for the confidence region. The

hypotheses g ≥ 0 or g ≤ 0 may be tested in the same way.

2.2.5. Sharp bounds without separability of the selection function. The same arguments can be ap-

plied to derive the empirical content of the model where the selection equation generalizes Assump-

tion 7 with the following.

Assumption 8 (Nonseparable selection function). Suppose the selection rule is u0 > h(u1,W ) ⇒

D = 1 and u0 < h(u1,W ) ⇒ D = 0, with h strictly increasing in u1, for all W .

Assumption 7 is a special case of Assumption 8, where h(u1,W ) = u1+ f0(X0)− f1(X1)+ g(W ).

The identified region for the pair (f1(x1), f0(x0)) is obtained in the same way as the separable case

except that f1 attains P(1, 1)+P(1, 0)+P(0, 0) and f0 attains P(1, 1)+P(1, 0)+P(0, 0). This occurs

because the nonlinearity of the curve separating region D = 1 from region D = 0 allows all the mass

corresponding to P(0, 0) to be shifted on the left of f1, as in Figure 5.

Proposition 4 (Sharp bounds for the extended Roy model without separability). Under Assump-

tions 1-3 and 8, the identified set for (f1, f0) is characterized by the following inequalities, where λ
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Figure 5. Characterization of the empirical content of the binary Roy model in the

unit square of the (u1, u0) space without separability of the selection function.

1

(Y = 0, D = 0)

(Y = 1, D = 0)

f0f0

f1

f1

(Y = 1, D = 1)

(Y = 0, D = 1)

u0 = h(u1,W )

0 1

takes the values 1 or 0:

sup
z,x0

P(1, 1|ω) ≤ f1(x1) ≤ inf
z,x0

[P(1, 1|ω) + P(1, 0|ω) + λP(0, 0|ω)]

sup
z,x1

P(1, 0|ω) ≤ f0(x0) ≤ inf
z,x1

[P(1, 0|ω) + P(1, 1|ω) + (1− λ)P(0, 1|ω)]
(2.9)

In this context, however, the Roy selection assumption, i.e., Assumption 4, may no longer be

tested with the strategy developed above.

3. Sharp bounds for the generalized binary Roy model

So far, we have assumed that selection occurs on the basis of success probability and other

observable variables. We now turn to the general case, where unobservable heterogeneity, beyond

u0 − u1, may play a role in sectorial selection. Knowledge of (u1, u0) now no longer uniquely

determines the outcome (Y = i,D = j) as seen in Figure 6. Multiplicity of equilibria and lack of

coherence of the model can be dealt with, however, with the optimal transportation approach of

Galichon and Henry (2011) (or equivalently with the random set approach of Beresteanu, Molchanov,

and Molinari (2011) as in Chesher, Rosen, and Smolinski (2013)), as shown in the proof of Theorem 1

below.

Theorem 1 (Sharp bounds for the generalized Roy model). Under Assumptions 1-3, the empirical

content of the model is characterized by inequalities (3.1)-(3.3) below (writing ω = (z, x1, x0) as
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Figure 6. Characterization of the empirical content of the generalized binary Roy

model in the unit square of the (u1, u0) space.
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or

(Y = 0, D = 0)

(Y = 1, D = 0)

(Y = 0, D = 1)

(Y = 0, D = 0)

(Y = 1, D = 1)

or

0 1

before).

sup
z,x0

P(1, 1|ω) ≤ f1(x1) ≤ 1− sup
z,x0

P(0, 1|ω), (3.1)

sup
z,x1

P(1, 0|ω) ≤ f0(x0) ≤ 1− sup
z,x1

P(0, 0|ω) (3.2)

and

sup
z

max
(

0, f0(x0)− P(1, 0|ω)− P(0, 1|ω), f1(x1)− P(1, 1|ω)− P(0, 0|ω)
)

≤ P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) (3.3)

≤ inf
z
min

(

P(Y = 1|ω), f1(x1) + f0(x0)− P(Y = 1|ω)
)

.

Theorem 1 is not an operational characterization of the empirical content of the model since

the sharp bounds involve the unknown quantity P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0), which, by the

normalization of Assumption 2, is exactly the copula of (u1, u0). In the case of total ignorance

about the copula of (u1, u0), after plugging Fréchet bounds max(f1(x1) + f0(x0) − 1, 0) ≤ P(u1 ≤

f1(x1), u0 ≤ f0(x0)|x1, x0) ≤ min(f1(x1), f0(x0)), inequalities (3.3) are shown to be redundant.

Hence we have the following.

Corollary 5. The identified set for (f1, f0) under Assumption 1-3 is characterized by inequali-

ties (3.1) and (3.2).
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In order to sharpen those bounds, we may consider restrictions on the copula for (u1, u0) or

restrictions on the selection equation. We consider both strategies in turn.

3.1. Restrictions on selection. Consider the following selection model, where selection depends

on Y ∗

1
− Y ∗

0
and g(Z,X1, X0) and selection specific unobserved heterogeneity v, which is separable

and which is independent of (resp. dependent on) sector specific unobserved heterogeneity (u1, u0)

under Assumption 9 (resp. Assumption 10). As before, write W = (Z,X1, X0).

Assumption 9. Y ∗

1
− Y ∗

0
> g(W ) + v ⇒ D = 1 and Y ∗

1
− Y ∗

0
< g(W ) + v ⇒ D = 0, with

v ⊥⊥ (u1, u0,W ) and Ev = 0 (without loss of generality).

With v ⊥⊥ (u1, u0), we have P(ud ≤ g(z, x1, x0) + v + f1(x1) − f0(x0)|z, x1, x0) = EvE[1{ud ≤

g(z, x1, x0)+v−f1(x1)+f0(x0)}|z, x1, x0, v] = max(0, g(z, x1, x0)−f1(x1)+f0(x0)) and it is shown

in Corollary 6 that the bounds on g( ) derived in Section 2 remain valid.

Corollary 6. Under Assumptions 1-3 and 9, (2.7) holds.

As for the bounds on (f1, f0), (2.6) remain valid under specific domain restrictions for v.

Assumption 10. Y ∗

1
− Y ∗

0
> g(W ) + v ⇒ D = 1 and Y ∗

1
− Y ∗

0
< g(W ) + v ⇒ D = 0, with v ⊥⊥ W ,

Ev = 0 (without loss of generality).

Note that Assumption 10 is equivalent to assuming the selection equation D = 1{h(W ) > η}

with η arbitrarily dependant on (u1, u0). Indeed, one can take h(W ) = f1(X1)− f0(X0)− g(W ) and

η = v + u1 − u0.

Corollary 7. Under Assumption 1-3 and 10, (3.1) and (3.2) are sharp bounds for the pair (f1, f2).

From Corollary 7, we conclude that the separability of the selection specific unobserved hetero-

geneity term has no empirical content, in the sense that the identified set for (f1, f0) is identical

to the case, where there is no information on selection. This is related to the lack of empirical

content of LATE in Kitagawa (2009) and it is in sharp contrast with the case of no sector specific

heterogeneity in Shaikh and Vytlacil (2011), Jun, Pinkse, and Xu (2010) and Mourifié (2011), where

the ordering between f1 and f0 can be used as identifying information. Indeed, if f1 ≤ f0, we have

f1 = P(Y = 1, D = 1)+P(u1 ≤ f1, D = 0) ≤ P(Y = 1, D = 1)+P(u1 ≤ f0, D = 0). The last term is

equal to P(Y = 1, D = 0) if u1 = u0 but is not identified in the case with sector specific unobserved

heterogeneity.

3.2. Restrictions on the joint distribution of sector specific heterogeneity.

3.2.1. Parametric restrictions on the copula. In case the copula for (u1, u0) is parameterized with

parameter vector θ, sharp bounds are obtained straightforwardly by replacing P(u1 ≤ f1(x1), u0 ≤

f0(x0)|x1, x0) with the parametric version F (f1(x1), f0(x0); θ) in (3.3).
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3.2.2. Perfect correlation. In the case of perfect correlation between the two sector specific unob-

served heterogeneity variables, P(u1 ≤ f1(x0), u0 ≤ f0(x0)) = min(f1(x1), f0(x0)) so that the sharp

bounds of Theorem 1 specialize to (3.1), (3.2), min(f1(x1), f0(x0)) ≤ inf
z
P(Y = 1|z, x1, x0) and

sup
z

P(Y = 1|z, x1, x0) ≤ max(f1(x1), f0(x0)), which are the bounds derived in Chiburis (2010).

3.2.3. Independence. In the special case, where the two sector specific errors are independent of each

other u1 ⊥⊥ u0, sharp bounds can be derived from Theorem 1 and P(u1 ≤ f1(x0), u0 ≤ f0(x0)) =

P(u1 ≤ f1(x1))P(u0 ≤ f0(x0)) = f1(x1)f0(x0). The sharp bounds obtained allow formal tests of the

hypothesis of independence of the two unobserved heterogeneity components. This would not be

achievable based only on Fréchet bounds (as noted by Tsiatis (1975) in the case of competing risks),

as we always have f0 + f1 − 1 ≤ f0f1 ≤ min(f1, f0) when 0 ≤ f1, f0 ≤ 1.

3.2.4. Factor structure. Theorem 1 also allows us to characterize the empirical content of the factor

model for sector specific unobserved heterogeneity proposed in Aakvik, Heckman, and Vytlacil

(2005).

Assumption 11 (Factor model). Sector specific unobserved heterogeneity has factor structure ud =

αdu+ ηd, d = 1, 0, with Eu = 0, Eu2 = 1 (without loss of generality) and η1 ⊥⊥ η0|u. ηd is uniformly

distributed on [0, 1] for d = 1, 0, conditionally on u.

This factor specification for sector specific unobserved heterogeneity is particularly appealing in

applications to the effects of employment programs. Success in securing a job depends on common

unobservable heterogeneity in talent and motivation and sector specific noise. Under Assumptions 1,

3 and 11, we still have E[Yd|z, x1, x0] = fd(xd) and

P(u1 ≤ f1(x1), u0 ≤ f0(x0)|x1, x0) = EuP(η1 ≤ f1(x1)− α1u, η0 ≤ f0(x0)− α0u|x1, x0, u)

= EuP(η1 ≤ f1(x1)− α1u|x1, u)P(η0 ≤ f0(x0)− α0u|x1, x0, u)

= f1(x1)f0(x0) + α1α0.

Hence we can obtain sharp bounds on parameters f1, f0, α1 and α0 as follows.

Corollary 8 (Sharp bounds for the factor model). Under Assumptions 1, 3 and 11, the empirical

content of the model is characterized by (3.1), (3.2) and (writing ω = (z, x1, x0) as before)

sup
z

max
(

0, f0(x0)− P(1, 0|ω)− P(0, 1|ω), f1(x1)− P(1, 1|ω)− P(0, 0|ω)
)

≤ f1(x1)f0(x0) + α1α0

≤ inf
z
min

(

P(Y = 1|ω), f1(x1) + f0(x0)− P(Y = 1|ω)
)

We recover the case of independent sector specific heterogeneity variables, when α1 = α0 = 0.
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4. Bounds on the effects of Swan-Ganz catheterization

4.1. Swan-Ganz catherization. Catherization is a common surgical procedure consisting in in-

serting a tube through an artery to monitor the heart and enhance diagnostic. It can be traced

back to the mid nineteenth century with Claude Bernard and was first performed on a human sub-

ject (himself) by Werner Forßmann in 1929. Swan-Ganz catheterization refers to the more recent

pulmonary artery catheterization procedure introduced by Jeremy Swan and William Ganz. Its

benefits are controversial and have been the object of intense empirical scrutiny in the last 20 years.

We analyze the data set collected by Connors, Speroff, Dawson, and Thomas (1996) on catherer use

and survival outcomes.

4.2. Data. The data was collected from intensive care units in 5 major US hospitals, namely Beth

Israel in Boston, the Duke University Medical Center, MetroHealth Medical Center in Clevelad

OH, St Joseph’s Hospital in Marshfield WI and the University of California Medical Center. The

data set includes 5735 patients admitted between 1989 and 1994 with one of the following life

threatening diseases: acute respiratory failure (ARF), congestive heart failure (CHF), chronic ob-

structive pulmonary disease (COPD), cirrhoris (Cirrhosis), nontraumatic coma (Coma), multi-organ

system failure (MOSF) with malignancy or with sespis. As detailed in Connors, Speroff, Dawson,

and Thomas (1996), “exclusion criteria included age less than 18 years, death or discharge within

48 hours, inability to speak English, acute psychiatric disorders, pregnancy, acquired immunodefi-

ciency syndrome (AIDS), acute burns, and head trauma or other trauma.” Patients were classified

as treated if they were catheterized within 24 hours and the outcome variable is an indicator of

survival for at least 6 months after catheterization.

Data on observed heterogeneity includes age, gender, race, education, income, health insurance

status, income and weight. Summary statistics for treated and untreated populations are given in

Table 1. The last column gives the p-value in a test of the hypothesis that the mean characteristic

for the treated and untreated are equal. The hypothesis is rejected at the 1% level for all observable

characteristics except for age, race and health insurance status. Almost half the patients are admitted

with acute respiratory failure, while the rest are evenly distributed among remaining ailments. Coma,

conjestive heart failure, cirrhosis and pulmonary patients have relatively low rates of catheterization,

whereas the rate in case of sepsis is relatively high. Younger, male, educated and richer patients

have higher rates of catheterization than older, female, less educated and poorer patients.

4.3. Former results. Connors, Speroff, Dawson, and Thomas (1996), Hirano and Imbens (2001)

and Li, Racine, and Wooldridge (2008) find clear evidence of adverse effects of catheterization

with methodologies that rule out treatment selection on unobservable variables. Altonji, Elder, and

Taber (2008) mitigates those results with restrictive forms of selection on unobservables, while Bhat-

tacharya, Shaikh, and Vytalcil (2008) derive bounds on treatment effect under monotone treatment
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assumptions and propose week-end ICU admission as an instrument for selection to sharpen the

bounds. Their results are more nuanced but broadly in line with previous findings. Bhattacharya,

Shaikh, and Vytlacil (2011) propose sharper bounds under an assumption that rules out the Roy

model with treatment specific unobservable heterogeneity model we consider here. They show that,

with the help of the instrument mentioned above, they can identify the sign of treatment effect and

again find negative effects of catheterization.

4.4. Methodology. The premise of the Roy model in the context of Catheterization treatment is

that medical staff in charge of treatment decision observe all relevant characteristics of the patient,

only parts of which are observed by the econometrician, and make the best decision on such obser-

vations. Unobserved (to the econometrician) characteristics of the patient that are relevant to the

latter’s survival under catheterization are possibly correlated, but not identical to the characteris-

tics relevant to survival without treatment. The Roy model implies, therefore, that the patients

are well dispatched. Hence, negative results on catheterization treatment effects conditionaly on

observed variables are due to unobserved heterogeneity. We allow for the instrument proposed in

Bhattacharya, Shaikh, and Vytlacil (2011), so that are starting point is Assumption 6 and we com-

pute the sharp bounds (2.3)-(2.4) of Corollary 3. The variable Z in the corollary, i.e., the instrument,

is an indicator of week-end ICU admission, which is assumed to affect treatment selection but not

outcomes conditional on treatment, reflecting the fact that the composition of dispatching staff is

different on week-ends, whereas surgeons are the same. For more details on the validity of the in-

strument, see Bhattacharya, Shaikh, and Vytlacil (2011). In the case of COPD, we find that the

bounds (2.4) cross, hence the Roy model is rejected and we recompute bounds (2.8) with λ = 0

instead of (2.3)-(2.4).

We conduct inference on the sharp bounds above with the Chernozhukov, Kim, Lee, and Rosen

(2013) STATA implementation of the intersection bounds procedure of Chernozhukov, Lee, and

Rosen (2013). Conditional probabilities are computed parametrically (in order to accommodate mul-

tiple continuous covariates), with a probit procedure and bounds are computed with the CKLRSTATA

2013 clr2bound command. To the best of our knowledge, this is the first implementation of this

procedure.

4.5. Empirical findings. Results are collected in Tables 2 to 8. Each line corresponds to a category

with respect to cited binary explanatory variables and the bounds are reported for individuals of

average age, weight and education level. In each line of each table, the upper line gives bounds for

the probability of survival conditionally on being catheterized and the lower line gives bounds for

the probability of survival conditionally on not being catheterized.

Bounds for the probability of survival for treated and non treated conditionally on observed

covariates are quite wide, except in the case of COPD patients, where the bounds for the probability

of survival without treatment cross, so that the benchmark model is rejected. Consider first the



20 BINARY ROY MODEL

patients with other ailments. A first striking observation is that lower bounds for the probability of

survival with catherization are systematically dominated by the lower bounds for the probability of

survival without catheterization. The upper bounds are the same with and without catheterization

(they are theoretically equal) except in the case of numbers in bold, which we shall return to below.

In many cases, the bounds for the probability of survival after catheterization include zero, so

that the hypothesis that the survival probability is zero cannot be rejected. In all those cases, we

also tested directly the hypothesis that the probability P(1, 1|ω) of being treated and surviving is

zero and failed to reject. If that probability is zero, the probability of surviving conditionally on

not being catheterized is identified and we recomputed (intervals in bold) the confidence interval for

the latter. The [−] sign in those cases indicated that the sign of the conditional average treatement

effect is identified and negative. This occurs in all of the following cases.

• For patients with nontraumatic coma:

– all low income individuals with private insurance,

– black low income men without private insurance.

• For patients with MOSF with malignancy, all low income individuals EXCEPT:

– black low income women without private insurance,

– black low income men with private insurance.

• For patients with Cirrhosis, all low income individuals EXCEPT:

– white low income females with private insurance.

In only one case, namely high income white men without private insurance admitted with MOSF

with malignancy, the situation is reversed. The probability of not being catheterized and surviving

is zero and hence the probability of susrvival conditionally on catheterization is identified and the

sign of the conditional average treatment effect is identified and positive. Finally, in one case, low

income white men with private insurance admitted with MOSF with malignancy, the probability of

survival is zero, hence the average treatment effect is trivially identified and equal to zero.

In the case of chronic obstructive pulmonary disease patients, we derive bounds for the extended

Roy model with negative g(Z). Lower bounds for the probability of survival without treatment

are much larger than lower bounds for the probability of survival with treatment. In the case of

low income black men with private insurance, the probability of being treated and surviving is

zero, hence the probability of survival conditionally on not being catheterized is identified (boldface

numbers in the table).

Conclusion

We have derived sharp bounds in the simple, extended and generalized binary Roy models, in-

cluding a factor specification proposed by Aakvik, Heckman, and Vytlacil (2005). The bounds are
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simple enough to lend themselves to existing inference methods for intersection bounds as in Cher-

nozhukov, Lee, and Rosen (2013) and Andrews and Shi (2013). The methods introduced here can

be applied to the derivation of nonparametric sharp bounds for the Tobit version of the Roy model

as well as in other binary models with several unobserved heterogeneity dimensions, such as entry

and participation games. An application to the catherization data of Connors, Speroff, Dawson, and

Thomas (1996) shows that negative effects of catheterization consistently reported in past studies

may be due to the failure to account for treatment specific unobserved factors.

Appendix A. Proofs

In all the proofs, we use the notation ω = (z, x1, x0). When there is no ambiguity, we shall write

f1 = f1(x1), f0 = f0(x0) and g = g(ω).

A.1. Proof of Proposition 1.

A.1.1. Validity of the bounds. See main text.

A.1.2. Sharpness of the bounds. To show the sharpness of the joint bounds for f1(x1) and f0(x0), it is

sufficient to construct joint distributions for the unobserved heterogeneity vector (u∗

0, u
∗

1) such that each

point in the identified region is attained and which is compatible with the observed data in the following

sense:

(1) P(u∗

0 ≤ f0(x0), u
∗

1 ≥ u
∗

0 + f1(x1)− f0(x0)|x1, x0) = P(Y = 1, D = 0|ω),

(2) P(u∗

1 ≤ f1(x1), u
∗

1 ≤ u
∗

0 + f1(x1)− f0(x0)|x1, x0) = P(Y = 1, D = 1|ω),

(3) P(u∗

0 ≥ f0(x0), u
∗

1 ≥ u
∗

0 + f1(x1)− f0(x0)|x1, x0) = P(Y = 0, D = 0|ω),

(4) P(u∗

1 ≥ f1(x1), u
∗

1 ≤ u
∗

0 + f1(x1)− f0(x0)|x1, x0) = P(Y = 0, D = 1|ω).

The identified region is a rectangle and its extreme points are (f1(x1) = P (Y = 1, D = 1|ω), f0(x0) = P (Y =

1, D = 0|ω)), (f1(x1) = P (Y = 1|ω), f0(x0) = P (Y = 1|ω)), (f1(x1) = P (Y = 1|ω), f0(x0) = P (Y = 1, D =

0|ω)) and (f1(x1) = P (Y = 1, D = 1|ω), f0(x0) = P (Y = 1|ω)). We construct a joint distribution for (u1, u0)

such that f1(x1) = P(1, 1|ω) +α1 and f0(x0) = P(1, 0|ω) +α0, for any (α1, α0) satisfying 0 < α1 ≤ P(1, 0|ω)

and 0 < α0 ≤ P(1, 1ω). We consider the case where f0 − f1 > 0. The case, where f0 − f1 ≤ 0 is treated

symmetrically. The extreme case where (α0 = 0, α1 > 0), (α1 = 0, α0 > 0) and (α0 = 0, α1 = 0) will be

derived below with a small modification of the following distribution. We propose the following candidate

as a potential joint distribution:
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Figure 7.

P(Y = 1, D = 1) − α0

f0

f0 − f1

1 − f0 + f1

0 1

1
f1

f1 = P(1, 1) + α1

f0 = P(1, 0) + α0

α1

α0

u1

u0

P(Y = 1, D = 1)

P(Y = 1, D = 0) + α0

−P(Y = 1, D = 1) − α1

−α0

P(Y = 0, D = 0)

P(Y = 0, D = 1)

Denote δ = P(1, 0|ω) + α0 − P(1, 1|ω)− α1 > 0 and denote P(i, j|ω) = pij .

h
1(t, s) = P(u∗

0 ≤ s, u
∗

1 ≤ t) = 0, if 0 ≤ t ≤ 1− δ, s ≤ δ, (A.1)

h
2(t, s) = P(δ ≤ u

∗

0 ≤ s, 1− δ ≤ u
∗

1 ≤ t) = 0, if t ≥ 1− δ, s ≥ δ, (A.2)

h
3(t, s) = P(p10 + α0 ≤ u

∗

0 ≤ s, u
∗

1 ≤ t) =
a(t, s)

a(p11 + α1, 1)
(p11 − α0), (A.3)

if 0 ≤ t ≤ p11 + α1, s ≥ p10 + α0,

h
4(t, s) = P(u∗

0 ≤ s, 1− δ ≤ u
∗

1 ≤ t) =
(t− (1− δ))s

δ
, if t ≥ 1− δ, s ≤ δ, (A.4)

h
5(t, s) = P(δ ≤ u

∗

0 ≤ s, p11 + α1 ≤ u
∗

1 ≤ t) =
b(t, s)

b(1− δ, p10 + α0))
(p11 − α0), (A.5)

if p11 + α1 ≤ t ≤ 1− δ, δ ≤ s ≤ p10 + α0,

h
6(t, s) = P(δ ≤ u

∗

0 ≤ s, u
∗

1 ≤ t, u
∗

0 ≤ u
∗

1 + δ) =
t(p11 + α1 + s− (t+ δ))

(p11 + α1)2
1{s > δ}α1 (A.6)

if t ≤ p11 + α1, δ ≤ s ≤ t+ δ,

h
7(t, s) = P(δ ≤ u

∗

0 ≤ s, u
∗

1 ≤ t, u
∗

0 ≥ u
∗

1 + δ) =
(s− δ)(p11 + α1 + t− (s− δ))

(p11 + α1)2
1{t > 0}α0 (A.7)

if t ≤ s− δ, δ ≤ s ≤ p10 + α0,

h
8(t, s) = P(p10 + α0 ≤ u

∗

0 ≤ s, p11 + α1 ≤ u
∗

1 ≤ t, u
∗

0 ≤ u
∗

1 + δ)

=
(t− (p11 + α1))((1− p10 − α0) + s− (t+ δ))

((1− p10 − α0))2
1{s > p10 + α0}p00 (A.8)

if p11 + α1 ≤ t ≤ 1− δ, p10 + α0 ≤ s ≤ t+ δ,

h
9(t, s) = P(p10 + α0 ≤ u

∗

0 ≤ s, p11 + α1 ≤ u
∗

1 ≤ t, u
∗

0 ≥ u
∗

1 + δ)

=
(s− (p10 + α0))((1− p10 − α0) + t− (s− δ))

((1− p10 − α0))2
1{t > p11 + α1}p01 (A.9)

if p11 + α1 ≤ t ≤ s− δ, p10 + α0 ≤ s ≤ 1,
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where

a(t, s) = t(s− (P(1, 0|ω) + α0)),

b(t, s) = (t− (P(1, 1|ω) + α1))(s− δ),

It is easy to verify that this function is a joint distribution such as the marginals are uniform distribution

over [0,1] and which is compatible with the observed data (i.e., respects Conditions 1 to 4) when f1(x1) =

P(1, 1|ω) + α1 and f0(x0) = P(1, 0|ω) + α0, for any (α1, α0) satisfying 0 ≤ α1 ≤ P(1, 0|ω) and 0 ≤ α0 ≤

P(1, 1ω).

Let us verify now that the marginals are uniform.

• P(u∗

1 ≤ t) for t ≤ p11 + α1, use the equalities (A.1), (A.6), (A.7) and (A.3).

P(u∗

1 ≤ t) = h
1(t, δ) + h

6(t, t+ δ) + h
7(t, p10 + α0) + h

3(t, 1) = t.

• P(p11 + α1 ≤ u
∗

1 ≤ t) for p11 + α1 ≤ t ≤ 1− δ, use (A.1), (A.5), (A.8) and (A.9).

P(p11 + α1 ≤ u
∗

1 ≤ t) = h
1(t, δ) + h

5(t, p10 + α0) + h
8(t, t+ δ) + h

9(t, 1) = t− (p11 + α1).

• P(1− δ ≤ u
∗

1 ≤ t). for 1− δ ≤ t ≤ 1, use (A.4) and (A.2).

P(1− δ ≤ u
∗

1 ≤ t) = h
4(t, δ) + h

2(t, 1) = t− (1− δ).

• P(u∗

0 ≤ s) for s ≤ δ, use (A.1), (A.4).

P(u∗

0 ≤ s) = h
1(1− δ, s) + h

4(1, s) = s.

• P(δ ≤ u
∗

0 ≤ s) for δ ≤ s ≤ p10 + α0, use (A.7), (A.6), (A.5) and (A.2).

P(δ ≤ u
∗

0 ≤ s) = h
7(s− δ, s) + h

6(p11 + α1, s) + h
5(1− δ, s) + h

2(1, s) = s− δ.

• P(p10 + α0 ≤ u
∗

0 ≤ s) for p10 + α0 ≤ s ≤ 1, use (A.3), (A.9), (A.8) and (A.2).

P(p10 + α0 ≤ u
∗

0 ≤ s) = h
3(p11 + α1, s) + h

9(s− δ, s) + h
8(1− δ, s) + h

2(1, s) = s− (p10 + α0).

This ensures that the marginals are indeed uniform. Now, let verify that equations (1) to (4) are verified.

(1) P(u∗

0 ≤ f0, u
∗

1 ≥ u
∗

0 + f1 − f0) = P(u∗

0 ≤ p10 + α0, u
∗

1 ≥ u
∗

0 + δ) = h
1(1− δ, δ) + h

4(1, δ) + h
6(p11 +

α1, s+ p11 + α1) + h
5(1− δ, p10 + α0) + h

2(1, p10 + α0) = p10

(2) P(u∗

1 ≤ f1, u
∗

1 ≤ u
∗

0 + f1 − f0) = h
7(p10 + α0 − δ, p10 + α0) + h

3(p11 + α1, 1) = p11,

(3) P(u∗

0 ≥ f0, u
∗

1 ≥ u
∗

0 + f1 − f0) = h
8(1− δ, 1) = p00,

(4) P(u∗

1 ≥ f1, u
∗

1 ≤ u
∗

0 + f1 − f0) = h
8(1, 1− δ) = p01

The case where δ = 0 i.e f0 − f1 = 0 can be treated with the same construction except that we have to

remove the equation (A.1), (A.2) and (A.3). Consider now the case where (α0 = 0, α1 > 0). We propose

the same distribution as before except for (A.3), (A.5) and (A.7). The intuition is to remove the mass from

the area of α0 (A.7) and add it on the area delimited by (A.3), (A.5).
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h
3(t, s) = P(p10 + α0 ≤ u

∗

0 ≤ s, u
∗

1 ≤ t) =
p11

(p11 + α1)(1− p10)
t(s− p10),

if 0 ≤ t ≤ p11 + α1, s ≥ p10 + α0,

h
5(t, s) = P(δ ≤ u

∗

0 ≤ s, p11 + α1 ≤ u
∗

1 ≤ t) =
p11

(p11 + α1)(1− p10)
(t− (p11 + α1))(s− δ),

if p11 + α1 ≤ t ≤ 1− δ, δ ≤ s ≤ p10 + α0,

h
7(t, s) = 0 if t ≤ s− δ, δ ≤ s ≤ p10 + α0.

The same method can be applied to the two remains cases.

A.2. Proof of Proposition 2. To show validity of the bounds, we drop all the conditioning variables

ω = (z, x1, x0) from the notation. We have D = 1 ⇒ Y
∗

0 + g ≤ Y
∗

1 ⇒ 1{Y ∗

0 + g ≥ 0} ≤ 1{Y ∗

1 ≥ 0} ⇒

1{Y ∗

0 + g ≥ 0}1{D = 1} ≤ 1{Y ∗

1 ≥ 0}1{D = 1} ⇒ E[1{Y ∗

0 + g ≥ 0}|D = 1] ≤ E[1{Y ∗

1 ≥ 0}|D = 1] ⇒

E[1{Y ∗

0 + g ≥ 0}|D = 1] ≤ E[Y1|D = 1]. We can easily derive equivalent inequalities when D = 0. Hence, if

D = 1{Y ∗

1 > Y
∗

0 +g} then E[1{Y ∗

0 +g ≥ 0}|D = 1] ≤ E[Y1|D = 1] and E[Y1|D = 0] ≤ E[1{Y ∗

0 +g ≥ 0}|D = 0].

Hence, when g ≥ 0, E[Y0|D = 1] ≤ E[Y1|D = 1] and when g ≤ 0, E[Y1|D = 0] ≤ E[Y0|D = 0]. Finally, if

g = 0 we have E[Yd|D = d] ≥ E[Yd|D = 1 − d] where d ∈ {0, 1}. Those inequalities allow us to construct

the sharp bounds for f1 and f0 in the case where D = 1{Y ∗

1 > Y
∗

0 + g}. Indeed, f1 = E[Y1] = E[Y1, D =

1]+E[Y1|D = 0]P (D = 0) and f0 = E[Y0] = E[Y0, D = 0]+E[Y0|D = 1]P (D = 1). Now, if g ≥ 0, then P (Y =

1, D = 1) ≤ f1 ≤ P (Y = 1, D = 1) + P (D = 0) and P (Y = 1, D = 0) ≤ f0 ≤ P (Y = 1). On the other hand,

if g ≤ 0, P (Y = 1, D = 1) ≤ f1 ≤ P (Y = 1) and P (Y = 1, D = 0) ≤ f0 ≤ P (Y = 1, D = 0) + P (D = 1).

Finally, f0 = E[1{u0 ≤ f0}1{u1 ≥ u0+f1−f0−g}]+E[1{u0 ≤ f0}1{u1 ≤ u0+f1−f0−g}]. Hence, if g ≥ f1,

then {u1 ≤ u0 + f1 − f0 − g} ⇒ {u0 ≥ f0} and f0(X0) ≤ E[1{u0 ≤ f0}1{u1 ≥ u0 + f1 − f0 − g}] +E[1{u0 ≤

f0}1{u0 ≥ f0}] ≤ E[1{u0 ≤ f0}1{u1 ≥ u0 + f1 − f0 − g}] = P (Y = 1, D = 0).

Now the bounds for g can be obtained as follows.

• If g + f0 − f1 ≥ 0 and g ≤ f1, then {u0 ≤ g + f0 − f1} ⇒ {u0 ≤ u1 + g + f0 − f1} and

{u0 ≤ g + f0 − f1} ⇒ {u0 ≤ f0}. So {u0 ≤ g + f0 − f1} ⇒ {u0 ≤ u1 + g + f0 − f1} ∩ {u0 ≤ f0}.

Hence g+f0−f1 = P (u0 ≤ g+f0−f1) ≤ P ({u0 ≤ u1+g+f0−f1}∩{u0 ≤ f0}) = P (Y = 1, D = 0).

• If g + f0 − f1 ≥ 0 and g ≥ f1, then {u0 ≤ g + f0 − f1} ⇒ {u0 ≤ u1 + g + f0 − f1}, hence

g+f0−f1 = P (u0 ≤ g+f0−f1) ≤ P ({u0 ≤ u1+g+f0−f1}) = P (D = 0). As f0 = P (Y = 1, D = 0)

we have g − f1 ≤ P (Y = 0, D = 0).

• If g+f0−f1 ≤ 0 and g ≥ −f0, then by similar arguments, we have g+f0−f1 ≥ −P (Y = 1, D = 1).

• If g + f0 − f1 ≤ 0 and g ≤ −f0, then g + f0 ≥ −P (Y = 0, D = 1).

Finally, the validity of bounds f1(x1)− P(1, 1|ω) − P(1, 0|ω)− P(0, 1|ω) ≤ g(ω) ≤ P(1, 1|ω) + P(1, 0|ω) +

P(0, 0|ω)− f0(x0) is shown formally in the main text. This completes the proof.

A.3. Proof of Proposition 3. For convenience of notation, we drop conditioning variables and write pij

for P(Y = i, D = j|ω). We consider the case pij > 0 and take 0 ≤ α1 < p00 and 0 ≤ α0 ≤ p11 arbitrarily

and construct a joint distribution for (u1, u0) with uniform marginals and such that f1 = p11 + p10 +α1 and

f0 = p10 + α0. Figure 8 shows a distribution of mass, which yields this for any g satisfying α1 < g ≤ f1 in
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the case f0 − f1 + g > 0. The other case is treated symmetrically. The shaded areas are zero probability

regions for (u1, u0). There remains to distribute mass in each of the designated areas of the partition of the

unit square in Figure 8 so as to ensure that the marginals u1 and u0 are uniformly distributed. The case,

where f1 = p11 + α1 and f0 = p10 + α0, with 0 ≤ α1 < p10 and 0 ≤ α0 ≤ p11 arbitrary, is obtained from

Proposition 1 by simply setting g = 0.

As was detailed in the proof of Proposition 1, the suitable marginals can be obtained by distributing

mass uniformly on the three rectangles in Figure 8 and distributing mass on the three pairs of triangles in

the following way: we explain the mass distribution on the middle pair of triangles in Figure 8. The other

two are treated similarly.

P(p11 + p10 + α1 − g ≤ u
∗

1 < p11 + p10 + α1 − g + t, p10 + α0 ≤ u
∗

0 < p10 + α0 + s, u
∗

0 ≤ u
∗

1)

= α1t(1 + s− t),

P(p11 + p10 + α1 − g ≤ u
∗

1 < p11 + p10 + α1 − g + t, p10 + α0 ≤ u
∗

0 < p10 + α0 + s, u
∗

0 > u
∗

1)

= (g − α1)s(1 + t− s),

for 0 ≤ t ≤ g and 0 ≤ s ≤ g. The proof is completed by checking that the marginal distributions are indeed

uniform.

Figure 8.

α0

0 1

1

p01

f0 + g = p10 + α0 + g

1 − f0 + f1 − g = 1 + p11 + α1 − α0 − g

f1 = p11 + p10 + α1

f0 − f1 + g = α0 − p11 − α1 + g

α1

g − α1

p00 + p11 − α0 − g

α0 − p11 − α1 + g

p11 − α0 − g + α1
α0 − p11 − α1 + g

p11 + p10 + α1 − g

p10 − α0 + p11 + α1 − g

f0 = p10 + α0

A.4. Proof of Proposition 4. The proof is exactly identical to the that of Proposition 3 except that

h(u1, ω) can be chosen as in Figure 5 so that all the mass P(0, 0|ω) can be shifted on the left of f1(x1) and

therefore we can no longer restrict α1 to be strictly positive. The case α1 = 0 is also attained. The result

follows immediately.



26 BINARY ROY MODEL

A.5. Proof of Theorem 1. Under Assumptions 1-3, the model can be equivalently written (Y,D) ∈

G((u1, u0)|W ) almost surely conditionally on W = (Z,X1, X0), where G is a multi-valued mapping, which

to (u1, u0) associates (y, d) = G((u1, u0)|W ) = {(1, 1), (1, 0)} if u1 ≤ f1(x1) and u0 ≤ f0(x0), {(0, 1), (1, 0)} if

u1 > f1(x1) and u0 ≤ f0(x0), {(1, 1), (0, 0)} if u1 ≤ f1(x1) and u0 > f0(x0) and {(0, 1), (0, 0)} if u1 > f1(x1)

and u0 > f0(x0). Hence Theorem 1 of Galichon and Henry (2011) applies and the empirical content of the

model is characterized by the collection of inequalities P (A|W ) ≤ P ((u1, u0) : G((u1, u0)|W ) hits A|W )

for each subset A of {(0, 0), (0, 1), (1, 0), (1, 1)} (i.e., 16 inequalities). The only non redundant inequalities

are P (1, 1|W ) ≤ f1(X1), P (1, 0|W ) ≤ f0(X0), P (0, 1|W ) ≤ 1 − f1(X1), P (0, 0|W ) ≤ 1 − f0(X0), P (Y =

0|W ) ≤ 1− P (u1 ≤ f1(X1), u0 ≤ f0(X0)|X1, X0), P (Y = 1|W ) ≤ 1− P (u1 > f1(X1), u0 > f0(X0)|X1, X0),

P (0, 0|W ) + P (1, 1|W ) ≤ P (u1 ≤ f1(X1), u0 ≤ f0(X0)|X1, X0) + P (u0 > f0(X0)|X0) and P (0, 1|W ) +

P (1, 0|W ) ≤ P (u1 ≤ f1(X1), u0 ≤ f0(X0)|X1, X0) + P (u1 > f1(X1)|X1). After some manipulation, the

result follows.

A.6. Proof of Corollary 6. We show that the bounds (2.7) for g remain valid. We drop conditioning

variables from the notation throughout this section.

• If g+ v+ f0− f1 ≥ 0 and g+ v ≤ f1, then {u0 ≤ g+ v+ f0− f1} ⇒ {u0 ≤ u1+ g+ v+ f0 − f1} and

{u0 ≤ g+v+f0−f1} ⇒ {u0 ≤ f0}. So {u0 ≤ g+v+f0−f1} ⇒ {u0 ≤ u1+g+v+f0−f1}∩{u0 ≤ f0}.

Therefore P (u0−v ≤ g+f0−f1) ≤ P ({u0 ≤ u1+g+v+f0−f1}∩{u0 ≤ f0}) = P (Y = 1, D = 0).

• If g + v + f0 − f1 ≥ 0 and g + v ≥ f1, then {u0 ≤ g + v + f0 − f1} ⇒ {u0 ≤ u1 + g + v + f0 − f1}.

Therefore P (u0 − v ≤ g + f0 − f1) ≤ P ({u0 ≤ u1 + g + v + f0 − f1}) = P (D = 0).

• If g+v+f0−f1 ≤ 0 and g+v ≥ −f0, then {u1 ≤ f1−f0−g−v} ⇒ {u1 ≤ u0+f1−f0−g−v} and

{u1 ≤ f1−f0−g−v} ⇒ {u1 ≤ f1}. So {u1 ≤ f1−f0−g−v} ⇒ {u1 ≤ u0+f1−f0−g−v}∩{u1 ≤ f1}.

Therefore P (u1+v ≤ f1−f0−g) ≤ P ({u1 ≤ u0+f1−f0−g−v}∩{u1 ≤ f1}) = P (Y = 1, D = 1).

• If g+ v+ f0 − f1 ≤ 0 and g+ v ≤ −f0, then {u1 ≤ f1 − f0 − g− v} ⇒ {u1 ≤ u0 + f1 − f0 − g− v}.

Hence P (u1 + v ≤ f1 − f0 − g) ≤ P (u1 ≤ u0 + f1 − f0 − g − v) = P (D = 1).

Now, since v ⊥⊥ (u0, u1), we have: P (u0 ≤ g + v + f0 − f1) = Ev[E[1{u0 ≤ g + v + f0 − f1}|v]] =

Ev[g + v + f0 − f1] = g + f0 − f1. Then, we get the following:

• If g + v + f0 − f1 ≥ 0 and g + v ≤ f1, then g + f0 − f1 ≤ P (Y = 1, D = 0).

• If g + v + f0 − f1 ≥ 0 and g + v ≥ f1, then g − f1 ≤ P (Y = 0, D = 0).

• If g + v + f0 − f1 ≤ 0 and g + v ≥ −f0, then g + f0 − f1 ≥ −P (Y = 1, D = 1).

• If g + v + f0 − f1 ≤ 0 and g + v ≤ −f0, then g + f0 ≥ −P (Y = 0, D = 1).

which completes the proof.

A.7. Proof of Corollary 7. Our goal here is to show that the following bounds are sharp for f0 and f1.

P (Y = 1, D = 1|ω) ≤ f1(x1) ≤ P (Y = 1, D = 1|ω) + P (D = 0|ω)

P (Y = 1, D = 0 | ω) ≤ f0(x0) ≤ P (Y = 1, D = 0|ω) + P (D = 1|ω).

The previous results show that the lower bounds are sharp. Now, to show that these bounds are sharp

for f1(x1) it is sufficient to construct a joint distribution (u∗

0, u
∗

1) such that f1(x1) equals P (Y = 1, D =
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1|ω) + P (D = 0|ω) and f(0, x) = P (Y = 1, D = 0|ω) + P (D = 1|ω) and which is compatible with the

observed data in the following sense:

(1) P (u∗

0 ≤ f0(x0), u
∗

1 ≥ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω) = P (Y = 1, D = 0|ω)

(2) P (u∗

1 ≤ f1(x1), u
∗

1 ≤ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω) = P (Y = 1, D = 1|ω)

(3) P (u∗

0 ≥ f0(x0), u
∗

1 ≥ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω) = P (Y = 0, D = 0|ω)

(4) P (u∗

1 ≥ f1(x1), u
∗

1 ≤ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω) = P (Y = 0, D = 1|ω)

Define the following joint distribution (u∗

0, u
∗

1, v
∗) such that u∗

0 + u
∗

1 ≤ f1(x1) + f0(x0) and 2v∗ = 3u∗

0 −

3u∗

1 − 3f0(x0) + 3f1(x1) − 2g(ω). Under the condition that u
∗

0 + u
∗

1 ≤ f1(x1) + f0(x0), we have {u∗

1 ≥

u
∗

0+f1(x1)−f0(x0)−g(ω)−v
∗} ⇒ {u∗

1 ≤ f1(x1)} and {u∗

1 ≤ u
∗

0+f1(x1)−f0(x0)−g(ω)−v
∗} ⇒ {u∗

0 ≤ f0(x0)}.

Hence,

f1(x1) = P (u∗

1 ≤ f1(x1), u
∗

1 ≤ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω)

+P (u∗

1 ≤ f1(x1), u
∗

1 ≥ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω)

= P (u∗

1 ≤ f1(x1), u
∗

1 ≤ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω)

+P (u∗

1 ≥ u
∗

0 + f1(x1)− f0(x0)− g(ω)− v|ω)

= P (Y = 1, D = 1|ω) + P (D = 0|ω).

With the same strategy, we can also show f0(x0) = P (Y = 1, D = 0|ω) + P (D = 1|ω).
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Table 1. Descriptive statistics

Not Catheterized Catheterized
p-valueMean sd Mean sd

Age 61.76 17.28 60.74 15.63 0.025
Male 54% 0.5 59% 0.49 0.000
Black 16.5% 0.37 15.3% 0.36 0.255
Years Education 11.57 3.13 11.86 3.16 0.000
Private Insurance 48.1% 0.22 55% 0.24 0.114
Income > 11K 41% 0.49 48% 0.5 0.000
Weight (kg) 72.47 19.67 77.73 19.49 0.000
Coma 10% 0.29 4% 0.2 0.000
CHF 7% 0.25 1% 0.29 0.000
MOSF with malignancy 7% 0.25 7% 0.26 0.518
MOSF with sepsis 15% 0.36 32% 0.47 0.000
Acute Respiratory Failure 45% 0.5 42% 0.49 0.031
Cirrhosis 5% 0.22 2% 0.15 0.000
COPD 11% 0.32 3% 0.16 0.000

N 3551 2184 -
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Table 2. Nontraumatic coma

Male Black Private Insurance Income > 11k coma Lower bound Upper bound ATE sign

0 0 0 0 1
0.0113 0.3091
0.1491 0.3091

0 0 0 1 1
0.0570 0.3683
0.1558 0.3683

0 0 1 0 1
0.0000 0.2588 [-]
[0,1650 0,2437]

0 0 1 1 1
0.0409 0.3170
0.1885 0.3170

0 1 0 0 1
0.0039 0.2933
0.1340 0.2933

0 1 1 0 1
0.0000 0.2462 [-]
[0,1475 0,2358]

0 1 1 1 1
0.0274 0.3062
0.1695 0.3062

1 0 0 0 1
0.0003 0.2569
0.1087 0.2569

1 0 0 1 1
0.0463 0.3157
0.1158 0.3157

1 0 1 0 1
0.0000 0.2074 [-]
[0,1243 0,2036]

1 0 1 1 1
0.0290 0.2648
0.1484 0.2648

1 1 0 0 1
0.0000 0.2419 [-]
[0,0757 0,1991]

1 1 0 1 1
0.0377 0.3022
0.0987 0.3022

1 1 1 0 1
0.0000 0.1957 [-]
[0,1059 0,1966]

1 1 1 1 1
0.0155 0.2550
0.1285 0.2550

[] : Means that fd is point identified.
[−][+] [0] : Means the sign of the ATE is identified.
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Table 3. Congestive heart failure

Male Black Private Insurance Income > 11k chf Lower bound Upper bound

0 0 0 0 1
0.1365 0.5167
0.2060 0.5167

0 0 0 1 1
0.1819 0.5743
0.2134 0.5743

0 0 1 0 1
0.1129 0.4658
0.2380 0.4658

0 0 1 1 1
0.1588 0.5221
0.2467 0.5221

0 1 0 0 1
0.1255 0.4959
0.1887 0.4959

0 1 1 0 1
0.0995 0.4474
0.2187 0.4474

0 1 1 1 1
0.1444 0.5057
0.2258 0.5058

1 0 0 0 1
0.1268 0.4641
0.1686 0.4641

1 0 0 1 1
0.1724 0.5214
0.1764 0.5214

1 0 1 0 1
0.1026 0.4132
0.2009 0.4132

1 0 1 1 1
0.1489 0.4689
0.2103 0.4689

1 1 1 0 1
0.0891 0.3958
0.1805 0.3958

1 1 1 1 1
0.1343 0.4536
0.1881 0.4536

[] : Means that fd is point identified.
[−][+] [0] : Means the sign of the ATE is identified.
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Table 4. Multi-organ system failure with malignancy

Male Black Private Insurance Income > 11k mosf malign Lower bound Upper bound ATE sign

0 0 0 0 1
0.0000 0.1432 [-]
[0.000 0.1001]

0 0 1 0 1
0.0000 0.1040 [-]
[0.0378 0.0977]

0 0 1 1 1
0.0274 0.1657
0.0629 0.1657

0 1 1 0 1
0.0000 0.0907 [-]
[0.0171 0.0919]

0 1 1 1 1
0.0113 0.1546
0.0409 0.1546

1 0 0 0 1
0.000 0.0907 [-]

[0.0517 0.0579]

1 0 0 1 1
[0.0278 0.1207] [+]
0.0000 0.1533

1 0 1 0 1
0.0000 0.0515 [-]
[0.0000 0.0556]

1 0 1 1 1
0.0178 0.1125
0.0228 0.1125

1 1 0 0 1
0.000 0.0738 [-]

[0.0690 0.0487]

1 1 1 0 1
[0.000 0.0396] [0]
[0.000 0.0511]

1 1 1 1 1
0.0015 0.1029
0.0000 0.1029

[] : Means that fd is point identified.
[−][+] [0] : Means the sign of the ATE is identified.
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Table 5. Multi-organ system failure with sepsis

Male Black Private Insurance Income > 11k mosf sept Lower bound Upper bound

0 0 0 0 1
0.1591 0.4377
0.1344 0.4377

0 0 0 1 1
0.2036 0.4968
0.1426 0.4966

0 0 1 0 1
0.1402 0.3831
0.1737 0.3831

0 0 1 1 1
0.1852 0.4413
0.1827 0.4413

0 1 0 0 1
0.1467 0.4182
0.1189 0.4182

0 1 0 1 1
0.1903 0.4791
0.1256 0.4790

0 1 1 0 1
0.1244 0.3687
0.1542 0.3687

0 1 1 1 1
0.1680 0.4293
0.1613 0.4293

1 0 0 0 1
0.1538 0.3887
0.0937 0.3887

1 0 0 1 1
0.1981 0.4472
0.1024 0.4472

1 0 1 0 1
0.1338 0.3341
0.1331 0.3341

1 0 1 1 1
0.1792 0.3914
0.1432 0.3914

1 1 0 0 1
0.1409 0.3699
0.0776 0.3699

1 1 0 1 1
0.1847 0.4303
0.0848 0.4303

1 1 1 0 1
0.1178 0.3212
0.1123 0.3212

1 1 1 1 1
0.1617 0.3810
0.1203 0.3810

[] : Means that fd is point identified.
[−][+] [0] : Means the sign of the ATE is identified.
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Table 6. Acute respiratory failure

Male Black Private Insurance Income > 11k arf Lower bound Upper bound

0 0 0 0 1
0.1175 0.4883
0.2334 0.4883

0 0 0 1 1
0.1632 0.5481
0.2403 0.5481

0 0 1 0 1
0.1059 0.4437
0.2787 0.4437

0 0 1 1 1
0.1515 0.5026
0.2867 0.5026

0 1 0 0 1
0.1081 0.4730
0.2177 0.4730

0 1 0 1 1
0.1527 0.5340
0.2234 0.5340

0 1 1 0 1
0.0916 0.4346
0.2584 0.4346

0 1 1 1 1
0.1358 0.4957
0.2644 0.4957

1 0 0 0 1
0.1100 0.4377
0.1944 0.4377

1 0 0 1 1
0.1558 0.4969
0.2018 0.4969

1 0 1 0 1
0.0986 0.3927
0.2398 0.3927

1 0 1 1 1
0.1445 0.4504
0.2488 0.4504

1 1 0 0 1
0.1002 0.4234
0.1779 0.4234

1 1 0 1 1
0.1452 0.4838
0.1840 0.4838

1 1 1 0 1
0.0835 0.3855
0.2180 0.3855

1 1 1 1 1
0.1280 0.4459
0.2249 0.4459

[] : Means that fd is point identified.
[−][+] [0] : Means the sign of the ATE is identified.
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Table 7. Cirrhosis

Male Black Private Insurance Income > 11k cirrho Lower bound Upper bound ATE sign

0 0 0 0 1
0.0000 0.3581
0.1778 0.3581

0 0 0 1 1
0.0387 0.4158
0.1848 0.4158

0 0 1 0 1
0.0000 0.3134 [-]
[0.1879 0.3070]

0 0 1 1 1
0.0177 0.3702
0.2132 0.3702

0 1 0 0 1
0.0000 0.3359 [-]
[0.1423 0.2952]

0 1 1 0 1
0.0000 0.2935 [-]
[0.1690 0,2975]

0 1 1 1 1
0.0001 0.3518
0.1930 0.3518

1 0 0 0 1
0.0000 0.3101 [-]
[0.1211 0.2666]

1 0 0 1 1
0.0328 0.3673
0.1466 0.3673

1 0 1 0 1
0.0000 0.2657 [-]
[0.1493 0,2674]

1 0 1 1 1
0.0117 0.3219
0.1750 0.3219

1 1 0 0 1
0.0000 0.2885 [-]
[0.1034 0,2560]

1 1 1 0 1
0.0000 0.2466 [-]
[0.1297 0.2586]

1 1 1 1 1
0.0000 0.3044
0.1540 0.3044

[] : Means that fd is point identified.
[−][+] [0] : Means the sign of the ATE is identified.
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Table 8. Chronic obstructive pulmonary disease

Male Black Private Insurance Income > 11k copd Lower bound Upper bound ATE sign

0 0 0 0 1
0.0320 0.5337
0.3389 0.6029

0 0 0 1 1
0.0754 0.5958
0.3498 0.6532

0 0 1 0 1
0.0175 0.4843
0.3681 0.5611

0 0 1 1 1
0.0608 0.5454
0.3801 0.6194

0 1 0 0 1
0.0191 0.5173
0.3250 0.5801

0 1 1 0 1
0.0000 0.4708
0.3520 0.5407

0 1 1 1 1
0.0419 0.5337
0.3626 0.5915

1 0 0 0 1
0.0242 0.4848
0.3005 0.5767

1 0 0 1 1
0.0679 0.5464
0.3119 0.6265

1 0 1 0 1
0.0090 0.4356
0.3293 0.5355

1 0 1 1 1
0.0527 0.4962
0.3420 0.5842

1 1 1 0 1
0.0000 0.4231 [-]

[0.3125 0.516]
0.0335 0.4855

1 1 1 1 1 0.3237 0.5609

[] : Means that fd is point identified.
[−][+] [0] : Means the sign of the ATE is identified.


