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Abstract. We derive the empirical content of Nash equilibrium in 2× 2 games of

perfect information, including duopoly entry and coordination games. The derived

bounds are nonparametric intersection bounds and are simple enough to lend them-

selves to existing inference methods. Implications of pure strategy Nash equilibrium

and of exclusion restrictions are also derived. Without further assumptions, the hy-

pothesis of Nash equilibrium play is not falsifiable. However, nontrivial bounds hold

for the extent of potential monopoly advantage or free riding incentives.
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Introduction

The empirical analysis of full information game theoretic models has emerged as a leading way

to learn about strategic interactions between economic agents and to estimate, for example, the
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2 SHARP BOUNDS IN 2× 2 GAMES

extent of monopoly advantage in imperfect competitive environments or free riding incentives in

cooperation settings. Beside the numerous applications in industrial organization, as evidenced by

the recent survey in Bajari, Hong, and Nekipelov (2012), areas of impact include labor economics, as

in Bjorn and Vuong (1984) and Kooreman (1994), social interactions, as in Soetevent and Kooreman

(2007), family economics, as in Engers and Stern (2002), or development economics, as in Méango

(2012). The empirical approach to models of multiperson simultaneous decisions goes back at least to

Bjorn and Vuong (1984) and was popularized in the field of industrial organization by Bresnahan and

Reiss (1990, 1991) and Berry (1992) among others. In those cases, attention was restricted to specific

parametric utilities or profits and unobserved heterogeneity types. Coherency of the model, in the

sense of Heckman (1978) and Gouriéroux, Laffont, and Monfort (1980), was obtained by removing

multiplicity of predicted outcomes in the game (Bjorn and Vuong (1984) assume an ad-hoc uniform

equilibrium selection device, whereas Bresnahan and Reiss (1991) coarsen the outcome space). The

multiplicity issue was addressed head-on by Jovanovic (1989) and Tamer (2003) and both Galichon

and Henry (2006, 2011) and Beresteanu, Molchanov, and Molinari (2008, 2011) propose characteri-

zations of the empirical content of Nash equilibrium play in models with simultaneous decisions by

multiple agents, while retaining the parametric framework for payoffs and unobserved types. Much

of the empirical content in the latter characterizations, however, rests on the specific parametric

assumptions maintained, some of which may be structurally motivated, but others, especially para-

metric assumptions on unobserved type distributions, are entirely ad-hoc. Kline and Tamer (2012)

seem to be the first to remove parametric assumptions and consider sharp bounds in full information

games, but their focus, however, is best response functions, which may be of interest in their own

right, but which are not the focus of the literature, generally interested in recovering payoff func-

tions (utilities and profits). Aradillas-Lopez (2011) considers nonparametric bounds on predicted
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probabilities of strategy profiles under asymmetric information. Neither considers nonparametric

sharp bounds on payoff functions in full information games as we do here.

Within the class of two person games with binary strategies in full information, we consider the

identification problem, where the distribution of realized decisions is known by the analyst, who

assumes that such realizations emerge from Nash equilibrium play (in pure or mixed strategies)

in the game. Hence we adopt a pure revealed preference approach to the model of interaction

and analyze the empirical content of maximizing behavior as in Henry and Mourifié (2012), with the

additional complication that the dummy endogenous variable is the result of a simultaneous decision

by a second agent. Based on the characterization of the empirical content of games with Shapley

regular core in Galichon and Henry (2011), we derive sharp nonparametric bounds on payoffs and

unobserved heterogeneity distributions. Additional constraints on the order of payoffs, to consider

games of complements or games of susbstitutes, and on type distributions, to evaluate shape and

other distributional restrictions, can be easily added to see how they shrink the identified region.

One of the main arguments for allowing agents to randomize in the empirical analysis of games, as in

Bajari, Hong, and Ryan (2010), Beresteanu, Molchanov, and Molinari (2008, 2011), Bajari, Hahn,

Hong, and Ridder (2011) and Galichon and Henry (2011), is almost sure existence of equilibrium

in mixed strategies, whereas existence of equilibrium in pure strategies only is not garanteed. This

argument is only relevant in case of parametric assumptions on the unobserved heterogeneity (or

type) distribution, but fails to sway in the framework entertained here, as regions of the type space

may well have zero probability. We therefore analyze the implications of restricting play to pure

strategies and derive sharp bounds on payoffs and type distributions in that case too. Considering

type distributions as nuisance infinite dimensional parameters and projecting the identified region

allows us then to derive sharp nonparametric bounds on the payoff functions themselves. We find

that the hypothesis of Nash equilibrium play is not falsifiable in this framework, as the identified
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region is never empty. Rejection of the model becomes possible under the assumption of an exclusion

restriction, namely variation in the payoff of a player that leaves the opponent’s profit unchanged. In

the latter case, the bounds become intersection bounds, as in Chernozhukov, Lee, and Rosen (2009)

and they can cross. We also find that, without additional prior information, we cannot identify,

whether the game is of complements or substitutes. However, we obtain non trivial sharp bounds

on monopoly advantage and free-riding incentives, when they arise.

The importance of deriving the empirical content of discrete game specification without ad hoc

distributional assumptions is also crucial to answer fundamental questions such as the empirical

content of equilibrium when mixed strategies are allowed, the testability of independant randomiz-

ability, of complete information and simultaneity. They cannot be addressed in the usual framework

with parametrically specified unobservables. We do find for instance that we cannot test whether

players randomize independently or use correlated strategies.

The remainder of the paper is organized as follows. Section 1 derives the analytical framework,

the games analyzed, their equilibrium correspondences and the objects of interest. Section 2 derives

joint sharp bounds for payoff functions and type distributions, treating the equilibrium selection

mechanism as a nuisance parameter. Section 3 considers implications of pure strategy play and

derives the projection of the identified set to obtain sharp bounds for the payoff functions. Sharp

bounds are also given for monopoly advantage and free riding incentives. The last section concludes.

1. Analytical framework

We shall be concerned with the following econometric model.

Yi = 1{Πi(Y3−i, Xi) > εi} and εi ∼ U [0, 1], i = 1, 2, (1.1)
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where 1{A} = 1 if A is true and zero otherwise, Y = (Y1, Y2) is a pair of observed binary outcome

variables, Π = (Π1,Π2) are unknown functions of Y3−i, observable random vectors X = (X1, X2)

and unobservable random variables ε = (ε1, ε2). We assume that the only source of endogeneity in

the econometric model is the interaction between players and the simultaneous choice. Hence, we

assume that observable heterogeneity variables are exogenous.

Assumption 1 (Exogeneity). The following exogeneity assumption holds: (X1, X2) ⊥⊥ (ε1, ε2) and

for ease of notation, we shall drop all components that are common to X1 and X2 and relabel Xi as

the vector of observable heterogeneity variables (if they arise) that affect Πi but are excluded from

Π3−i.

We give two structural interpretation of this model within the range of noncooperative games of

perfect information with 2 players and 2 strategies each.

1.1. General 2×2 games. In a first structural interpretation of Model (1.1) we consider general 2×2

games of perfect information with payoff structure given in Table 1, which is common knowledge to

the two players. Working under assumptions that rule out ties, the best response of Player 1 to Y2 = 1

is Y1 = 1 if Π̃1(1, 1, X1) − Π̃1(0, 1, X1) > [ε̃1(0, 1) − ε̃1(1, 1)] and zero otherwise, whereas the best

response to Y2 = 0 is Y1 = 1 if Π̃1(1, 0, X1)− Π̃1(0, 0, X1) > [ε̃1(0, 0)− ε̃1(1, 0)] and zero otherwise.

Best responses for Player 2 are obtained symmetrically. Assuming that the unobserved heterogeneity

differences ε̃1(1, Y2)− ε̃1(0, Y2) and ε̃2(Y1, 1)− ε̃2(Y1, 0) are independent of the opponent’s action and

are absolutely continuous with respect to Lebesgue measure and setting Π1(Y2, X1) = Π̃1(1, Y2, X1)−

Π̃1(0, Y2, X1), Π2(Y1, X2) = Π̃2(Y1, 1, X2) − Π̃2(Y1, 0, X2), ε1 = −ε̃1(1, Y2) + ε1(0, Y2) and ε2 =

−ε̃2(Y1, 1) + ε2(Y1, 0), we obtain Model (1.1), where εi ∼ U [0, 1] is without loss of generality.

1.2. Participation games. In a second structural interpretation of Model (1.1), we consider the

special case of 2×2 participation games, where a player’s payoff when she chooses not to participate
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Table 1. Payoff structure of 2× 2 games.

1 0

1 Π̃1(1, 1, X1) + ε̃1(1, 1), Π̃2(1, 1, X2) + ε̃2(1, 1) Π̃1(1, 0, X1) + ε̃1(1, 0), Π̃2(1, 0, X2) + ε̃2(1, 0)

0 Π̃1(0, 1, X1) + ε̃1(0, 1), Π̃2(0, 1, X2) + ε̃2(0, 1) Π̃1(0, 0, X1) + ε̃1(0, 0), Π̃2(0, 0, X2) + ε̃2(0, 0)

is independent of the opponent’s behavior and can therefore be normalized to zero. Each player

has 2 strategies and 3 different payoffs. For each player, the 3 different payoffs can be ranked in 3!

distinct ways. Hence there are 36 classes of ordinally equivalent such 2× 2 participation games (but

only 7 strategically distinct classes of games as we shall see). The payoff structure as in Table 2,

which is common knowledge to the two players.

Assuming that the profit functions are weakly separable in εi, i = 1, 2, and the latter are absolutely

continuous with respect to Lebesgue measure, the game can be summarized by Model (1.1) without

loss of generality (see Vytlacil (2002)).

1.3. Implications of each structural interpretation. Depending on the chosen structural in-

terpretation, the analyst will be able to answer different empirical questions. Two questions of

particular relevance in 2× 2 game theoretic modeling of economic interactions are the price of com-

petition and the extent of free riding incentives. 2× 2 games are applied to the empirical analysis of

imperfect competition since at least Bresnahan and Reiss (1990) and Berry (1992). Two questions

of particular interest arise: whether the two players (firms) are complements or substitutes and the

extent of the monopoly advantage if they are substitutes. Both questions can be answered (partially)

Table 2. Payoff structure of 2× 2 participation games.

1 0

1 Π1(1, X1, ε1),Π2(1, X2, ε2) Π1(0, X1, ε1), 0

0 0,Π2(0, X2, ε2) 0, 0
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if the quantities

Π̃1(1, 0, X1) + ε̃1(1, 0)− [Π̃1(1, 1, X1) + ε̃1(1, 1)]

Π̃2(0, 1, X2) + ε̃2(0, 1)− [Π̃2(1, 1, X2) + ε̃2(1, 1)]

are (partially) identified. Now, with the structural interpretation of participation games in Sec-

tion 1.2, we have

Π̃1(1, 0, X1) + ε̃1(1, 0)− [Π̃1(1, 1, X1) + ε̃1(1, 1)] = Π1(0, X1)−Π1(1, X1)

Π̃2(0, 1, X2) + ε̃2(0, 1)− [Π̃2(1, 1, X2) + ε̃2(1, 1)] = Π2(0, X2)−Π2(1, X2)

and we shall derive sharp bounds on Π = (Π1(1, X1),Π1(0, X1),Π2(1, X2),Π2(0, X2). 2 × 2 games

are also used to model the provision of public goods. In that context, the extent of free riding

incentives is of particular empirical relevance and it is measured by the following quantities.

Π̃1(0, 1, X1) + ε̃1(0, 1)− [Π̃1(1, 1, X1) + ε̃1(1, 1)]

Π̃2(1, 0, X2) + ε̃2(1, 0)− [Π̃2(1, 1, X2) + ε̃2(1, 1)].

Under both the structural interpretations of Sections 1.1 and 1.2, we have the following.

Π̃1(0, 1, X1) + ε̃1(0, 1)− [Π̃1(1, 1, X1) + ε̃1(1, 1)] = ε1 −Π1(1)

Π̃2(1, 0, X2) + ε̃2(1, 0)− [Π̃2(1, 1, X2) + ε̃2(1, 1)] = ε2 −Π2(1)

and we shall derive sharp bounds on Π1(1) and Π2(1).

1.4. Equilibrium. We assume, as is customary, that players choose the strategy that maximizes

their payoff in pure or mixed strategy Nash equilibrium (see Aradillas-Lopez and Tamer (2008) for

some discussion of the empirical content of other notions of rationality in games). We distinguish

four cases, according to the ordering between Πi(1, Xi) and Πi(0, Xi).

(1) Duopoly entry game: Πi(1, Xi) ≤ Πi(0, Xi), i = 1, 2.

(2) Coordination game: Πi(0, Xi) ≤ Πi(1, Xi), i = 1, 2.

(3) Asymmetric game 1: Π1(0, X1) ≤ Π1(1, X1) and Π2(1, X2) ≤ Π2(0, X2).

(4) Asymmetric game 2: Π1(1, X1) ≤ Π1(0, X1) and Π2(0, X2) ≤ Π2(1, X2).
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In each case, the equilibrium correspondence is represented on the unit square as a function of the

pair (ε1, ε2) in Figures 1-3 and Case (4) can be obtained from Case (3) by permuting the two players.

Definition 1 (Equilibrium correspondence). The equilibrium correspondence, denoted G(ε,X,Π),

is the set of equilibria of the game for a given values of (ε,X,Π). It is a subset of the simplex on

{(1, 1), (1, 0), (0, 1), (0, 0)} and its elements are non degenerate probabilities in case the equilibrium

is in mixed strategies and degenerate probabilities in case the equilibrium is in pure strategies.

The equilibrium has similar features in the duopoly, coordination and asymmetric games. When

ε /∈ [min(Π1(1, X1),Π1(0, X1)),max(Π1(1, X1),Π1(0, X1))]

×[min(Π2(1, X2),Π2(0, X2)),max(Π2(1, X2),Π2(0, X2))],

there is a unique equilibrium in pure strategies. For instance, when εi > max(Πi(1, Xi),Πi(0, Xi)),

i = 1, 2, the game is a Prisoner’s Dilemma. When, on the other hand,

ε ∈ [min(Π1(1, X1),Π1(0, X1)),max(Π1(1, X1),Π1(0, X1))]

×[min(Π2(1, X2),Π2(0, X2)),max(Π2(1, X2),Π2(0, X2))],

there is always one equilibrium in mixed strategies. There is also two equilibria in pure strategies

in the case of duopoly entry and coordination. For instance, when Πi(1) < εi < Πi(0), i = 1, 2, we

have a game of Chicken (or public good provision) and when Πi(0) < εi < Πi(1), i = 1, 2, we have

a Battle of the Sexes.

1.5. Object of inference. The analyst observes the realized strategy profile and realized values of

the heterogeneity variables X1 and X2. However, realized values of heterogeneity variables ε1 and

ε2 are not observed and the payoff functions Π1 and Π2 are unknown and are the object of inference.

The model is incomplete in two respects:

(1) The marginal distributions of the unobserved heterogeneity variables ε1 and ε2 are nor-

malized. However, the joint distribution of (ε1, ε2), which we shall denote C(ε1, ε2) (since
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Figure 1. Equilibrium correspondence in the duopoly entry case. For each value of

the pair (ε1, ε2), the predicted equilibria are given. In the central rectangle, correspond-

ing to values of unobserved heterogeneity such that Πi(1) ≤ εi ≤ Πi(0), for i = 1, 2,

three equilibria are predicted, including two in pure strategies, (Y1 = 1, Y2 = 0) and

(Y1 = 0, Y2 = 1) and one in mixed strategies, with Player i participating with probability

σi(ε3−i) = (Π3−i(0)−Π3−i(1))
−1(Π3−i(0)− ε3−i). In the rest of the (ε1, ε2) space, single

pure strategy Nash equilibria are predicted for each value of the unobserved heterogeneity

pair (ε1, ε2).

Π2(1)

Π1(1)

Π1(1)

Π1(0)

Π1(0)

Π2(0) Π2(0)

(Y1 = 1, Y2 = 0) (Y1 = 0, Y2 = 0)

(Y1 = 0, Y2 = 1)

(Y1 = 1, Y2 = 0)

or

(Y1 = 0, Y2 = 1)

or

0

ε2 = 1

ε1 = 1

(σ1, σ2)

(Y1 = Y2 = 1)

Π2(1)

it is equal to the copula, given the uniform normalization) is unknown. This implies that

although the probability of any horizontal or any vertical band in Figures 1-3 is predicted

by the model, the probability of other rectangles are not. This means in particular that the

likelihood of observing, say, (Y1 = 1, Y2 = 1) in the duopoly entry case of Figure 1 is not

pinned down by the model.
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Figure 2. Equilibrium correspondence in the coordination case. For each value of

the pair (ε1, ε2), the predicted equilibria are given. In the central rectangle, correspond-

ing to values of unobserved heterogeneity such that Πi(0) ≤ εi ≤ Πi(1), for i = 1, 2,

three equilibria are predicted, including two in pure strategies, (Y1 = 1, Y2 = 1) and

(Y1 = 0, Y2 = 0) and one in mixed strategies, with Player i participating with probability

σi(ε3−i) = (Π3−i(1)−Π3−i(0))
−1(ε3−i −Π3−i(0)). In the rest of the (ε1, ε2) space, single

pure strategy Nash equilibria are predicted for each value of the unobserved heterogeneity

pair (ε1, ε2).

(Y1 = 0, Y2 = 0)

or

or

0

ε2 = 1

ε1 = 1

(σ1, σ2)

Π1(0) Π1(1)

Π2(1)
Π2(1)

Π2(0)

Π1(0) Π1(1)

Π2(0)

(Y1 = 1, Y2 = 1)

(Y1 = 0, Y2 = 0)

(Y1 = 0, Y2 = 1)

(Y1 = 1, Y2 = 0)

(Y1 = 1, Y2 = 1)

(2) In each of the three Figures 1-3, multiple equilibria arise in the central region of the (ε1, ε2)

space. This implies that, short of additional information about the equilibrium selection

mechanism, the model delivers multiple predictions for the strategy profile, only one of

which is actually realized.
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Figure 3. Equilibrium correspondence in the asymmetric case. For each value of the

pair (ε1, ε2), the predicted equilibria are given. In the central rectangle, corresponding to

values of unobserved heterogeneity such that Π1(0) ≤ ε1 ≤ Π1(1) and Π2(1) ≤ ε2 ≤ Π2(0),

a single equilibrium in mixed strategies is predicted, with Player i participating with

probability σi(ε3−i) = (Π3−i(0) − Π3−i(1))
−1(Π3−i(0) − ε3−i). In the rest of the (ε1, ε2)

space, single pure strategy Nash equilibria are predicted for each value of the unobserved

heterogeneity pair (ε1, ε2).

(Y1 = 0, Y2 = 1)

0

ε2 = 1

ε1 = 1

Π1(0) Π1(1)

Π1(0) Π1(1)

(Y1 = 1, Y2 = 1)

(Y1 = 0, Y2 = 0)

Π2(0) Π2(0)

Π2(1)Π2(1)

(Y1 = 1, Y2 = 0)

(σ1, σ2)

Model incompleteness results here, as we shall see, in partial identification of the payoff functions, the

joint distribution of unobserved heterogeneity and the equilibrium selection mechanism. Through-

out the paper, we shall treat the equilibrium selection mechanism as a nuisance parameter and

concentrate on the derivation of the empirical content of the model, when no additional assumption

is maintained about equilibrium selection. We shall proceed in two steps.
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(1) First we define and characterize the identified set for the distribution of unobserved het-

erogeneity and for the payoff functions (jointly). This will be achieved in Section 2 with

an application of the characterization of the identified set for Shapley regular games in

Galichon and Henry (2011).

(2) Second we treat both the equilibrium selection mechanism and the distribution of unob-

served heterogeneity as nuisance parameters and we derive in Section 3 the identified set

for the payoff functions as the projection of the joint identified set obtained in Point (1).

2. Identified set for payoffs and heterogeneity distribution

In order to define and characterize the empirical content of Nash equilibrium play in 2× 2 games

of perfect information, we first clarify the observability structure and the structural elements to be

identified.

Definition 2 (True frequencies). The probabilities of each of the four strategy profiles (Y1 = j1, Y2 =

j2), for j1, j2 = 1, 0, (as would be obtained from an infinite sample of i.i.d. replications of the

game) are called true frequencies and denoted P (Y1 = j1, Y2 = j2|X1, X2) or P ((j1, j2)|X1, X2) for

j1, j2 = 1, 0. We shall assume throughout this (partial) identification analysis that the true frequencies

are known.

Knowing the true frequencies of strategy profiles, we seek to characterize all the informational

content of Nash equilibrium play with a finite collection of inequalities involving payoff functions

Πi(j,Xi), i = 1, 2 and j = 1, 0 and the joint distribution of unobserved heterogeneity denoted:

C(u1, u2) = P (ε1 ≤ u1, ε2 ≤ u2), ∀(u1, u2) ∈ [0, 1]2. (2.1)

The notation C(u1, u2) is chosen in reference to the fact that, given the uniform normalization of

the marginals, C is also the copula of the pair (ε1, ε2).
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The inequalities characterizing the empirical content of the model will be sharp in the sense that

all (C,Π1,Π2) that satisfy them are compatible with Nash equilibrium play in the 2 × 2 perfect

information game specification. We define the identified set as in Beresteanu, Molchanov, and

Molinari (2011).

Definition 3 (Identified set). The identified set for payoff functions and unobserved heterogene-

ity distribution is the collection of values of (C,Π1,Π2) such that there exists a probability σ 7→

µ(σ|ε,X,Π) (an equilibrium selection mechanism) on the equilibrium correspondence G(ε,X,Π) sat-

isfying for each strategy profile (Y1 = j1, Y2 = j2), j1, j2 = 1, 0,

P ((j1, j2)|X) =

∫

[0,1]2

{

∫

G(ε,X,Π)

σ((j1, j2), ε,Π)µ(σ|ε,X,Π)

}

dC(ε1, ε2),

where P ((j1, j2)|X) is the true frequency of (Y1 = j1, Y2 = j2).

Definition 3 is a rephrasing of the fact that there is a way to complete the model so that predicted

probabilities are equal to true frequencies. Applying Theorem 5 of Galichon and Henry (2011)

for Shapley regular games and removing redundant inequalities yields the characterization of the

identified set given in Theorem 1 (see Appendix A for the proof). First, we need some additional

notation relative to the probabilities of each strategy profile under mixed strategies.

Lemma 1 (Profile probabilities under mixed strategies). The probability that Player i participates

in case the mixed strategy equilibrium is selected is σi(ε3−i,Π3−i) = (Π3−i(0)−Π3−i(1))
−1(Π3−i(0)−

ε3−i) and the predicted probability of strategy profile (j1, j2) is Σj1,j2(C,Π) with:

Σ11(C,Π) =
∣

∣

∣

∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
σ1(ε2,Π2)σ2(ε1,Π1)dC(ε1, ε2)

∣

∣

∣
,

Σ00(C,Π) =
∣

∣

∣

∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
(1− σ1(ε2,Π2)) (1− σ2(ε1,Π1)) dC(ε1, ε2)

∣

∣

∣
,

Σ10(C,Π) =
∣

∣

∣

∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
σ1(ε2,Π2) (1− σ2(ε1,Π1)) dC(ε1, ε2)

∣

∣

∣
,

Σ01(C,Π) =
∣

∣

∣

∫ Π1(0)

Π1(1)

∫ Π2(0)

Π2(1)
(1− σ1(ε2,Π2))σ2(ε1,Π1)dC(ε1, ε2)

∣

∣

∣
.

(2.2)
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With this notation, we can state the characterization of the identified set.

Theorem 1 (Identified set). (C,Π) belongs to the identified set if and only if one of the following

holds for almost all values of X. For ease of exposition, we denote P (i, j) = P (Y1 = i, Y2 = j|X1, X2)

and Πi(j,Xi) = Πi(j), i = 1, 2, and j = 1, 0.

(1) (Duopoly entry) Πi(1) ≤ Πi(0), i = 1, 2, and

C(Π1(1),Π2(1)) ≤ P (1, 1) ≤ C(Π1(1),Π2(1)) + Σ11(C,Π)

1−Π1(0)−Π2(0) + C(Π1(0),Π2(0)) ≤ P (0, 0) ≤ 1−Π1(0)−Π2(0) + C(Π1(0),Π2(0)) + Σ00(C,Π),

Π2(0) + [C(Π1(0),Π2(1))− C(Π1(1),Π2(1))]− C(Π1(0),Π2(0)) ≤ P (0, 1) ≤ Π2(0)− C(Π1(1),Π2(0)),

Π1(0) + [C(Π1(1),Π2(0))− C(Π1(1),Π2(1))]− C(Π1(0),Π2(0)) ≤ P (1, 0) ≤ Π1(0)− C(Π1(0),Π2(1)).

(2.3)

(2) (Coordination game) Πi(1) ≥ Πi(0), i = 1, 2, and

Π2(0)− C(Π1(1),Π2(0)) ≤ P (0, 1) ≤ Π2(0)− C(Π1(1),Π2(0)) + Σ01(C,Π),

Π1(0)− C(Π1(0),Π2(1)) ≤ P (1, 0) ≤ Π1(0)− C(Π1(0),Π2(1)) + Σ10(C,Π),

C(Π1(0),Π2(1)) + [C(Π1(1),Π2(0))− C(Π1(0),Π2(0))] ≤ P (1, 1) ≤ C(Π1(1),Π2(1)),

1−Π1(0)−Π2(0) + [C(Π1(0),Π2(1))− C(Π1(1),Π2(1))] + C(Π1(1),Π2(0))

≤ P (0, 0) ≤ 1−Π1(0)−Π2(0) + C(Π1(0),Π2(0)).

(2.4)

(3) (Asymmetric case 1) Π1(1) ≥ Π1(0), Π2(1) ≤ Π2(0) and

P (1, 1) = C(Π1(1),Π2(1)) + Σ11(C,Π)

P (0, 0) = 1− Π1(0)−Π2(0) + C(Π1(0),Π2(0)) + Σ00(C,Π)

P (0, 1) = Π2(0)− C(Π1(1),Π2(0)) + Σ01(C,Π),

P (1, 0) = Π1(0)− C(Π1(0),Π2(1)) + Σ10(C,Π).

(2.5)

(4) (Asymmetric case 2) The constraints of Case (3) hold after permutation of the two players.

Consider the duopoly entry case. All other cases are derived in the same way. The equilibrium

correspondence of the game is represented in Figure 1. The observation of strategy profile (Y1 =

1, Y2 = 1) is rationalizable as the result of a pure strategy equilibrium in region ε ∈ [0,Π1(1)] ×

[0,Π2(1)] with probability C(Π1(1),Π2(1)) or as the result of a mixed strategy equilibrium in region
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ε ∈ [Π1(1),Π1(0)] × [Π2(1),Π2(0)] with probability Σ11 if the equilibrium in mixed strategies is

selected. Hence the true frequency P (1, 1) is at least equal to C(Π1(1),Π2(1)) if the equilibrium in

mixed strategies is never selected and at most equal to C(Π1(1),Π2(1)) + Σ11 if the equilibrium in

mixed strategies is always selected. Hence we recover the bounds on the first line of (2.3). The same

reasoning applies to strategy profile (Y1 = 0, Y2 = 0) to yield the second line of (2.3).

The observation of strategy profile (Y1 = 0, Y2 = 1) can be rationalized as the result of a pure

strategy equilibrium in the lower right L-shaped region or as the result of a pure strategy equi-

librium or a mixed strategy equilibrium in region ε ∈ [Π1(1),Π1(0)] × [Π2(1),Π2(0)]. The maxi-

mum rationalizable true frequency P (0, 1) is therefore obtained when the pure strategy equilibrium

(Y1 = 0, Y2 = 1) is always selected in region ε ∈ [Π1(1),Π1(0)] × [Π2(1),Π2(0)]. The resulting

upper bound is equal to P (ε1 ≥ Π1(1), ε2 ≤ Π2(0)), which is equal to the right-hand side on the

third line of (2.3). The minimum rationalizable true frequency P (0, 1) is obtained when the pure

strategy equilibrium (Y1 = 1, Y2 = 0) is always selected so that (Y1 = 0, Y2 = 1) never occurs in

region ε ∈ [Π1(1),Π1(0)]× [Π2(1),Π2(0)]. The resulting lower bound is the probability of the lower

left L-shaped region, whose probability is equal to the left-hand side of Line 3 of (2.3). The same

reasoning applies to true frequency P (1, 0) and Line 4 of (2.3).

Note that additional constraints can be derived from the analysis of the game. In particular, the

maximum rationalizable frequency P (0, 1) is obtained when the pure strategy equilibrium (Y1 =

0, Y2 = 1) is always selected in the region with multiple equilibria. This implies of course that the

other equilibria are never selected, which constrains the rationalizable frequency P (Y1 = 1, Y2 = 0).

Hence P (0, 1)+P (1, 0) is bounded above by 1−Π1(0)−Π2(0)+C(Π1(1),Π2(1))−C(Π1(0),Π2(0)).

However, the latter constraint on (C,Π) is redundant, as it is implied by the combination of P (1, 1) ≥

C(Π1(1),Π2(1)) and P (0, 0) ≥ 1−Π1(0)−Π2(0) + C(Π1(0),Π2(0)).
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This shows that true frequencies that are rationalizable as Nash equilibrium strategy profiles of

the 2× 2 game necessarily satisfy inequalities in (2.3-2.5). The proof of Theorem 1 in Appendix A

shows the converse, namely that true frequencies that satisfy inequalities (2.3-2.5) are rationalizable

as Nash equilibrium strategy profiles of the 2× 2 game. Hence, the bounds of Theorem 1 are sharp.

3. Empirical content of equilibrium in pure strategies

When equilibria in mixed strategies are ruled out, Σj1j2 = 0 for j1, j2 = 1, 0 and the lower bounds

in each of the inequalities in (2.3)-(2.5) are redundant. Hence we have the following result.

Theorem 2 (Identified set for (C,Π) with only pure strategies). (C,Π) belongs to the identified set

if and only if one of the following holds for almost all values of X. For ease of exposition, we denote

P (i, j) = P (Y1 = i, Y2 = j|X1, X2) and Πi(j,Xi) = Πi(j), i = 1, 2, and j = 1, 0.

(1) (Duopoly entry) Πi(1) ≤ Πi(0), i = 1, 2, and

P (1, 1) = C(Π1(1),Π2(1))

P (0, 0) = 1−Π1(0)−Π2(0) + C(Π1(0),Π2(0)),

P (0, 1) ≤ Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) ≤ Π1(0)− C(Π1(0),Π2(1)).

(3.1)

(2) (Coordination game) Πi(1) ≥ Πi(0), i = 1, 2, and

P (0, 1) = Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) = Π1(0)− C(Π1(0),Π2(1)),

P (1, 1) ≤ C(Π1(1),Π2(1)),

P (0, 0) ≤ 1−Π1(0)−Π2(0) + C(Π1(0),Π2(0)).

(3.2)



SHARP BOUNDS IN 2× 2 GAMES 17

(3) (Asymmetric case 1) Π1(1) ≥ Π1(0), Π2(1) ≤ Π2(0) and

P (1, 1) = C(Π1(1),Π2(1))

P (0, 0) = 1−Π1(0)−Π2(0) + C(Π1(0),Π2(0))

P (0, 1) = Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) = Π1(0)− C(Π1(0),Π2(1)).

(3.3)

(4) (Asymmetric case 2) The constraints of Case (3) hold after permutation of the two players.

The results of Theorem 2 can be applied in several ways. We describe two polar cases. On the one

hand, we may add assumptions on the joint distribution of firm specific unobserved heterogeneity

(ε1, ε2), positing (1) a parametric copula, (2) perfect correlation of (ε1, ε2), as in the case of an

industry-wide shock or (3) independence of ε1 and ε2 as in the case of purely idiosyncratic shocks.

A combination of the latter two cases can also be entertained in the form of (4) a factor model. These

implications are detailed in Section 3.1. On the other hand, we may acknowledge total ignorance of

the joint distribution of firm specific unobserved heterogeneity and project the identified region of

Theorem 3 to obtain nonparametric sharp bounds on the payoff functions only. We describe this in

Section 3.2.

3.1. Restrictions on the joint distribution of firm specific heterogeneity. We consider first

refinements of the bounds of Theorem 2 based on a variety of assumptions on the joint distribution

of firm specific unobserved heterogeneity.

3.1.1. Parametric restrictions on the copula. In the case where the copula for (ε1, ε2) is parameter-

ized with parameter vector θ, sharp bounds are obtained straightforwardly by replacing C(ε1, ε2)

with the parametric version C(ε1, ε2, θ) in Lemma 1 and Theorems 1 and 2. Parameterizing the

copula C(ε1, ε2) while leaving the marginal distributions of ε1 and ε2 unrestricted yields nonpara-

metric bounds, akin to those derived by Aradillas-Lopez (2010) in the case of incomplete information

games.
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3.1.2. Perfect correlation. The case of perfect correlation between the two firm specific unobserved

heterogeneity components is also of interest, as it corresponds to an industry-wide productivity

shock in industrial organization applications. In that case, the copula attains its Fréchet upper

bounds C(ε1, ε2) = min(ε1, ε2) so that the sharp bounds of Theorem 2 in case of duopoly entry yield

P (1, 1) = min(Π1(1),Π2(1)), P (0, 0) = min(1 − Π1(0), 1 − Π2(0)), P (0, 1) ≤ max(Π2(0)− Π1(1), 0)

and P (1, 0) ≤ max(Π1(0)−Π2(1), 0). Similar sharp bounds for the three others cases may be easily

derived.

3.1.3. Independence. In the other polar case, where the two firms specific unobserved heterogeneity

components are purely idiosyncratic shocks, ε1 ⊥⊥ ε0 and sharp bounds are derived from Theorem

2 by simply setting C(ε1, ε2) = ε1ε2.

3.1.4. Factor structure. Intermediate cases between the two polar cases of industry-wide shock and

idiosyncratic shocks can also be entertained with a simple factor model for the pair of unobserved

heterogeneities (ε1, ε2). Suppose unobserved heterogeneity has factor structure εd = αdε + ηd,

d = 1, 2, with Eε = 0, Eε2 = 1 (without loss of generality) and η1 ⊥⊥ η2|ε. ηd is uniformly distributed

on [0, 1] for d = 1, 2, conditionally on ε. This factor specification achieves a decomposition of

unobserved heterogeneity components into an industry common shock ε and a purely idiosyncratic

shock ηd, d = 1, 2. We recover the case of purely idiosyncratic firm specific unobserved heterogeneity,

when α1 = α0 = 0. By iterated expectations, we find for each i, j = 1, 0:

C(Π1(i, x1),Π2(j, x2)|x1, x2) = P(ε1 ≤ Π1(i, x1), ε2 ≤ Π2(j, x2)|x1, x2)

= EεP(η1 ≤ Π1(i, x1)− α1ε, η2 ≤ Π2(j, x2)− α2ε|x1, x2, ε)

= EεP(η1 ≤ Π1(i, x1)− α1ε|x1, ε)P(η2 ≤ Π2(j, x2)− α2ε|x1, x2, ε)

= Π1(i, x1)Π2(j, x2) + α1α2,
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from which sharp bounds can be derived for the payoff functions and the pair (α1, α2).

3.2. Sharp bounds on the payoff functions. From the identified set for (Π, C) we can derive

sharp bounds for the payoff functions alone using Fréchet bounds on C in each of the four cases.

Consider the duopoly entry case for instance. Line 1 of (3.1) yields P (1, 1) = C(Π1(1),Π2(1)) ≤

min(Π1(1),Π2(2)) (Fréchet bound). Similarly, Line 2 of (3.1) yields 1−P (0, 0) ≥ max(Π1(0),Π2(0)).

Since Π2(0) ≥ Π2(1), we have C(Π1(1),Π2(0)) ≥ C(Π1(1),Π2(1)) and Lines 1 and 3 of (3.1) com-

bined yield P (1, 1) + P (0, 1) ≤ Π2(0) − [C(Π1(1),Π2(0)) − C(Π1(1),Π2(1))] ≤ Π2(0). Similarly,

Lines 1 and 4 yield P (1, 1) + P (1, 0) ≤ Π1(0). Finally, P (0, 1) + P (1, 1) = 1 − P (1, 0)− P (0, 0) ≥

Π2(0) − [C(Π1(0),Π2(0)) − C(Π1(0),Π2(1))] ≥ Π2(0) − [Π2(0) − Π2(1)] = Π2(1) and similarly

P (1, 0) + P (1, 1) ≥ Π1(1). We therefore have the validity of the following bounds for the duopoly

entry case:

P (1, 1) ≤ Π1(1) ≤ P (1, 1) + P (1, 0) ≤ Π1(0) ≤ 1− P (0, 0),

P (1, 1) ≤ Π2(1) ≤ P (1, 1) + P (0, 1) ≤ Π2(0) ≤ 1− P (0, 0).

For the coordination case, the same method (see the proof of Theorem 3) yields:

P (1, 0) ≤ Π1(0) ≤ P (1, 1) + P (1, 0) ≤ Π1(1) ≤ 1− P (0, 1),

P (0, 1) ≤ Π2(0) ≤ P (1, 1) + P (0, 1) ≤ Π2(1) ≤ 1− P (1, 0).

and finally for the asymmetric cases:

P (1, 0) ≤ Π1(0) ≤ P (1, 1) + P (1, 0) ≤ Π1(1) ≤ 1− P (0, 1),

P (1, 1) ≤ Π2(1) ≤ P (1, 1) + P (0, 1) ≤ Π2(0) ≤ 1− P (0, 0),

and similarly after permutation of the two players. We can now formally characterize the joint sharp

bounds on payoff functions when only pure strategies are entertained.
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Theorem 3 (Sharp bounds for payoff functions). Π belongs to the identified set if and only if (3.4)

and (3.5) below hold.

min (Π1(1, x1),Π1(0, x1)) ≤ infx2

(

P (1, 1|x1, x2) + P (1, 0|x1, x2)
)

max (Π1(1, x1),Π1(0, x1)) ≥ supx2

(

P (1, 1|x1, x2) + P (1, 0|x1, x2)
)

min (Π2(1, x2),Π2(0, x2)) ≤ infx1

(

P (1, 1|x1, x2) + P (0, 1|x1, x2)
)

max (Π2(1, x2),Π2(0, x2)) ≥ supx1

(

P (1, 1|x1, x2) + P (0, 1|x1, x2)
)

(3.4)

and

supx2
P (1, 1|x1, x2) ≤ Π1(1, x1) ≤ infx2

(

1− P (0, 1|x1, x2)
)

supx2
P (1, 0|x1, x2) ≤ Π1(0, x1) ≤ infx2

(

1− P (0, 0|x1, x2)
)

supx1
P (1, 1|x1, x2) ≤ Π2(1, x2) ≤ infx1

(

1− P (1, 0|x1, x2)
)

supx1
P (0, 1|x1, x2) ≤ Π2(0, x2) ≤ infx1

(

1− P (0, 0|x1, x2)
)

.

(3.5)

In the case without excluded variables, it is immediately apparent from the bounds of Theo-

rem 3 that the sign of Πi(1) − Πi(0) is not identified, hence we cannot determine from the data

only, whether the game is a duopoly entry game, a game of cooperation or an asymmetric game.

With exclusion restrictions, however, it becomes possible to identify the class of games if bounds

cross in all cases except one. An example is the case when supx2
(P (1, 0|x1, x2) + P (1, 1|x1, x2)) >

infx2
(1− P (0, 1|x1, x2)) and supx1

(P (0, 1|x1, x2) + P (1, 1|x1, x2)) > infx1
(1− P (1, 0|x1, x2)), so

that cooperation and asymmetric games are rejected, whereas supx2
(P (1, 0|x1, x2) + P (1, 1|x1, x2)) ≤

infx2
(1− P (0, 0|x1, x2)) and supx1

(P (0, 1|x1, x2) + P (1, 1|x1, x2)) ≤ infx1
(1− P (0, 0|x1, x2)), so

that the duopoly entry game is not rejected.

In the case without excluded variable, the bounds on the payoff functions Πi(1) and Πi(0) can

be reduced to a point, but may never cross, so that the hypothesis of Nash equilibrium play is not

falsifiable. If, on the other hand, there is an exclusion restriction, hence variation in the payoff

of one player that leaves the other player’s payoff unchanged, the bounds may cross and the joint
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assumption of Nash equilibrium play and the exclusion restriction may be rejected. For instance,

if infx2
(P (1, 0|x1, x2) + P (1, 1|x1, x2)) < min(supx2

(P (1, 1|x1, x2)) , supx2
(P (1, 0|x1, x2))) then the

bounds cross in all cases and the model is rejected.

Sharp bounds on monopoly advantage can also be easily derived from the bounds of Theorem 3.

Indeed, considering Player 1 only for simplicity, monopoly advantage is |Π1(0, x1) − Π1(1, x1)| ≤

1−min
(

supx2
P (0, 0|x1, x2), supx2

P (0, 1|x1, x2)
)

−supx2
P (1, 1|x1, x2). If we assume a priori that the

game is duopoly entry, then the bounds on monopoly advantage simplify to Π1(0, x1)−Π1(1, x1) ≤

1− supx2
P (0, 0|x1, x2)− supx2

P (1, 1|x1, x2). Bounding free-riding incentives ε1−Π1(1) (free riding

incentives of Player 1) is a little more involved, since they involve the unobserved heterogeneity

component ε. We may however apply the bounds of Theorem 2 to derive joint sharp bounds on the

distribution of the pair (ε1 −Π1(1), ε2 −Π2(1)).

Conclusion

This paper contributed to the literature on the empirical analysis of game theoretic models of

economic interactions by providing sharp bounds on nonparametrically specified payoff functions and

type distributions. This complements results of Kline and Tamer (2012) who derive sharp bounds

on best response functions. The bounds obtained lend themselves to standard partial identification

inference methods, and therefore allow nonparametric inference on utility functions, profit functions,

unobserved heterogeneity distributions and more specific quantities such as the extent of monopoly

advantage in duopoly entry games and free riding incentives in cooperation games. The method

employed to derive sharp bounds on payoff functions only as a projection of the joint identified

region for payoff functions and type distributions could be applied to higher dimensions to extend

the present results to multiperson games with more complex strategy spaces. Other equilibrium

concepts (Stackelberg, correlated strategies etc...) could also be entertained in future work.
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Appendix A. Proofs

In all that follows, for ease of notation, we drop the conditioning variables and write Πi(Y3−i = j,Xi) =

Πi(j) for i = 1, 2 and j = 1, 0 and pj1j2 = P (Y1 = j1, Y2 = j2|X1, X2). We shall also use the following

symmetries in the game. All results concerning the second asymmetric game can be obtained from results

concerning the first asymmetric game after permutation of the two players. The coordination game is

obtained from the duopoly entry game by relabeling. Hence all results for the coordination game can be

obtained from the results for the duopoly entry game with the following conversion table: Π1(0) in the

duopoly entry case is replaced by 1−Π1(1) and vice-versa. Π2(1) is replaced by Π2(0) and vice-versa. Σj1,j2

is replaced by Σ1−j1 ,j2 . P (j1, j2) is replaced by P (1− j1, j2). Finally, σ1 is replaced by 1− σ1.

A.1. Proof of Theorem 1. Dropping all explanatory variables from the notation, the equilibrium corre-

spondence ε = (ε1, ε2) 7→ G(ε), namely the set of all Nash equilibria in mixed strategies, for a given value

of ε = (ε1, ε2), is represented in Figure 1 and formally defined by G(ε) = {(0, 0)} if εi > Πi(0), i = 1, 2,

G(ε) = {(1, 1)} if εi < Πi(1), i = 1, 2, G(ε) = {(σ1, σ2)} if Πi(1) < εi < Πi(0), i = 1, 2, G(ε) = {(1, 0)} if

ε1 < Π1(1) ε2 > Π2(1) or ε1 < Π1(0) ε2 > Π2(0), with the convention that a degenerate mixed strategy is

denoted as its realization.

For almost all values of ε, there is at most one equilibrium in non degenerate mixed strategies. Hence, by

Lemma 2 of Galichon and Henry (2011), the game has a Shapley regular core (see for instance Definition 9

of Galichon and Henry (2011)) and Theorem 5 of Galichon and Henry (2011) applies. The identified set for

payoff functions and type distributions is therefore characterized by P (B) ≤
∫ (

maxσ∈G(ǫ) σ(B)
)

dC(ǫ), for

all subsets B of the set of realized decision profiles {(0, 1), (1, 0), (0, 0), (1, 1)}. This induces the following
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inequalities.

P (1, 1) ≤ C(Π1(1),Π2(1)) +

∫

∆

σ1(u2)σ2(u1)dC(u1, u2), (A.1)

P (0, 0) ≤ 1− Π1(0) −Π2(0) + C(Π1(0),Π2(0))

+

∫

∆

(1− σ1(u2))(1− σ2(u1))dC(u1, u2), (A.2)

P (0, 1) ≤ Π2(0)− C(Π1(1),Π2(0)),

P (1, 0) ≤ Π1(0)− C(Π1(0),Π2(1)),

P (1, 1) ≥ C(Π1(1),Π2(1)) (A.3)

P (0, 0) ≥ 1− Π1(0)− Π2(0) +C(Π1(0),Π2(0)) (A.4)

P (0, 1) ≥ Π2(0)− C(Π1(1),Π2(1))− [C(Π1(0),Π2(0))− C(Π1(0),Π2(1))], (A.5)

P (1, 0) ≥ Π1(0)− C(Π1(1),Π2(1))− [C(Π1(0),Π2(0))− C(Π1(1),Π2(0))], (A.6)

and
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P (0, 0) + P (0, 1) ≤ 1− Π1(0) + [C(Π1(0),Π2(0))− C(Π1(1),Π2(0))], (A.7)

P (0, 0) + P (1, 0) ≤ 1− Π2(0) + [C(Π1(0),Π2(0))− C(Π1(0),Π2(1))], (A.8)

P (1, 1) + P (0, 1) ≤ Π2(0) + [C(Π1(1),Π2(1))−C(Π1(1),Π2(0))], (A.9)

P (1, 1) + P (1, 0) ≤ Π1(0) + [C(Π1(1),Π2(1))−C(Π1(0),Π2(1))], (A.10)

P (1, 0) + P (0, 1) ≤ Π1(0) + Π2(0)− C(Π1(1),Π2(1))− C(Π1(0),Π2(0)), (A.11)

P (0, 0) + P (1, 1) ≤ C(Π1(1),Π2(1)) +

∫

∆

σ1(u2)σ2(u1)dC(u1, u2)

+1− Π1(0)− Π2(0) + C(Π1(0),Π2(0))

+

∫

∆

(1− σ1(u2))(1− σ2(u1))dC(u1, u2). (A.12)

Now, we will show that (A.7)-(A.12) are redundant. (A.3) and (A.6) jointly imply that P (1, 1) + P (1, 0) ≥

Π1(0) − [C(Π1(0),Π2(0)) − C(Π1(1),Π2(0))] so that 1 − Π1(0) + [C(Π1(0),Π2(0)) − C(Π1(1),Π2(0))] ≥

1−P (1, 1)−P (1, 0), hence (A.7) holds. Similarly, (A.3) and (A.5) imply (A.8), (A.4) and (A.6) imply (A.9),

(A.4) and (A.5) imply (A.10), (A.3) and (A.4) imply (A.11) and finally (A.1) and (A.2) imply (A.12). The

result follows.

A.2. Proof of Theorem 3.

A.2.1. Duopoly entry case. Consider first the duopoly entry case, with Πi(0) ≥ Πi(1), i = 1, 2. The bounds

are shown to hold in the main text as a corollary of Theorem 2. We show now that the bounds are jointly

sharp. To do so, take any given true frequency profile (p11, p10, p01, p00) and exhibit a joint distribution

C(ε1, ε2) and an equilibrium selection mechanism δ ∈ [0, 1] (denoting the probability that (Y1 = 1, Y2 = 0)

is selected in the region of multiplicity) such that all Π can be rationalized.

Construction of the joint distribution. We construct the joint distribution in the following way. Assume

P (ε1 ≤ Π1(1), ε2 ≤ Π2(1)) = p11 and P (ε1 ≥ Π1(0), ε2 ≥ Π2(0)) = p00. From the marginal constraints,
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P (ε1 ≤ Π1(1)) = Π1(1) and P (ε1 ≥ Π1(0) = 1− Π1(0). Hence we can choose s and t in [0, 1] such that the

following hold.

P (ε1 ≤ Π1(1), ε2 ≥ Π2(0)) = (1− s)(Π1(1)− p11),

P (ε1 ≤ Π1(1),Π2(1) ≤ ε2 ≤ Π2(0)) = s(Π1(1)− p11),

P (ε1 ≥ Π1(0), ε2 ≤ Π2(1)) = (1− t)(1− p00 −Π1(0)),

P (ε1 ≥ Π1(0),Π2(1) ≤ ε2 ≤ Π2(0)) = t(1− p00 − Π1(0)).

The mass in the remaining regions is constrained accordingly. In particular, we have:

P (Π1(1) ≤ ε1 ≤ Π1(0),Π2(1) ≤ ε2 ≤ Π2(0)) = Π2(0)− Π2(1)− s(Π1(1)− p11)− t(1− p00 − Π1(0)).

This mass can be divided between (Y1 = 1, Y2 = 0) and (Y1 = 0, Y2 = 1) with an appropriate choice of

equilibrium selection mechanism, in order to satisfy the following constraint.

p10 = 1− p00 − Π2(0) + s(Π1(1)− p11)

+δ
(

Π2(0)− Π2(1)− s(Π1(1)− p11)− t(1− p00 − Π1(0))
)

, (A.13)

with equilibrium selection parameter δ ∈ [0, 1]. There remains to show that equation (A.13) has a solution

for (s, t, δ) ∈ [0, 1]3.

Case 1− p00 = Π1(0): When 1− p00 = Π1(0), equation (A.13) becomes

p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1)) + s(1− δ)(Π1(1)− p11) = 0.

If Π1(1) = p11, then δ can be chosen equal to (Π2(0)− p01 − p11)/(Π2(0)−Π2(1)) (or δ unrestricted in case

Π2(0) = Π2(1)). If (1− δ)(Π1(1)− p11) > 0, then

s =
Π2(0)− p01 − p11 − δ(Π2(0)− Π2(1))

(1− δ)(Π1(1)− p11)
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must be between 0 and 1. So we must have δ ≤ (Π2(0) − p01 − p11)/(Π2(0) − Π2(1)) (no restriction if

Π2(0) = Π2(1)) and

(Π2(0)− p01 − p11)− (Π1(1)− p11) ≤ δ
(

(Π2(0) −Π2(1))− (Π1(1) − p11)
)

. (A.14)

We denote the latter A ≤ δB. Since Π2(1) ≤ p01 + p11, only three cases need to be considered:

(1) 0 < A ≤ B: the δ needs to be chosen larger than or equal to A/B. Combined with the above, it

yields 0 < A/B ≤ δ ≤ (A+Π1(1) − p11)/(B +Π1(1) − p11) ≤ 1, which has solutions since A ≤ B

and Π1(1) ≥ p11.

(2) A < 0 ≤ B: then (A.14) is always satisfied for δ ≥ 0 since the left-hand-side is negative and the

right-hand-side is non negative.

(3) A < B < 0: then any δ ∈ [0, 1] satisfies (A.14) since −A > −B.

Case 1− p00 − Π1(0) > 0: When δ(1− p00 −Π1(0)) > 0, equation (A.13) can be rewritten:

t =
p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1)) + s(1− δ)(Π1(1)− p11)

δ(1− p00 − Π1(0))

so we need to show there exists (s, δ) ∈ [0, 1]2 such that

0 ≤ p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1)) + s(1− δ)(Π1(1)− p11) ≤ δ(1− p00 − Π1(0)). (A.15)

Subcase Π1(1) = p11: We need to show the existence of δ ∈ [0, 1] such that

0 ≤ δ(Π2(0)− Π2(1))− (Π2(0)− p01 − p11) ≤ δ(1− p00 − Π1(0)).

The left inequality is satisfied for

Π2(0)− p01 − p11
Π2(0)− Π2(1)

≤ δ ≤ 1, (A.16)

since Π2(1) ≤ p01 + p11 ≤ Π2(0). The right inequality is equivalent to

−
(

Π2(0)− p01 − p11
)

≤ δ
(

1− p00 − Π1(0)− (Π2(0)− Π2(1))
)

,
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which is true for any δ ≥ 0 if 1− p00 − Π1(0) ≥ Π2(0)− Π2(1) and for any

0 ≤ δ ≤
Π2(0)− p01 − p11

Π2(0)− Π2(1) − (1− p00 − Π1(0))
(A.17)

otherwise. (A.16) and (A.17) are compatible since 1− p00 ≥ Π1(0).

Subcase Π1(1) > p11: (A.15) is equivalent to

−
(

p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))
)

(1− δ)(Π1(1)− p11)
≤ s

≤
δ(1− p00 − Π1(0)) −

(

p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))
)

(1− δ)(Π1(1)− p11)
.

The latter admits a solution s ∈ [0, 1] if and only if

δ(1− p00 − Π1(0))−
(

p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))
)

≥ 0 (A.18)

and −
(

p01 + p11 − Π2(0) + δ(Π2(0)− Π2(1))
)

≤ (1− δ)(Π1(1)− p11). (A.19)

(A.19) is equivalent to

δ
(

(Π1(1)− p11)− (Π2(0)− Π2(1))
)

≤ (Π1(1) − p11)− (Π2(0)− p01 − p11), (A.20)

which we denote δB ≤ A. Since Π2(1) ≤ p01 + p11, we have A ≥ B and we need only consider the following

three cases:

(1) If 0 < B ≤ A, (A.20) is satisfied for all δ ∈ [0, 1].

(2) If B ≤ 0 ≤ A, (A.20) is satisfied for all δ ≥ 0, since the left hand side is negative and the

right-hand-side positive.

(3) If B ≤ A < 0: (A.20) is satisfied for a choice of δ ≥ A/B, namely

(Π2(0)− p01 − p11)− (Π1(1)− p11)

(Π2(0)− Π2(1))− (Π1(1)− p11)
≤ δ ≤ 1. (A.21)

(A.18) is equivalent to

δ
(

1− p00 − Π1(0)− (Π2(0)− Π2(1))
)

≥ p01 + p11 − Π2(0).

The right-hand-side is negative, so the statement is
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(1) true for all δ ∈ [0, 1] when 1− p00 − Π1(0) − (Π2(0) −Π2(1)) ≥ 0,

(2) true for all

0 ≤ δ ≤
Π2(0)− p01 − p11

(Π2(0)− Π2(1))− (1− p00 − Π1(0))
(A.22)

when 1− p00 − Π1(0)− (Π2(0)− Π2(1)) < 0.

Note that there is a solution to both (A.21) and (A.22). Indeed, calling the left-hand-side of (A.21) −A/(−B),

with both numerator and denominator positive, we can write the right-hand-side of (A.22) as [−A+(Π1(1)−

p11)]/(−B + (Π1(1)− p11)− (1− p00 −Π1(0))), which is larger than or equal to −A/(−B). This completes

the proof for the duopoly entry case.

A.2.2. Coordination case: As shown above, results for the coordination case can be obtained from results

pertaining to the duopoly entry case by relabeling of payoff functions.

A.2.3. Asymmetric cases: From the identified set for (Π, C) we can derive sharp bounds for the payoff func-

tions alone using Fréchet bounds on C. Line 1 of (3.3) yields P (1, 1) = C(Π1(1),Π2(1)) ≤ min(Π1(1),Π2(2)) ≤

Π2(1) (Fréchet bound). Similarly, Line 4 of (3.3) yields P (1, 0) = Π1(0) − C(Π1(0),Π2(1)) ≤ Π1(0) and

1 − P (1, 0) = 1 − Π1(0) + C(Π1(0),Π2(1)) ≥ Π2(1) (Fréchet lower bound). Line 3 yields 1 − P (0, 1) =

1−Π2(0)+C(Π1(1),Π2(0)) ≥ Π1(1). Since Π1(1) ≥ Π1(0), we have C(Π1(1),Π2(1)) ≥ C(Π1(0),Π2(1)) and

Lines 1 and 4 of (3.3) combined yield P (1, 1)+P (1, 0) = Π1(0)+[C(Π1(1),Π2(1))−C(Π1(0),Π2(1))] ≥ Π1(0).

Similarly, since Π2(1) ≤ Π2(0), we have C(Π1(1),Π2(1)) ≤ C(Π1(1),Π2(0)) and Lines 1 and 3 yield

P (1, 1)+P (0, 1) = Π2(0)+[C(Π1(1),Π2(1))−C(Π1(1),Π2(0))] ≤ Π2(0). Finally, P (0, 1)+P (1, 1) = Π2(0)−

[C(Π1(1),Π2(0))−C(Π1(1),Π2(1))] ≥ Π2(0)−[Π2(0)−Π2(1)] = Π2(1) and similarly P (1, 0)+P (1, 1) ≥ Π1(0).

We show now that the bounds are jointly sharp. To do so, take any given true frequency profile

(p11, p10, p01, p00) and exhibit a joint distribution C(ε1, ε2) such that all Π can be rationalized.
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Construction of the joint distribution. We construct the joint distribution in the following way. Let (s, t, u, v) ∈

[0, 1]4 be such that the following hold.

P (ε1 ≤ Π1(0), ε2 ≤ Π2(1)) = (1− u)p11,

P (Π1(0) ≤ ε1 ≤ Π1(1), ε2 ≤ Π2(1)) = up11,

P (ε1 ≥ Π1(1), ε2 ≤ Π2(1)) = (1− t)p01,

P (ε1 ≥ Π1(1),Π2(1) ≤ ε2 ≤ Π2(0)) = tp01,

P (ε1 ≥ Π1(1), ε2 ≥ Π2(0)) = (1− s)p00,

P (Π1(0) ≤ ε1 ≤ Π1(1), ε2 ≥ Π2(0)) = sp00,

P (ε1 ≤ Π1(0), ε2 ≥ Π2(0)) = (1− v)p10,

P (ε1 ≤ Π1(0),Π2(1) ≤ ε2 ≤ Π2(0)) = vp10.

Marginal constraints are given by 1 − Π1(1) = p01 + (1 − s)p00, 1 − Π2(0) = p00 + (1 − v)p10, Π1(0) =

p10 + (1− u)p11 and Π2(1) = p11 + (1− t)p01.

and the solution for (s, t, u, v) ∈ [0, 1]4 is the following.

(s, t, u, v) =

(

Π1(1)− p11 − p10
p00

,
p11 + p01 − Π2(1)

p01
,
p11 + p10 − Π1(0)

p11
,
Π2(0) − p11 − p01

p10

)

.

Note that Π1(0) = 0 and Π1(1) = 1 can only be reached if p10 = p01 = 0, which in turns forces Π2(1) =

Π2(0) = p11 = 1 − p00. Similarly, Π2(0) = 1 and Π2(1) = 0 can only be reached if p11 = p00 = 0, which in

turns forces Π1(1) = Π1(0) = p10 = 1− p01.

The bounds for the second asymmetric game are obtained by permuting the two players and the result

follows.
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