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A NOTE ON THE IDENTIFICATION IN TWO EQUATIONS
PROBIT MODEL WITH DUMMY ENDOGENOUS REGRESSOR

ROMUALD MÉANGO AND ISMAEL MOURIFIÉ

Abstract. This paper deals with the question whether exclusion restrictions on

the exogenous regressors are necessary to identify two equation probit models with

endogenous dummy regressor. Contradictory opinions have been exposed in the

literature on the necessity of an exclusion restriction. Wilde (2000) argued that an

exclusion restriction is not necessary, and proposed a simple criterion for identifi-

cation in this model. We contradict his result, and show how the inherent incom-

pleteness of the model leads to failure of (point) identification. We provide an exact

identification proof when an exclusion restriction is available.
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Introduction

This paper discuss identification in the following two equations probit model with endogenous

dummy regressor.

Y1 = I
(
xT1 β1 + u1 > 0

)
(0.1)

Y2 = I
(
δY1 + xT2 β2 + u2 > 0

)
(0.2)

where

(u1, u2) follows N

0,

 1 ρ

ρ 1

 ,

I (A)=1 if A is true and zero otherwise and ρ ∈ (−1, 1) (see Sartori (2003) for a treatment of the

case ρ = 1). In all the paper, we shall use the notation Φ2(., .; ρ) to denote the bivariate normal

standard cumulative distribution with correlation parameter ρ and φ2(., .; ρ) the corresponding bi-

variate density function. We denote Φ(.) the univariate normal standard cumulative distribution
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and φ(.) the corresponding density function. We say that there exists an exclusion restriction when

there exists a variable in x1 that does not appear in x2.

Two main opinions dominates the literature about identification in this model. On one hand,

Maddala (1983, p 122) claimed that an exclusion variable is necessary for identification. His argument

was based on the following fact. In a case where x1 = x2 = 1, the model has four different parameters

to be identified β1, β2, δ and ρ, while we observe only three independent probabilities. Adding an

exclusion variable increases the number of observed independent probabilities, thus enabling the

number of observed independent probabilities to be larger than or equal to the number of parameters

to be identified. On the other hand, Wilde (2000) notes that even without an exclusion variable,

the presence of only a common dichotomous covariate might result in the number of observed

independent probabilities equating the number of parameters to be identified. Therefore, following

the assertion of Heckman (1978, p 957) in a more general context, Wilde (2000) argued that only

the full rank of the (regressor) data matrix is needed to identify all the model parameters.

We show that the simple criterion proposed by Wilde (2000) and the rank condition proposed by

Heckman (1978) are not sufficient to ensure identification in Model (0.1) - (0.2 ) for the following

reason: the fact that the number of unknown is larger than or equal to the number of independent

probabilities does not ensure unicity of the solution since the system of equations is nonlinear in the

parameters.

In the following, we first complement the result of Maddala (1983) by proving that in the model

without covariate the parameters of Eq.(0.2) are partially identified. We propose the full character-

ization of the identified set.

Second, we give numerical evidences that contradict the result of Wilde, and suggest that the

model without exclusion is usually only partially identified. Finally, we show that beside the fact

that an exclusion variable increases the number of observed independent probabilities, its intrinsic

feature to shift the selection equation (0.1) by keeping fix the outcome equation (0.2) allows to point

identify the model. All our results hold, also, for a sample selection model with binary outcome.

1. Failure of point identification: two cases

We consider first the example of Maddala (1983) where there is no covariate, following by the

case where a dichotomous regressor enters both equations.

1.1. Identification in absence of covariate.
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Example 1 (Maddala’s biprobit with endogenous dummy regressor). Consider the following case

Y1 = I (β1 + u1 > 0) (1.1)

Y2 = I (δY1 + β2 + u2 > 0) . (1.2)

The parameters of interest are (β1, β2, δ, ρ).

The researcher observes the following probability distribution from the data:

Pij ≡ P (Y1 = i, Y2 = j) for all i, j ∈ {0, 1}2.

Note that only three of these quantities are informative since the fourth one can be easily derived

from the three others. Maddala’s argument for failure of identification is that the researcher has

four parameters of interest, but only three independent probabilities. We will show that the model

as stated fails to put any restriction on the correlation parameter.

Since the error terms are jointly normally distributed with correlation ρ, we can write:

u1 = ρu2 + e where e follows N
(
0, 1− ρ2

)
(1.3)

and e is independent of u2.

β1 will be identified from the usual hypothesis on a probit model with the outcome variable Y1,

since

P10 + P11 = Φ(β1). (1.4)

Moreover, we have:

P01 = P

(
e√

1− ρ2
< −β1 + ρu2√

1− ρ2
;u2 > −β2

)

=

∫ +∞

−β2

(
Φ

(
− β1 + ρy√

1− ρ2

))
φ (y) dy (1.5)

Similarly, we can have:

P11 =

∫ +∞

−β2−δ
Φ

(
β1 + ρy√

1− ρ2

)
φ (y) dy (1.6)

Note now the following: since β1 is identified and the integrand is always positive, once you fix a

value for ρ, the right-term of Eq.(1.5) is strictly monotone in β2. It follows that we identify a unique

value for β2 given ρ. The same reasoning for Eq.(1.6) leads to conclude that δ is identified given a

value ρ.
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By recursively solving (1.4), (1.5), (1.6) for β1, β2, δ, we exhaust all the independent variations

in the model and no restriction exists on the parameter ρ. That is, for ρ ∈ (−1, 1), we either find a

triple (β1, β
∗
2(ρ), δ∗(ρ)) that satisfies (1.4), (1.5), (1.6).

The identified set is therefore a box in R4 characterized in the following way:

Proposition 1. Consider the model in 1. Denote Θ the identified set. We have:

Θ = {(β1, β∗2(ρ), δ∗(ρ), ρ) : ρ ∈ (−1, 1) and (β1, β
∗
2(ρ), δ∗(ρ), ρ) satisfies (1.4), (1.5), (1.6) }

We note that β1 is identified, ρ is completely nonidentified, but β2 and δ are partially identified.

Indeed, if Dom(β∗2(ρ)) ⊂ R, β2 is partially identified, similarly for δ. In the following simulation

we will show that Dom(β∗2(ρ)) and Dom(δ∗(ρ)) could be considerably small is some cases and then

informative. Simulation results displayed in Figure 1 illustrate our findings.
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Figure 1. Numerical results: parameters generating observed prob-

abilities close (< 1e−8) to the true probabilities. β0
1 = 0.3, β0

2 = 0.4, δ0 =

0.3, ρ0 = 0.5.

Fig. 1 presents projection of the identified set on different plans. The ranges of the parameters

(β2 ∈ (−1.0921; 1.0689) and δ ∈ (−0.8409; 2.1867)) are substantially reduced in comparison to their

respective domain (the real line).

1.2. Introducing a covariate. In (0.1) and (0.2), let xT1 = xT2 = [1, x] and β1 = [β11, β12]T the

associated parameters where x ∈ {0, 1}, a binary regressor. As noted by Wilde, we observe now 6

independent probabilities, and we have 6 parameters to identify i.e (β11, β12, β21, β22, δ, ρ). We will

use the following notation:

Pijk ≡ P (Y1 = i, Y2 = j|x = k) for all (i, j, k) ∈ {0; 1}3. (1.7)
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Wilde argued that with 6 independent equations and 6 parameters, we have now enough variation

in the model to identify the parameters, unlike in the case without covariates where we had 3

independent equations with 4 parameters. Although, this argument is a sensible one when the

equations are linear in the parameters, it is likely to fail when linearity or monotonicity does not

hold. For instance, consider the following trivial nonlinear single equation with one parameter

ρ2 − 1
4 = 0.

As before, β1 = [β11, β12]T will be identified from the usual hypothesis on a probit model with

the outcome variable Y1. Similarly, to the previous section, we can derive the following:

P010 =

∫ +∞

−β21

(
Φ

(
−β11 + ρy√

1− ρ2

))
φ (y) dy (1.8)

P110 =

∫ +∞

−β21−δ

(
Φ

(
β11 + ρy√

1− ρ2

))
φ (y) dy (1.9)

P011 =

∫ +∞

−β21−β22

(
Φ

(
−β11 + β12 + ρy√

1− ρ2

))
φ (y) dy (1.10)

P111 =

∫ +∞

−β21−β22−δ

(
Φ

(
β11 + β12 + ρy√

1− ρ2

))
φ (y) dy. (1.11)

By using the earlier recursive solving strategy applied to Eq. (1.8) - (1.10), we find all the parameters

are identified given a value of ρ. The question is whether ρ will be identified once we consider also

(1.11). Once we solve the first three equations for β2 and δ given ρ, the support of the integral in

right-hand side term (RHS) of Eq. (1.11) depends on ρ, and the latter is not necessary monotone

with respect to ρ. The following numerical results suggest the nonmonotonicity of this function and

find that several values of ρ might solve the system of equation.

Denote f(ρ), the RHS (1.11):

f(ρ) =

∫ +∞

−β∗21(ρ)−β∗22(ρ)−δ∗(ρ)

(
Φ

(
β11 + β12 + ρy√

1− ρ2

))
φ (y) dy (1.12)

where β∗21(ρ), β∗22(ρ), δ∗(ρ) solve Eq. (1.8) - (1.10) given ρ. Fig. 2 plots f(.) for ρ ∈ (−1, 1) given

different values of the other parameters.

Considering the first set of parameters (Fig. 2(a)), f(ρ) exhibits a nonmontonic behavior, increas-

ing first, then decreasing after reaching a maximum. The identified set consists of two singletons.

Considering the second set of parameters (Fig. 2(b)), we observe that f(ρ) is (relatively) flat in the

neighborhood of δ, suggesting weak or set identification. Several values of ρ contained in the interval

[0.483; 0.596] deliver probability values close to the value observed (|f(ρ)− P111| < 1e− 4).
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Figure 2. Numerical results: f(ρ) (plain blue line). The straight dotted

line is the observed probability P111. β11 = 0.3, β12 = 0.4, β22 = 0.5, δ = 0.3.

Remark 1. The full rank condition suggested by Heckman (1978, p 957) holds for all random

variables X,Y1 such that E[X2Y 2
1 ] 6= 0. This implies that the full rank condition is not sufficient to

point identified the model.

One, might think that the identified set will shrink to a point as soon as the covariate is non-

binary. In fact, if xT1 = xT2 ∈ {0, 1, 2} we have 9 independent probabilities and 6 parameters to be

identified. We would think that there is an overidentication, but there is no necessary identification

due to the nonlinearity of the system. Indeed, in addition to (1.8), (1.10), we have the following

equation:

P012 =

∫ +∞

−β21−2β22

(
Φ

(
−β11 + 2β12 + ρy√

1− ρ2

))
φ (y) dy. (1.13)

As previously we can invert the three equations and get β∗21(ρ) = Ψ0(ρ, P010), (β21 + β22)∗(ρ) =

Ψ1(ρ, P011) and (β21 + 2β22)∗(ρ) = Ψ2(ρ, P012). By solving this simple system we get the following

equation in ρ: g(ρ) = Ψ1(ρ, P011) − 1
2Ψ2(ρ, P012) − 1

2Ψ0(ρ, P010) = 0. Since g(ρ) is not necessarily

monotone we might have multiple solutions and then set identification.

2. Introducing an exclusion variable

The major insight from Example 1 is that all parameters are identified given the correlation

parameter. Point identification requirement translates then in the existence of restrictions that will

pin down the value of ρ. An exclusion restriction on a binary variable, will provide just the right

restriction. Applied to Example 1, the main idea of the proof is that the exclusion restriction will
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provide two set of values P (Y1 = 0, Y2 = 1|z) and P (Y1 = 0, Y2 = 1|z′) related respectively to two

functions βz2(ρ) and βz
′

2 (ρ). In the Proposition 3 below, we prove that they are single-crossing. ρ is

therefore uniquely identified at the crossing point of the two functions (see Fig 2).
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Figure 3. Numerical results: βz
2(ρ) and β

z′
2 (ρ).

β0
11 = 0.3, β0

2 = 0.4, β0
22 = 0.0, δ0 = 0.3, ρ0 = 0.5. In Fig 3(a) (Fig 3(b)) βz

2 (ρ) the lowest

slope (highest slope) and βz′
2 (ρ) the highest slope (lowest slope) are increasing and intersect

each other at a single point.

In (0.1) and (0.2), let xT1 = [1, Z], xT2 = 1 and β1 = [β11, β12]T the associated parameters where

Z ∈ {0, 1}, a binary regressor. To avoid confusion with the previous setup, let define:

Pijz ≡ P (Y1 = i, Y2 = j|z = 0) for all i, j ∈ {0, 1}2

Plkz′ ≡ P (Y1 = l, Y2 = k|z = 1) for all l, k ∈ {0, 1}2.

Compared to the previous setup, we restrict here β22 = 0. With a slight abuse of notation, we

wish to identify the parameters (β11, β12, β2, δ, ρ). β12 is the coefficient pertaining to the excluded

variable. Given this exclusion restriction, consider now the following two equations (compare with

Eq. (1.8) and Eq. (1.10)):

P01z =

∫ +∞

−β2

(
Φ

(
−β11 + ρy√

1− ρ2

))
φ (y) dy (2.1)

P01z′ =

∫ +∞

−β2

(
Φ

(
−β11 + β12 + ρy√

1− ρ2

))
φ (y) dy (2.2)

Given z = 0 (resp. z = 1) we know by Proposition 1 that the set of solutions to Eq. (2.1) (resp. Eq.

(2.2)) is characterized by a continuous function of ρ, call it βz2(ρ) (resp. βz
′

2 (ρ)).
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We show first that βz2(.) and βz
′

2 (.) are increasing functions and provide an expression of their

derivatives.

Proposition 2. Fix P01z (resp. P01z′). βz2(ρ) (resp. βz
′

2 (ρ)) is strictly increasing in ρ.

The derivative of the function βz2(ρ) with respect to ρ is proportional to the hazard rate of a

univariate standard normal variable. Namely:

∂βz2(ρ)

∂ρ
=

1√
1− ρ2

r(
β11 − ρβz2(ρ)√

1− ρ2
) (2.3)

∂βz
′

2 (ρ)

∂ρ
=

1√
1− ρ2

r(
β11 + β12 − ρβz

′

2 (ρ)√
1− ρ2

) (2.4)

where r(t) is the hazard rate of a standard normal at the point t.

Proof. βz2(ρ) is implicitly defined by Eq. (2.1) that we rewrite in the form

f0(βz2 , ρ) = 0. (2.5)

Using the implicit function theorem, we have that the derivative of βz2(ρ) is given by the following

expression
∂βz2(ρ)

∂ρ
= −∂f0 (β2, ρ)

∂ρ
/
∂f0 (β2, ρ)

∂β2
,

where we use the argument β2 instead of βz2(ρ) to lighten up the notations. Both terms of this ratio

are positive. Indeed,

∂f0 (β2, ρ)

∂β2
= Φ

(
−β11 − ρβ2√

1− ρ2

)
φ (−β2) > 0.

Note that :∫ +∞

−β2

(
Φ

(
−β11 + ρy√

1− ρ2

))
φ (y) dy = (P000 + P010)−

∫ −β2

−∞

(
Φ

(
−β11 + ρy√

1− ρ2

))
φ (y) dy

Using the result of Tallis (1962), we have:(
−∂f0 (β2, ρ)

∂ρ

)
= φ2 (−β2,−β11; ρ) > 0.

It follows that:

∂βz2(ρ)

∂ρ
=

φ2(−β2,−β11; ρ)

Φ(−β11−ρβ2√
1−ρ2

)φ(−β2)

=
1√

1− ρ2
r(
β11 − ρβ2√

1− ρ2
),

The proof for the derivative of βz
′

2 follows by replacing β11 by β11 + β12. �

We have now all the elements in hand to state the main result of this section.
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Proposition 3. There exists only one scalar ρ0 ∈ (−1, 1) such that βz2(ρ0) = βz
′

2 (ρ0) = β0
2 .

Proof. Suppose (β0
11, β

0
12, β

0
2 , δ

0, ρ0) are the true parameters we wish to identify in Model (0.1)-(0.2),

then we must have βz2(ρ0) = βz
′

2 (ρ0) = β0
2 . Again, β0

11, β
0
12 are readily identified. By definition of

the model, the two functions will cross at the values of the true parameters (β0
2 , ρ0). Using Eq. (2.3)

we have:

∂βz2(ρ0)

∂ρ
=

1√
1− ρ20

r

(
β0
11 − ρ0β0

2√
1− ρ20

)
(2.6)

and

∂βz
′

2 (ρ0)

∂ρ
=

1√
1− ρ20

r

(
β0
11 + β0

12 − ρ0β0
2√

1− ρ20

)
. (2.7)

Depending on the sign of β0
12, it has to be that either:

∂βz
′

2 (ρ0)

∂ρ
>
∂βz2(ρ0)

∂ρ
or

∂βz
′

2 (ρ0)

∂ρ
<
∂βz2(ρ0)

∂ρ
,

since the hazard rate of a univariate normal distribution is strictly increasing. Assume now that

β0
12 > 0, so that the first of these two inequalities holds. A necessary condition for existence of a

second crossing point (β1
2 , ρ1) is that:

∂βz
′

2 (ρ1)

∂ρ
≤ ∂βz2(ρ1)

∂ρ

or equivalently

β0
11 + β0

12 − ρ1β1
2√

1− ρ21
≤ β0

11 − ρ1β1
2√

1− ρ21
This however implies that β0

12 ≤ 0. Hence a contradiction. The same type of contradiction arises

when considering the other inequality. �

This result emphasizes the importance of both the validity and the relevance of the instrument.

Since, the above argument fails in the case where β12 = 0 or β22 6= 0.

3. Conclusion

We discussed identification in two equations probit model with endogenous dummy regressor. We

contradict the identification criterion proposed by Wilde (2000), and argue that adding a regressor

with enough variation allows to shrink the identified set, and may permit point identification in some

cases, but in general, additional restrictions should complement the full rank condition. Therefore,

we reinforce the opinion of the necessity of an exclusion restriction to ensure point identification in

this model.
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