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Abstract
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for their helpful comments and suggestions. We would also like to thank the participants to many con-

ferences and seminars, including: the SCSE2012, the economic department at PennState, the economic

department at U. de Montreal, and the workshop CeMMAP-CIREQ-SciencesPo-X on “The Estimation of

Complementarities in Matching and Social Networks”.

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and

designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North

Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National

Institute of Child Health and Human Development, with cooperative funding from 23 other federal agen-

cies and foundations.
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1 Introduction

How do social networks form? Specifically, how can we measure the influence of an individual’s

socioeconomic characteristics on the identity of his peers? We know that many social networks

exhibit strong racial or religious segregation (see for instance Echenique and Fryer 2007, Watts

2006, and Mele 2007). This observation raises many interesting questions regarding the cause

of this segregation. For instance, we would like to be able to distinguish the impact of the

individuals’ characteristics (e.g. race), and the impact of the individuals’ positions in the networks

(e.g. popularity). The shape of the existing social networks also have measurable effects on

individuals’ choices. Many studies show a strong influence of an individual’s peers on his actions,

ranging from unhealthy consumption choices (e.g. Fortin and Yazbeck 2011 and the references

therein) to labor force participation (e.g. van der Leij et al. 2009, and Patacchini and Zenou

2009). However, since most social networks are endogenously formed, the estimated influence of

peers is likely to be biased.1 Understanding how the networks are formed could then allow us

to control for this endogeneity and suggest policy instruments that would help influence network

formation processes.

In this paper, we provide a simple Pseudo Maximum Likelihood estimator (PMLE, see

Gourieroux et al., 1984) which allows us to recover underlying preference parameters for pairwise

stable networks (Jackson and Wolinsky, 1996). The approach is compelling as it requires the

observation of a single network. The set of admissible preferences is also large and characterized

by intuitive, easy-to-check conditions. Specifically, we show that the estimator is consistent and

asymptotically normally distributed provided that individuals’ preferences exhibit a weak version

of homophily. Homophily is one of the most robust empirical fact about social networks. It

formalizes the observation that similar individuals are more likely to interact with each other.

As homophily is featured by both theoretical (e.g. Bramoullé et al. 2012, and Currarini et al.

2009), and empirical (e.g. Mele 2007, and Christakis et al. 2010) models of network formation,

our methodology is applicable to many existing models of network formation. We apply this new

methodology to the formation of friendship networks among American teenagers.

A fundamental challenge in estimating a network formation process is the highly dependent

nature of most socio-economic relationships. Consider for instance the case of friendship networks.

1The literature on peer effects have only recently considered explicitly the endogeneity of social networks. See
for instance Goldsmith-Pinkham and Imbens (2011), and Blume et al. (2011).

1



The probability that Adam and Beth are friends depends on their individual characteristics.

However, it may also depends on the fact that Beth is friend with Charlotte (who maybe does not

like Adam). The probability that Adam and Beth are friends may then depend on Charlotte’s

individual characteristics. Hence, the observation “Adam and Beth are friends” depends on

Charlotte’s characteristics. However, if individuals have homophilic preferences, the probability

that Adam and Beth are friends should be primarily influenced by individuals similar to them. If

Adam and Beth are high-school teenagers for instance, the probability that they become friends

increases if they go the the same school, or if they attend the same classes. Accordingly, if Beth

and Charlotte are friends, there is a greater probability that they go to the same school, or

at least that they live in the same country. Then, Donald, a elderly man, living in a different

country (hence having individual characteristics quite different from those of Adam, Beth and

Charlotte) probably does not influence much the probability that Adam and Beth become friends.

We generalize this argument and show that homophily implies a generalization of the φ-mixing

property used in time-series and spatial econometric models. This fact allows us to define a

consistent estimation strategy based on a Pseudo Maximum Likelihood estimator.

This paper contributes to the empirical literature on strategic network formation. Two main

approaches have been proposed. The first approach requires the observation of many (mostly

independent) social networks. Some of those papers are specifically interested in estimating

homophilic preferences (see for instance Boucher 2012, and Currarini et al. 2010) and uses

standard frequentist approaches, i.e. standard Maximum Likelihood estimators. As these papers

assume ex-ante homophily, they are limited in their scope of applications. Looking at a more

general set of preferences, Sheng (2012) studies the presence of multiple equilibria when the link

formation process is locally dependent. One limit of those approaches is however that they require

the observation of many (an asymptotically infinite number of) independent social networks,

which is not always available in existing databases.

The second approach requires the observation of only one network, at one point in time. As

the observations are highly dependent, standard maximum likelihood methods are not consistent.

Accordingly, most papers use a Bayesian approach, and as the likelihood function cannot usually

be written explicitly, most papers rely on simulation methods such as Markov Chain Monte Carlo

(in particular Christakis et al. 2010, Mele 2010, and Goldsmith-Pinkham and Imbens 2011). If

they are less demanding in terms of data, those methods are however quite complex to implement
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in practice (and not very flexible), and the computing time needed makes them unsuitable for

large database.

We contribute to this literature by providing an explicit, easily implementable, PMLE requir-

ing the observation of only one social network, at one point in time. We introduce a weakened

notion of homophily, and show that it implies that our PMLE is consistent and asymptotically

normally distributed. In order to do so, we use Laws of Large Numbers and Central Limit Theo-

rems due to Jenish and Prucha (2009), as well as estimators for the variance-covariance matrices

due to Conley (1999) and Bester et al. (2012).

We also contribute to the literature by discussing the identification of models of network

formation based on pairwise stability and by making the link with the bivariate probit with

partial observability (Poirier, 1980). We also discuss how our model of network formation can be

adapted to study bipartite networks, and games with transfers.

The remaining of the paper is organized as follows. In section 2.1, we present the economy.

In section 2.2, we propose an estimator of the equilibrium social network which allows to recover

the underlying individuals’ preferences. In section 3, we derive the asymptotic distribution of

our estimator, and in section 4, we define a class of network formation models suited to our

econometric framework. In section 5, we provide an application using the Add Health database,

and we discuss policy-making implications and potential avenues for future research in section 6.

2 The basic framework

2.1 The Economy

Let N = {1, ..., n} be the set of individuals. Each individual is characterized by a random vector

of T ≥ 1 characteristics xi = (x1
i , ..., x

T
i ) ∈ X . We assume that X ⊂ RT and we define the

distance between two individuals as d(i, j) = d(xi, xj), where d is a distance on RT . Finally,

we note x = (x1, ..., xn) ∈ X n the matrix of individual characteristics. Is it worth noting that

the choice of the distance function d is arbitrary. In general, the choice of this distance function

will be context-dependent. In particular, the distance can represent spatial preferences of the

individuals.2 We provide an example in section 5.

Let m = n(n−1)
2 be the number of possible pairs of individuals (i, j) for i 6= j in the economy.

2See in particular Henry and Mourifié (2011) for spatial preferences on the euclidean space.
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We assume that individuals interact in a network gm = (N,W), where W is a n× n symmetric

matrix that takes values wij = 1 if i ∈ N and j ∈ N are linked by a socio-economic relationship

(e.g. friendship), and wij = 0 otherwise. For a given set of individuals N , the set of all possible

networks is noted Gm. For a given network gm ∈ Gm, we will note ij ∈ gm if wij = 1. We will

also denote by g−ij, the network gm from which we removed the link between i and j. If ij /∈ gm,

then gm − ij = gm. We define gm + ij similarly.

The set of links an individual has is noted Ni(gm) = {j ∈ N : ij ∈ gm}. The cardinality of

that set is the degree of an individual, formally ni(gm) = |Ni(gm)|. The geodesic distance (or

shortest path) between i and j in the network gm equals the minimal number of existing links

in gm such that j can be reached from i. Let ρij(gm) be the geodesic distance between i and j

in the network gm. We say that i and j are connected in gm if ρij(gm) < ∞. If i and j are not

connected, we let ρij(gm) = ∞. Let Rgmij = {k ∈ N |min(ρik(gm), ρjk(gm)) < ∞} be the set of

individuals connected either to i or to j. For V ⊂ N , we note gm|V the network restricted to

individuals in V , i.e. for all i, j ∈ V , we have (w|V )ij = wij , while we have (w|V )ij = 0 if i ∈ N \V

or j ∈ N \ V . Let also xV ∈ X |V | be the matrix of individual characteristics of individuals in V .

We assume that the network gm = (N,W) is endogenous and determined as a function of

the individuals’ (stochastic) utilities. An individual has preferences over the set of characteristics

and the network structure in the economy, i.e. ui : Gm × X n → R. Specifically, we write

ui(gm, x; θ, εi) where θ ∈ (θ1, ..., θK) ∈ Θ is the set of parameters to be estimated, and the vector

εi = (εi1, ..., εin) is the unobserved component of the utility function. It will be convenient to use

the following representation of the utility function.

Definition 1 Given gm and x, the value for i ∈ N of a link with j ∈ N \ {i} is given by

Hj
i (gm − ij, x; θ, εi) = ui(gm, x; θ, εi)− ui(gm − ij, x; θ, εi)

Given Hj
i (gm− ij, x; θ, εi) for all i, j ∈ N , we want to know what information can be retrieved

from the observation of a single network gm ∈ Gm, and a set of individual characteristics x ∈ X n.

We concentrate on the properties of the network gm and not on the specific dynamic process by

which the network is created. For instance, we do not require the links to be added in a specific

order to the network. We rather assume that the observed network gm is stable. We are interested

in a particular notion of stability, introduced by Jackson and Wolinsky (1996).
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Definition 2 A network gm is Pairwise Stable if, for all i, j ∈ N :

1) wij = 1 if [ Hj
i (gm − ij, x; θ, εi) ≥ 0 and H i

j(gm − ij, x; θ, εj) ≥ 0 ]

2) wij = 0 otherwise

Then, a link is created iff it is profitable for both individuals involved. Let PSN ⊆ Gm be

the set of pairwise stable networks. The existence and multiplicity of equilibria are discussed

in section 4.3. For now, assume that there exists a unique pairwise stable network. Pairwise

stability is extensively used in the literature on strategic network formation.3 Any potential

deviation from a pairwise stable network results from a single pair of individuals changing the

status of its link. That is, any admissible deviation is such that gm ∈ Gm goes from gm to

gm + ij for some i, j ∈ N , or from gm to gm − ij for some i, j ∈ N . Pairwise stability can then

be viewed as the weakest bilateral extension from the set of individually rational networks.4 We

study the asymptotic properties of pairwise stable networks. In the next section, we present the

econometric framework.

2.2 The Econometric Framework

We want to know what information can be retrieved from the observation of a single pairwise

stable network. Specifically, suppose that we observe a set of m pairs of individuals. The set

of pairs is noted Sm, with typical elements s and r. Any two individuals i and j necessarily

belong to some pair s, where s = (s1, s2) = (i, j). For each pair, we observe the status (linked or

not) of the pair and the socio-economic characteristics of the individuals in the pair (age, gender,

income...). We formally define the position of a pair s ∈ Sm in X as the average point between

s1 and s2, i.e. xs ∈ X such that xs =
xs1+xs2

2 .5 Accordingly, the distance between two pairs r

and s is equal to d(s, r) = d(xr, xs) = d( s1+s2
2 , r1+r2

2 ).

In this section, we show that pairwise stability allows to express the probability of a link’s

status in terms of the observable socio-economic characteristics. Let Σε =

 1 %

% 1

, we present

our first assumption.

3See for instance Jackson (2008, chapter 6).
4For comparisons between stability concepts on networks, see for instance Bloch and Jackson (2006) and

Chakrabarti and Gilles (2007).
5This is done without loss of generality. The method is robust to other definitions of a pair’s position in X , as

long as xs is located in a given neighbourhood of xs1 and xs2 .
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Assumption 1 (Preferences) For all i, j ∈ N ,

(1.1) Hj
i (gm − ij, x; θ, εi) = hji (gm − ij, x; θ) + εij, with (εij , εji)|gm − ij, x ∼ N(0,Σε).

(1.2) hji (gm − ij, x; θ) is three times continuously differentiable in θ.

(1.3) Θ is a compact subset of RK , for K ≥ 1.

Assumption 1.2 and 1.3 are standard technical requirements. Assumption 1.1 deserves more

attention. The separability of the error term is quite standard (see Additive Random Utility

Models, following McFadden, 1981). Also, as our dependent variable (i.e. the status of a pair) is

discrete, only scale-identification can be achieved. There is then no loss of generality in normal-

izing the diagonal elements of the variance-covariance matrix of the error term. We assume that

εij follows a normal distribution for convenience (for instance, it allows to present our estimator

as a bivariate probit estimator, see below). In general, our method can be adapted to many

distributional assumptions. In particular, all our results are valid for any distribution for which

the left tail of the cdf distribution is exponentially bounded. Notice that while the (εij , εji) are

identically distributed, they are not necessarily independent.

The error term εij is interpreted as a random shock on the value of the pair for an individual.

Hence, the observed binary outcome wij does not represent the binary choice of a single decision-

maker, but ratter the joint choice of both individuals in the pair (i.e. wij = 1 only if the link

has positive value for i and j). Then, our model leads to a bivariate probit estimator, where we

partially observe the choices of the individuals (Poirier, 1980).6

Specifically, we want to estimate θ ∈ Θ, given the fact that the observed network gm is pairwise

stable. Given definition 2, a link ij is created (i.e. wij = 1) if and only if Hj
i (gm− ij, x; θ, εi) ≥ 0

and H i
j(gm−ij, x; θ, εj) ≥ 0. Then, under assumption 1.1, the probability that wij = 1 for i, j ∈ N

is equal to Φ2(hji (gm − ij, x; θ), hij(gm − ij, x; θ), %), where Φ2 is the c.d.f. for the standardized

bivariate normal distribution with covariance %. We then propose the following PMLE.7

Lm(θ) =
1

m

∑
ij:i<j

wij ln[Φ2(hji (gm − ij, x; θ), hij(gm − ij, x; θ), %)]

+ (1− wij) ln[1− Φ2(hji (gm − ij, x; θ), hij(gm − ij, x; θ), %)] (1)

6A previous version of the paper was assuming εij = εji which led to an univariate probit model. We thank
Bryan S. Graham for having suggested this extension to us.

7Since the observations are dependent, the true likelihood of gm cannot be written as the product of the marginals
Φ2(hj

i (gm − ij, x; θ), hi
j(gm − ij, x; θ), %). See Gourieroux et al. (1984) or Gourieroux and Monfort (1989, section

8.4) for a general description.
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Then our estimator is a “standard” bivariate probit with partial observability.8 It is well

known that the identification of those type of models is tricky and we discuss it in section 5.

Another problem is that the estimator θ̂ = arg maxθ∈Θ Lm(θ) is not necessarily consistent (as

m → ∞) since the observations can be dependent. For instance, hji (gm − ij, x; θ) may depends

on the number of links i and j have in the network gm. In the next section, we find sufficient

conditions for the consistency and asymptotic normality of θ̂ = argmaxθ∈ΘLm(θ) when the

number of pairs m goes to infinity.

3 Limited Dependence Theorems

In this section, we present two theorems for dependent observations. We show that under φ-

mixing, θ ∈ Θ can be consistently estimated using the model in (1). Those theorems are useful

since, as we show in section 4, there exist simple conditions on hji which imply φ-mixing.9

We start by introducing the following random variable, for all pairs s ∈ Sm:

Zs,m =


1 if Hs2

s1 (gm − ij, x; θ, εs1) ≥ 0 and Hs1
s2 (gm − ij, x; θ, εs2) ≥ 0

0 otherwise

The random field {Zs,m; s ∈ Sm,m ∈ N} is defined on the probability space (Ω,F ,P), where

Ω = {0, 1}m, F is a σ-algebra on Ω, and P is a probability measure on Ω. To clarify the

exposition, we use the following simplifying notation:

qs,m(zs,m|x, gm, θ) = ws ln[Φ2(hs2s1(gm − ij, x; θ), hs1s2(gm − ij, x; θ), %)]

+ (1− ws) ln[1− Φ(hs2s1(gm − ij, x; θ), hs1s2(gm − ij, x; θ), %)]

so (1) can be written as:

Lm(θ) =
1

m

∑
s∈Sm

qs,m(zs,m|x, gm, θ) (2)

We also use qs,m(θ) = qs,m(zs,m|x, gm, θ) when there is no ambiguity.

8This estimator is available in many statistical software packages. For instance, in Stata, one can use the
command “biprobit” with the “partial” option.

9Our results can easily be adapted to other mixing definitions such as α-mixing.
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We now turn to the dependence structure of (2). For any two events A ∈ A and B ∈ B, where

A,B are sub-σ-algebras of F , the φ-mixing coefficient is given by

φ(A,B) = sup{|P(A|B)− P(A)|, A ∈ A, B ∈ B,P(B) > 0}

This is analogue to standard time-series models. In a time dependent model, the estimation is

consistent if limr→∞ supt φ(F t−∞,F∞t+r) = 0, where F t2t1 is the σ-algebra for the realizations from

time t1 to time t2.10 We want to apply the same basic approach when the dependence between A

and B goes through X . Then, instead of characterizing an observation by its position in time, we

define it by its position in X . Since the dependence in X is more complex than time-dependence,

the asymptotic convergence of the φ-mixing coefficient is not sufficient. In order to show the

consistency and asymptotic normality of θ̂ = arg maxθ Lm(θ), we use Laws of Large Numbers

and Central Limit theorems for dependent observations on random fields developed by Jenish

and Prucha (2009, Theorems 1,2 and 3). Let us introduce the following definition.

Definition 3 Let A,B ⊂ Ω, with corresponding σ-algebra Am and Bm. Let also |A| and |B|

denote the number of pairs of individuals in A and B. We define the following function:

φ̄k,l(r) = sup
m

sup
A,B

(φ(Am,Bm), |A| ≤ k, |B| ≤ l, d(A,B) ≥ r)

where d(A,B) is the Hausdorff distance on X for the set of pairs in A and B.

We will show that a sufficient condition for the consistency and the asymptotic normality of

θ̂ = argmaxθLm(θ) is the following:

Assumption 2 (φ-mixing)

(2.1)
∑∞

r=1 r
T−1φ̄

1/2
1,1 (r) <∞

(2.2)
∑∞

r=1 r
T−1φ̄k,l(r) <∞, for k + l ≤ 4

(2.3) φ̄1,∞(r) = O(r−T−ε) for some ε > 0.

Recall that T ≥ 1 is the dimension of X . In words, not only φ̄k,l(r) has to converge to 0, but

this convergence has to be fast enough. In section 4, we give sufficient conditions under which

assumption 2 holds. For the moment, we show the validity of the estimation technique given

10See for instance White (2001).
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that φ-mixing is respected. The first theorem concerns the consistency of θ̂ = argmaxθ∈Θ Lm(θ).

First, we need some regularity conditions.

Assumption 3 (Regularity I)

(3.1) There exists a unique θ0 ∈ int Θ maximizing limm→∞ E[Lm(θ)].

(3.2) For all s1, s2 ∈ N , d(s1, s2) ≥ d0 for some d0 > 0.

(3.3) supm sups E[supθ∈Θ |qs,m(θ)|(1+η)] <∞ for some η > 0.

(3.4) supm sups E[supθ∈Θ |
∂qm,s(θ)

∂θ |] <∞.

Assumption 3.1 is the identification condition. Assumption 3.2 is the increasing domain

assumption. It ensures that the distance goes to infinity as the number of individuals goes to

infinity. Given the existence of a minimal distance d0, the sub-space of X which contains all

the individuals has to expand (with respect to d) as the number of individuals increases. This

assumption describes how the space of individual characteristics X is filled as the number of pairs

m goes to infinity. Finally, assumption 3.3 and 3.4 require standard moment conditions on the

payoff function. We have the following.

Theorem 3.1 (Consistency) Suppose that assumptions 1 and 3 hold, and that assumption

(2.2) is respected for k = l = 1. Then, the estimator θ̂ = argmaxθ∈Θ Lm(θ) is consistent as

m→∞.

We still need to derive the asymptotic distribution of θ̂. We define the following matrices:

D0(θ0) = limm→∞E[
∂2Lm(θ0)

∂θ∂θ′
]

B0(θ0) = limm→∞mE[
∂Lm(θ0)

∂θ

(
∂Lm(θ0)

∂θ

)′
]

Now, since the asymptotic normality of the estimator requires more structure than the one

needed for consistency, we need assumptions 2.1-2.3, as well as the following additional regularity

conditions.

Assumption 4 (Regularity II)

(4.1) B0(θ0) > 0.

(4.2) D0(θ0) is invertible.

(4.3) supm sups E[supθ∈Θ ‖Dm,s(θ)‖1+η] <∞ for some η > 0.
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(4.4) supm sups E[supθ∈Θ ‖
∂Dm,s(θ)

∂θ ‖] <∞.

(4.5) supm sups E[supθ∈Θ |
∂qs,m(θ)

∂θ |2] <∞

where Dm,s(θ) =
∂2qs,m(θ)
∂θ∂θ′ . Those assumptions are quite standard and are sufficient to show the

asymptotic normality of our estimator.11

Theorem 3.2 (Asymptotic Normality) Let m → ∞. Under assumptions 1, 2, 3 and 4, the

estimator θ̂ = argmaxθ∈Θ Lm(θ) is normally distributed with variance-covariance matrix given

by D−1
0 B0D

−1
0 /m.

The Variance-Covariance Matrix is the equivalent for our setting of the Heteroskedasticity

and Autocorrelation Consistent (HAC) variance-covariance matrix. The estimation of those vari-

ances is not straightforward. The estimation of D0(θ0) follows from theorems 3.1 and 3.2 since

D0(θ) has the same dependence structure as limm→∞ ELm(θ). A consistent estimator is then

Dm(θ̂) = 1
m

∑m
s=1Ds,m(θ̂). Defining a consistent estimator for B0(θ0) is more challenging. We

suggest two approaches to estimate B0(θ0). The first one is based on a generalization of stan-

dard HAC estimators and is due to Conley (1999). The estimator Bm(θ) is formally described

in the appendix. Under mixing conditions, Bm(θ) is a consistent estimator for B0(θ0). Although

valid, this estimator can be very computationally intensive when the number of dimensions of X

increases (say, T ≥ 4). An alternative approach have been suggest by Bester et al. (2012), where

they propose to use the well known Variance Cluster (VC) estimator (also formally described in

appendix). Although the estimator is not consistent under weak dependence, they show that the

estimator converges to a well defined random variable and that the standard t-test are still valid.

In other words, under mixing conditions, inference using the VC estimator is valid, even if the es-

timator itself is not consistent. This estimator has the advantage of requiring little computational

time and to be simple to implement.

In this section, we have shown that under φ-mixing and some regularity conditions, θ ∈ Θ can

be recovered using (1). In the next section, we show that an asymptotic version of the homophily

principle is a sufficient condition for φ-mixing, as defined in assumption 2.

11Formally, the proof of theorem 3.2 derives the limit distribution for
√
m(θ̂ − θ0). We report the asymptotic

distribution of θ̂ for presentation purposes.
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4 Models of network formation

4.1 A First Example

We now turn to economic models of network formation. We want to find sufficient conditions on

hji (gm− ij, x; θ) such that assumption 2 holds. To clarify the presentation, we start with a simple

example. Assume for the moment that

hji = hji [Ni(gm − ij), Nj(gm − ij), d(i, j)]. (3)

That is, the value of a link depends only on the (direct) links the individuals have, and the distance

between them. Given this specific dependence structure, we will show that a weak version of the

homophily principle is sufficient to achieve φ-mixing.

Homophily is a prominent feature of social networks. It characterizes the empirical fact that

similar individuals have a higher probability of being linked.12 We assume the following:

Assumption 5 (Asymptotic Homophily) For all i, j ∈ N ,

(5.1) hji (gm − ij, x; θ)→ −∞ as d(i, j)→∞.

(5.2) limd(i,j)→∞ exp

{
−hji (gm−ij,x;θ)2

2d(i,j)

}
∈ [0, 1).

Assumption (5.1) simply says that if the distance between two individuals is infinite, the

probability that they form a link is equal to 0. Condition (5.2) limits the asymptotic concavity of

hji in d. For example, suppose that h̄(d) = O(dη) for some η. Then, assumption 5.2 holds if η > 1
2 ,

but not if η ≤ 1
2 . Notice that assumption 5 only requires that homophily holds asymptotically

hence allowing for a wide range of non-homophilic preferences.

We show that, under the specification in (3), Asymptotic Homophily is sufficient for φ-mixing.

Before we present the formal result, we provide a graphical intuition. Consider Figure 1, where

we assumed that X = R2. Individuals are represented as circles, and pairs as stars.

The φ-mixing condition says that, as the distance between A and B tends to infinity, the

realizations on A and B (i.e. the status of the pairs within those subsets) are independent.

Consider pairs s and r. As the distance between r and s increases, the distance between the

12Many definitions of homophily exist in the economic literature, see for instance Currarini et al. (2009) and
Bramoullé and Rogers (2010). In particular, some papers explicitly define homophily using a distance function on
the space of individual characteristics: for instance, Boucher (2012), Johnson and Gilles (2000), Marmaros and
Sacerdote (2006), and Iijima and Kamada (2010).
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Figure 1: φ-mixing on Networks
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individuals within those pairs (i.e. s1, s2 and r1, r2) increases as well. Under assumption 5, as

the distance between, s2 and r1 goes to infinity, the probability that they form a link goes to

zero. Since, under the specification in (3), payoffs only depends on direct links, the status of s

will therefore be independent of the status of r. The argument holds for any pairs in A and B.

Before presenting the formal statement, we need to add one more regularity assumption.

Recall that a necessary condition for theorems 3.1 and 3.2 was the existence of a minimal distance

d0. However, in order to show that asymptotic homophily is sufficient for φ-mixing, we need to

be more specific about how the space of individual characteristics is filled as the number of

individuals goes to infinity. Specifically, we assume:

Assumption 6 limm→∞md
T+ε
m ηdm <∞ for all η ∈ [0, 1) and for some ε > 0.

where dm represent the fact that the distance increases as m→∞ (increasing domain).13 This

is in essence a distributional assumption for the individuals in X . It requires that the tails of the

distributions are large enough. If the distribution of individuals on the type is too concentrated,

the mixing coefficient φ̄1,∞(r) will decrease as m increases, but not enough for assumption 2 to

hold. Given this last regularity assumption, we have the following:

Proposition 4.1 Let m→∞. Suppose that the payoff function is given by (3) for all i, j ∈ N .

Then, assumptions 1, 5 and 6 imply assumption 2.

When the payoffs are only dependent through direct links, it is sufficient to show that the

probability of a link between an individual in a pair in A and an individual in a pair in B goes to

13Specifically assumption 6 must be satisfied for any sequence dm.
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zero fast enough. Since we assumed (assumption 1) that the error term is normally distributed,

this probability decreases at exponential rate, which is sufficiently fast in the sense of assumption

2.

Assumption 5 is quite natural, and allows to adapt many known theoretical models to our

setting. Consider for instance the “Local Spillover” model from Goyal and Joshi (2006):14

hji (gm − ij, x) = ψ(ni(gm − ij)− 1, nj(gm − ij)− 1)− cij

where ψ : N2 → R, and cij is some positive constant. In this example, the value of a link between

i and j is equal to a function of the number of links they have, minus a link-dependent cost. One

could adapt their model, and introduce the observed heterogeneity by letting cij = d(i, j), i.e.

a cost equal to the distance between the two individuals in X . Doing so would guarantee the

Asymptotic Homophily assumption. We now turn to more general network formation processes.

4.2 More General Models

Proposition 4.1 provides a first encouraging result for the estimation of preferences on networks.

However, the specification in (3) excludes many interesting models of network formation. For

instance, one could be interested in the following model. Let C(gm, λ) = (I− λW)−1W1 be the

n × 1 vector of Bonacich centrality in the network g, represented by the adjacency matrix W,

for some λ ∈ (0, 1). The Bonacich centrality accounts for the total number of links (direct and

indirect) an individual has, and can be interpreted as a measure of popularity.15

Now, define the payoffs as: hji = h(ci(gm − ij, λ), cj(gm − ij, λ), d(i, j)). This payoff function

does not respect the conditions of proposition 4.1 since it depends on indirect links. We will see

that we can nonetheless use the same argument to allow for such models. First, we provide some

intuition on the class of models which do not respect the φ-mixing condition. Suppose that the

payoff function is of the following form.16

hji (gm − ij, x) = ψ(ni(gm − ij), nj(gm − ij), L(gm,−i−j))− cij

where L(gm,−i−j) =
∑

k 6=i,j nk(gm,−i−j) is the total number of links in the network gm,−i−j ,

14Formally, we are assuming the homogeneity of the function ψ, compared to their original model.
15See for instance Mihaly (2009).
16This is a loose adaptation of the “Playing the Field” model from Goyal and Joshi (2006)

13



obtained from gm by removing all links individuals i and j have in gm.17 In that case, the

value of a link depends on the whole network, irrespective of the individuals’ characteristics.

This model does not have the property that the dependence vanishes as the distance between

individuals increases, and hence φ-mixing is not respected. In order to achieve φ-mixing, we have

to limit the dependence to the network structure. Specifically:

Assumption 7 (Component Dependence) For all i, j ∈ N , hji (gm−ij, x; θ) = hji (gm|Rg
ij
, xRg

ij
; θ)

This condition states that the dependence through the network is limited to (finitely) con-

nected individuals. Suppose that the number of individuals in the population is finite. Then,

the probability that i and j form a link depends only on the characteristics of the individuals in

the same component as i or j.18 When however, the number of individuals (hence the number

of pairs) goes to infinity, we may have two individuals connected through an infinite path. As-

sumption 7 states that, in that case, those individuals can be treated as disconnected. In other

words individuals are unaffected by infinitely distant (in the network) neighbors. Most models

of network formation respect this condition as they assume some decay factor.19 Notice that the

previous example where hji (gm − ij, x) = ψ(ni(gm − ij), nj(gm − ij), L(gm,−i−j)) − cij does not

respect assumption 7. Since hji depends on L(gm,−i−j), the payoff function may depend on links

between individuals not connected to i nor to j.

Now, by analogy to the specification in (3), we see that it is sufficient for assumption 2 to

hold to show that the probability that any two individuals, say s2 and r1 are connected through

some path goes to zero, i.e. P (s2 ↔ r1) → 0. However, this probability does not only depend

on the individuals in pairs in A and B, but also on the individuals in pairs “between” the sets.

Figure 2 illustrates.

When the number of pairs m (hence the number of individuals n) goes to infinity, there may

exists a path of individuals, each of them separated by a finite distance, so P (A↔ B) may well

be strictly positive. However, since the distance between A and B goes to infinity, this path has

to be infinite (i.e. contains an infinite number of individuals). Hence, under assumption 7, the

realizations over A and B are independent. Formally,

17Specifically, gm,−i−j = gm − i1− ...− in− j1− ...− jn.
18A component is a maximally connected subnetwork.
19Links of degree 1 have more influence than links of degree 2, which have more influence than links of degree

3... and so on. Examples include generalizations the Connection Model from Jackson and Wolinsky (1996), and
models based on the Bonacich centrality.
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Figure 2: φ-mixing on Networks

A

B

s

s1

s2

r1

r2

r

Proposition 4.2 Assumptions 1, 5, 6 and 7 imply assumption 2 as m→∞.

Proposition 4.2 shows that the class of models that can be estimated using (1) is quite large.

It also provide easy to check conditions for applied researchers wanting to estimate some arbitrary

model of network formation. In practice, provided that the choosen structural form for hji (g, x; θ)

respects Asymptotic Homophily and Component Dependence, one can estimate θ ∈ Θ using the

PMLE defined in (1).

In the next section, we discuss the existence and potential multiplicity of pairwise stable

networks.

4.3 Existence and Multiplicity

In the previous sections, we implicitly assumed that the set of pairwise stable networks was non-

empty, and unique. In general, this may not be true. General conditions for the existence of a

pairwise stable network are well known.20 One result that is particularly adapted to our setting

is the fact that monotone preferences imply the existence of at least one pairwise stable network.

Formally:

Definition 4 (Monotonicity) A payoff function is monotone if for any gm, g
′
m ∈ Gm such

that gm ⊆ g′m, we have that hji (gm − ij, x, θ) ≤ h
j
i (g
′
m, x, θ) for all i, j ∈ N .

Monotone payoff functions have the convenient property that the set of pairwise stable net-

works is non-empty, irrespective of the value of the unobserved term εij . To see why, consider

20For general existence results for pairwise stable networks, see Jackson and Watts (2001) and Chakrabarti and
Gilles (2007).
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the following simple algorithm. Starting from the empty network, we add links sequentially if

Hj
i (gm − ij, x; θ, εi) ≥ 0 and H i

j(gm − ij, x; θ, εj) ≥ 0. The link creation process stops when

there exists no such profitable link creation. Since the payoff function is monotone, the cre-

ation of a link increases the value of the existing links so Hj
i (gm − ij, x; θ, εi) ≥ 0 implies that

Hj
i (gm − ij + kl, x; θ, εi) ≥ 0 for any link kl. The network generated by this sequential creation

of links is then pairwise stable.

Another issue that has not been addressed is the potential existence of multiple equilibria.21

A specific feature of pairwise stable networks is the complexity of the equilibrium set. In general,

one cannot explicitly find the set of pairwise stable networks, as showing existence is already

challenging (see Sheng, 2012). Also, recall that, in our model, we assumed that we observe only

one equilibrium of the game, and not the other (potential) equilibria. This is a specific feature of

the model which differs from the existing literature. In particular, even under presence of multiple

equilibria, the likelihood function is always coherent in the sense that P (wij = 1) +P (wij = 0) =

1. Then, even under multiplicity of equilibria, our estimator remains a well defined extremum

estimator, where the objective function is the probability that the observed network is pairwise

stable.

Let G2
m be the powerset of Gm and let Υθ : G2

m → Gm be an equilibrium selection mechanism.

That is, for any E ⊆ Gm, Υθ(E) ∈ E. Then, Lm(θ; g, x) is a pseudo estimator of P(g|x, θ; g =

Υθ(Ex)), where Ex ⊆ Gm is the set of pairwise stable networks given x. That is, we maximize

the (pseudo) likelihood of gm ∈ Gm, conditional of the fact that gm is selected. Then, our

estimator is consistent provided that Υθ is independent of θ, i.e. Υθ = Υ for all θ ∈ Θ. (This

independence assumption plays the same role as Leung’s (2013) Sampling Experiment assumption.

See his discussion on page 13.) However, the validity of the estimation procedure under the

presence of other potential equilibria is unclear if θ ∈ Θ influences the equilibrium selection

mechanism. Formally understanding the properties of the estimator under multiple equilibria

(and with spatially dependent observations) goes far beyond the scope of this paper and is left

for future research.

In the next section, we provides an empirical application of our method using communication

networks.

21See Bisin et al. (2011), Galichon and Henry (2011), Sheng (2012) and Tamer (2003).
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5 Estimation

In this section, we apply the methodology developed in the previous sections to estimate a model

of network formation. We first discuss the conditions for the identification of (1). We then apply

the model to the formation of friendship networks using the Add Health database.

5.1 Identification in Pairwise Models of Network Formation

In this section, we discuss the identification of network formation models based on pairwise

stability. Our discussion applies to most existing empirical models of network formation, e.g

Christakis et al. (2009), Goldsmith-Pinkham and Imbens (2011), Mele (2011), and Sheng (2012).

Recall that a link exists if and only if it is profitable for both individuals. Specifically,

wij = 1 iff Hj
i (θ) > 0 and H i

j(θ) > 0

This implies that we are facing a problem of partial observability (Poirier, 1980). Of the four

possibilities implied by the model, i.e A = {Hj
i (θ) > 0, H i

j(θ) > 0}, B = {Hj
i (θ) > 0, H i

j(θ) < 0},

C = {Hj
i (θ) < 0, H i

j(θ) > 0}, D = {Hj
i (θ) < 0, H i

j(θ) < 0}, we observe only {A}, or {B,C,D}.

This creates identification issues. Poirier (1980) discusses potential sources of identification. One

is through exclusion restrictions, i.e. Hj
i (θ) includes variables excluded from H i

j(θ). We argue

that this approach is problematic for most social network analysis. Suppose that we have the

following:

Hj
i (θ) = θ1x1,j + θ2(x2,i − x2,j)

2 + εij

H i
j(θ) = θ1x1,i + θ2(x2,i − x2,j)

2 + εji.

The interpretation is that the value for i of a link with j depends on j’s characteristic (x1,j),

and on the distance between them (i.e. (x2,i − x2,j)
2 for a characteristic x2), and similarly for j.

However, notice that by redefining H̃j
i = H i

j and H̃ i
j = Hj

i , we have:

H̃ i
j(θ) = θ1x1,j + θ2(x2,i − x2,j)

2 + εij

H̃j
i (θ) = θ1x1,i + θ2(x2,i − x2,j)

2 + εji.
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I that case, the interpretation of the parameters is reversed. The value for i of a link with j

depends on his own characteristics, and on the distance between him and j (and similarly for j).

As pointed out by Poirier (1980), this is an issue of labelling and prevents global identification of

the model.

A specificity of most social networks is that the labelling of the individuals in a pair have

no economic meaning. This means that we have no microeconomic foundations which allows

to choose one interpretation over the other. There exists however a specific type of networks

in which those exclusion restrictions may have some economic justifications. They are called

bipartite networks.

In a bipartite network, the population can be separated into distinct subsets such that no link

exists within a set. Prominent examples are buyer-seller networks and labour-marker networks

(e.g. Kranton and Minehart (2011) and Elliott (2013)).22 Bipartite networks may provide intu-

itive exclusion restrictions. Consider a labour-market network, label i = worker and j = firm,

and define the following preferences.23

Hj
i (θ) = θ1x1,ij + θ2x2,ij + εij

H i
j(θ) = θ3x3,i + θ4x2,ij + εji

where x1,ij represents the distance (in Km) between the worker’s house and the firm, x2,ij repre-

sents the (sector specific) market wage, and x3,i is a measure of the worker’s productivity. In that

case, we have microeconomic justification for imposing this exclusion restriction, as well as for

imposing θ1 < 0, θ2 > 0, θ3 > 0 and θ4 < 0. Moreover, as every pair is of the type firm-worker,

the labelling is no longer arbitrary which allows for the identification of θ.

In most contexts however, networks are not bipartite and we have no ex-ante justification

for imposing such exclusion restrictions. Hence, the interpretation of non-symmetric preferences

(i.e. such that hji 6= hij) is problematic. For that reason, we argue that pairwise analysis of (non-

bipartite) network formation models should focus on symmetric preferences.24 As discussed, in

Poirier (1980, p.213), under symmetry and linearity, identification generically holds. In the next

22All the results of the paper apply for bipartite network. Notice however that the number of admissible pairs
shrinks drastically.

23Thanks to Diego Cerdeiro for interesting discussions on that example.
24This distinction between bipartite and non-bipartite networks is also important for existence issues as it is

much easier to show existence for bipartite networks.
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Table 1: Variables’ description

Variables Descriptions

Linked Binary variable, equals 1 if the individuals are linked.
Popular Popularity of the two individuals in the pair.

Specifically: ni(gm − ij) + nj(gm − ij).
∆(Grade) Difference between the individuals’ grade level, in absolute value.
I(Gender) Binary variable, equals 1 if the individuals are of the same

gender.
I(Whites) Binary variable, equals 1 if both individuals are Whites
I(Blacks) Binary variable, equals 1 if both individuals are Blacks
I(Hisps) Binary variable, equals 1 if both individuals are Hispanics
∆(Phys) Difference between the individuals’ physical attractiveness

(see appendix for details)
∆(Psych) Difference between the individuals’ psychological attractiveness

(see appendix for details)
Work Number of hours worked by the individuals in a week (sum)
∆(Geo) Geographical distance between the individuals’ residence

(normalized, see appendix for details)

section, we implement our approach using the Add Health database.

5.2 Friendship Networks

We use the Add Health database which provides information on friendship networks for high-

school teenagers in the US. We concentrate on the “saturated sample”, which provides information

on 3 449 teenagers, coming from 16 schools. Tables 2 and 3 give a summary of the variables used

for individuals, and for pairs of individuals.25 Table 1 present the variables’ definitions. Precise

definitions and technical information on constructed variables can be found in appendix.

As discussed previously, friendship networks are not bipartite so we assume hji = hij for all

i, j ∈ N . We use the following functional form:

hji (gm, x; θ) = θ1Popularij + θ2∆(Gradeij)

+θ3I(Genderij) + θ4I(Whitesij) + θ5I(Blacksij) (4)

+θ6I(Hispsij) + θ7∆(Physij) + θ8∆(Psychij)

+θ9Workij + θ10∆(Geoij) + θ11

25Notice that the racial variable are not necessarily exclusive. We also omitted racial categories “Asian”, “Native”
and “Other”.

19



Table 2: Descriptive Statistics for the Individuals

Variable Mean Std. Min Max

ni(gm) 4.2422 3.309961 0 21
Gender (Female=1) 0.4954 0.5001 0 1
Hispanic 0.2017 0.4013 0 1
White 0.5868 0.4925 0 1
Black 0.1594 0.3661 0 1
Grade 10.1940 1.4932 7 12
Hours Worked 8.3202 11.8225 0 100
Physical 3.5429 0.8510 1 5
Psychological 3.5583 0.8192 1 5

Number of Individuals: 3 449
Number of Communities: 16

Table 3: Descriptive Statistics for the Pairs

Variable Mean Std. Min Max

Linked 0.0012 0.0345 0 1
Popular 8.4807 4.6771 0 41
∆(Grade) 1.6448 1.3248 0 5
I(Gender) 0.4999 0.5000 0 1
I(Whites) 0.3433 0.4748 0 1
I(Blacks) 0.0254 0.1573 0 1
I(Hisps) 0.0406 0.1973 0 1
∆(Phys) 0.9016 0.8115 0 6
∆(Psych) 0.8620 0.7888 0 6
Work 16.6356 16.7135 0 200
∆(Geo) 72.8096 44.3516 0 100

Number of Pairs: 5 946 076
Number of Community Clusters: 256
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Table 4: Bivariate Probit with Partial Observability (marginal effects)

Variable dy/dx (×1000) Std. Err. (×1000)

Popular 0.0495† (0.0305)
∆(Grade) -0.6405∗ (0.2636)
I(Gender) 0.2008∗ (0.0871)
I(Whites) 0.8543∗∗ (0.2536)
I(Blacks) 0.9059∗ (0.3595)
I(Hisps) 0.2983 (0.1931)
∆(Phys) -0.0282 (0.0228)
∆(Psych) -0.0291∗ (0.0115)
Work -0.0034† (0.0018)
∆(Geo) -0.0388∗ (0.0165)

% = 0.9992 (0.0001)
(pseudo) log-Likelihood: -40313.979

Significance levels: † = 10%, ∗ = 5%, and ∗∗ = 1%

where θ1 > 0, and θ11 represents the intrinsic value of a link. The restriction θ1 > 0 is needed to

ensure that preferences are monotonic, which implies the existence of a Pairwise Stable network

(see section 4.3). Following Bester et al. (2012), we estimate the specification in (4) using Cluster-

Robust standard errors. Marginal effects are reported in Table 4. Notice that while we assumed

θ1 > 0 in (4), we did not used that restriction for the estimation.

Table 4 shows a positive effect of popularity. More connected individuals have a higher

probability of creating friendship relations. Not surprisingly, being of the same grade level has

a positive influence on the formation of friendship relations. We also find evidence of racial

segregation, which seems to be stronger for Blacks than for Whites and Hispanics. Distance in

terms of personality traits have negative impact, as for an increase in the number hours worked.

This last finding suggests a substitution between the time spent with friends, and the time spent

working. Geographical distance also have a negative impact. The estimated covariance of the

error term is fairly high (% = 9992). This suggests that the errors are strongly correlated, and

that the benefit of using a bivariate probit instead of a univariate probit is small (see next section

for a discussion).

In the next section, we present alternative specifications and discuss some practical consider-

ation while estimating the model.
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5.3 Alternative Specifications and Practical Considerations

As this application shows, the approach used in this paper is promising as it has the advantage

of being intuitive, flexible, and simple to implement. In this section, we discuss alternative

specifications and the link with games with transfers, as well as large databases and subsampling

issues.

5.3.1 Bivariate Probit, Probit, and TU Games

As we mentioned in section 2, our analysis also applies to the case where we impose εij = εji ∼

N(0, 1). In that case, the resulting estimator is no longer a bivariate probit, but an univariate

probit. In general, the bivariate probit is more flexible as is includes more unknown parameters.

However, under the assumption that hji = hij , the bivariate and univariate probit estimators only

differ by one parameter: %. It is then worthwhile to look at the univariate probit estimator.

Interestingly, the probit estimator can be interpreted in terms of games with transferable

utilities (TU games).26 Specifically, lets define a TU-Pairwise Stable network as follows:

Definition 5 A network gm is TU-Pairwise Stable if, for all i, j ∈ N :

1) wij = 1 if [ Hj
i (gm − ij, x; θ, εi) +H i

j(gm − ij, x; θ, εj) ≥ 0 ]

2) wij = 0 otherwise

With the additional assumptions that Hj
i = H i

j = hji + εij , where εij ∼ N(0, 1), we have:

wij = 1 if [ hji (gm − ij, x; θ) + εij ≥ 0 ]

and the resulting (pseudo) estimator is a probit. Table 5 displays estimation results for a probit

model, using the specification in (4). Results are quite similar to those of Table 4, with the

distinction that the marginal effects have twice the magnitude. The reason it that marginals

effects reported in Table 4 capture the effects on the value received by one of the individuals in

the pair, while those of Table 5 capture the effects on the value of the pair, which is shared by both

individuals. TU games also have the (non trivial) advantage that the existence of a (TU)-pairwise

stable network holds for larger sets preferences (compared with the existence of a pairwise stable

network).

We now discuss a sampling procedure for large databases.

26Sheng (2012) also makes the distinction between pairwise stability for games with and without transfers.
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Table 5: Probit, i.e. assuming εij = εji (marginal effects)

Variable dy/dx (×1000) Std. Err. (×1000)

Popular 0.0990† 0.0610
∆(Grade) -1.2810∗ 0.5273
I(Gender) 0.4015∗ 0.1742
I(Whites) 1.7086∗∗ 0.5072
I(Blacks) 1.8119∗ 0.7190
I(Hisps) 0.5967 0.3862
∆(Phys) -0.0565 0.0456
∆(Psych) -0.0581∗ 0.0229
Work -0.0068† 0.0037
∆(Geo) -0.0776∗ 0.0329

(pseudo) log-Likelihood: -40313.978

Significance levels: † = 10%, ∗ = 5%, and ∗∗ = 1%

5.3.2 Sampling

Recall that the number of observation over a sample of n individuals is equal to the number of

pairs in the sample, i.e. n(n− 1)/2. For instance, in our application, n = 3449 which leads to a

model with 5 946 076 observations. For large databases, the estimation could then be prohibitively

time consuming. For such large databases, we suggest to use a random sample. Table 6 reports

the results for the bivariate probit model with a random subsample of 25% of the database. The

final sample has 1 486 519. Notice that the results are quite similar to those of Table 4. If this

approach is compelling however, one has to keep in mind that the constructed variable dependent

on the network structure have to be constructed over the whole sample. In our case, this implies

that the variable Popular was constructed before the subsampling procedure.

We now briefly conclude.

6 Conclusion

In this paper, we have developed a micro-founded econometric model of network formation which

requires the observation of only one social network. We have shown that an asymptotic ver-

sion of homophily is sufficient for φ-mixing, which implies that the estimation of the underlying

preference parameters can be achieved using a simple Pseudo Maximum Likelihood estimator.

The methodology is appealing as it is simple, and flexible. We also discussed identification and
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Table 6: Bivariate Probit with Partial Observability (marginal effects): Subsample

Variable dy/dx (×1000) Std. Err. (×1000)

Popular 0.0557† 0.0320
∆(Grade) -0.6595∗ 0.2909
I(Gender) 0.2027∗ 0.0977
I(Whites) 0.8141∗∗ 0.2451
I(Blacks) 0.9760∗ 0.3946
I(Hisps) 0.3206 0.1967
∆(Phys) 0.0060 0.0243
∆(Psych) -0.0317∗ 0.0385
Work -0.0027† 0.0016
∆(Geo) -0.0400∗ 0.0189

% = 0.9989 (0.0002)
(pseudo) log-Likelihood: -10084.732

Significance levels: † = 10%, ∗ = 5%, and ∗∗ = 1%

estimation issues and compared our baseline model with games on bipartite networks and games

with transferable utilities. We provided an empirical application using the formation of friendship

networks among American teenagers. We found positive influence of popularity on link formation,

as well as evidence of homophily on gender, race, and geographic localisation.
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7 Appendix

Proof of Theorem 3.1

Under assumption 3.1, it is sufficient to show that:27

sup
θ∈Θ
|Lm(θ)− E(Lm(θ))| →a.s. 0, as m→∞.

In order to show that this condition hold, it is sufficient to show that the conditions of theorem

2 and 3 from Jenish and Prucha (2009) hold. Specifically,

1. d(r, s) > d0 > 0 for any r, s ∈ Sm

2. (Θ, ‖.‖) is a totally bounded metric space.

3. Domination:

lim sup
m→∞

1

|Sm|

m∑
s=1

E(q̄ps,m1{q̄ps,m>k})→ 0 as k →∞,

for some p ≥ 1, and where q̄s,m = supθ |qs,m(zs,m|x, gm, θ)|.

4. Stochastic equicontinuity: For every ε > 0,

limsupm
1

|Sm|

m∑
s=1

P ( sup
θ′∈Θ

sup
θ∈B(θ′,δ)

|qs,m(θ)− qs,m(θ′)| > ε)→ 0 as δ → 0,

where B(θ′, δ) is the open ball {θ ∈ Θ : ‖(θ′ − θ)‖ < δ}.

5. supm sups∈Sm
E[supθ∈Θ |qs,m(θ)|(1+η)] <∞ for some η > 0.

6.
∑∞

d=1 d
T−1φ̄1,1(d) <∞.

Condition 1 is implied by assumption 3.2. Condition 2 is verified by construction, and condition

5 and 6 are just assumption 3.3 and φ-mixing(2). Conditions 3 and 4 hold from the following:

Under condition 5, supθ |qs,m(zs,m|x, gm, θ)| is L(1+η) integrable which implies the uniform L(1+η)

integrability of |qs,m(zs,m|x, gm, θ)|.

The next lemma shows that assumption 3.4 implies condition 4.

Lemma 7.1 Condition 4 is implied by assumption 3.4.

27see for instance Gallant and White (1988), pp.18.
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Proof From the mean value theorem, we can write

qs,m(θ) = qs,m(θ′) +
∂qs,m(θ̃)

∂θ
(θ − θ′),

Thus,

|qs,m(θ)− qs,m(θ′)| ≤ |∂qs,m(θ̃)

∂θ
|‖(θ − θ′)‖

≤ sup
θ∈Θ
|∂qs,m(θ)

∂θ
|‖(θ − θ′)‖.

According to Proposition 1 of Jenish and Prucha (2009), qs,m(θ) is L0 stochastically equicontin-

uous on Θ if the following Cesàro sums is finite. i.e

limsupm
1

|Sm|

m∑
s=1

E(sup
θ∈Θ
|∂qs,m(θ)

∂θ
|) <∞.

However, under assumption 3.4, each term of the Cesàro sums is finite, in the sense that

supm sups∈Sm
E[supθ∈Θ |

∂qs,m(θ)
∂θ |] <∞. This fact completes the proof. �

From the previous lemma, conditions 1-6 are respected, hence theorem 2 and 3 from Jenish

and Prucha (2009) apply. This completes the proof. �

Proof of Theorem 3.2

We want to show that
√
m(θ̂m − θ0) ⇒ N(0, D0(θ0)−1B0(θ0)D0(θ0)−1). From the mean value

theorem, we have that

∂Lm(θ̂m)

∂θ
=

∂Lm(θ0)

∂θ
+
∂2Lm(θm)

∂θ∂θ′

0 =
∂Lm(θ0)

∂θ
+
∂2Lm(θm)

∂θ∂θ′
(θ̂m − θ0).

and

√
m(θ̂m − θ0) = −

√
m[
∂2Lm(θm)

∂θ∂θ′
]−1∂Lm(θ0)

∂θ

= −[
∂2Lm(θm)

∂θ∂θ′
]−1[

σm√
m

][σ−1
m Qm],

where σ2
m = V ar(Qm) and Qm =

∑m
s=1

∂qs,m(θ0)
∂θ .
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Then, it is sufficient to show the following:

1. σ2
m
m → B0(θ0);

2. σ−1
m Qm ⇒ N(0, I);

3. [∂
2Lm(θm)
∂θ∂θ′ ]→p D0(θ0).

Again, we proceed in a series of lemmata.

Lemma 7.2 Under assumptions 3.1, σ2
m
m → B0(θ0).

Proof

1

m
σ2
m =

1

m
V ar(m

∂Lm(θ0)

∂θ
)

= mE[
∂Lm(θ0)

∂θ

∂Lm(θ0)

∂θ′
] +mE[

∂Lm(θ0)

∂θ
]E[

∂Lm(θ0)

∂θ′
]

= mE[
∂Lm(θ0)

∂θ

(
∂Lm(θ0)

∂θ

)′
].

where the last inequality holds since E[∂Lm(θ0)
∂θ ] = 0, as θ0 maximizes E[Lm(θ)] (Assumption 3.1).

Hence, σ2
m
m → B0(θ0). �

Lemma 7.3 Under assumptions 1, and 4, σ−1
m Qm ⇒ N(0, I)

Proof It is sufficient to show that the conditions for theorem 1 from Jenish and Prucha (2009)

hold. Specifically,

1. d(r, s) > d0 > 0 for any r, s ∈ Sm.

2. φ-mixing on Random Fields.

3. supm sups∈Sm
E[supθ∈Θ |

∂qs,m(θ)
∂θ |2] <∞.

4. lim infm→∞
σ2
m
m > 0.

Condition 1 is implied by assumption 3.2. Condition 3 is just assumption 4.5, and condition

4 is implied by lemma 7.2. �

Lemma 7.4 ∂2Lm(θm)
∂θθ′ →p D0(θ0)
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Proof The proof is identical to the proof for the consistency of θ̂, replacing qs,m(θ) by Ds,m(θ),

and using assumptions 4.3 and 4.4 instead of assumptions 3.3 and 3.4. �

Putting together lemmata 7.2, 7.3 and 7.4 completes the proof. �

Proof of Proposition 4.1

Let Hj
i = hji [Ni(g), Nj(g), d(i, j)] + εij where ε ∼ N(0, 1). We show that under assumption 5 and

6, φ-mixing is respected. Recall that φ(A,B) = sup{|P (A|B)−P (A)|, A ∈ A, B ∈ B, P (B) > 0}.

Formally, A and B are subsets of pairs, i.e. A,B ∈ Sm. Let i ∈ s ∈ A and j ∈ s ∈ B.

We have that P (A) = P (A|∃ij ∈ g)P (∃ij ∈ g) + P (A|@ij ∈ g)P (@ij ∈ g) and P (A|B) =

P (A|B ∩ ∃ij ∈ g)P (∃ij ∈ g) + P (A|B ∩ @ij ∈ g)P (@ij ∈ g). Since the payoff function only

depends on direct links, P (A|B ∩ @ij ∈ g) = P (A|@ij ∈ g). Hence, we can rewrite

φ(A,B) = φ(A,B|∃ij ∈ g)P (∃ij ∈ g)

Since, for any A,B, φ(A,B) ∈ [0, 1], we have that φ(A,B) ≤ P (∃ij ∈ g). Let h̄(d) =

supθ supg supij h
j
i (g, x, d; θ) and h(d) = infθ infg infij h

j
i (g, x, d; θ). We then have that φ̄k,l ≤

4klΦ[h̄(d)] since there can be a maximum of 2k individuals in A and 2l individuals in B. That is,

the sum of the probabilities for each possible pairs between A and B, and for the maximal value

for hji . Notice that by the properties of the Hausdorf distance, if d(i, j) ≥ c for some c > 0 and

all i ∈ s ∈ A and j ∈ r ∈ B, then d(A,B) ≥ c.

Now, we know that the Chernoff bound for Φ is such that Φ[h̄(d)] ≤ 1
2 exp{−1

2 h̄(d)2} for

h̄(d) < 0, which is true for d big enough from assumption (5.1). Then, a sufficient condition for

assumption (2.1) and (2.2) is φ̄k,l(d) ≤ 2kl exp{−1
2 h̄(d)2} for k + l ≤ 4 or equivalently:

dT−1φ̄k,l(d) ≤ 2kldT−1 exp{−1

2
h̄(d)2}

for all d > d̄ for some d̄ > 0 and k + l ≤ 4. Then, assumption (2.1) and (2.2) hold if∑∞
d=1 d

T−1 exp{−1
2 h̄(d)2} converges. According to Cauchy’s rule, this last sum converges if

limd→∞ exp
{
− h̄(d)2

2d

}
∈ [0, 1). Which is true under assumption (5.2).

Now, φ-mixing (3) is different since l = ∞, so the upper bound goes to infinity. Specifically,

condition (3) implies that there exists C > 0, m, d such that dT+εφ̄1,m(d) ≤ C, for some ε > 0,

for all m > m and d > d. Using the Chernoff bound again we have that dT+εφ̄1,m(d) is bounded
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when m goes to infinity if

lim
m→∞

mdT+ε
m exp

{
− h̄(dm)2

2dm

}
<∞

assuming the increasing domain assumption 6, and the asymptotic homophily assumption (5.2).

�

Proof of Proposition 4.2

Let P (A ↔ B) be the probability that there exist a path between an individual in a site in A

and and individual in a site in B. Using the same argument as in the proof of proposition 4.1,

we have that φ(A,B) ≤ P (A↔ B). The probability P (A−B) is however not trivial to compute.

Instead, we use the fact that P (A−B) = P (∃k−B : ik ∈ g) for some i in a site in A. Since k is

connected to B, there are two possibilities: (1) the distance between k and B is finite, or (2) the

distance between k and B is infinite, and k is reached from B using an infinite number of links.

We start with the second possibility. In that case, from assumption 7, the realization on B

does not depends on k, hence P (A|B) = P (A).

Now, suppose that the distance between k and B is finite. Then, as in the proof of proposition

4.1, we can write

dT−1φ̄k,l(d) ≤ 2kmdT−1 exp{−1

2
h̄(d)2}

for all d > d̄ for some d̄ > 0. The remaining of the proof is omitted as it is identical to the proof

of proposition 4.1. �

Conley’s (1999) estimator

Conley (1999) provides an estimator when X ⊂ R2 and {Zs,m; s ∈ Sm,m ∈ N} is α-mixing and

stationary. This approach has also been recently used by Wang et al. (2010) in the context of

the estimation of a spatial probit. We propose to extend Conley’s (1999) estimator for X ⊂ RT ,

where T ≥ 1.

We consider a compact subset of the space of individual characteristics, i.e. Y ⊂ X . We define

a random process Λ on a regular lattice on Y such that Λy = 1 if the location y = (y1, ..., yT )

is sampled, and Λy = 0 otherwise. We assume that Λ is independent of the underlying random

field, has finite expectation, and is stationary. Intuitively, since the lattice is regular, it gives

an idea of the dependence structure between the observations. Consider Figure 1 below, where
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X = R2 for presentation purposes. Sampled pairs are represented by the black circles.

Figure 3: Regular Lattice and Dependence Structure

(a) Uniform Dependence Structure (b) Directed Dependence Structure

In Figure 1a, sites are distributed more or less uniformly in Y . In Figure 1b however, the

dependence structure seems to be more directed. Now, lets define ȳ = (ȳ1, ..., ȳT ) to be the

maximal location for Λy in every dimension. Notice that this quantity is well defined since Y is

compact. For instance, for the lattice in Figure 1, ȳ = (6, 5).

Now, let q̂y(θ) = 1
n(y)

∑
s∈y qs,m(θ), where s ∈ y is a sampled pairs s in location y, and n(y)

is the number of sampled pairs in location y. We define the following process, for any location y:

Ry(θ) =


∂q̂y
∂θ (θ) if Λy = 1

0 otherwise

Let m∗ be the number of sampled locations.28 We can now present our proposed estimator, based

on a generalization of Conley (1999):

Bm(θ) =
1

m∗

ỹ1∑
y1=0

...

ỹT∑
yT =0

ȳ1∑
y′1=y1+1

...

ȳT∑
y′T =yT +1

Γỹ(y)
[
Ry′(θ)R

′
y′−y(θ) +Ry′−y(θ)R

′
y′(θ)

]
− 1

m∗

ȳ1∑
y1=1

...

ȳT∑
yT =1

Ry(θ)R
′
y(θ) (5)

Where ỹ < ȳ, and Γỹ(y) is a kernel function. For instance, Conley (1999) proposed to use

ỹ = o(ȳ1/3), i.e. a bound of the same order as the cubic root of ȳ, and the following Bartlett

28A simple way to compute m∗ is to count the number of times Λy = 1.
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window kernel:

Γỹ(y) =


(1− |y1|ỹ1 )...(1− |yT |ỹT

) for |y1| < ỹ1, ..., |yT | < ỹT

0 otherwise

As in the estimation of HAC variances, the precise choice of ỹ and Γỹ(y) will depend on the

specific application. With that regard, we can easily show that the estimator in (5) when T = 1

is equivalent to a HAC estimator.

Lets rewrite the estimator for T = 1:

Bm(θ) =
2

m

ỹ1∑
k=0

ȳ1∑
y=k+1

Γỹ(k)Ry(θ)R
′
y−k(θ)−

1

m

ȳ1∑
y=1

Ry(θ)R
′
y(θ)

= γ̂(0) + 2

ỹ1∑
k=1

Γỹ(k)γ̂(k)

where γ̂(0) = 1
m

∑ȳ1
y=0Ry(θ)R

′
y(θ) is the estimation of the variance of the process Ry, and γ̂(k) =

1
m

∑ȳ1
y=k+1Ry(θ)R

′
y−k(θ) the estimation of the autocovariance of the process Ry. Then, in one

dimension our proposed estimator become exactly the HAC variance estimator for the covariance

stationary process Ry, using the Bartlett kernel. In our case here, under some φ mixing conditions

we may ensure that γ(k)→ 0 as k →∞.

Bester et al. (2012)

Let X be partitioned into groups, or clusters: c = 1, ..., C. Bester et al. (2012) propose to use

the following CV estimator:

B̂m(θ) =
1

m

∑
s∈S

∑
r∈S

I(cs = cr)
∂qs,m(θ)

∂θ

(
∂qs,m(θ)

∂θ

)′

Where cs is the group in which s ∈ S is located. This is the usual Cluster-Variance estimator.

It has the advantage of being easy and fast to implement. In practice, the constructions of those

groups is not necessarily straightforward. Bester et al. (2012) recommend to use a relatively

small number of large groups. An important requirement however is a boundary condition which

states that most of the pairs in groups are located in the interior (i.e. not on the boundary) of

those groups in X . Specifically, let ∂(cs) be the boundary of the group cs, and c̄m be the average
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number of pairs in a group, then one should have ∂(cs) < c̄
(T−1)/T
m , where T ≥ 1 is the dimension

of X .

Constructed variables

∆(Phys) and ∆(Psys): Those variables are constructed from the interviewer’s subjective appre-

ciation of the teenager’s physical and personality attractiveness. Specifically: “How physically

attractive is the respondent?” and “How attractive is the respondent’s personality?”, both rang-

ing from 1 (very unattractive) to 5 (very attractive).

∆(Geo): The Add Health database provides information on (normalized) geographical location

of the individuals’ residences within communities. Following the survey’s definition, friendships

are restricted within communities. (Individuals can be friends only if they belong to the same

communities.) Then for individuals from the same community, we set the geographical distance

between them according to the variable, and we normalized the distance between individuals from

different communities to 100. Notice that this implies that Asymptotic Homophily is trivially

respected by construction of the database.
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