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Abstract

We construct and analyze a tractable search model of money with a non-degenerate distrib-

ution of money holdings. Analytical tractability comes from modeling decentralized exchange

as directed search, which makes the monetary steady state block recursive. By adapting

lattice-theoretic techniques, we characterize individuals’ policy and value functions, and show

that these functions satisfy the standard conditions of optimization. We prove that a unique

monetary steady state exists and provide conditions under which the steady-state distribution

of buyers over money balances is non-degenerate. Moreover, we analyze the properties of this

distribution.
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1. Introduction

Monetary search theory originated in Kiyotaki and Wright (1989) provides a strong microfounda-

tion of money by deriving positive value of fiat money from underlying frictions in decentralized

exchange, such as the lack of double coincidence of wants and anonymity of individuals. The

theory has undergone significant development and has been shown to be useful for addressing

a wide range of monetary issues in theory and policy. Despite all the development, monetary

search theory has had only limited success in exploring a natural outcome of decentralized ex-

change — a persistent, non-degenerate distribution of money balances. This distribution of money

is important for both theory and policy. In this paper, we construct a tractable search model

where a non-degenerate distribution of money can be persistent. We prove the existence of a

unique monetary steady state, provide the conditions under which the distribution of money is

non-degenerate, and examine the properties of the distribution.

Decentralized exchange naturally induces a non-degenerate distribution of money. Because

matching is stochastic, different individuals may end up trading away different amounts of money.

Even if all individuals hold the same amount of money initially, the distribution of buyers over

money balances can fan out as decentralized exchange continues. In the first generation of search

models (e.g., Kiyotaki and Wright, 1989) and the second generation (e.g., Shi, 1995, and Trejos

and Wright, 1995), the distribution of money is made degenerate by the assumption that an

individual can hold either zero or one unit of indivisible money. Search models in the third

generation allow both money and goods to be divisible, but they impose other assumptions to

make money distribution degenerate. Notably, Shi (1997) assumes that each household consists of

a large number of members who share consumption and utility, and so all households hold the same

amount of money in the equilibrium. Lagos and Wright (2005) assume that each decentralized

market is followed by a centralized market in which individuals have quasi-linear preferences over

a good, and so trading in the centralized market eliminates all dispersion in money holdings.

Green and Zhou (1998, GZ henceforth) are the first to formally analyze a non-degenerate money

distribution, but they assume that goods come as a fixed endowment and money can only be

accumulated in discrete units. Without these restrictive assumptions, an analytically tractable

microfoundation of money with a non-degenerate distribution has eluded monetary theory. Very

little is known about even the fundamental properties of an equilibrium. For example, does such

a steady state exist, is it unique, and when is the distribution non-degenerate?

A persistent, non-degenerate distribution of money is also important for policy analysis. One

issue is the wealth effect of monetary policy. When individuals’ money balances differ, so do
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their marginal values of money. A change in monetary policy has a redistributive effect that

can affect aggregate welfare. A related issue is the effect of monetary policy on real aggregate

activities. As documented by Christiano et al. (1999) using vector autoregression (VAR), even an

impulse monetary shock can have a persistent effect on aggregate real activity. This persistence

seems difficult to be captured by models where the distribution of money is degenerate or not

persistent, such as Lucas (1990). In contrast, Rotemberg (1984) follows Baumol (1952) and Tobin

(1956) to model an individual’s money holdings as the solution to a problem of optimal inventory

management. Because cash withdrawals are staggered across individuals, the distribution of

money is non-degenerate in the steady state, and a monetary shock affects aggregate real activity

persistently. These papers, and the large literature spawned from them, are useful indications of

the importance of money dispersion in analyzing policy, but they assume an exogenous role of

money rather than deriving this role from the fundamentals of the model.1

We focus on the characterization of the steady state of a search economy with a non-degenerate

distribution, although the broad research project is also motivated by the dynamic effect of

monetary policy. This focus is a useful first step because it addresses the fundamental questions

raised above on the equilibrium and provides a long-run anchor for a dynamic analysis. As a

standalone contribution, the analysis provides a set of theoretical tools that help overcome the

main difficulties in building a monetary theory with a non-degenerate distribution.

The main deviation from the literature of monetary search that makes our model tractable

lies in the way we model search. The literature assumes search to be undirected in the sense

that individuals do not know the terms of trade before they are matched. In contrast, we assume

search to be directed in the sense that individuals know the terms of trade before a match, as in

Peters (1991), Moen (1997), Acemoglu and Shimer (1999), Burdett et al. (2001) and Julien et

al. (2000). Directed search is a realistic feature of an actual economy. It reflects the fact that

individuals have information about the location and the price range of the goods they want to

buy. They go directly to the sellers who sell the goods they want, rather than randomly search

among all the sellers. In our model, each type of good can be sold in many submarkets that

specify different terms of trade and tightness (i.e., the ratio of trading posts to buyers). Buyers

choose which submarket to visit and firms choose how many trading posts to create in each

1Shi (2003) extends the large-household framework in Shi (1997) to examine the persistence of a monetary

shock with search frictions. He introduces long-term nominal bonds with a partial legal restriction that prohibits a

fraction of the individuals such as government agents from accepting bonds as a means of payment for goods and

services. A monetary shock has a more persistent real effect than in Lucas (1990) because the shock affects the

composition of money and bonds used in the goods market in future periods. However, the persistence is not as

strong as empirically documented, partly because the large-household framework makes the distribution of asset

holdings across households degenerate.

2



submarket. There is a cost of creating a trading post for a period, and the number of trading

posts in each submarket is determined by free entry. Once individuals are inside a submarket, a

frictional matching process determines the matching probability for a trading post or a buyer as

a function of the tightness of the submarket. In equilibrium, the tightness in each submarket is

consistent with buyers’ search choice and firms’ creation of trading posts.

Directed search induces buyers to sort into submarkets. Specifically, because the marginal

value of money is lower to a buyer who has a relatively high money balance, such a buyer has a

strong desire to spend a relatively large amount of money on consumption and to spend it sooner

rather than later. To do so, the buyer chooses to enter a submarket where he has a relatively high

matching probability to trade a relatively large amount of money for a large quantity of goods.

Firms cater to this desire by creating a relatively large number of trading posts per buyer in this

submarket. Because buyers with different money holdings choose not to mix with each other,

a buyer’s optimal choices depend on the buyer’s own money balance and the tightness of the

particular submarket he visits, but not on the distribution of individuals over money balances.

Moreover, because each submarket is tailored to only one group of buyers with a particular

money balance, the tightness of each submarket that ensures zero profit for a trading post does

not depend on the distribution of money. Precisely, individuals’ policy functions, value functions

and the market tightness function are all independent of the distribution in the steady state. This

feature of the steady state is referred to as block recursivity.

With block recursivity, the distribution of money ceases to be part of the state space in

individuals’ decision problems. This overcomes the main roadblock of tractability that arises in

the literature when the endogenous distribution of money affects individuals’ decisions. As a

result, we can characterize an individual’s policy and value functions solely as functions of the

individual’s own balance. Having done so for each balance separately, we can compute the flows

of individuals across money balances to obtain the distribution. The analytical tractability of

the model enables us to prove that a unique monetary steady state exists, to determine when the

steady-state distribution of buyers over money balances is non-degenerate, and to analyze the

properties of this distribution.

In the steady state, the support of the distribution consists of a finite number of values of

money balance, each of which is associated with one active submarket. Moreover, an individual

goes through purchasing cycles. When the individual has no money, he works to obtain money

and then becomes a buyer. Starting with a high balance, a buyer enters a submarket where he

has a high matching probability, spends a large amount of money and obtains a large quantity

of goods. For the next trade, the buyer will go into a submarket where his matching probability,
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the required spending and the quantity of goods obtained in a trade are all lower. The buyer will

continue this pattern until he depletes his balance, at which point he will work again.

The unique monetary steady state unifies the literature by nesting two well-known classes

of models as special cases. In one case, the distribution of money is degenerate in the steady

state, which occurs when individuals are sufficiently impatient. In this case, all buyers hold

the same amount of money and spend the entire amount in one trade, and so a purchasing

cycle consists of only one purchase. This endogenous pattern resembles the one assumed in the

models with indivisible money (e.g., Shi, 1995, and Trejos and Wright, 1995). However, the

endogenously generated pattern has a very different policy effect from the exogenously assumed

pattern. Namely, a one-time change in the money stock does not affect the real activity in the

steady state in our model, but it does in Shi (1995), Trejos and Wright (1995) and GZ.

The other case of the unique steady state features a non-degenerate distribution of buyers

over money balances. This case arises when individuals are sufficiently patient, together with

other conditions specified in Theorem 4.2. In this case, each buyer runs down money balance in

a purchasing cycle through consecutive purchases, and the purchasing pattern is staggered across

the buyers. Moreover, because the buyers who hold a high balance trade relatively quickly and

exit from that balance, there are more buyers with low balances than with high balances, and so

the density of the distribution in a purchasing cycle is a decreasing function of money balance.

The purchasing cycle resembles the one in the inventory model of money by Baumol (1952) and

Tobin (1956), but the latter authors model the role of money in a reduced form. The decreasing

density of money distribution resembles that in GZ, but GZ restrict that goods come as a fixed

endowment and money can only be accumulated in discrete units. Moreover, in contrast to both

Baumol-Tobin and GZ, we allow individuals to choose among submarkets that differ in the terms

of trade and the matching probability. As a realistic feature, this endogeneity should be important

for how monetary policy affects the aggregate activity. We will contrast our model further to the

Baumol-Tobin model in subsection 4.1 and to GZ in subsection 4.3.

A large part of this paper is devoted to the analysis of a buyer’s decision problem, which

establishes the properties of the policy and value functions. We provide a set of analytical tools

to overcome some difficulties in the use of dynamic programming. The difficulties arise from

the features that a buyer’s objective function is not concave and that a buyer’s value function

cannot be assumed to be differentiable a priori. These difficulties prevent us from using the

standard approach in dynamic programming (e.g., Stokey et al., 1989) to analyze the policy and

value functions. In subsection 3.2.1, we will give an overview of these difficulties and the way

in which we resolve them. A short description is that we adapt lattice-theoretic techniques (see
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Topkis, 1998) to prove that a buyer’s policy functions are monotone functions of the real balance.

Using this result, we prove further that optimal choices obey the first-order conditions, the value

functions are differentiable and the envelope conditions hold. By establishing these standard

conditions formally, we hope to make the model easy to use. This procedure of analyzing a

dynamic programming problem is of independent interest because it is applicable in a variety of

dynamic models that involve both discrete and continuous choices.2

It is important to clarify that our analysis and the main results do not follow simply from

the labor search literature, despite the fact that this literature has explored directed search and

block recursivity (e.g., Shi, 2009, Gonzalez and Shi, 2010, and Menzio and Shi, 2011). Several

elements in our model are important for monetary theory, but not necessarily so for labor theory.

First, an individual’s gain from a monetary trade depends not only on how the match surplus is

split, but also on how all individuals in the economy value money. A monetary equilibrium must

determine this value of money. This is not necessary in a labor search model because the value of

a match is determined by preferences there. Second, money balance is a stock variable that can

be accumulated or decumulated over time through trade, and there is a market clearing condition

on the aggregate stock of money. Such a stock variable has been absent in many labor-search

models. Third, a buyer in a monetary model optimally chooses the length of a purchasing cycle

and the amount of money to be spent in each period within a cycle. Most parts of this paper (e.g.,

sections 3 and 4) are devoted to resolving these monetary issues. Even at the technical level of

using lattice-theoretic techniques, our analysis differs from that in Gonzalez and Shi (2010). While

Gonzalez and Shi explore convexity of the value function to apply lattice-theoretic techniques,

a buyer’s value function in our model is neither convex nor concave. To apply lattice-theoretic

techniques, we analyze a buyer’s decision problem in steps (see subsection 3.2.2).

In the literature of monetary search, Corbae et al. (2003) seem the first to incorporate directed

search. They focus on the formation of trading coalitions and assume that money and goods are

indivisible. Rocheteau and Wright (2005) examine directed search as a robustness check, Lagos

and Rocheteau (2005) compare directed search with bargaining in the welfare effect of inflation,

and Galenianos and Kircher (2008) and Julien et al. (2008) examine directed search with auctions.

These papers do not formulate a block recursive equilibrium. Moreover, they follow Lagos and

Wright (2005) to assume quasi-linear preferences that make either money distribution degenerate

or its real effect temporary.3 In addition, Lagos and Rocheteau (2005) apply lattice-theoretic

2There are a large number of applications of lattice-theoretic techniques in dynamic programming and, specif-

ically, in models of economic growth. Gonzalez and Shi (2010) use these techniques in a labor search model and

provide a partial list of references.
3Berentsen, Camera and Waller (2005) extend the Lagos-Wright (2005) model to allow for two rounds of trading
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techniques to examine comparative statics. However, their assumption of quasi-linear preferences

implies that the future value function is linear in money balance. This feature sidesteps the

analytical difficulties overcome here that are intrinsic to search models where money has a wealth

effect (see subsection 3.2.1).

With undirected search, some papers have studied a non-degenerate money distribution. GZ

are the first along this line, but they restrict that goods come as a fixed endowment and money

can only be accumulated in discrete units. Zhou (1999) extends the GZ model by introducing

a production cost. Berentsen et al. (2004) introduce lotteries into GZ. Zhu (2005) extends the

GZ model by making goods divisible. He studies a sequence of economies with discrete money

holdings and characterizes the limit where the size of the discreteness goes to zero. Eliminating

the indivisibility restrictions, Molico (2006) and Chiu and Molico (2008) numerically compute the

equilibrium. In particular, Chiu and Molico (2008) generate a non-degenerate money distribution

by extending the Lagos-Wright model to allow the cost function in the centralized market to be

strictly convex. These numerical exercises are useful, but they do not address the fundamen-

tal issues about an equilibrium with a non-degenerate money distribution that have eluded the

literature, such as existence and uniqueness of the steady state. These models are analytically

intractable precisely because the assumption of undirected search makes the equilibrium not block

recursive. Even for a quantitative analysis, our model is easier to compute than these models of

undirected search, as we will discuss in section 6. Moreover, undirected search models, including

Molico (2006) and Chiu and Molico (2008), have several implications in contrast with our model,

which we will discuss at the end of subsection 2.1.

2. A Monetary Economy with Directed Search

2.1. The model environment

There are  types of individuals and  types of perishable goods indexed by  ∈ {1 2  }, where
 ≥ 3. Each type  consists of a continuum of individuals with measure one who are specialized

in the consumption of good  and the production of good + 1 (modulo ). The preferences of a

type  individual are represented by the utility function
P∞

=0 
[()− ()], where  ∈ (0 1)

is the discount factor,  : R+ → R is the utility of consumption of good , and  : [0 1] → R
is the disutility of labor. We assume that  is strictly increasing, strictly concave and twice

in the decentralized market before a centralized market opens for a homogeneous good over which individuals have

quasi-linear preferences. The non-degenerate distribution of money is not persistent, because it is re-set frequently

by the trading in the centralized market. An extension of the Lagos-Wright model to allow for many consecutive

rounds of decentralized trading is not tractable. Faig (2008) introduces lotteries into the Lagos-Wright model to

partially avoid the use of quasi-linear preferences. Again, the money distribution is degenerate in his model.
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continuously differentiable, with the boundary properties:  (0) = 0,  0(∞) = 0, and  0 (0)

is sufficiently large. Similarly, we assume that  is strictly increasing, strictly convex and twice

continuously differentiable, with the boundary properties: (0) = 0 and 0(1) =∞. In addition to
consumption goods, there is an object called fiat money which is intrinsically worthless, perfectly

divisible and costlessly storable. The supply of fiat money per capita is  . We assume that 

is constant in most parts of this paper and will allow for money growth in section 5.

The economy is also populated by  types of firms. Each type  consists of a large number of

firms that are specialized in the production and distribution of good . A type  firm operates a

technology of constant returns to scale that transforms any amount of labor supplied by individ-

uals of type  − 1 (modulo ) into that amount of good .4 Moreover, a type  firm can open a

trading post in the market for good  using   0 units of labor supplied by individuals of type

− 1 (modulo ). Firms are owned by the individuals through a balanced mutual fund.
In every period, a labor market and a product market open. Firms can participate in both

markets in the same period. In contrast, individuals can participate in either the labor market

or the product market. That is, in a given period, individuals must choose whether to become

workers or buyers. Before making this choice, individuals can play a fair lottery. Even though

individuals are risk averse, a lottery can be desirable because the value function without the

lottery can be non-concave at particular money balances. One cause of non-concavity is the

discrete nature of the decision on which market to enter. Another cause is the tradeoff between

the matching probability and the surplus of trade in the product market, to be described later.

The labor market is centralized and frictionless. Taking the nominal wage rate as given, each

firm chooses how much labor to demand and each worker chooses how much labor to supply. In

equilibrium, the nominal wage rate equates the demand for and the supply of labor of each type.

All labor is paid at the end of the period from the proceeds of sales. Workers are paid in money

instead of goods because they do not want to consume the good produced by the firm in which

they work and because goods are perishable between periods. Moreover, an IOU issued by a firm

that promises future repayment is not accepted, because the firm is better off exiting the market

than honoring such IOUs.5

4The linear production technology is assumed without loss of generality. Note that the disutility of labor supply,

(), is strictly convex and the utility of consumption is strictly concave.
5Firms are assumed to commit to the wage payment at the end of the period. Similar assumptions of within-

period commitments are required in all models of decentralized exchange where goods are perishable, such as Shi

(1995) and Trejos and Wright (1995). In the latter models, the two traders in a match are assumed to commit

to the delivery of money and goods according to the bargained terms of trade. Without this assumption, a buyer

would renege and ask the seller to give up the goods for free once the goods are produced. Although a detailed

description of the environment can be given to justify the within-period commitment, it is often skipped in the

literature, as it is here, because it would take the attention away from the main issues.
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To simplify the notation, we choose labor, instead of goods or money, as the numeraire in this

model. Let  be the nominal wage rate, and so one unit of money is worth 1() units of

labor. We refer to the quantity of money expressed in terms of labor as the real balance. Thus,

the real balance per capita in the economy is equal to 1. We will also express the price of

goods in labor units later. Although  is normalized by the money stock, we shorten the phrase

by referring to  as the nominal wage rate whenever there is no confusion.

The product market is decentralized and has search frictions. Buyers and trading posts meet

in pairs and there is no record keeping of their actions once they exit a trade. The market

for each type  goods is organized in a continuum of submarkets indexed by the terms of trade

( ) ∈ R+ × R+, where  is the real balance paid by the buyer and  is the quantity of goods

obtained by the buyer in a trade. A firm chooses how many trading posts to create in each

submarket, and a buyer chooses which submarket to visit. As is standard in search models, the

length of a period is such that a buyer can visit at most one submarket in a period. The matching

process is frictional in each submarket. Let  denote the tightness, i.e., the ratio of trading posts

to buyers, in a submarket. In a submarket with tightness , a buyer is matched with probability

 = (), and a trading post is matched with probability  = (). The function  : R+ → [0 1]

is a strictly increasing function with boundary conditions (0) = 0 and (∞) = 1. The function
 : R+ → [0 1] is a strictly decreasing function such that () = (), (0) = 1 and (∞) = 0.
Since  and  are both functions of , we can express a trading post’s matching probability as a

function of a buyer’s matching probability:  = () ≡ (−1()). Clearly, () is a decreasing

function. We assume that 1() is strictly convex in .

Because firms and buyers choose which submarket to enter, a type  buyer will choose to

participate only in the submarkets where type  goods are produced, i.e., where trading posts

are created by type  firms. Moreover, across the submarkets that sell the same good, search is

directed as in Moen (1997), Acemoglu and Shimer (1999), Burdett et al. (2001) and Shi (2001).

That is, firms and buyers take into account the fact that market tightness varies with the terms

of trade across the submarkets according to a function  : R+ × R+ → R+. The function  is

endogenously determined in the equilibrium by the requirement that ( ) be equal to the ratio

of trading posts to buyers in submarket ( ) for all ( ). As a result, matching probabilities,

 and , are endogenous functions of ( ).6

When a buyer meets a trading post in submarket ( ), the buyer pays the real balance  for 

6Note that the price of goods in a submarket alone is not adequate for describing a submarket because a buyer

may not spend all the money in a trade. Also, in subsection 2.4, we will briefly contrast directed search with a

perfectly competitive goods market and a trading-post model with no search frictions.
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units of the consumption good. The buyer must pay the seller with money because neither barter

nor credit is feasible. The buyer cannot pay the seller with goods because goods are perishable

and there is no double coincidence of wants in goods between the buyer and the seller. Moreover,

the buyer cannot pay the seller with an IOU because individuals are anonymous; once they exit

a trade, they can renege on their IOUs without fear of retribution. Thus, the amount of money

that a buyer can spend in a trade is bounded above by the balance he carries into the trade.

The environment above retains many standard features of a search model. In particular,

matching is stochastic in each submarket, an individual can perform only one role in a period,

and a buyer has at most one match in a period. Directed search is the main difference of our

environment from the literature of monetary search. In order to direct search, some commitment

is needed for individuals to make a meaningful tradeoff between the surplus of a trade and the

matching probability. In our paper, the commitment is to the posted terms of trade. Let us clarify

this assumption with three remarks. First, directed search is a realistic feature of many markets

in an actual economy. The trading posts in a submarket may be interpreted as a collection of

stores in a particular location or sellers who offer similar terms of trade. Buyers often choose the

location and the price range of goods at which they shop, rather than randomly search among

all the sellers. Second, modeling a market as a collection of trading posts can be traced at least

back to Shapley and Shubik (1977), who argue that the setup is useful for retaining the force of

competition while allowing for coordination frictions.7 Third, commitment to the terms of trade

is a simple way to model directed search, but it is not the only one. Search can be directed by

commitment to a variety of trading arrangements, from posted prices (e.g., Burdett et al., 2001)

to auctions (Julien et al., 2000).

Directed search has other desirable implications for modeling monetary exchange, which con-

trast with undirected search models (e.g., Shi, 1997, Lagos and Wright, 2005, Molico, 2006,

and Chiu and Molico, 2008). First, undirected search models have often (although not always)

assumed that the individuals in a match bargain over the terms of trade. To characterize the bar-

gaining outcome simply, the models require a strong assumption that individuals’ money holdings

are public information. If money holdings are private information, instead, the bargaining game

can have multiple equilibria, which complicate the analysis significantly and weaken the predic-

tive power. Our model does not suffer from this problem. Because search is directed, whether an

individual’s money balance is public or private information does not matter to the analysis. In

7The main difference between directed search and the Shapley-Shubik setup is that with directed search, match-

ing is frictional and stochastic inside each submarket, and so there is a trade-off between the terms of trade and

the matching probability. In the Shapley-Shubik setup, all participants at a post succeed in trade, provided that

the number of participants on each side of the post is strictly positive.
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any submarket, the expected payoff to an individual is determined by the terms of trade and the

individual’s own money balance. An individual can calculate this expected payoff without the

need to know how much money the trading partner holds. Second, with undirected search and

bargaining (under public information), a buyer with a higher balance pays a higher price in the

equilibrium not because the buyer optimally chooses so, ex ante, but rather because the buyer is

held up by the seller, ex post. In our model, as will be proven later, a buyer with a higher balance

optimally chooses to pay a higher price because the submarket with a higher price compensates

the buyer with a higher matching probability.

2.2. An individual’s decision

Let  () denote the lifetime utility of an individual who starts a period with the real balance

 (expressed in units of labor). We refer to  as the ex-ante value function, since it is measured

before the individual makes any decision in a period. Let () denote a buyer’s value function,

i.e., the lifetime utility of an individual who enters the product market as a buyer with the real

balance . Similarly, let  () denote a worker’s value function, i.e., the lifetime utility of an

individual who enters the labor market as a worker with the real balance .

A worker chooses labor supply, , which generates  units of the real balance as wage income.

The individual also owns a diversified portfolio of the firms. However, the return to this portfolio

is zero since all firms earn zero profit in the equilibrium. Thus, a worker who enters the labor

market with a real balance  will have a real balance  +  at the end of the period. The

discounted value of this balance is  (+ ). The worker’s value function,  , obeys:

 () = max
∈[01]

[ (+ )− ()]  (2.1)

Denote the optimal choice of  as ∗() and the implied real balance at the end of the period as

∗() = + ∗(). We refer to ∗() and ∗() as a worker’s policy functions.

A buyer chooses which submarket ( ) to enter, taking the tightness function ( ) as

given. In submarket ( ), the buyer will meet a trading post with probability (( )), in

which case he will trade a real balance  for  units of goods. Current consumption yields utility

(), and the residual balance (− ) yields the discounted value  (− ). With probability

1− (( )), the buyer will not have a match, in which case he will retain the balance  whose

discounted value will be  (). Thus, the buyer’s value function, , obeys:

() = max
∈[0], ≥0

{(( )) [() +  (− )] + [1− (( ))] ()} .
(2.2)
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The buyer’s optimal choices are represented by the policy functions (∗() ∗()).

An individual chooses whether to be a worker or a buyer in the period. This choice induces:

̃ () = max{ () ()} (2.3)

Notice that ̃ may be non-concave for some real balances, even when  and  are concave

functions. Thus, there is a potential gain to the individual from playing fair lotteries before

making the above choice on whether to be a worker or a buyer. Denote a lottery as (  )=12,

with 2 ≥ 1, where  is the probability that the prize  is realized. The lifetime utility of the

prize  is ̃ (). Thus, the ex ante value function induced by the lottery choice is:

 () = max
(1212)

h
1̃ (1) + 2̃ (2)

i
(2.4)

s.t. 11 + 2 2 = , 1 + 2 = 1, 2 ≥ 1,

 ∈ [0 1] and  ≥ 0 for  = 1 2
Let (∗ () ∗ ())=12 denote the individual’s optimal choice of a lottery.8

2.3. A firm’s decision

A firm chooses how many trading posts to create in each submarket and how much labor to

employ, taking as given the wage, 1, and the tightness function, ( ). The firm hires labor

to create trading posts and produce goods, and pays labor with money received from selling

goods. Consider submarket ( ). The cost of creating a trading post is  units of labor. A

trading post in submarket ( ) will have a match with probability (( )), in which case

the firm uses  units of labor to produce  units of goods and exchanges for a real balance .

Thus, the expected benefit of creating a trading post in submarket ( ) is (( ))( − ).

If (( ))( − )  , it is optimal for the firm not to create any trading post in submarket

( ). If (( ))( − )  , it is optimal for the firm to create infinitely many trading posts

in submarket ( ). If (( ))( − ) = , the firm is indifferent between creating different

numbers of trading posts in submarket ( ). The case (( ))(−)   never occurs, because

it implies ( ) = ∞ and, hence, (( )) = 0, which contradicts the condition for the case.

Thus, in any submarket ( ) visited by a positive number of buyers, the tightness is consistent

with the firm’s incentive to create trading posts if and only if

(( ))(− ) ≤  and ( ) ≥ 0, (2.5)

8Because a lottery is defined for any given , it is used by individuals who hold the same balance. Thus, a
lottery is not introduced here for individuals with heterogeneous holdings to exchange their balances among each

other between trading rounds. Moreover, a lottery may or may not be played in the equilibrium and, when it is

played in the equilibrium, it is played at only one level of money balance (see Lemma 4.1).
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where the two inequalities hold with complementary slackness. In any submarket ( ) that

is not visited by buyers, the tightness can be arbitrary if  is greater than (( ))( − ).

However, following Shi (2009), Menzio and Shi (2010, 2011) and Gonzalez and Shi (2010), we

restrict attention to equilibria in which (2.5) also holds for such submarkets.9

Note that (2.5) implies that aggregate profit is zero. If ( ) is the distribution of trading

posts across submarkets, then the sum of money received from sales,
R
(( ))( ), exactly

covers the sum of money paid to the workers,
R
[ + (( ))]( ). This implies that

expected profit of each firm is zero. Basing on this result, we assume that actual profit of each

firm is also zero. To justify this assumption, one may imagine that the number of firms is finite

and each firm creates a large number of trading posts so that the law of large numbers applies

to each firm to guarantee deterministic revenue and cost for each firm. Although each firm in

this case has some size in the market, it is not uncommon to assume firms as price takers in the

labor market as we do. For example, the celebrated work of Debreu (1959) assumes that a finite

number of firms and a finite number of households take prices parametrically, even though their

actions affect equilibrium prices.

2.4. Equilibrium definition and block recursivity

We define a monetary steady state as follows:

Definition 2.1. A monetary steady state consists of value functions, (), policy functions,

(∗ ∗ ∗ ∗ ∗), market tightness function , a wage rate , and a distribution of individuals

over real balances, , that satisfy the following requirements:

(i)  satisfies (2.1) with ∗ as the associated policy function;

(ii)  satisfies (2.2) with (∗ ∗) as the associated policy functions;

(iii)  satisfies (2.4) with (∗ ∗) as the associated policy functions;

(iv)  satisfies (2.5) for all ( ) ∈ R2+;
(v)  is the ergodic distribution generated by (∗ ∗ ∗ ∗ ∗ );10

(vi)  is such that  ∞ and
R
 () = 1.

9This restriction on the beliefs out of the equilibrium “completes” the market in the following sense: A submarket

is inactive only if, given that some buyers are present in the submarket, the expected benefit to a lone trading post

in the submarket is still lower than the cost of the trading post. This restriction can be justified by a “trembling-

hand” argument that a small measure of buyers appear in every submarket exogenously. Similar restrictions are

common in the literature on directed search, e.g., Moen (1997) and Acemoglu and Shimer (1999).
10The general specification of the law of motion of  is cumbersome at this point and not necessary for the

equilibrium analysis. In section 4 we will characterize the law of motion of  implied by optimal choices.
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Requirements (i)-(iv) are explained in previous subsections. Requirement (v) asks the distrib-

ution of individuals over real balances to be stationary and consistent with the flows of individuals

induced by optimal choices. Requirement (vi) asks that money should have a positive value and

that all money should be held by the individuals. Specifically, the sum of real balances according

to the distribution  must be equal to the total real balance in the economy, 1. We did not

specify the labor market clearing condition in the above definition, because such a condition is

implied by requirement (vi) in a closed economy.

As we will show in section 4, the support of the equilibrium distribution is a discrete set.

However, for individuals to optimally choose to hold only the balances in this set, they need to

know the optimal choice and the payoff of holding any balance outside the equilibrium set. This

information is provided by the policy and value functions in (i)-(iii) above. Similarly, although the

number of submarkets participated by a positive measure of individuals is finite in the equilibrium,

individuals need to know the tightness in all submarkets, given by the function  in (iv) above,

in order to choose optimally which submarket to participate in (see footnote 9).

Equilibrium objects and requirements in Definition 2.1 can be grouped into two blocks. The

first block consists of the value functions, the policy functions and the market tightness function,

which are determined by requirements (i) - (iv). The second block consists of the distribution of

individuals over real balances and the wage rate, which are determined by requirements (v) and

(vi). The second block depends on the objects in the first block, but the first block is not affected

by the second block. That is, the value functions, the policy functions and the market tightness

function are independent of the distribution and the wage rate. We refer to this property of the

equilibrium as block recursivity, a phrase coined by Shi (2009), Menzio and Shi ( 2010, 2011), and

Gonzalez and Shi (2010). Clearly, even when an equilibrium is block recursive, the distribution

is important because it affects the aggregate activity.

Block recursivity is an attractive property of our model because it enables us to solve for

equilibrium value functions, policy functions and the market tightness function without solving

for the distribution of individuals over real balances. After obtaining the objects in the first

block, we can compute the equilibrium distribution by simply equating the flows of individuals

into and out of each level of the real balance. Thus, the steady state is tractable even when the

distribution of real balances is non-degenerate. In contrast, when the distribution is an aggregate

state variable that appears in the policy and value functions, one must compute the objects in

the two blocks simultaneously and, since the distribution is endogenous and potentially has a

large dimension, the computation of an equilibrium is complicated. In fact, it is to circumvent

this complexity that monetary models have imposed assumptions on the model environment to
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make the distribution degenerate (e.g., Shi, 1997, Lagos and Wright, 2005).

Directed search and free-entry of trading posts are responsible for the steady state to be block

recursive. With directed search, individuals choose to enter only the submarkets with the best

tradeoff between the terms of trade and the matching probability, as formulated in subsection 2.2.

The tightness function provides all information on the market that is relevant for this tradeoff.

Given the tightness in each submarket, a buyer’s optimal decision on which submarket to visit

depends only on the buyer’s own real balance, and not on how real balances are distributed among

other buyers. Similarly, given the tightness in each submarket, the expected profit of a trading

post in a submarket depends only on the particular real balance of the buyers who are expected

to enter that submarket, and not on how real balances are distributed in other submarkets. In

turn, the tightness in each submarket is determined by free-entry of trading posts, which drives

the expected profit of a trading post down to zero wherever −  ≥ , and the tightness to zero

wherever −  . Because the expected profit of a trading post in each submarket depends only

on the real balance of the buyers who will enter that submarket, so does the resulting tightness.

Thus, value functions, policy functions, and the market tightness function are all independent of

money distribution in the steady state.

To appreciate the role of directed search, consider an environment with undirected search in

which all buyers and trading posts go through the same random matching process first and then

decide whether to trade. The terms of trade can be either posted before the meeting (without

serving the function of directing search) or bargained after the meeting. If the terms of trade are

posted before a meeting takes place, whether a particular match generates a non-negative surplus

depends on the real balance of the buyer in the match. Because the buyer is randomly drawn,

the trading probability depends on the distribution of buyers over real balances. If the terms of

trade are instead bargained after a meeting takes place, they depend on real balances of both

individuals in the match which are randomly drawn from the distribution. In both cases, the

distribution of individuals over real balances affects the value function and the expected benefit

of a trading post. Because the tightness of the market is such that the expected benefit of a

trading post is equal to the cost, the tightness is also a function of the distribution. That is,

when search is undirected, the equilibrium is not block recursive.

Finally, let us remark on the assumption that the labor market is perfectly competitive.

Although this assumption is standard in macro, it is not used in most money-search models

which, instead, assume that a worker’s income depends on the outcome of random matching

(e.g., Shi, 1995, and Trejos and Wright, 1995). In our model, each firm hires workers to produce

goods and to maintain a large number of trading posts. Although each trading post may or
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may not have a trade, the law of large numbers implies that a firm’s total revenue from all

trading posts together is deterministic, which enables the firm to pay a deterministic competitive

wage rate. Moreover, we will show in section 4 that all workers go to work with zero balance.

However, neither the deterministic wage income nor the degenerate real balance among workers

in the equilibrium is important for block recursivity. This should be clear from the fact that

block recursivity is a statement about the independence of the entire value functions, policy

functions and the tightness function on the distribution, not just the independence at particular

real balances. For example, if there are idiosyncratic shocks to the disutility of labor or a worker’s

matching outcome, then the distribution of wage income among workers will be non-degenerate

in the equilibrium. But the equilibrium will still be defined in the same way as above and will

remain block recursive. We abstract from such heterogeneity among workers in order to focus on

a buyer’s decision and money distribution among the buyers.

3. Equilibrium Policy and Value Functions

In this section we establish existence, uniqueness and other features of value and policy functions.

A center piece of this analysis is subsection 3.2 on a buyer’s value and policy functions. We

prove that a buyer’s policy functions are monotone, which implies that buyers sort into different

submarkets according to the real balance. A buyer with a higher balance chooses to search in a

submarket where he can spend a larger balance and get a higher quantity of goods. Such a buyer

also has a higher matching probability. Sorting leads to a stylized pattern of purchases and a

clear characterization of the equilibrium in section 4.

Monotonicity of policy functions is also critical for us to prove that the standard conditions of

optimization, such as the first-order conditions and the envelope conditions, hold in our model.

The characterization of a buyer’s problem is technically challenging because the problem is not

well-behaved. In fact, a buyer’s objective function is not concave in the choice and state variables

jointly. We cannot use standard arguments in dynamic programming (e.g., Stokey et al., 1989)

to establish monotonicity of the policy functions and differentiability of the value function and,

in turn, to establish the validity of the envelope and first-order conditions. Instead, we develop

an alternative set of arguments that first prove monotonicity of the policy functions, then differ-

entiability of the value function and finally the validity of the first-order and envelope conditions.

These arguments are of independent interest because they are likely to apply to a variety of

dynamic models that involve both discrete and continuous choices.

A map of the analysis in this section is as follows. First, we assume that an individual’s real
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balance is bounded above by ̄ ∞, which will be validated in Theorem 3.5. Let C[0 ̄] denote
the set of continuous and increasing functions on [0 ̄], and let V[0 ̄] denote the subset of C[0 ̄]
that contains all concave functions. Taking an arbitrary ex ante value function  ∈ V[0 ̄], we
use subsection 3.1 to characterize a worker’s problem. Second, with the same function  , we use

subsection 3.2 to characterize a buyer’s problem. Third, in subsection 3.3, we characterize an

individual’s lottery choice and obtain an update of the ex ante value function, denoted as  .

We prove that  is a monotone contraction mapping on V[0 ̄], and so there is a unique fixed
point for the ex ante value function. Finally, we verify in Theorem 3.5 that an individual’s real

balance is indeed bounded above by ̄ ∞.

3.1. A worker’s value and policy functions

Let ̄ be a sufficiently large upper bound on individuals’ real balances and  any arbitrary

function in V[0 ̄]. Given  , the worker’s problem, (2.1), generates the worker’s value function

 (), the policy function of labor supply ∗(), and the policy function of the end-of-period

balance ∗() = + ∗(). We have the following lemma (see Appendix A for a proof):

Lemma 3.1. For any  ∈ [0 ̄] and  ∈ V[0 ̄], the following properties hold:
(i)  ∈ V[0 ̄], i.e.,  is continuous, increasing and concave on [0 ̄];

(ii) ∗() and ∗() are single-valued and continuous, with ∗() being decreasing and ∗()

strictly increasing;

(iii) For all  such that ∗()  0,  0() and  0(∗()) exist and satisfy:

 0() =  0(+ ∗()) = 0(∗()). (3.1)

The first equality is the envelope condition and the second equality the first-order condition.

A worker’s value function is continuous, increasing and concave in the worker’s real balance

because the ex ante value function has these properties. Optimal labor supply is decreasing in the

worker’s balance because the marginal value of money is diminishing and the marginal disutility

of labor is increasing. The end-of-period balance is strictly increasing in  because money has a

strictly positive value. To establish differentiability of  in (iii), we use the standard approach

in dynamic programming (see Stokey et al., 1989, p85). That is, we first show that the objective

function in (2.1) is concave in () jointly, and then use the result in Benveniste and Scheinkman

(1979) to show that  is differentiable whenever the optimal choice ∗() is interior.11

11The choice  = 1 is never optimal, because the marginal disutility of labor at this choice is infinite. On the

other hand, if  is so high that ∗() = 0, then the individual should have entered the goods market as a buyer
rather than the labor market as a worker.
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The second equation in (3.1) requires an explanation, since it implies that the derivative

 0(∗()) exists even though we have not assumed that  is differentiable. To prove that

 0(∗()) exists, we transform a worker’s problem into one where the choice variable is :

 () = max
≥

[ ()− ( −)] . (3.2)

Concavity of  implies that  is differentiable almost everywhere and that the one-sided deriva-

tives of  exist (see Royden, 1988, pp113-114). Then, we prove that optimal level of  is always

located at a place where  is differentiable. Specifically, we use a generalized version of the

envelope theorem to show that both of the one-sided derivatives of  (∗()) are equal to those

of  () (See Appendix A). Because  0() exists, so does  0(∗()).

Lemma 3.1 holds for all  ≥ 0. Of particular interest is the case  = 0. For a worker with

 = 0, denote the optimal end-of-period balance as ̂ = ∗(0) = ∗(0). This worker’s value

function is  (0) =  (̂)− (̂). Lemma 3.1 implies that

 0(̂) =
1


0(̂) =

1


 0(0) (3.3)

3.2. A buyer’s value and policy functions

We now analyze a buyer’s problem (2.2), given any arbitrary ex ante value function  ∈ V[0 ̄].
In subsection 3.2.1, we reformulate the buyer’s problem, describe the difficulty in analyzing the

problem, outline our approach, and present the main results in Theorem 3.2. In subsections 3.2.2

and 3.2.3, we establish two lemmas which together constitute a proof of Theorem 3.2.

3.2.1. The difficulty, our approach and main results

For convenience, we use ( ) instead of ( ) to represent a buyer’s choices and express  as

a function of ( ), where  is the buyer’s matching probability in a submarket. Recall that

 = (( )), that a trading post’s matching probability is  = (( )), and that  = () ≡
(−1()). Thus, the market tightness condition (2.5) can be written as

 = () =

½ 
−  if  ≤ − 

1, otherwise.
(3.4)

In any submarket with  −  ≤ , the tightness is 0, and a buyer’s matching probability is

 = −1(1) = 0. In any submarket with −   , the tightness is strictly positive, and a buyer’s

matching probability is  = −1( 
− )  0. Thus, in any submarket ( ) with positive tightness,
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we can express the quantity of goods traded in a match as

 = ( ) ≡ − 

 ()
 (3.5)

Note that if a buyer has a balance  ≤ , the only submarkets that the buyer can afford to visit

have  −  ≤  ≤  and, hence, have zero tightness. For such a buyer, the optimal choice is

∗() = 0, and the value function is () =  ().

Let us focus on the non-trivial case   . In this case, the buyer’s problem (2.2) can be

transformed into the following one in which the choices are ( ):

() = max
()

{ () +  [( ) +  (− )−  ()]}
s.t.  ∈ [0]   ∈ [0 1] 

(3.6)

where ( ) = (( )).12 Let (∗() ∗()) denote the buyer’s policy functions for ( )

and let () denote the policy function for the residual balance (−). Then,

∗() ≡  (∗() ∗()) , () ≡ − ∗() (3.7)

The objective function in (3.6) is not concave jointly in ( ) and . The objective function

involves the product of the buyer’s trading probability, , and the buyer’s surplus of trade. Even

if these terms are concave separately, the product of the two may not be concave in ( )

jointly. The lack of concavity presents a major difficulty in using the standard approach in

dynamic programming to analyze policy and value functions, because the approach starts with

the requirement that the objective function be concave jointly in the choice and state variables

(see Stokey et al., 1989). Attempts to make a buyer’s objective function concave entail restrictions

on the endogenous function  , which are difficult to verify as the outcome of (2.4).

To analyze a buyer’s problem, we use lattice-theoretic techniques (see Topkis, 1998). We prove

first that the policy functions are monotone and then that the value functions () and  ()

are differentiable at real balances induced by optimal choices from any initial balance. These

results allow us to validate the first-order conditions and envelope conditions. Finally, we prove

that  is differentiable at all balances.13 The main result of this procedure is stated below:

12Note that for  ≥ 0, the buyer’s choices must satisfy  ≥ (). However, there is no need to add this
constraint to the problem (3.6) because it is not binding. For any choices ( ) such that   () and   0,

the quantity of goods is   0 and the utility of consumption is ( )  (0) = 0. In this case, the buyer’s surplus
from trade is ( ) +  (− )−  ()  0. The buyer can avoid this loss by choosing  = 0.
13There are other approaches that establish differentiability of the value function in the presence of a non-concave

objective function. However, these approaches do not prove monotonicity of the policy functions. Moreover, they

are not applicable in our model. Specifically, these approaches assume the objective function to be equi-differentiable

(Milgrom and Segal, 2002) or differentiable with respect to the state variable (Clausen and Strub, 2010). In our

model, the objective function in (2.2) contains both  () and  ( − ), where  is a choice and  a state

variable. For this objective function to satisfy either of the aforementioned assumptions, the value function  must

be differentiable, which is a result to be proven.
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Theorem 3.2. Take any arbitrary  ∈ V[0 ̄]. Then,  ∈ C[0 ̄]. If  ≤ , then ∗() = 0

and () =  (); if   , then () satisfies (3.6). Consider any  ∈ [ ̄] such that
∗()  0. The results (i)-(iii) below hold:

(i) For each , the optimal choices (∗() ∗()) and the implied quantities (∗() ()) are

unique. The policy functions ∗(), ∗(), ∗() and () are continuous and increasing.

(ii) The optimal choice ∗() satisfies the first-order condition:

( ) +  2( ) =  [ ()−  (− )] . (3.8)

For all  such that ()  0, () satisfies the first-order condition:14

 0 (()) =
1


1 (

∗() ∗())  (3.9)

(iii) 0() exists if and only if  0() exists, and  is strictly increasing.

Furthermore, consider any   ̄ such that ∗()  0. If () =  () and if there exists a

neighborhood  of  such that (0) ≤  (0) for all 0 ∈ , then (iv) and (v) below hold.

These two parts also hold at  = ̄ if 0(̄) =  0(̄):

(iv) The derivatives 0() and  0() exist and satisfy:

 0() =
∗()

1−  [1− ∗()]
1 (

∗() ∗()) = 0(). (3.10)

(v) If ()  0, then ∗ and  are strictly increasing at , and  is strictly concave at (),

with  0(())   0().

Parts (ii)-(iv) of this theorem assure that one can use the standard apparatus of optimization

to analyze a buyer’s optimal decisions and value function. We will establish Lemmas 3.3 and 3.4

below, which together prove Theorem 3.2. A reader who is eager to see the implications of the

above theorem may want to go directly to subsection 3.3.

To appreciate the difficulties overcome in Theorem 3.2, let us compare the optimization prob-

lem in (3.6) with the one in Lagos and Rocheteau (2005) who apply lattice-theoretic techniques to

examine comparative statics. Lagos and Rocheteau (2005) assume that individuals have quasi-

linear preferences. In our notation, this assumption implies that the future value function is

 () =  for some  that is independent of an individual’s choices and money balance. With

this feature, the future value function is evidently differentiable. Also, the objective function

in (3.6) becomes  + [( ) − ] that is linear in  and separable between ( ) and .

14If () = 0, then (3.9) is replaced with  0 (0) ≤ 1

1 ( ∗ ()) 
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It is then clear that optimal choices of ( ) are characterized by first-order conditions. More-

over, the objective function satisfies the requirements for applying the envelope condition, such

as those given by the references in footnote 13. Thus, when preferences are quasi-linear, most of

the analytical difficulties overcome in Theorem 3.2 are not present. Because these difficulties are

associated with a non-linear future value function that arises from the wealth effect of money,

they are intrinsic to monetary search models that do not employ such tractability assumptions

as those in Shi (1997) and Lagos and Wright (2005).

3.2.2. A buyer’s policy functions and monotonicity

Lattice-theoretic techniques (Topkis, 1998) to (3.6) build on the property that the objective func-

tion is supermodular in the choice and the state variables. Supermodularity (or complementary)

of the objective function intuitively leads to increasing policy functions. As a preliminary step

that also develops the intuition, we examine the functions ( ) and ( ). The function

( ), defined in (3.5), determines the quantity of goods sold to a buyer who has a matching

probability  and spends a real balance  in a submarket with positive tightness. For all ( )

such that ( )  0, it is easy to verify that  has the following properties:

1( )  0, 2( )  0, ( ) is (weakly) concave, and 12 = 0. (3.11)

It is intuitive that  strictly increases in  and strictly decreases in . For any given matching

probability, the more a buyer is willing to pay, the higher the quantity of goods he can obtain.

For any given payment, a buyer who wants to have a higher matching probability must accept

a lower quantity of goods. Equivalently, a firm must be compensated with the reduction in the

quantity of goods for creating more trading posts to increase a buyer’s matching probability.

The second-order properties of  are also intuitive. The function  is strictly concave in 

because increasing the number of trading posts has a diminishing marginal effect on increasing

a buyer’s matching probability. In order for a firm to create more trading posts to increase a

buyer’s matching probability further, the firm must be compensated with an increasingly larger

reduction in the quantity of goods traded for a given . The function  is linear in  because

the amount of labor needed to produce any quantity of goods is assumed to be a linear function

of the quantity. Moreover, 12 = 0 because  is separable in ( ).15

The function ( ) is used in the objective function in (3.6) to express ( ) =  (( )).

Because the utility function  is strictly increasing and strictly concave, the properties of  above

15If the amount of labor needed to produce any quantity of goods is assumed to be a strictly convex function of

the quantity, then  is strictly concave in ( ) and 12  0. These features of  will strengthen our results.
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imply similar properties of  for all ( ) such that ( )  0:

1( )  0, 2( )  0, ( ) is strictly concave, and 12  0. (3.12)

The second-order properties of  are stronger than those of . In particular, ( ) is strictly

supermodular since 12  0. This property is intuitive. Consider 1( ), the marginal utility of

spending. In a submarket where the buyer’s matching probability is relatively high, the quantity

of goods that the buyer obtains in a trade with any given spending is relatively low. At such low

consumption, an increase in spending can increase the utility of consumption by a relatively large

amount. Thus, 1( ) is strictly higher in a submarket with a higher  than with a lower .

Unfortunately, a buyer’s objective function in (3.6) is not supermodular, despite the above

properties of ( ). To see this, let us write this objective function as  () + ( ),

where  is the buyer’s surplus in the trade:

 ( ) ≡ ( ) +  (− )−  () (3.13)

Even if  and ( ) are supermodular, their product is not necessarily supermodular. Thus,

we cannot apply Topkis’ (1998) theorems directly to (3.6). To resolve this problem, we decompose

the buyer’s problem into two steps. In the first step, we fix  and characterize the optimal choice

of . For any given (), the optimal choice of  maximizes ( ). Denote

̃ () = arg max
∈[0]

( ), ̃ () =  (̃ ()  )  (3.14)

In the second step, we characterize the optimal choice of  as

∗() = arg max
∈[01]

 ̃() (3.15)

Much weaker properties are required to apply Topkis’ theorems in the two steps than in the

direct approach. In the first step, we prove that a buyer’s surplus ( ), rather than ,

is supermodular in ( ). Because a higher  enlarges the feasibility set in (3.14), super-

modularity of  implies that ̃() is increasing in () and that ̃() is supermodular.

In the second step, we prove that  ̃() is supermodular in (). That is, ( ) is

supermodular in () at the particular spending level  = ̃(), which is weaker than super-

modularity of ( ) for all ( ). Since the feasibility set in (3.15) is independent of ,

supermodularity of  ̃() implies that the policy function ∗() is increasing. This implies

that the policy function ∗() = ̃(∗()) is increasing. By changing the choices from ( )

to ( ) and to (−  ), in turn, we use the same procedure to prove that ∗() and () are

increasing. The following lemma summarizes the results (see Appendix B for a proof):
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Lemma 3.3. For any  ∈ V[0 ̄],  () ∈ C[0 ̄]. If  ≤ , then ∗() = 0 and () =

 (); if   , () solves (3.6). Moreover, for all  ∈ [ ̄] such that ∗()  0, the policy
functions are monotone as stated in part (i) of Theorem 3.2.

It is intuitive that optimal choices (∗() ∗()) are unique for any given, as stated in part

(i) of Theorem 3.2. Because the matching function has diminishing marginal productivity for each

input, a buyer’s matching probability is strictly concave in the market tightness. This implies

that the buyer must increase spending by an increasingly larger amount in order to increase the

matching probability further by a given amount. Thus, for any given balance, there is a unique

combination of ( ) that is optimal for a buyer. That is, given the balance, a buyer chooses a

unique submarket to enter, rather than being indifferent between different submarkets.

The policy functions ∗(), ∗(), ∗() and () are all increasing, provided ∗()  0.

To explain this feature, note that the marginal value of a buyer’s residual balance is diminishing,

because  is concave. For a buyer with a higher balance, it is then optimal to increase current

utility by entering a submarket where he has a higher matching probability and higher spending.

In addition, because consumption is “normal” in both the current and the next period, it is

optimal for a buyer with a higher balance to increase consumption in both periods. This requires

the residual balance () to be increasing in the buyer’s current balance. Not surprisingly, the

proof of supermodularity of a buyer’s surplus function, ( ), relies heavily on concavity of

 and the properties of ( ) listed in (3.12).

In summary, buyers sort themselves into different submarkets according to the real balance.

A buyer with more money chooses to enter a submarket where he will have a higher matching

probability and once he is matched in the submarket, he will spend a larger amount of money,

buy a larger quantity of goods and exit the trade with a higher balance.

3.2.3. First-order conditions, envelope theorems and value functions

The remaining parts of Theorem 3.2, (ii)-(v), describe the first-order conditions, the envelope

condition and additional properties of the value functions. They are restated in the following

lemma and proven in Appendix C:

Lemma 3.4. Consider any  ∈ [ ̄] such that ∗()  0. For any  ∈ V[0 ̄], parts (ii) and
(iii) of Theorem 3.2 hold. For any   ̄ such that ∗()  0, if () =  () and if there

exists a neighborhood  of  such that (0) ≤  (0) for all 0 ∈ , then parts (iv) and (v)

of Theorem 3.2 hold. These two parts also hold at  = ̄ if 0(̄) =  0(̄).
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Part (ii) of Theorem 3.2 states that optimal choices ∗ and ∗ satisfy the first-order conditions.

In the first-order condition of ∗, (3.8), the left-hand side is the marginal benefit of increasing

the trading probability, . The right-hand side of (3.8) is the buyer’s opportunity cost of a trade,

represented by the reduction in the future value function resulting from a lower future balance.

Similarly, the first-order condition of ∗, (3.9), requires that the marginal cost of increasing

spending, represented by the marginal value of the residual balance , should be equal to the

marginal utility of consumption brought about by higher spending.

The first-order condition of ∗ holds regardless of whether or not  is differentiable, because

 does not appear in  . In contrast, the choice  appears in  through the residual balance.

Thus, the first-order condition of the optimal choice ∗, (3.9), implies that the derivative 0(())

exists. That is, it is optimal for a buyer to choose spending in such a way to steer away from

residual balances at which  is not differentiable. This result is established in a way similar to

the existence of  0(∗()) in Lemma 3.1. Once  0(()) exists,  () is the only function on the

right-hand side of the Bellman equation for () whose differentiability has not be proven. It is

then not surprising that 0() exists if and only if  0() does, as stated in part (iii) of Theorem

3.2. Moreover,  is strictly increasing because utility is strictly increasing in consumption.

Part (iv) of Theorem 3.2 states that  () is differentiable and that the envelope condi-

tion holds for a buyer’s problem, for any   ̄ with () =  () and with the described

neighborhood . For such ,  0() and 0() are both equal to the discounted marginal

utility of consumption given by the expression in the middle of (3.10). To explain, note that

in the neighborhood , the one-sided derivatives of  and  satisfy 0(+) ≤  0(+) and

0(−) ≥  0(−). For 0(+) ≤  0(+), the discounted marginal utility of consumption can-

not exceed the marginal value of retaining a unit of the balance,  0(+); for 0(−) ≥  0(−),

the discounted marginal utility of consumption cannot fall below the marginal value of spending

a unit of balance,  0(−). These requirements imply  0(+) ≥  0(−). Because concavity of

 implies  0(+) ≤  0(−), then  0(+) =  0(−); i.e.,  0() exists.16

Part (v) of Theorem 3.2 describes additional properties. First, for any  with () =  (),

a buyer with the balance does not have the need to use a lottery. This implies that the marginal

value of the real balance is strictly decreasing at  and so, for any given trading probability, the

buyer’s surplus of trade is strictly increasing in  locally. If such a buyer has additional money,

he prefers to enter a submarket with a strictly higher trading probability and spend more in order

16The neighborhood  always exists if  is the equilibrium function. The neighborhood is required in Theorem

3.2 because the theorem takes  as an arbitrary function in V[0 ̄]. Also, the neighborhood  may not exist

around the arbitrary upper bound ̄, because we have not characterized  and  form   ̄. This is why the
additional condition 0(̄) =  0(̄) is needed for part (iv) of Theorem 3.2 to hold at  = ̄.
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to capture the higher surplus of trade. That is, ∗() and ∗() are strictly increasing at such

. Second, since future consumption is a normal good, it is optimal for the buyer to keep part of

this additional money as the residual balance. That is, () is also strictly increasing at such .

Third, the ex ante value function must be strictly concave at ()  0: if  is linear at (),

the buyer should have spent more because the marginal cost of doing so is locally constant.

3.3. Lotteries and the equilibrium ex ante value function

We have characterized a worker’s and a buyer’s optimal decisions, taking the ex ante value function

as any arbitrary  ∈ V[0 ̄], i.e., any continuous, increasing and concave function on [0 ̄]. Part
(i) of Lemma 3.1 states that a worker’s problem (2.1) defines a mapping  : V[0 ̄]→ V[0 ̄]
that maps  ∈ V[0 ̄] into a worker’s value function  ∈ V[0 ̄]. Theorem 3.2 implies that a

buyer’s problem (2.2) defines a mapping  : V[0 ̄] → C[0 ̄] that maps  ∈ V[0 ̄] into a
buyer’s value function  ∈ C[0 ̄]. In the equilibrium, the ex ante value function must satisfy
(2.4). If we substitute  =  and  =  into (2.3) to obtain ̃ , then the right-hand

side of (2.4) defines a mapping  on  , and we can write (2.4) as  () =  (). That is, the

equilibrium ex ante value function is a fixed point of  . In this subsection, we show that  maps

V[0 ̄] into V[0 ̄] and that it has a unique fixed point. Moreover, we verify that there indeed
exists a finite upper bound ̄ on individuals’ real balances in the equilibrium.

Insert Figure 1 here.

The functional equation (2.4) involves maximization over the choice of lotteries. This choice

is necessary for  to preserve concavity of the ex ante value function  that has been used in

the analysis above. If there were no lotteries, the ex ante value function would be ̃ defined by

(2.3), instead of  . The function ̃ can fail to be concave for two reasons. One is that a buyer’s

value function, (), may be non-concave. If this happens when ()   (), then ̃ () is

equal to () and, hence, is non-concave. In this case, there is a gain to individuals to play a

fair lottery to convexify the feasibility set of values. Depicted in Figure 1, this lottery for high

balances makes  the dashed line connecting points D and E. The second cause of non-concavity

of ̃ is the maximum operator in (2.3). It is intuitive that ()   () if  is high and

()   () if  is low. When the real balance is close to the level at which () = (),

the maximum of () and  () is convex, and so there is a gain from playing a fair lottery. In

fact, all individuals whose real balances are below this critical level gain from a lottery. Depicted

in Figure 1, this lottery for low balances makes  the dashed line connecting points A and C.
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In the lottery for low balances, the low prize is ∗1 = 0, the high prize is ∗2 = 0, and the

probability of winning the high prize is ∗2() = 0. The high prize is determined as

0 = argmax
≥

h

̃ () +

³
1− 



´
̃ (0)

i
 (3.16)

It is clear that 0 is independent of the individual’s balance , provided  ≤ 0.

The following theorem states existence, uniqueness and other properties of the equilibrium

value functions as well as the properties of the upper bound ̄ (see Appendix D for a proof):

Theorem 3.5. (i)  is a self-map on V[0 ̄] and has a unique fixed point  .
(ii)  ()   ()  0 for all   0;  (0) = (0)  0, and  () ≥ () for all  ∈ [0 ].
(iii) There exists 0 ∈ ( ̄] such that an individual with   0 will play the lottery with the

prize 0, which satisfies  (0) = (0), 
∗(0)  0 and (0) = 0. Moreover, if 0  ̄,

then (3.10) holds for  = 0, and  0(0) = 0(0)  0.

(iv)  0 ()  0 exists for all  ∈ [0 ̄); 0() exists for all  ∈ [ ̄) such that ∗()  0.
(v) There exists ̄ ∞ such that individuals’ balances satisfy  ≤ ̄ in equilibrium. Moreover,

̄ satisfies ̄ = ̂2 = ∗2(̂), (̄) =  (̄) and 0(̄) =  0(̄).

For part (i), we verify that the mappings on  defined by a worker’s problem, (2.1), and a

buyer’s problem, (2.2), are monotone and feature discounting with the factor . As a result, 

is a monotone contraction mapping that maps continuous, increasing and concave functions into

continuous and increasing functions. In addition, since  is generated by the optimal choice of

a two-point lottery, it is a concave function (see Lemma F.1, Menzio and Shi, 2010). Thus,  is

a monotone contraction mapping on V[0 ̄] and has a unique fixed point.
Part (ii) compares  ,  and , as depicted in Figure 1. Part (iii) formally characterizes the

lottery for low balances. In particular, after winning the prize 0, an individual strictly prefers

to be a buyer and to spend the entire balance 0 in one trade. Note that this part implies that

all workers hold zero balance prior to work in the equilibrium. Part (iv) states that the ex ante

value function is differentiable and strictly increasing for all   ̄, not just for the selected

set of points described in Theorem 3.2. To explain, suppose that  is not differentiable at some

 ∈ (0 ̄), then  is strictly concave at  and hence  () = (), in which case part (iv)

of Theorem 3.2 implies the contradiction that  is differentiable at . Thus,  is differentiable

for all  ∈ (0 ̄). Also,  is differentiable for all  ∈ [00) because  is a linear function in

this interval. Furthermore, if 0  ̄, then  is differentiable at 0 as a result of part (iv) of

Theorem 3.2 and the fact (0) =  (0).
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Finally, part (v) states that individuals’ real balances are endogenously bounded above ̄ 

∞, which is equal to the high prize of the lottery at ̂. Recall that ̂ is the wage income of a

worker who has zero balance prior to work. Moreover, the upper bound satisfies (̄) =  (̄)

and 0(̄) =  0(̄), and so we can eliminate the qualifications “if   ̄” and “if 0  ̄”

in various parts of Theorems 3.2 and 3.5. It is intuitive that individuals’ real balances are finite

in the equilibrium. Because the marginal utility of consumption is diminishing, the marginal

value of the real balance is diminishing. In contrast, the marginal cost of labor needed to obtain

money is strictly increasing. Thus, if an individual has a sufficiently large balance, he strictly

prefers spending some money rather to working and accumulating even more money. This force

endogenously puts an upper bound on the real balance in the equilibrium.

Although it is intuitive that equilibrium balances are bounded above, proving the result is

not simple. In order to demonstrate the optimality of the bounded balance, we need to compare

the value function over all possible balances including, in principle, an infinite balance. However,

allowing for an infinite balance makes the choice set non-compact which, in turn, makes it difficult

to characterize optimal decisions. Instead, we determine the value functions under any arbitrarily

fixed and finite upper bound ̄, and then vary ̄ to prove that individuals never choose to hold

an infinite balance. As the first step, we recognize that a worker’s wage income in a period is

a finite number ̂ = ∗(0) ≤ 1. If the high prize of the lottery at ̂ is finite, then ̄ = ∗2(̂)

is the endogenous upper bound. Thus, the only potential case in which equilibrium balances

are unbounded is when ∗2(̂) is infinite, in which case the lottery at ̂ is not well-defined for

endogenously determined ̄. For this unbounded case to occur, a buyer’s value function, (),

must be strictly increasing and (weakly) convex for all large enough . In addition, the marginal

value of the balance near ̄ must be increasing. But these two conditions are inconsistent

with the diminishing marginal utility of consumption, because the value of money is derived

ultimately from the utility of consumption that money buys. In Appendix D, we formalize these

two conditions and the proof.17

4. Monetary Equilibrium

In this section we characterize the spending pattern, prove existence and uniqueness of the mon-

etary steady state, and examine the steady-state distribution of real balances.

17The issue on the finite upper bound resolved here is related to, but different from, that in Zhou (1999). In

Zhou’s paper, money can be accumulated only in discrete units, search is undirected, and there is no lottery. The

issue on the upper bound arises there from the feature that an individual may encounter a match in which he is

a seller rather than a buyer, even if he already holds a high balance. In contrast, directed search in our model

ensures that an individual who intends to buy never chooses to enter a match in which he could end up being a

seller. The issue on the upper bound arises from the lottery instead.
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4.1. Equilibrium pattern of spending

Let us begin with some features of optimal choices established in section 3. First, all workers go

to work with zero balance and obtain wage income ̂. Second, an individual with   0 plays

a lottery before going to the market, with the prizes ∗1() = 0 and ∗2() = 0. An individual

with   0 may or may not play a lottery. Third, buyers sort into submarkets according

to the real balance. A buyer with  enters the submarket that has the matching probability

∗() for the buyer and the terms of trade (∗() ∗()). The residual balance after trade is

() = − ∗(). The functions ∗(), ∗(), ∗() and () are all increasing.

Denote 0() =  and +1() = (()) for  = 0 1 2 . For any arbitrary  ≥ 0, let

() be the number of purchases that a buyer with  can make before his balance falls below

0, i.e., 
()−1() ≥ 0  ()(). Also, denote ̂ = (̂), ̂ = ∗ (̂) and ̂ = (̂),

where  ∈ {1 2}. We prove the following lemma in Appendix E:

Lemma 4.1. (i) If ̂  0, then ̂1 = 0, ̂2 = 0, and ̂2 = 1;

(ii) The only lottery that is possibly played in the steady state is the lottery at ̂, with ̂1 and

̂2 as the prizes, and this lottery is indeed played iff (̂)   (̂);

(iii) If ̂ ≥ 0, then the following properties hold for  ∈ {1 2}: (a) ∗(−1(̂))  0 for all

 = 1 2  ̂ ; (b) 
(̂) ≥ 0,  (

(̂)) = ((̂)) and  is strictly concave at (̂) for all

 = 1 2  ̂ − 1; (c) ̂ (̂) = 0.

Part (i) describes the case where wage income is ̂  0. In this case, an individual with ̂

plays a lottery and, if he wins the prize 0, he will spend it in one trade. This part is implied by

part (iii) of Theorem 3.5. Note that the case ̂  0 can occur if the disutility of labor, (), is

sufficiently convex. That is, when the marginal disutility increases rapidly with labor supply, it

is optimal for a worker to work only a small amount of time in a period, which leads to ̂  0.

However, regardless of how convex  is, a worker does not work for consecutive periods to build

up the balance. Instead, after working for one period, an individual tries to get the prize 0 of

the lottery and then go to buy goods. The use of the lottery with the prize 0 is a better way

to smooth the cost of labor supply than working for consecutive periods.

Part (ii) of Lemma 4.1 states that the only possible lottery played in the steady state is the

one at ̂. If ̂  0, the statement is true and a lottery will be played, as explained above. If

̂ ≥ 0, the statement is implied by part (iii) of Lemma 4.1, which we explain below. In this

case, a lottery will be played only when (̂)   (̂).

Part (iii) of Lemma 4.1 describes a buyer’s stylized purchasing cycle, starting with the prize
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̂ of the lottery at ̂.
18 The buyer will trade with positive probability every period until running

out of money (part (a)), the value function will be strictly concave at the residual balance of

each trade if this balance is strictly positive (part (b)), and in the last trade in the cycle, he will

spend all of his money (part (c)). Because of (b) and (c), the buyer has no need for a lottery at

any residual balance resulted from trade. Moreover, as the balance is reduced by each trade, the

buyer chooses to go into the next submarket where the trading probability, the required spending

and the quantity of goods are all lower than in the previous trade.

This stylized pattern can be derived from repeatedly applying parts (iv) and (v) of Theorem

3.2. Starting at the prize ̂ of the lottery at ̂ ≥ 0, we have (̂) =  (̂), 
0(̂) =  0(̂)

and ∗(̂) ≥ ∗(0)  0. If the buyer spends the entire amount ̂ , he will become a worker next

period. If the residual balance is (̂)  0, then all the hypotheses in part (v) of Theorem 3.2

are satisfied with  = ̂ . In this case, the ex ante value function is strictly concave at (̂),

at which  =  and no lottery is needed. Then, the hypotheses in part (iv) of Theorem 3.2 are

satisfied at  = (̂), which imply that  and  are differentiable at (̂) and their derivatives

are equal. Moreover, because  is linear for all   0, strict concavity of  at (̂) implies

(̂) ≥ 0. With the balance (̂), the buyer will have the next trade with strictly positive

probability. If the residual balance is 2(̂) = 0, the round of purchases ends. If the residual

balance is strictly positive, we can repeat the above argument to conclude that, at  = 2(̂),

the function  is strictly concave,  =  , and the two functions’ derivatives are given by (3.10).

Moreover, 2(̂) ≥ 0, and the buyer has no need for a lottery at 
2(̂). This pattern continues

until the ̂-th trade, in which the buyer spends all of the money.

The purchasing cycle above has some similarity to that in Baumol (1952) and Tobin (1956).

These authors model the role of money in a reduced form by assuming that money is necessary

for purchasing goods. There is a fixed cost of converting other assets, such as nominal bonds,

into money, in addition to foregoing the higher return on those assets. Because of the fixed

cost, an individual manages cash holdings as a problem of optimal inventory. That is, after each

withdrawal of cash, an individual makes several consecutive purchases until cash holdings fall to a

critical level, at which the individual makes another withdrawal. In our model, the value of money

is derived endogenously from the fundamental features of preferences (no double coincidence of

wants) and the information on individuals trading history (anonymity). In our model, a fixed

cost is also important for the purchasing cycle, but it lies in the process of spending money

rather than getting money. More precisely, the cost is one period of time that a buyer must

use to participate in the matching during which the buyer cannot work. The induced trade-off

18We will treat the case where a lottery is not played at ̂  0 as a degenerate lottery at ̂.
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between the matching probability and the amount of a purchase is missing in the Baumol-Tobin

model. Another main feature of our model that is missing from the Baumol-Tobin model and

its variations is that a buyer optimally chooses the trading probability and the price at which to

spend money in each stage of a purchasing cycle. Intuitively, these choices are important for how

monetary policy affects the real activity and the distribution of money.19

It is useful to keep in mind that consumption in the model is consumption of only cash goods

and that labor supply is only the amount of work for obtaining such cash. When mapping the

model to the data, one should not interpret the model literally as predicting that an individual

either works or buys goods in each period. Instead, one can re-interpret the model so that everyone

in every period works for and consumes an exogenous amount of credit goods and, in addition to

such activities, an individual goes through the spending cycle on cash-goods consumption.

4.2. Equilibrium distribution of real balances

Let () be the equilibrium measure of individuals holding balances less than or equal to 

immediately after the lotteries are played in a period. The support of this distribution is a

discrete set. Start with a worker who has just earned wage income ̂. If ̂ ≥ 0, the individual

may or may not play a lottery whose prize is either ̂1 or ̂2. After receiving the prize ̂ ,

an individual will go through a purchasing cycle which results in a sequence of real balances,

{(̂)}̂−1=0 . In this case, the support of  is {(̂1)}̂1−1=0 ∪ {(̂2)}̂2−1=0 ∪ {0}. If ̂  0, the

individual with ̂ plays a lottery whose prizes are 0 and 0. In this case, all buyers in the goods

market hold the same balance 0, which will be spent in one trade, and so the support of  is

{0 0}. Denote the corresponding frequency function as .
It is straightforward to calculate the steady-state distribution of real balances. In the steady

state, the measure of individuals who hold each balance in the support of  should be constant

over time. If ̂ ≥ 0 (i.e., ̂2 ≥ 1), we can express this requirement as follows:

0 =  (0) ̂ − ∗(̂)(̂),  = 1 2; (4.1)

0 = ∗(−1(̂))(−1(̂))− ∗((̂))((̂))
for 1 ≤  ≤ ̂ − 1 and  = 1 2;

(4.2)

 (0) =
X
=12

∗(̂−1(̂))(̂−1(̂)), (4.3)

19Baumol (1952) and Tobin (1956) assume an exogenous flow of income and an equal amount of spending in

each period of a purchasing cycle. Jovanovic (1982) endogenizes the flow of income in the Baumol-Tobin model

but keeps the assumption that consumption is constant within a spending cycle.
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where ̂ = ∗ (̂) for  ∈ {1 2}. Equations (4.1) and (4.2) set the change in the measure of
individuals who hold the balance (̂) to zero, where  ∈ {0 1 2  ̂ − 1}. The two equations
are similar, and so we explain only (4.2). The inflow of individuals into the balance (̂)

consists of the buyers with the balance −1(̂) who successfully trade in the current period, and

the outflow consists of the buyers with the balance (̂) who successfully trade in the current

period. Finally, (4.3) sets the change in the measure of individuals who hold no money to zero.

In any period, the individuals who have no money are the workers. Since every worker obtains a

balance ̂ by working for one period, the size of the outflow from the group is (0). The inflow

comes from the buyers who are in the last period of their purchasing cycle and who successfully

trade in the current period, as given by the right-hand side of (4.3).

In the case ̂  0, (4.1) — (4.3) solve for the steady-state distribution as

((̂)) =
(0)̂

∗((̂))
for  = 1 2, and 0 ≤  ≤ ̂ − 1;

 (0) =
h
1 +

P
=12

P̂−1
=0

̂
∗((̂))

i−1


⎫⎪⎪⎬⎪⎪⎭ (4.4)

The formula (4.4) is also valid in the case ̂  0. In this case, ̂1 = 0 and ̂2 = 1 in (4.4), and

so the steady-state distribution is (0) = 1− (0) and (0) = ∗(0)[
∗(0) + ∗2(0)].

4.3. Existence and uniqueness of a monetary steady state

In section 3, we have characterized individuals’ policy and value functions, which are indepen-

dent of the nominal wage rate . The market tightness function  is solved by (2.5), which is

independent of . Moreover, given the policy functions, (4.4) solves the steady-state distribution

of real balances independently of . Thus, for a monetary steady state to exist, it suffices to solve

for  by requirement (vi) of Definition 2.1. This requirement yields:

 =

⎡⎣X
=12

̂−1X
=0

(̂)(
(̂))

⎤⎦−1 . (4.5)

Because all of the elements on the right-hand side of (4.5) have been solved independently of ,

the formula determines a unique, finite value of  in the steady state. We summarize this result

and other properties of the steady state below (see Appendix F for a proof):

Theorem 4.2. A monetary steady state must be block recursive and, moreover, it is unique.

Money is neutral in the steady state. The distribution of buyers over real balances is degenerate

if  ≤ 0, where 0  0 is defined in Appendix F. On the other hand, if  is sufficiently close to
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one, the distribution of buyers over real balances is non-degenerate if and only if

  0() = 0() +


(0())
, (4.6)

where , 0(), and 0() are defined in Appendix F. Moreover, for each  = 1 2, the distrib-

ution satisfies ((̂))  (−1(̂)) for all  = 1 2  ̂ − 1.

There is no monetary steady state other than the block recursive one. This is true because

the aggregate state including the distribution of money is constant in the steady state. One can

describe a non-block recursive equilibrium by including such constant aggregate state variables

as additional arguments in the value and policy functions. In the steady state, however, those

functions must satisfy the same set of functional equations as described in section 3. Because

those functional equations have a unique fixed point, as proven in Theorem 3.5, the value and

policy functions are uniquely determined and are the same as those in the unique, block-recursive

steady state. So are the distribution of money and the value of . Non-block recursive monetary

equilibria do not exist in the steady state.20

Money is neutral in the long run; i.e., a one-time change in the nominal stock of money has

no effect on real variables in the steady state. This is intuitive in our model. The real balance,

, the quantity of money traded in a match, ∗, and the residual balance after a trade, , are

all measured in units of labor. They are given by the policy functions that are independent of

the nominal stock. Similarly, a one-time change in the nominal stock of money does not affect

the quantity of goods traded, labor supply and the distribution of individuals. However, money

is not neutral in the short run in our model, as we will remark in section 6.

The distribution of buyers over real balances may or may not be degenerate in the steady

state. The distribution is degenerate if ̂ ≤ 0, which occurs when individuals are sufficiently

impatient in the sense  ≤ 0. In this case, an individual without money works for one period

to obtain the balance ̂ and then plays the lottery whose prizes are 0 and 0. Thus, all buyers

hold the same balance, 0, and spend all the money whenever they have a match. An indi-

vidual alternates stochastically between being a buyer with a balance 0 and a worker with no

money, as determined by the lottery and the matching outcome. Thus, when  ≤ 0, our model

endogenously generates the pattern of money holdings that was assumed in earlier models with

indivisible money (e.g., Shi, 1995, and Trejos and Wright, 1995). Even in this case, however, our

model does not share the result of those models that a one-time change in the money stock affects

real activities. Instead, money is neutral in the steady state here.

20Outside the steady state, the dynamics of the aggregate state can affect the functional equations for the value

functions, and so non-block recursive equilibria may exist.
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It is intuitive that money distribution among buyers is degenerate when individuals are suf-

ficiently impatient.21 Consider a buyer with the highest equilibrium balance, ̂2. The buyer can

spend this balance in one trade or spread it over several periods in a sequence of purchases. If the

buyer spends the entire balance in one trade, he consumes a large amount of goods in the period.

The upside of doing so is that the utility of current consumption is not discounted. The downside

is that the marginal utility of large consumption is low, relative to spreading consumption over

several periods. When the buyer is sufficiently impatient, the upside of spending all the money

at once outweighs the downside. In fact, if  ≤ 0, the highest equilibrium balance is ̂2 = 0.

In this case, all buyers in the market hold the same balance 0.

For money distribution to be non-degenerate among buyers, a necessary condition is that

individuals are patient. However, high patience is not sufficient. Even in the limit  → 1, it

is still possible that optimal labor supply is so low that wage income is ̂ ≤ 0, in which case

all buyers hold the same balance 0. The additional condition, (4.6), is needed for ̂  0.

In the limit  → 1, this condition is also sufficient for the distribution to be non-degenerate.

Unfortunately, the condition (4.6) is too complicated to be expressed explicitly in terms of model

parameters, because , 0() and 0() are defined implicitly through some equations (see

Appendix F). To illustrate the elements involved, consider:

Example: () = (+01)1−−(01)1−
1− , () = 10[1− (1− )], and () = 1− . A higher value of

 corresponds to a more concave  , and a higher value of  ( 1) to a less convex . For any

given ( ), we denote ( ) as the critical level of  such that (4.6) is satisfied if and only

if   ( ). Figure 2.1 depicts ( 05) for  ∈ [11 3] and Figure 2.2 depicts (2 ) for
 ∈ [01 09]. The function ( 05) is increasing in . This means that (4.6) is more easily

satisfied for any given ( ) when the utility function of consumption is more concave. Also,

(2 ) is increasing in . This means that (4.6) is more easily satisfied for any given ( ) when

the disutility function of labor supply is less convex.

Insert Figure 2 here.

The above example illustrates the elements, in addition to high patience, that make it optimal

for a buyer to spread purchases in several periods. First, the cost of creating a trading post

cannot be too high. If a trading post is very costly to create, the number of trading posts in

each submarket is small in the equilibrium and, hence, the matching probability is low for a

21The critical level 0 depends on other parameters of the model. In particular, 0 increases in the degree of
convexity of the disutility function of labor supply. Thus, consistent with an earlier explanation, the case ̂  0

is more likely to occur if the disutility function of labor supply is more convex.
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buyer. Then it is optimal to spend all the money in one trade because, if the buyer keeps a

positive residual balance, he will find it difficult to get a match in the future to spend the money.

Second, the utility function of consumption needs to be sufficiently concave. Intuitively, a more

concave utility function increases a buyer’s incentive to smooth consumption over time by making

a sequence of relatively small purchases rather than one large purchase. Third, the disutility of

labor supply cannot be very convex. If the marginal cost of labor supply increases very quickly,

the optimal choice is to work for a relatively small balance in a period, play the lottery, spend all

the prize in one trade, and work again.22

Theorem 4.2 also describes the shape of the steady-state distribution. First, consider the case

where an individual with the balance ̂ has no need for a lottery. In this case, the frequency

function of the distribution, , is strictly decreasing in real balances among buyers. This is an

intuitive implication of buyers’ optimal choices described in Theorem 3.2. Because buyers with

more money choose to trade with a relatively high probability, they exit quickly from the high

balance into a lower balance and, hence, a relatively small number of buyers are left holding a

high balance in the steady state. The measure of buyers increases as their real balances strictly

decrease in the purchasing cycle. Next, consider the case where an individual with the balance

̂ has the need for a lottery. From each prize of the lottery, ̂ ( = 1 2), a buyer’s balance in a

purchasing cycle follows the sequence {(̂)}̂−1=0 . The above feature of the distribution holds

true for each of these two sequences. That is, for each  ∈ {1 2}, the measure of buyers holding
(̂) increases with  and, hence, decreases with 

(̂) for all  ∈ {0 1  ̂−1}. However, with
a non-degenerate lottery at ̂, the overall frequency function of real balances is not necessarily

monotone. For example, ((̂1)) may be greater than, less than or equal to ((̂2)) for a

particular , and the comparison between the two may vary over .

A non-degenerate distribution of real balances has a wealth effect in the sense that a transfer

of money between two sets of buyers with different balances affects the sum of the values of

these buyers. Recall that a buyer’s marginal value of the real balance increases strictly as the

balance decreases with each purchase. That is,  0((̂))   0(−1(̂)) for all  = 0 1  ̂

and  = 1 2 (see part (v) of Theorem 3.2). A transfer of money from a buyer with a relatively

high balance to a buyer with a relatively low balance reduces the gap between the two buyers’

marginal values of money. This transfer increases the sum of the values of the two buyers.

22Another element for a non-degenerate distribution is that () should not increase very quickly with . If ()
increases very quickly with , the amount of money required for obtaining any given quantity of goods increases
quickly with . In this case, the benefit of acquiring a large balance and going through a sequence of purchases is
small relative to the cost of labor supply, and so a buyer will make only one purchase before working again.
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Let us relate our work to GZ. In a model of undirected search, GZ allow money to be accu-

mulated in discrete units and assume that goods come as a fixed endowment to a seller. They

prove that there exists a continuum of monetary steady states where money distribution has a

discrete support and a decreasing density. In our model, the support of money distribution is also

discrete in the equilibrium and, when no lottery is played in the equilibrium, the density of the

distribution is decreasing. The intuition for the decreasing density is similar in the two models,

but the mechanism differs. In our model, the density is decreasing because a buyer with more

money optimally chooses to visit a submarket where he can spend money more quickly. In GZ,

individuals are not allowed to choose which market to visit, and the density is decreasing because

a buyer with more money is more likely to accept an offer. There are other differences between

our model and GZ. First, there is a continuum of monetary steady states in GZ. This multiplicity

depends on a combination of assumptions in GZ, including the assumption that a seller cannot

supply more than the unit endowment of the good. Our analysis shows that the steady state

is unique when individuals can trade whatever quantities of money and goods that are optimal

for them. Second, money is neutral in our model but not so in GZ. Third, an individual goes

through a purchasing cycle in our model but not in GZ. Finally, because GZ assume undirected

search, an extension of their model to allow for fully divisible money and goods will not be block

recursive and, hence, will be intractable analytically.

5. Economy with Money Growth

We have assumed that the money stock is constant. In this section we outline how to incorporate

non-zero money growth. Consider the following two policies: At the end of each period, each

individual receives a lump-sum transfer of  dollars and, at the beginning of the next period,

pays a proportional tax on money balance at the rate . Under these policies, the aggregate stock

of money evolves according to+1 = (1− )( + ) and the (gross) rate of money growth is

+1 = (1− )(1 + ). Assume that the two policies keep the money growth rate constant.

Moreover, we assume  ≥ 0 so that the lump-sum transfer is always non-negative, but we allow

 to be either positive or negative. Thus, this policy specification allows for negative as well as

positive net money growth and, at the same time, avoids the use of lump-sum taxes which may

be difficult to collect in an economy with decentralized exchange.

Let  ≡ +1+1() denote the growth rate of the nominal wage rate. Consider a real

balance  immediately before the monetary transfer. It is worth  dollars in the current

period and, if it is carried over to the next period, it will become (1− )(+ ) dollars after

the monetary transfer and the proportional tax. Measured in next period’s labor, the real balance
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will be +
(1−) . Thus, a worker’s problem is modified from (2.1) to

 () = max
∈[01]

∙
 (

+ + 

(1− )
)− ()

¸
. (5.1)

Similarly, a buyer’s problem is modified from (2.2) to

() = max
∈[0], ≥0

{(( )) [() +  ()] + [1− (( ))] ()} .
(5.2)

Here,  =
+

(1−) is the individual’s real balance in the next period if he does not purchase

today, and  =
−+
(1−) the future balance if he purchases today. The optimal choice of a lottery

still solves (2.4) and the firm’s optimization problem still yields the relationship on the market

tightness, (2.5). Because individuals take (  ) as given, the analytical characterization of

individuals’ value and policy functions in section 3 can be modified easily.

The steady state is defined in Definition 2.1, with the above optimization problems. In the

steady state, the distribution of real balances is stationary, and so  is constant by (vi) in the

equilibrium definition. Then,  = +1 , which is also constant. To maintain this money

growth,  and  must satisfy: (1−) = 1+. Note that  and  do not affect the equilibrium

separately, but rather through (1− ). Money growth is neutral if the lump-sum transfer rate

 is fixed, since the proportional tax adjusts with money growth to maintain (1− ) = 1+ .

An implication is that if  = 0, the steady state with money growth is identical to the one with

zero money growth. Thus, for any money growth rate, the steady state is block recursive if money

growth is engineered entirely through the proportional tax.

If   0, then  enters the decision problems through the term (1 + ), and so the steady

state is not block recursive. This is a general feature of all models with a non-degenerate money

distribution because for any real transfer per capita,  , the aggregate amount of transfers depends

on the average real balance. However, this failure of block recursivity is very mild here, because

the distribution does not affect the steady state directly, but rather indirectly only through the

one-dimensional variable  in the term (1+ ). As a result, the steady state is still manageable

and its computation straightforward. First, taking a guess of , we can solve the policy and value

functions from the analysis in section 3. Second, from any initial distribution of real balances, we

can use the policy functions to simulate the economy until the distribution converges to an ergodic

distribution. Third, with the ergodic distribution, we invoke condition (vi) in Definition 2.1 to

compute an update of . Iterating on  according to this procedure solves the steady state. Note

that this is an exercise of finding a fixed point for a real number, which is substantially simpler

than finding a fixed point for a distribution function. The latter exercise is required in undirected

search models, e.g., Molico (2006) and Chiu and Molico (2008).
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6. Concluding Remarks

In this paper, we have constructed and analyzed a tractable search model of money where the

distribution of real money balances can be non-degenerate. Search is directed in the sense that

buyers know the terms of trade before visiting particular sellers. We showed that the monetary

steady state is block recursive in the sense that individuals’ policy functions, value functions

and the market tightness function are all independent of the distribution of individuals over

real balances, although the distribution affects the aggregate activity by itself. Using lattice-

theoretic techniques, we characterized individuals’ policy and value functions, and showed that

these functions satisfy the standard conditions of optimization. We proved that a unique monetary

steady state exists, provided conditions under which the steady-state distribution of buyers over

real balances is non-degenerate, and analyzed the properties of this distribution.

We hope that our model provides a new starting point for studying monetary policy. Although

the monetary steady state is block recursive, the non-degenerate distribution of money does

matter for the aggregate real activity and welfare. This distribution serves as a channel through

which monetary policy affects the real activity. In particular, a one-time increase in the lump-

sum monetary transfer can have persistent real effects in the short run, despite that this policy

is neutral in the long run. The short-run effects arise in two ways. First, the transfer changes

the support of the distribution of real balances in the short run, because the transfer represents

a larger proportional increase in the balance to a buyer with a low balance than to a buyer

with a high balance. This redistribution of the purchasing power affects aggregate consumption.

Second, the transfer changes the rate of return to money in the short run. After the shock, the

nominal wage rate (normalized by the money stock), , deviates immediately from the steady

state. So do the rate of return to money, +1, and the growth rate of the nominal wage, .

As illustrated in section 5, these deviations of  and  from the steady state affect individuals’

optimal decisions. The real effects are persistent if the distribution of real balances or +1

returns to the steady state slowly.23 Thus, our model has the potential to explain why temporary

monetary shocks have persistent real effects as alluded to in the introduction. Furthermore,

these real effects depend on how and where money is injected. In section 5, we have illustrated

that proportional injections of money are neutral while lump-sum injections are not. Similarly,

injecting money only into firms has different real effects from injecting money uniformly in the

economy because they affect money distribution differently.

23Because the monetary steady state is unique, the equilibruim converges to the original steady state after the

described shock if it converges to any monetary steady state at all. Also, because not all individuals become workers

at the same time and because labor income ̂ depends on , the transition back to the steady state is asymptotic
rather than being completed in finite time.
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The steady-state analysis in this paper provides a long-run anchor for studying the dynamic

effects of monetary policy described above. In the transition to the steady state, the equilibrium is

not block recursive, but this failure of block recursivity is mild because policy and value functions

depend on the distribution of money only through the one-dimensional variable . Similar to

the discussion in section 5, the computation of the dynamics is manageable and much simpler

than in models of undirected search. This is true even in a stochastic version of our model, where

the dynamic equilibrium can be solved using the approximation technique of Krusell and Smith

(1998), i.e., by approximating the distribution with a small number of moments. In contrast,

in undirected search models including Molico (2006) and Chiu and Molico (2008), the entire

distribution of money affects individuals’ policy and value functions directly. In that case, there

is no intuitive reason why the Krusell-Smith approximation can work well, and the computation

suffers from the well-known problem of large dimensionality. We will undertake the dynamic

analysis in future work, which will also incorporate other elements relevant for policy analysis,

such as nominal bonds and aggregate shocks.
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Appendix

A. Proof of Lemma 3.1

Take any  ∈ V[0 ̄] as the ex ante value function appearing in a worker’s maximization problem,
(2.1). The objective function in (2.1) is continuous, bounded on [0 ̄] and increasing in . Then,

the Theorem of the Maximum implies  ∈ C[0 ̄], i.e., a continuous and increasing function on
[0 ̄]. Because the objective function [ (+ )− ()] is strictly concave in () jointly, its

maximized value,  (), is concave in , and the optimal choice ∗ is unique. With uniqueness,

the Theorem of the Maximum implies that the policy function ∗() is continuous (see Stokey

et al., 1989, p62). The choice  = 1 can never be optimal under the assumption 0(1) = ∞. It
may be possible that the optimal choice is ∗() = 0 when  is sufficiently high. In this case, it

is evident that ∗() = 0 is (weakly) increasing in  and ∗() =  is strictly increasing in .

The remainder of this proof focuses on the case where ∗()  0. In this case, ∗() =

+ ∗()  . Reformulate a worker’s problem as (3.2), where the choice is the end-of-period

balance  = +. The objective function in (3.2) is strictly concave in () jointly and (−)
is continuously differentiable in (). Thus, the result in Benveniste and Scheinkman (1979)

applies (see also Stokey et al., 1989, p85). That is, for all  such that the optimal choice ∗()

is interior,  () is differentiable and the derivative satisfies:

 0() = 0(∗()−) = 0(∗())

In addition, using concavity of  and strict convexity of , we can deduce from the equation

 0() = 0(∗()) that ∗() is decreasing in .

Return to the original maximization problem of a worker, (2.1). Consider any  ∈ [0 ̄]
such that ∗()  0. Because ∗() is continuous, there exists 0  0 such that ∗( ± )  0

for all  ∈ [0 0]. Moreover, we can choose sufficiently small 0 so that for any  ∈ [0 0], the
choice ∗(− ) is feasible to a worker who holds a balance  and the choice ∗() is feasible to

a worker who holds a balance − . Then, for any  ∈ [0 0], the optimality of ∗ implies:
 () =  (∗()) ≥  (∗(− )),

 (− ) =  (∗(− )− ) ≥  (∗()− )

where  () temporarily denotes the objective function in (2.1). Hence,

 (∗(− ))−  (∗(− )− )


≤  ()− (− )


≤  (∗())−  (∗()− )




Since  0() exists, taking the limit & 0 on the above relations yields  0(∗−()) = 0(),

where ∗−() = − + ∗(). Note that the one-sided derivatives  0(∗−) and  0(∗+) exist
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because  is a concave function (see Royden, 1988, pp113-114). Similarly, we can prove that

 0(∗+()) =  0(), where ∗+() = + + ∗(). Therefore,  is differentiable at ∗()

and the derivative satisfies  0(∗()) = 0(), which is the first equality in (3.1). Substituting

 0() = 0(∗()) yields the second equality in (3.1).

Finally, since  0 is decreasing and 0 is strictly increasing, the first-order condition  0(∗()) =

0(∗()−) implies that ∗() is strictly increasing. QED

B. Proof of Lemma 3.3

Take any  ∈ V[0 ̄] as the ex ante value function appearing in a buyer’s maximization problem,
(2.2). Applying the Theorem of the Maximum to the problem, we conclude that  is continuous

on [0 ̄] and that a solution to the buyer’s maximization problem exists (see Stokey et al., 1989,

p62). Since  is increasing, the objective function in (2.2) is increasing in . Since the feasibility

set in the maximization problem is also increasing in , then  is increasing, i.e.,  ∈ C[0 ̄].
As explained earlier in subsection 3.2.1,  has two segments. If  ≤ , then ∗() = 0 and

() =  (); if   , () solves (3.6).

If ∗ = 0, the choice of  is irrelevant for the buyer because a trade does not take place.

For the remainder of the proof, we focus on the case where ∗()  0. Temporarily denote

 ( ) =  ( ), where the surplus function  is defined in (3.13). Optimal choices

(∗ ∗) maximize  ( ).

(1) A buyer’s optimal choices are unique and the policy functions are continuous.

If ( ∗)  0, the optimal choice is ∗ = 0; if ( ∗) = 0, then the choice ∗ = 0 is

not dominated by other choices of . Because we focus on ∗  0, it suffices to examine a buyer’s

optimal choices when  ( )  0. With   0 and  ( )  0, we can transform a buyer’s

maximization problem as

 () =  () + exp

½
max


[ln + ln ( )]

¾


The function (ln ) is concave. Recall that ( ) is strictly concave in ( ) jointly. Since  is

concave, then  (− ) is concave in . Thus,  ( ) defined in (3.13) is strictly concave

in ( ) jointly. Since the logarithmic function is strictly increasing and strictly concave, the

function [ln + ln ( )] is strictly concave in ( ) jointly. The Theorem of the Maximum

implies that a buyer’s optimal choices (∗ ∗) are unique for each  and the policy functions

(∗() ∗()) are continuous. So are the policy functions ∗() and ().

(2) Monotonicity of the policy functions ∗() and ∗().
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Consider any  ∈ [ ̄] such that ∗()  0. As discussed in the main text, we solve a

buyer’s maximization problem in two steps: first, the optimal choice of  solves the problem in

(3.14) for any given (); second, the optimal choice of  solves the problem in (3.15).

Take the first step. For any given (), the optimal choice of  maximizes ( ) and is

denoted ̃ () as in (3.14). Because ( ) is strictly concave in  and  is concave, ( )

is strictly concave in , which implies that a unique ̃ exists for any given (). We prove that

( ) is supermodular. Since the choice set of , [0], is increasing in  and independent

of , supermodularity of ( ) and uniqueness of ̃ imply that the maximizer ̃ () is

an increasing function of () (see Topkis, 1998, p76) and that the maximized value of  is

supermodular in () (see Topkis, 1998, p70).

To prove that ( ) is supermodular, note that the feasibility set of ( ) is {( ) :
0 ≤  ≤ , 0 ≤  ≤ 1,  ≤  ≤ ̄}. This set is a sublattice in R3+ with the usual relation
“≥”. It suffices to prove that  has increasing differences in the three pairs, (), ( ) and

() (see Topkis, 1998, p45). Take arbitrary 1, 2, 1, 2, 1 and 2 from the feasibility set,

with 2  1, 2  1, and 2  1. Because  is separable in  and , it is clear that  has

(weakly) increasing differences in (). For the differences in ( ), compute:

 (2 )− (1 ) = [ (2 )−  (1 )] +  [ (− 2)−  (− 1)] 

Since ( ) is strictly supermodular in ( ), we have:

[ (2 2)− (1 2)]− [ (2 1)− (1 1)]

= [ (2 2)−  (1 2)]− [ (2 1)−  (1 1)]  0

That is,  has strictly increasing differences in ( ). For the differences in (), we have:

[ (2 2)− (1 2)]− [ (2 1)− (1 1)]

=  [ (1 − 1)−  (1 − 2)]−  [ (2 − 1)−  (2 − 2)] ≥ 0
The inequality follows from concavity of  (see Royden, 1988, p113) and the facts that 1−1 
2−1, 1−2  2−2, and (1 − 1)− (1 − 2) = (2 − 1)− (2 − 2) = 2−1  0.

Thus,  ( ) has increasing differences in ().

Denote ̃ () =  (̃ ()  ) as in (3.14). From the above proof, ̃ () is super-

modular in (). Because  ( ) strictly decreases in  for any given (), then ̃ ()

is strictly decreasing in . To examine the dependence of ̃ () on , take arbitrary 1 and

2 in [ ̄], with 2 ≥ 1. We have:

 ( 2)− ( 1) =  [ (1)−  (1 − )]−  [ (2)−  (2 − )] ≥ 0

where the inequality follows from concavity of  . Since the above result holds for all ( ), then

̃ (1) =  (̃ (1)  1) ≤  (̃ (1)  2) ≤  (̃ (2)  2) = ̃ (2) 
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Note that for the second inequality we have used the fact that ̃ (1) is feasible in the problem

max≤2  ( 2). Thus, ̃ () increases in .

Now let us take the second step, i.e., to characterize the optimal choice of . Denote the

optimal choice of  as ∗() = argmax∈[01]  (), where

 () =  (̃ ()  ) =  ̃ () 

We show that  is supermodular in (). Take arbitrary 1 2 ∈ [0 1], with 2  1, and

arbitrary 12 ∈ [ ̄], with 2  1. Compute:

[ (22)−  (12)]− [ (21)−  (11)]

= 2

h
̃ (22)− ̃ (12) + ̃ (11)− ̃ (21)

i
+(2 − 1)

h
̃ (12)− ̃ (11)

i


Because ̃ () is supermodular in (), the first difference on the right-hand side is positive.

Because ̃ () is increasing in , the second difference on the right-hand side is also positive.

Thus,  () is supermodular in () on [0 1] × [ ̄]. Note also that the choice set for ,
[0 1], is independent of  and that the optimal choice ∗ is unique. Thus, ∗() is increasing in

 (see Topkis, 1998, p76). Since ̃ () is increasing in (), the optimal choice of , given by

∗() = ̃ (∗()), is increasing in .

(3) ∗() is an increasing function.

Denote  = − +  and use ( ) as a buyer’s choices. Using (3.4), we can express:

−  = − ,  = −1
µ



− 

¶


Because  ≥ 0, the relevant domain of  is [0− ]. The relevant domain of  is [0 ]. A buyer

chooses ( ) ∈ [0 ]× [0− ] to solve:

max
()

−1
µ



− 

¶
[ () +  (− )−  ()] 

We can divide this problem into two steps: first solve  for any given () and then solve .

For any given (), the optimal choice of , denoted as ̃ (), solves:

 () ≡ max
0≤≤

[ () +  (− )] 

Note that  and  do not depend on  for any given . It is easy to see that the objective

function above is supermodular in ( ). Since the choice set, [0 ], is increasing in  and ̃ is

unique, then ̃ () and  () increase in  (see Topkis, 1998, p76 and p70).
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The optimal choice of  is ∗() = argmax0≤≤−∆ (), where

∆ () = −1
µ



− 

¶
[ ()−  ()] 

Note that if  ()   (), the buyer can choose  =  −  to obtain ∆ = 0. Thus, focus

on the case where () ≥  (). Since () is strictly decreasing in  and 1() is strictly

convex in , the function −1( 
−) strictly increases in , strictly decreases in , and is strictly

supermodular in (). Thus, for arbitrary 2  1 and 2  1 ≥ , we have:

∆ (22)−∆ (12)−∆ (21) +∆ (11)

=
h
−1

³


2−2
´
− −1

³


1−2
´i
[ (2)−  (1)]

+
h
−1

³


2−1
´
− −1

³


2−2
´i
[ (2)−  (1)]

+
h
−1

³


2−2
´
− −1

³


2−1
´
− −1

³


1−2
´
+ −1

³


1−1
´i
[ (1)−  (1)] 

The first term on the right-hand side is positive because  () increases in  and −1( 
−)

increases in . The second term on the right-hand side is positive because −1( 
−) decreases

in  and  () increases in . The third term on the right-hand side is strictly positive because

−1( 
−) is strictly supermodular in (). Therefore, ∆ () is strictly supermodular. Since

the choice set [0− ] is also increasing in , the solution ∗() increases in  (see Topkis,

1998, p76). Since ̃ () increases in , then ∗() = ̃ (∗()) increases in .

(4) () is an increasing function.

We reformulate a buyer’s problem by letting the choices be ( ), where  is defined as

 = + . From the definition of  and (3.4), we can express

 = − ,  = −1
µ



− 

¶


The relevant domain of  is [0min{}], and of  is [0− ]. A buyer solves:

max
()

−1
µ



− 

¶
[ (− ) +  ()−  ()]  (B.1)

As in the above formulation where the choices are ( ), we can divide the maximization problem

into two steps. First, for any given , the optimal choice of  solves:

 () = max
≥0

[ (− ) +  ()]  (B.2)

Note that we have written the constraint on  as  ≥ 0, instead of  ∈ [0min{}]. The
optimal choice satisfies   , because  =  implies  = 0 which is not optimal (in the case
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with   0). Also,    under the assumption that  0 (0) is sufficiently large. Denote the

solution for  as ̃ (). Second, the optimal choice of  solves

()−  () = max
0≤≤−

−1
µ



− 

¶
[ ()−  ()]  (B.3)

Similar to the procedure used in the above formulation of the problem where the choices are

( ), we can prove that ∗() increases in  and, hence, ∗() increases in . QED

C. Proof of Lemma 3.4

Take any  ∈ V[0 ̄] as the ex ante value function appearing in a buyer’s problem and consider

any arbitrary  ∈ [ ̄] such that ∗()  0. Parts (1) - (4) below establish Lemma 3.4.
(1) The one-sided derivatives of  satisfy:

0
¡
+

¢
= ∗()1 (∗() ∗()) +  (1− ∗()) 0

¡
+

¢
(C.1)

0
¡
−

¢
= ∗()1 (∗() ∗()) +  (1− ∗()) 0

¡
−

¢
 (C.2)

0() exists if and only if  0() exists. Moreover, () is strictly increasing.

Consider the formulation of a buyer’s problem, (B.1), where the choices are  and  = + .

Let  and 0 be arbitrary levels in [0− ]. Note that the constraint on the choice  is  ≥ 0,
which does not depend on . Thus, the choice ̃ () is feasible in the maximization problem with

0 and the choice ̃(0) is feasible in the maximization problem with . Using a proof similar to

the one in Appendix A that established the existence of  0(∗()), we can prove that  0(−) and

 0(+) both exist and are equal to

 0 () =  0 (̃ ())  0, (C.3)

where ̃ and ̃ () ≡ − ̃ () are given in part (4) of the above proof of Lemma 3.3.

Next, we prove that the objective function in (B.3) is strictly concave in  and derive the

first-order condition of . Recall that ̃ () is an increasing function, as shown in the above proof

of Lemma 3.3. This result and (C.3) together imply that  0 () is decreasing, i.e., that  () is

concave. Because  () is increasing and concave, and −1( 
−) is strictly decreasing and strictly

concave in , it can be verified that the objective function in (B.3) is strictly concave in . Strict

concavity of the objective function implies that the optimal choice of  is unique. Also, because

the objective function is differentiable in , the optimal choice of  is given by the first-order
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condition. Deriving the first-order condition, substituting  0 () from (C.3), and substituting

−1( 
−∗ ) = ∗(), we obtain:

 (∗)−  () +  0 (̃ (∗))
0∗()

2
≤ 0 and ∗ ≤ −  (C.4)

where the two inequalities hold with complementary slackness.

Now we derive (C.1) and (C.2), which clearly imply that 0() exists if and only if  0()

exists. Note that ∗()  0 implies ∗()   − . Because ∗()   −  and ∗() is

continuous, there exists   0 such that ∗ (+ )   −  and ∗()   −  − . Consider

the neighborhood () = (− + ). For any 0 ∈ (), the choice ∗ (0) is feasible in

the problem where the balance is , and the choice ∗() is feasible in the problem where the

balance is 0. Applying to (B.3) a proof similar to Appendix A that established the existence of

 0(∗()), we can derive the formulas of 0(+) and 0(−) for any  such that ∗()  0.

These formulas and the first-order condition of ∗, (C.4), together yield:

0 (+) = ∗() [ 0 (∗)−  0 (+)] +  0 (+) 

0 (−) = ∗() [ 0 (∗)−  0 (−)] +  0 (−) 

Again, we have used the fact that a concave function has one-sided derivatives. Substituting

 0(∗) from (C.3) and  0(∗) = 1 (
∗ ∗) into the above equations, we obtain (C.1) and (C.2).

Finally, we prove that  is strictly increasing. Since  is concave and increasing,  0(−) ≥
 0 (+) ≥ 0. Since ∗ ≤ 1 and  0 (∗())  0, the above equations for 0(+) and 0(−)

imply that 0(−) ≥ 0 (+) ≥ ∗() 0 (∗)  0, where we have used the hypothesis ∗()  0.

Therefore, () is strictly increasing if ∗()  0.

(2) The optimal choice ∗ satisfies the first-order condition (3.8). If ()  0, then  0 (())

exists, and the optimal choice ∗satisfies the first-order condition (3.9).

For any given (), the objective function in a buyer’s problem (3.6) is differentiable with

respect to . Thus, if the optimal choice ∗ is interior, it satisfies the first-order condition (3.8).

Now consider the optimal choice ∗ and assume ()  0 (i.e., ∗()  ). Since ∗()  ,

a procedure similar to the derivation of  0 () in part (1) above but applied to (3.6) yields:

0 (+) =  [∗() 0 (+()) + (1− ∗()) 0 (+)]

0 (−) =  [∗() 0 (−()) + (1− ∗()) 0 (−)] 

where +() = + − ∗() and −() = − − ∗(). Comparing these equations with (C.1)

and (C.2) yields that  0 (+()) =  0 (−()) =  0() which is given by (3.9).

(3) For any  ∈ [ ̄) such that ∗()  0, if () =  () and if there exists a neighborhood

 3  such that (0) ≤  (0) for all 0 ∈ , then 0() and  0() exist and satisfy (3.10)

in part (iv) of Theorem 3.2. Also, (3.10) holds for  = ̄ if 0(̄) =  0(̄).
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Take any  ∈ [ ̄) that satisfies the hypotheses described in this part. Because (0) ≤
 (0) for all 0 ∈ () and () =  (), continuity of  and  implies that 0 (−) ≥
 0 (−) and 0 (+) ≤  0 (+). Substituting  0(−) ≤ 0(−) into the right-hand side of

(C.2), we get:

 0
¡
−

¢ ≤ 0(−) ≤ ∗()
1−  [1− ∗()]

1 (
∗() ∗())  (C.5)

Similarly, substituting  0(+) ≥ 0(+) into the right-hand side of (C.1), we get:

 0
¡
+

¢ ≥ 0(+) ≥ ∗()
1−  [1− ∗()]

1 (
∗() ∗())  (C.6)

On the other hand, concavity of  implies  0 (−) ≥  0 (+). Thus,  0 (−) = 0(−) =

0(+) =  0 (+). Moreover,  0() and 0() satisfy (3.10).

If  = ̄, it is still true that 0(−) ≥  0(−), and so (C.5) also holds at  = ̄. However,

since we cannot presume  0(̄+) ≥ 0(̄+), we cannot conclude that (C.6) holds at this point.

If 0(̄) =  0(̄), however, (C.1) and (C.2) imply that (3.10) holds at  = ̄.

(4) Consider any  ∈ [ ̄) such that ∗()  0 and ()  0. If () =  () and if there

exists a neighborhood  surrounding  such that (0) ≤  (0) for all 0 ∈ , then ∗ and

 are strictly increasing at  and  is strictly concave at (), with  (()) =  (()) and

 0(())   0(). These properties also hold for  = ̄ if 0(̄) =  0(̄).

Take any arbitrary 1 ∈ [ ̄] that satisfies the hypotheses for  described in this paper.

If 1 = ̄, then add the assumption 0(1) =  0(1). Shorten the notation (1) as 1 and

∗(1) as 
∗
1. As a preliminary step, we prove 

0(1)   0(1) so that  must be strictly concave

in some sections of [11]. By the construction of1, 
0(1) satisfies (3.10) and 

0(1) satisfies

(3.9). Subtracting the two relations yields:

 0 (1)−  0 (1) =
1− 

 [1−  (1− ∗1)]
1(

∗
1 

∗
1)  0

Next, we prove that ∗ () is strictly increasing at 1. Let 2 be sufficiently close to 1

so that (2)  0 and ∗(2)  0 (which is feasible because () and () are continuous

functions). Shorten the notation (∗() 
∗() ()) to (

∗
  

∗
  ), where 

∗
 =  −  and

 = 1 2. Since the proofs of strict monotonicity of ∗(1) at 1 are similar in the cases 2  1

and 2  1, let us consider only the case 2  1. By Lemma 3.3, 
∗
2 ≥ ∗1, ∗2 ≥ ∗1 and

2 ≥ 1. We prove that 
∗
2  ∗1. Because ∗  0, the first-order condition for , (3.8), yields:

(∗  
∗
 ) + [ ()−  ()] + ∗2(

∗
  

∗
 ) = 0
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Subtracting these conditions for  = 1 2, and re-organizing, we get:

(∗1 ∗1)− (∗1 ∗2)− ∗22(∗2 ∗2) + ∗12(∗1 ∗1)
= {(∗2 ∗2) + [ (2 − ∗2)−  (2)]− (∗1 ∗2)− [ (2 − ∗1)−  (2)]}

+ { (1)−  (1 − ∗1) +  (2 − ∗1)−  (2)} 
The term in the first pair of braces on the right-hand side is equal to [ (∗2 ∗22)− (∗1 ∗22)],

where  is defined by (3.13). This term is non-negative because ∗2 maximizes  ( ∗22) and

∗1 is a feasible choice of  in this maximization problem (as ∗1 ≤ ∗2). The term in the second pair

of braces is strictly positive because  is strictly concave in some sections of [11] ⊂ [12],

as proven earlier. Thus, the left-hand side of the above equation must be strictly positive. Noting

that 2 (
∗
2 

∗
2) ≥ 2 (

∗
1 

∗
2) (because 12  0 and ∗2 ≥ ∗1), we get:

(∗1 
∗
1)− (∗1 

∗
2)− ∗22(

∗
2 

∗
2) + ∗12(

∗
1 

∗
1)  0

The left-hand side of this inequality is a strictly increasing function of ∗2, and it is equal to 0

when ∗2 = ∗1. Thus, the inequality implies ∗2  ∗1.

Let us complete the proof of part (4). Since (3.10) and (3.9) hold at  = 1, we can combine

the two relations to obtain:

 0 (1) =  0(1)

∙
1− 

∗(1)
+ 1

¸


Because ∗(1) is strictly increasing at 1 and  is concave, the right-hand side above is strictly

decreasing in 1. Thus, the above equation requires  to be strictly concave at (1) and  to

be strictly increasing at 1. QED

D. Proof of Theorem 3.5

We prove each part of Theorem 3.5 in turn.

Part (i). Let us express the functional equation (2.1) in a worker’s problem as () =  ()

for ∈ [0 ̄], and express the functional equation (2.2) in a buyer’s problem as () =  ()

for  ∈ [0 ̄]. Substituting these expressions into (2.3) to obtain ̃ , we can rewrite (2.4) as

 () =  (), where

 () ≡ max
(1212)

[1max{ (1)  (1)}+ 2max{ (2)  (2)}]
(D.1)

s.t. 11 + 2 2 = , 1 + 2 = 1, 2 ≥ 1,

 ∈ [0 1] and  ≥ 0 for  = 1 2
Lemma 3.1 proves that  maps V[0 ̄] into V[0 ̄]; i.e.,  maps the set of continuous,

increasing and concave functions on [0 ̄] into itself. Theorem 3.2 proves that  maps V[0 ̄]
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into C[0 ̄] (but not necessarily into V[0 ̄]). Thus, the objective function in (D.1) is a continuous
function of 1 and 2. Also, the objective function is increasing in 1 and 2, and the feasibility

set in the above problem is increasing in . These features of the maximization problem above

imply that  maps V[0 ̄] into C[0 ̄]. Moreover, since the function max{ ()  ()}
is continuous in  on a closed interval [0 ̄] 3 , the lottery in (2.4) makes  () a concave

function (see Appendix F in Menzio and Shi, 2010, for a proof). Thus,  is a self-map on V[0 ̄].
It is evident from (2.1) and (2.2) that  and  are monotone mappings, and so  is a

monotone mapping. It is also easy to verify that  and  feature discounting with a factor

 ∈ (0 1), and so does  . Hence,  satisfies Blackwell’s sufficient conditions for a monotone

contraction mapping. Moreover, because V[0 ̄] is a closed subset of the complete metric space
C[0 ̄],  has a unique fixed point  ∈ V[0 ̄] (see Stokey et al., 1989).
Part (ii). For a worker with any balance , the choice of working zero hours yields the value

 (). Because this choice is always feasible,  () ≥  () for all . For a buyer who

holds  ≤ , the value is () =  () ≤  (). It is clear that  (0) = ̃ (0) =  (0).

Also,  (0) ≥ 0, because an individual without money can always choose not to trade. To prove
 (0)  0, suppose  (0) = 0, to the contrary. In this case, 0 =  (0) ≥ (0) ≥  (0) = 0, and so

 (0) =  (0) = 0. Using the definition of  (0), we have  (̂)−(̂) = 0. Since this equation
has a unique solution and since ̂ = 0 satisfies the equation, then ̂ = 0. Recall that ̂ = ∗(0)

is the optimal labor supply of an individual without money and that the policy function ∗() is

decreasing in . Thus, ̂ = 0 implies that ∗() = 0 for all  ≥ 0. In this case, no individual
will work for money, and so a monetary equilibrium does not exist. Therefore, for a monetary

equilibrium to exist, it must be the case that  () ≥ () ≥ (0) =  (0)  0 for all .

We now prove that  ()   () for all   0. For all   0 such that the constraint

∗ ≥  is binding for a worker, (3.2) yields  () =  ()   (). Now consider   0

such that the constraint ∗ ≥  is not binding for a worker. Contrary to the result in this part,

suppose  (̃) =  (̃) for some ̃  0 such that ∗(̃)  ̃. Since  0(∗(̃)) =  0(̃) by

(3.1) in Lemma 3.1, then  0(∗(̃))  0, and concavity of  implies  0(̃−)  0. In this case,

 0
¡
̃−

¢ ≤ 0(̃) =  0(∗(̃)) ≤  0(̃−)   0(̃−)

The first inequality follows from the hypothesis  (̃) =  (̃) and the fact  () ≥  () for

all   ̃. The equality is from (3.1). The second inequality follows from concavity of  , and

the last inequality from  0(̃−)  0. Since the above result is a contradiction, we conclude that

 ()   () for all   0.

Part (iii). We prove first that there is some 0 ∈ (0∞) such that  (0)   (0). Suppose,
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to the contrary, that () ≤  () for all  ∈ (0∞). Then, ̃ () =  () for all . Since

 () is concave (see Lemma 3.1), ̃ () is concave in this case, and so  () = ̃ () =  ()

for all . In this case, (3.2) yields

 () = max
≥

[ ()− ( −)] , all   0

If ∗() = , the above equation yields  () = 0, which contradicts part (ii) above. If ∗() 

, (3.1) in Lemma 3.1 implies that  is differentiable at , with  0() =  0(∗())  0.

Since  () =  () for all   0 in this case,  0() =  0() =  0(∗()) ≤  0(). This

implies  0() = 0 =  0(∗()), which contradicts  0(∗())  0.

Next, we prove that there exists 0 ∈ ( ̄] with  (0) = (0) such that an individual

with   0 will play the lottery with the prize 0. For an individual with a balance  ∈ (0 ),
the lottery with 1 = 0 and 2 = 0 yields a value higher than ̃ (), where 0 is described

above. Thus, these individuals will participate in lotteries. However, 0 may not necessarily be

the optimal prize of the lottery for these individuals. The optimal prize is 0, defined by (3.16).

Clearly, 0    0,  (0) = ̃ (0) = (0), and  () ≥ ̃ () for all  ∈ [00].

Now we prove that ∗(0)  0 and (0) = 0. Suppose 
∗(0) = 0 to the contrary, and so

(0) =  (0). Since  (0) = (0), as shown above, then  (0) = 0, which contradicts

the above result in part (ii) that  ()  0 for all  ≥ 0. Thus, it must be true that ∗(0)  0.

Since  (0) = (0), (C.5) holds for  = 0 which, together with ∗(0)  0, implies

 0(−0 )  1 (
∗(0) 

∗(0)) . Since  () is linear for  ∈ [00], then  0 ((0)) =

 0(−0 )  1 (
∗(0) 

∗(0)) . If (0)  0, then (3.9) holds for  = 0, which yields the

contradiction that  0 ((0)) = 1 (
∗(0) 

∗(0)) . Thus, it must be true that (0) = 0.

Finally, since  (0) = (0) and ∗(0)  0, 0 satisfies the hypotheses in part (iv)

of Theorem 3.2 if 0  ̄. Thus, if 0  ̄, then (3.10) holds for  = 0, which implies

 0(0) = 0(0)  0.

Part (iv). We first prove that  0 () exists for all  ∈ [0 ̄) and 0() exists for all  ∈ [ ̄)
such that ∗()  0. If  0() exists for all  ∈ [0 ̄), then part (iii) of Theorem 3.2 implies

that 0() exists for all  ∈ [ ̄) such that ∗()  0. To prove that  0() exists for all

 ∈ [0 ̄), note that the lottery with the prize 0 implies that 
0() exists for all  ∈ [00).

If 0 = ̄, then  0() exists for all  ∈ [0 ̄). If 0  ̄, then  0(0) also exists, as shown in

part (iii) above. What remains to be proven is that  0() exists for all  ∈ (0 ̄). Suppose to

the contrary that  0(̃) does not exist for some ̃ ∈ (0 ̄). In this case, 
0(̃−)   0(̃+),

and so  is strictly concave at ̃. Because  ()   () for all   0, as proven in part (ii)

above, we must have  (̃) = (̃). Also, ∗(̃) ≥ ∗(0)  0. Thus, the hypotheses in part
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(iv) of Theorem 3.2 are true for  = ̃, and so  0(̃) exists. This contradicts the supposition

that  0(̃) does not exist.

Next, we prove that  0()  0 for all  ∈ [0 ̄). For all  ∈ [00),  () is linear

and  0() =  0(−0 )  0. If 0 = ̄, then  0()  0 for all  ∈ [0 ̄). If 0  ̄,

then  0(0) = 0(0)  0, as proven in part (iii) above. We need to prove  0()  0 for all

 ∈ [0 ̄). Consider any   0. Since ∗(0)  0 and ∗() is an increasing function

(see part (i) of Theorem 3.2), then ∗()  0, which further implies that () is strictly

increasing (see part (iii) of Theorem 3.2). Because ̃ () = () for all  ≥ 0, then ̃ ()

is strictly increasing over such . Recall that  () is constructed with lotteries over ̃ (). If

 (1) =  (2) for some 2  1  0, contrary to the claimed result, then  () must be

constant for all  ∈ [12]. Extend this interval to [
0
1

0
2], with 0

1 ≤ 1 and 0
2 ≥ 2, so

that  (0
1) = ̃ (0

1) and  (0
2) = ̃ (0

2). Then, ̃ (
0
2) =  (2) =  (1) = ̃ (0

1), which

contradicts strict monotonicity of ̃ .

Part (v). For each exogenous upper bound on individuals’ real balances, the policy and value

functions are characterized by the results in section 3 up to part (iv) of the current theorem.

Now we vary the upper bound, possibly to ∞, and prove that individuals’ real balances in the
equilibrium are indeed bounded above by a finite ̄ that satisfies the current part of the theorem.

Note first that the balance obtained by a worker is ̂ = ∗(0) ≤ 1, which is clearly bounded

above. If (̂) =  (̂) and 0(̂) =  0(̂), then ∗2(̂) = ̂2 = ̂, in which case we can set

̄ = ̂ as the upper bound to satisfy the properties stated in the current part of the theorem.

In the remainder of this proof, suppose (̂)   (̂), and so a lottery is played at ̂. Set

the upper bound ̄ in the analysis up to part (iv) of the theorem to an arbitrary finite number

̄  ̂. Given this arbitrary bound ̄, it may or may not be true that ∗2(̂)  ̄. By varying

the arbitrary bound, we can re-define ̄ as the least upper bound above which ∗2(̂)  ̄. If

this least upper bound is finite, then it satisfies the properties stated in the current part of the

theorem. If this least upper bound is infinite, then ∗2(̂) = ̄ for all ̄  ̂, in which case

the lottery at ̂ is not well-defined for endogenously determined ̄. It suffices to show that this

unbounded case does not arise in the equilibrium. The unbounded case occurs only if there exists

a finite 1  ̂ such that the following two conditions are satisfied:

(A) () is strictly increasing and (weakly) convex for all  ≥ 1;

(B) for every 2 ≥ 1, there exists 1  ̂ such that for all   2, () lies

below or on the extension of the line connecting (1) and (2).

Figure 3.1 depicts this unbounded case. If (A) is violated, as depicted in Figure 3.2, then
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there must exist a finite number 1  ̂ such that () is concave for all  ≥ 1. In this

case, the high prize of the lottery at ̂ is ∗2(̂)  ∞, and so we can set ̄ = ∗2(̂) as the

upper bound stated in the current part of Theorem 3.5. If (B) is violated, as depicted in Figure

3.3, then there must exist a finite 1  ̂ and an associated 1  ̂ such that the low prize

of the lottery at ̂ is 1 and the high prize is 1 and that, for all   1, the function ()

lies below or on the extension of the line connecting (1) and (1). In this case, ̄ = 1

satisfies the properties in this part of Theorem 3.5. Note that in the case depicted in Figure 3.3,

() can still be strictly increasing and convex for sufficiently large , but such a section of 

is irrelevant in the equilibrium because an individual’s balance never goes above 1. Also note

that the requirement 1  ̂ in (B) is important, since the case depicted in Figure 3.3 would not

violate (B) if this requirement were not imposed.

Insert Figure 3 here.

Suppose, to the contrary, that there exists a finite 1  ̂ such that (A) and (B) above are

satisfied, as depicted in Figure 3.1. We prove that this leads to the contradiction that ()

is uniformly bounded. Consider any arbitrary 2 ≥ 1. When individuals’ real balances are

exogenously capped by 2, the lottery at ̂ is well-defined, with 2 as the high prize, and all

characterizations of the policy and value functions that we have obtained so far (including parts

(i)-(iv) of the current Theorem 3.5) remain valid with ̄ = 2. However, since 
0(2)   0(2)

in this case, we have 0(̄)   0(̄). Denote the low prize of the lottery at ̂ as (2) = ∗1(̂)

so as to emphasize its dependence on the exogenous upper bound 2. Without loss of generality,

assume that ̂ ≥ 0, i.e., ((2)) =  ((2)). (If ((2))   ((2)), then (2) = 0, in

which case the proof is still valid after replacing  ((2)) below with  (0).) Denote

(2) =
(2)−  ((2))

2 − (2)


̂ (2) = (2)− (2)(2 −)  ∈ [02]

Here, (2) is the slope of the line connecting ((2)) and (2), and ̂ is the extension of

this line to the domain [02] (the dashed line from point A to point C in Figure 3.1).

We prove that (2) is increasing for all 2 ≥ 1. Take any arbitrary 0  2 ≥ 1. By

definition, (0)  ̂ ≤ 2. So, ((
0)) lies below or on the line ̂ (2); i.e., ̂ ((

0)2) ≥
((0)) =  ((0)). Also, since () is increasing and convex for all  ≥ 1, and 0  2,

then (0) ≥ ̂ (02). Using these two results, we have:

(0) ≥ ̂ (02)−  ((0))
0 − (0)

≥ ̂ (02)− ̂ ((0)2)

0 − (0)
= (2),
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where the last equality comes from substituting the expression for ̂ . Thus, () is increasing.

Now we derive a uniform upper bound on (2) for all 2 ≥ 1. It is clear that  () ≤
̂ (2) for  ∈ [02], with equality if  ∈ [(2)2]. We have:

(2) = max
∈[01]∈[02]

{ [( ) +  (2 − )] + (1− ) (2)}
≤ max

∈[01]∈[02]

n

h
( ) + ̂ (2 − 2)

i
+ (1− )̂ (22)

o
= (2) + max

∈[01]∈[02]
 [( )− (2)] .

≤ (2) + max
∈[01]≥0


n
()− (2)

h
 + 

()

io
.

The first inequality follows from  () ≤ ̂ (2) for all  ∈ [02]. The ensuing equality

comes from the linearity of ̂ and ̂ (22) = (2). The last inequality comes from the fact

that if we ignore the constraint  ≤ 2 in the maximization problem, the resulted maximum

cannot be smaller. Here, we have substituted the relationship  =  + 
() and used ( ) as the

choices. Similarly, because  ≤ 1 and () ≤ 1, the resulted maximum cannot be smaller if we

set  = 1 and () = 1. Thus,

(2) ≤ ((2)

1− 
where ((2)) ≡ max

≥0
[()− (2)( + )] . (D.2)

The notation ((2)) emphasizes the fact that  depends on 2 only through (2). Because

 0() is strictly decreasing and  0(∞) = 0, the solution for  to the maximization problem in

(D.2) is unique, strictly positive and finite for all  ∞. So, () ∞ for all  ∞. Applying
the envelope condition, we have 0()  0. Because () is increasing, as shown above, then

(2) ≥ (1)  0 and ((2)) ≤ ((1)) ∞. Therefore, (2) ≤ ((1))(1− ) 

∞ for all 2 ≥ 1. This result contradicts the supposition that () is strictly increasing and

convex for all  ≥ 1. QED

E. Proof of Lemma 4.1

Part (i) of the lemma is implied by part (iii) of Theorem 3.5, with  = ̂. Part (ii) of the lemma

is obvious if ̂  0 and, if ̂ ≥ 0, it is implied by part (iii) of the lemma. In particular, since

part (iii) implies that ((̂)) =  ((̂)), 
0((̂)) =  0((̂)) and  is strictly concave at

(̂) for all  in the set {0 1 2  ̂−1}, then (̂) ≥ 0 and a buyer with the balance 
(̂)

has no need for a lottery for any  in the aforementioned set. Thus, the only lottery possibly

played in the steady state is the one at ̂.

We use induction to prove parts (a) and (b) of part (iii) of the lemma. Assume ̂ ≥ 0, as

is required in part (iii), and take ̂ as either prize of the lottery at ̂. Start with  = 1. Because
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̂ ≥ 0, then ̂ ≥ 0, and so ∗(̂) ≥ ∗(0)  0, where the strict inequality comes from

part (iii) of Theorem 3.5. Thus, part (a) holds true for  = 1. Moreover, by the construction of

the lottery at ̂, (̂) =  (̂) and 0(̂1) =  0(̂1). Also, since ̂2 = ̄, part (v) of Theorem

3.5 implies 0(̂2) =  0(̂2). Thus,  = ̂ satisfies the hypotheses in part (v) of Theorem

3.2 which implies that, if (̂)  0, then  is strictly concave at (̂). Strict concavity of

 at (̂) implies  ((̂)) = ((̂)): if  ((̂))   ((̂)),  around (̂) would be a

linear segment generated by the lottery in (2.4), which would contradict strict concavity of 

at (̂). Thus,  = (̂) satisfies the hypotheses in part (iv) of Theorem 3.2 which implies

 0((̂)) = 0((̂)). Moreover, strict concavity of  at (̂) implies that (̂) ≥ 0, because

 is linear for all   0. Thus, parts (b) holds true for  = 1 if (̂)  0. If (̂) = 0, on the

other hand, part (b) is vacuous.

Suppose that parts (a) and (b) hold for an arbitrary  ∈ {1 2  ̂ − 1}, we prove that they
hold for  + 1 and, by induction, they hold for all  ∈ {1 2  ̂ − 1}. Because (̂) ≥ 0 by

the supposition, ∗((̂)) ≥ ∗(0)  0, and so part (a) holds for + 1. If  = ̂ − 1, then part
(b) is vacuous for  + 1. If   ̂ − 1, then +1(̂)  0. Since  ((̂)) = ((̂)) and 

is strictly concave at (̂), by the supposition, then  = (̂) satisfies the hypotheses in part

(v) of Theorem 3.2 which implies that  is strictly concave at +1(̂). Strict concavity of  at

+1(̂) implies  (
+1(̂)) = (+1(̂)) and +1(̂) ≥ 0. Thus,  = +1(̂) satisfies the

hypotheses in part (iv) of Theorem 3.2 which implies  (+1(̂)) = (+1(̂)). Hence, part

(b) holds for + 1.

If  = ̂ , part (a) follows from the same proof as above, and part (b) is vacuous.

Finally, suppose ̂ (̂)  0, contrary to part (c). Because part (b) holds for  = ̂ − 1, then
 = ̂−1(̂) satisfies all the hypotheses in part (v) of Theorem 3.2 which implies that  is

strictly concave at ̂ (̂). A contradiction. QED

F. Proof of Theorem 4.2

The text preceding Theorem 4.2 has established that there exists a unique, block recursive mon-

etary steady state and that the frequency function  in this steady state is independent of .

The paragraph immediately following Theorem 4.2 shows that the monetary steady state must

be block recursive; that is, there is no monetary steady state other than the block recursive one

characterized before Theorem 4.2. These results imply that money is neutral in the steady state.

Turn to the result that from either ̂ ( = 1 2), the frequency function, (
(̂)), is decreasing

in (̂). To prove this result, note that 
(̂) = −1(̂) − ∗(−1(̂))  −1(̂) for all

1 ≤  ≤ ̂ and  = 1 2. By part (iii) of Theorem 3.5, ∗(0)  0. For each  ∈ {1 2}, Lemma
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4.1 implies that (̂) ≥ 0 and 
∗((̂))  0 for all 1 ≤  ≤ ̂−1. Thus, for all 1 ≤  ≤ ̂−1,

(̂) satisfies part (v) of Theorem 3.2, which implies that 
∗() is strictly increasing at (̂) for

each  and . With this feature, (4.4) implies that ((̂))  (−1(̂)) for all  = 1 2  ̂−1
and  = 1 2.

Next, we prove that there exists 0  0 such that if  ≤ 0, then ̂  0 and (̂2) = 0. Let

us shorten the notation ∗(0) to 0 and ∗(0) to 0. Define ̄() and  by

()

 0()
−  =   0(̄()) =

1


0(̄()) + ) (F.1)

We then define 0 as

0 = max
∈[01]

©
 : ̄() ≤ 

ª
 (F.2)

For any  ∈ (0 1], the assumptions on  and  imply that ̄() and  are well defined. In

particular, the assumptions on  imply that [
()
 0() − ] is a strictly increasing function of  whose

value at  = 0 is 0. Moreover, ̄() and  have the following features:

(a) ̄0()  0 and lim→0 ̄() = 0  : These follow from the assumptions on  and .

(b)   0: To verify this feature, note that 
0(0) =  0(0). Since 

0(0) satisfies part (v) of

Theorem 3.2 with  = 0, we have:

 0(0) =
0

0(0)
1−  + 0

 (F.3)

where we have substituted 1(0 0) =  0(0). Also, the lottery in (3.16) implies  () =

 (0)+ 0(0) for all  ∈ [00]. Substituting  (0) from this result and 
0(0) from (F.3) into

the Bellman equation for (0) (=  (0)), we obtain:

0
£
(0)−0

0(0)
¤
= (1− ) (0)  (F.4)

Here, we have substituted 1(0 0) =  0(0) and (0 0) = (0). Because  (0)  0 by

part (ii) of Theorem 3.5 and 0  0, (F.4) implies (0)  0
0(0). Because 0  0 +  (as

(0)  1), this result further implies
(0)
 0(0) − 0   =

()

 0() − , which is equivalent to   0.

(c) ̄()  ∗(̂) for all  ∈ (0 1]: By the definition of ̄() in (F.1), ̄()  ∗(̂) if and only if

 0(∗(̂))  1


0(∗(̂)) + ). The latter relation is verified as follows:

 0(∗(̂)) ≥  0(∗(̂2))   0(̂2) =  0(̂) =
1


0(̂) 

1


0(∗(̂)) + ).

The first inequality comes from the fact ∗(̂) ≤ ∗(̂2). To obtain the second inequality, we

apply (3.10) for  = ̂2, which yields 
0(̂2) =

∗(̂2) 0(∗(̂2))
1−+∗(̂2) . The first equality above comes
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from the fact that  is linear between ̂ and ̂2, and the second equality above from the definition

of ̂. The last inequality comes from ̂ = ∗(̂) + 
(∗(̂)) and (∗(̂))  1.

Feature (a) implies that the set { ∈ [0 1] : ̄() ≤ } is non-empty and that 0  0 is

well-defined. Moreover, ̄() ≤  for all  ≤ 0. Using features (b) and (c), we conclude that if

 ≤ 0, then 
∗(̂)  ̄() ≤   0. Recall that 

∗() is an increasing function. Thus, if  ≤ 0

then ̂  0, in which case (̂2) = (0) = 0.

As a preliminary step toward finding a condition for (̂2)  0, we consider the limit  → 1

and characterize the optimal choices in more detail. This exercise is guided by the above result

that (̂2) = 0 if  is small. Note that although lim→1  () = ∞, the limit of (1 − ) ()

is strictly positive and finite for all  ∈ [0∞). Also, the limit of [ () −  (0)] is finite for all

 ∞. We characterize in detail the optimal choices of a buyer with the balance 0 in the limit

 → 1. First, taking the limit  → 1 on (F.3) and (F.4) yields:

 0(0) =  0(0) (F.5)

0
£
(0)−0

0(0)
¤
= lim

→1
[(1− ) (0)]  (F.6)

Second, since 2 = 1
02, the first-order condition of 0 (see (3.8)) yields:

(0)

 0(0)
−0 +

0(0)0
[(0)]2

= 0 (F.7)

where we have used (F.5) for  0(0). Substituting 0 = −1( 
0−0 ) into (F.7), we can prove that

0 = ∗(0) is a strictly increasing function of 0.

We are now ready to prove that (̂2)  0 in the limit  → 1 if and only if 0  ̂2. The

“only if” part of this statement is apparent, because 0 ≥ ̂2 implies (̂2) = (0) = 0. To

prove the “if” part of the statement, we verify that (̂2) = 0 implies 0 ≥ ̂2 in the limit  → 1.

Suppose (̂2) = 0. Using part (ii) of Theorem 3.2, we deduce that  0(0) ≤  0(∗(̂2)). Taking

the limit  → 1 and using (F.5), we write this condition as 0 ≥ ∗(̂2). Because ∗() is strictly

increasing at  = 0, then 0 ≥ ̂2.

The above procedure leads to the conclusion that when  is sufficiently close to one, (̂2)  0

if and only if 0  ̂2. To characterize the condition 0  ̂2 explicitly, we suppose that the

opposite, 0 ≥ ̂2, is true. After solving 0 from (F.8) as 0(̂) and 0 from (F.9) as 0(̂), we

will solve the number ̂ from (F.10) as . Because the supposition 0 ≥ ̂2 implies ̂ ≤ 0,

the supposition leads to a contradiction if ̂ =  satisfies ̂  0, i.e., if (4.6) holds. Therefore,

if (4.6) holds, then 0  ̂2 and (̂2)  0 for  sufficiently close to one.
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To carry out the procedure described above, we suppose 0 ≥ ̂2 and consider the limit

 → 1. Since 0 ≥ ̂ in this case, the lottery for low balances implies  0(0) =  0(̂). Because

the definition of ̂ in the limit  → 1 implies  0(̂) = 0(̂), then  0(0) = 0(̂). Substituting

this result into (F.5), we solve 0 = 0(̂) where

0(̂) ≡  0−1(0(̂)). (F.8)

Substituting 0 = 0 +


(0)
and 0 = 0(̂) into (F.7) yields:



(0)
− 0(0)0
[(0)]2

=
(0(̂))

0(̂)
− 0(̂) (F.9)

Since 0()  0 and 1() is strictly convex in , the left-hand side of (F.9) is strictly increasing

in 0. Thus, for any given ̂, (F.9) solves for a unique 0. Denote this solution as 0(̂).

Moreover, since ̂ ≤ 0 under the supposition 0 ≥ ̂2, the lottery for low balances implies

that  (̂) is linear in ̂ and the slope of the line is  0(̂) = 0(̂) in the limit  → 1. That is,

 (̂)− (0) = ̂0(̂). On the other hand, in the limit  → 1, a worker’s Bellman equation yields

 (̂) −  (0) = (̂) + lim→1 [(1− ) (0)]. Thus, lim→1 [(1− ) (0)] = ̂0(̂) − (̂).

Substituting this result and 0 = 0(̂), we rewrite (F.6) as

−
0(0)(0)2

[(0)]2

¯̄̄̄
0=0(̂)

= ̂− (̂)

0(̂)
 (F.10)

The right-hand side of (F.10) is a strictly increasing function of ̂. From (F.8) and (F.9), we

can verify that 00(̂)  0, 00(̂)  0, 0(0) =∞, 0(0) = 1, 0(∞) = 0 and (0(∞))  0. With
these properties and the maintained assumptions on the function (), we can verify that the

left-hand side of (F.10) is a strictly decreasing function of ̂ and that there is a unique solution

to (F.10) for the number ̂. This solution, denoted as , is the one used in (4.6). QED
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Figure 1. Lotteries and the ex ante value function
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Figure 2. Money distribution is non-degenerate if   ( )
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Figure 3. Conditions (A) and (B) for unbounded money balance
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