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ABSTRACT. This paper studies the semiparametric binary response model with interval data

investigated by Manski and Tamer (2002, MT). In this partially identified model, we propose

a new estimator based on MT’s modified maximum score (MMS) method by introducing

density weights to the objective function, which allows us to develop asymptotic properties

of the proposed set estimator for inference. We show that the density–weighted MMS

estimator converges to the identified set at a nearly cube–root–n rate. Further, we propose

an asymptotically valid inference procedure for the identified region based on subsampling.

Monte Carlo experiments also provide supports to our inference procedure.
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process
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1. INTRODUCTION

Interval data is a common feature in empirical research. For example, as an explanatory

variable, family income might be measured by a bracket with only upper and lower bounds

reported to researchers. Models with interval data have been systematically investigated in

a seminal paper by Manski and Tamer (2002, MT). For a semiparametric binary response

model with interval data, MT propose a modified maximum score (MMS) set estimator and
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show its consistency. The convergence rate and other asymptotic properties of the MMS

estimator, which are necessary for inference, however are not established. In this paper, we

extend MT’s method and propose a density–weighted MMS (set–valued) estimator, which

allows us to establish the asymptotic properties. Further, we propose an asymptotically valid

inference procedure for the identification set. Monte Carlo experiments are used to illustrate

the finite sample performance of the proposed estimator and inference procedure.

When one explanatory variable ν is not observed but other variables x have been measured

precisely, the conditional distribution P(y|x, ν) is unknown in the population. MT suggest

to characterize the identification region of model parameters based on P(y|x, ν0, ν1), where

ν0 and ν1 are observed lower/upper bounds of ν in the interval data. Instead of modifying the

original econometric model and objects of interests, e.g. replacing P(y|x, ν) by P(y|x, d)

where d is a discrete random variable indicating which bracket v belongs to, MT’s approach

treats the observability of data as a separate issue of modeling and data generating process.

Although the observed bounds are less informative than ν, they still provide (partial)

identification power for the object of interest. MT characterize the sharp identification

region for the model parameters and show that their set estimators are consistent.1 Following

that direction, this paper focuses on the interval data issue in a semiparametric binary

response model and provides an effective inference procedure for the partially identified

parameters.

The issue of interval data also arises in estimating game theoretic models, where some

equilibrium variables (e.g., equilibrium beliefs) are not observed but we could possibly derive

their estimable upper/lower bounds from equilibrium conditions and model restrictions. For

example, in a 2-by-2 game of incomplete information with correlated types, Wan and Xu

(2012) show that each player’s equilibrium strategy can be represented as a binary response

model, in which one of the explanatory variables, the equilibrium belief on the rival’s choice,

is unknown to researchers and bounded by some nonparametrically estimable functions.

1Magnac and Maurin (2008) discuss the identification of the semiparametric binary response model with
interval data when additional instrumental variables are available.
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In this paper, we extend MT’s MMS method by introducing density weights to the objec-

tive function for their MMS estimation. The weighting does not change the identification

region of parameters of interest, but allows us to obtain a sample objective function in a

U –process form. We further extend Kim and Pollard (1990)’s results on the asymptotic

properties for maximum score point estimator to our setting and establish a set of conditions

under which our density-weighted MMS estimator is nearly cube-root-n consistent.

Moreover, we follow Chernozhukov, Hong, and Tamer (2007) and construct confidence

regions for the partially identified set as level sets of the sample objective function. Abrevaya

and Huang (2005) show that the bootstrap for the asymptotic distribution of maximum score

estimator is inconsistent. Their intuition carries through to our density–weighted MMS

estimator in the partial identification scenario. Therefore, we propose to estimate the critical

values by subsampling. Applying the results in Nolan and Pollard (1987, 1988), we show

that the inferential statistic converges in distribution to a non–degenerate random variable,

which ensures the validity of the subsampling procedure. In Section 4, we conduct Monte

Carlo simulations under several choices of subsample sizes. The finite sample performance

provide support to our inference procedure.

The key in our sample objective function is that it effectively controls the errors induced

by the first stage nonparametric estimation in indicator functions. As in MT, our sample

objective function also contains the term 1{E(y|x, ν0, ν1) ≥ 1− α} for some α ∈ (0, 1),

which demands a nonparametric plug–in estimator of the conditional expectation inside the

indicator function. By choosing bandwidths and kernels properly, we show that first stage

estimation errors are asymptotically negligible and will not distort the asymptotic behavior

of the second stage estimator.

Our method is also related to the literature of using U –process theory to derive asymptotic

properties of estimators, e.g. Sherman (1994b) establishes the asymptotic properties of

the U –processes in the analysis of a generalized semiparametric regression model, which

includes Ichimura (1993) and Klein and Spady (1993) as leading examples. The binary

response model that we consider in this paper is different from Sherman (1994b) in two
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aspects. First, the parameters of interest are not point identified. Second, as a trade-off of the

robustness from the conditional median assumption, our density–weighted MMS estimator

has an “irregular” convergence rate which is slower than root–n. We do, however, discuss the

extension of the density–weighting idea to a regular case — the parametric regression model

with interval data. We propose a density–weighted modified minimum distance (MMD)

method in a similar way to consistently estimate the identified set at a nearly parametric rate.

A line of literature on cube–root–n asymptotics has been developed for a variety of

“irregular” estimators. For the semiparametric binary response models, traditional maximum

score type estimators have been reviewed, e.g. in Kim and Pollard (1990) and Horowitz

(1998). The unusual cube–root–n convergence comes from the fact that maximum score

sample criterion function is essentially a step function of parameters, which is “irregular” in

the sense that it does not allow for a quadratic expansion.2 Similar intuition carries through

to the asymptotic analysis in our setting where the parameters of interest are partially

identified: we show that the irregular set estimator converges to the identification region at a

rate slightly slower than cube–root–n.3 Blevins (2012) also studies the asymptotic problems

of irregular set estimators, which is related to the present paper, but has a different focus.

The rest of the paper is organized as follows. Section 2 reviews the semiparametric

response model with interval data and the MMS estimator proposed by MT. In Section 3,

we introduce the density–weighed MMS estimator and provide the conditions for valid

inference. Section 4 reports Monte Carlo experiments results. We also extend the density

weighting to parametric regression models with interval data in Section 5.

2Under additional smoothness assumptions on the error term’s density, Horowitz (1992) propose a smoothed
MSE, which has a limiting normal distribution and a rate of convergence that is at least n−2/5 and can be
arbitrarily close to n−1/2.
3 On the other hand, a smoothed sample criterion function does not necessarily guarantee the corresponding
estimator will converge at a parametric rate: in a simple setting of binary response models with a special
regressor, Khan and Tamer (2010) show that the identification–at–infinity of parameters could also result in a
convergence rate slower than the parametric rate. Chen, Khan, and Tang (2013) extend such a result.
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2. SEMIPARAMETRIC BINARY RESPONSE MODEL WITH INTERVAL DATA

Consider the following semiparametric binary response model studied in MT,

y = 1
[
x′β + δν + ε > 0

]
,

where x ∈ Rd, ν ∈ R and ε ∈ R. (y, x′, ν0, ν1) are observed to researchers with ν0 ≤ ν ≤
ν1. β ∈ B ⊂ Rd and δ ∈ R are parameters of interest. The following assumption is made

in MT, and throughout the present paper as well.

Assumption 2.1. Let Semiparametric Binary Regression (SBR) assumptions hold.

SBR-1 For a specified α ∈ (0, 1), qα (ε|x, ν) = 0. P (ε ≤ 0|x, ν) = α.

SBR-2 P (ε|x, ν, ν0, ν1) = P (ε|x, ν).

SBR-3 δ > 0.

Assumption SBR-1 is the α–quantile–independence condition suggested by Manski (1975,

1985); SBR-2 asserts that observation of [ν0, ν1] would not provide additional information

for the distribution of ε if we know ν and x. SRB-2 holds if the bracket for each ν is

generated at random, i.e., given x and ν, which bracket (with ν0 ≤ ν ≤ ν1) to be reported

has to be independent with ε. In practice, if the set of brackets are predetermined for

reporting ν and forms a partition on the real line, then the conditional distribution of ν0 and

ν1 given ν is degenerate and SBR-2 holds trivially. Assumption SBR-3 is strong but could

be substituted with weaker model restrictions that identify the sign of δ. In addition, positive

δ constitutes a normalization.

As pointed out by MT, the threshold–crossing condition is invariant to the scale of

the parameters. Hence, we set δ = 1 throughout as a scale normalization. Further, MT

characterize the sharp identification region of β by

B∗ = {b ∈ Rk : P[T(b)] = 0}, (1)

where T(b) = {(x, ν0, ν1) : xb + ν1 ≤ 0 < xβ + ν0 ∪ xβ + ν1 ≤ 0 < xb + ν0}.
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MT propose a consistent set estimator for B∗: the modified maximum score (MMS) esti-

mator. Let z = (x′, ν0, ν1)
′ and P (z) = P(y = 1|z). Let further λ(z) = 1 [P(z) > 1− α]

and sgn(·) be the conventional sign function.4

Assumption 2.2. P [P(z) = 1− α] = 0.

Assumption 2.2 requires that there is no mass point at the 1− α quantile of the distribution

of P(z). This assumption excludes the identification power from those values of z’s with

zero scores, such that for identification of β, the maximum score type criterion function can

exploit all the information provided by variations in z. The same assumption has also been

made in MT.

Under Assumption 2.1, MT show that every b ∈ B∗ maximizes the following population

criterion function,

S(b, λ) =
∫
[P (z)− (1− α)]

× {λ(z) · sgn(xb + ν1) + [1− λ(z)] · sgn(xb + ν0)}dF(z). (2)

If, in addition, Assumption 2.2 holds, then none of b 6∈ B∗ maximizes the above criterion

function.

To estimate B∗, MT propose a modified maximum score (MMS) set estimator

Bn = [b ∈ B : Sn(b, λ̂) ≥ max
c∈B

Sn(c, λ̂)− εn],

where εn ↓ 0 a.s. at a specific rate and the sample criterion function is given by

Sn(b, λ̂) ≡ 1
n

n

∑
i=1

[yi − (1− α)]

×
{

λ̂(zi) · sgn(xib + ν1i) +
[
1− λ̂(zi)

]
· sgn(xib + ν0i)

}
, (3)

in which λ̂(zi) = 1 [Pn(zi) > 1− α] and Pn is a nonparamteric estimator of P. In particular,

if ν0 = ν = ν1, then the MMS estimator becomes the classical maximum score estimator.
4We adopt the convention sgn(0) = −1.
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Assumption 2.3. B is compact. For any b ∈ B, xb + ν has a bounded probability density

function with respect to the Lebesgue measure.

Assumption 2.4. (yi, zi)
n
i=1 is an i.i.d. random sample.

Assumption 2.5. Pn(z)
a.s.−→ P(z), for a.e. z.

Under Assumptions 2.1 to 2.5, MT show that their MMS set estimator is consistent.

Later, we will substitute Assumption 2.5 with primitive conditions on kernel functions and

bandwidths, under which we will show that our density–weighted MMS estimator is nearly

cube–root–n consistent.

3. DENSITY–WEIGHTED MAXIMUM SCORE METHOD

We now introduce a density–weighted objective function, which is also maximized at the

identification region B∗. We then define a set estimator B f
n in a U –process form as a level

set of the sample criterion function. Further, we show that our estimator converges to B∗ at

a rate slightly slower than n1/3 and propose an inference procedure for both β and B∗.

For notational simplicity and without essential loss of generality, we assume that z is

continuously distributed and f (·) is the probability density function. Thus, we define the

“density–weighted” population objective function as

L(b, λ) =
∫
[P (z)− (1− α)] f (z)

× {λ(z) · sgn(xb + ν1) + [1− λ(z)] · sgn(xb + ν0)} dF(z). (4)

The objective function L(b, λ) is weighted by density f as opposed to S(b, λ), where the

weights are always positive constants. As stated in Lemma 3.1, the set–maximizer of L(·, λ)

is still B∗.

Lemma 3.1. Suppose that Assumptions 2.1 and 2.2 holds. Let B∗ be the set defined by

equation (1). Then b ∈ B∗ if and only if b maximizes L(b, λ).
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The proof is similar to that of MT’s Lemma 1, and therefore omitted here. While any

weighting function w, strictly positive on the support of z, provides the same identification

region as B∗, here we choose w = f . The “density–weighted” idea can also be found

in Powell, Stock, and Stoker (1989) and it permits applying the U –process theory for

asymptotic analysis.

Let Pn and fn be kernel–based nonparametric estimators, defined by

Pn(zi) =
n

∑
j 6=i

yjK
(

zj − zi

h

)/ n

∑
j 6=i

K
(

zj − zi

h

)
, fn(zi) =

1
(n− 1)hp

n

∑
j 6=i

K
(

zj − zi

h

)
,

(5)

in which K(·) and h ∈ R+ are kernel function and bandwidth, respectively, and p = d+ 2 is

the dimension of z. Because 1 {P(z) > 1− α} = 1 {[P(z)− (1− α)] f (z) > 0} almost

surely, we propose to estimate λ(z) by

λn(z) = 1 {[Pn(z)− (1− α)] fn(z) > 0} .

Let ϑ(z, b, λ) = λ(z) · sgn(xb + ν1) + [1− λ(z)] · sgn(xb + ν0). Now we define the

sample analog of L(·, λ) by

Ln(b, λn) =
1
n

n

∑
i=1

[Pn(zi)− (1− α)]× fn(zi)× ϑ(zi, b, λn),

which can also be represented as a second order U –process, i.e.

Ln(b, λn) =
1

n(n− 1)

n

∑
i=1

n

∑
j 6=i

g∗n(zi, zj; b, λn), (6)

where g∗n(zi, zj; b, λn) =
[
yj − (1− α)

]
× 1

hp K
(

zj−zi
h

)
× ϑ(zi, b, λn). By the U –process

representation of our sample criterion function, λn is essentially a nonparametric plug–in

estimator of the first stage. Note that here we choose the same kernel and bandwidth for

both λn and g∗n in equation (6), which is not necessary in a more general analysis. Similarly
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to MT, our second–stage set estimator is defined by

B f
n = [b ∈ B : sup

c∈B
Ln(c, λn)− Ln(b, λn) ≤ εn],

for some deterministic sequence εn ↓ 0. Before exploring our set estimator in more detail,

we make several assumptions for asymptotic analysis.

Assumption 3.1. P and f are twice continuously differentiable at all values of z in the

support.

Assumption 3.2. h is a deterministic sequence satisfying nhp → ∞ and h→ 0 as n→ ∞.

Assumption 3.3. The kernel K : Rp → R is a symmetric function satisfying (1)
∫

Rp K(u)du =

1; (2)
∫

Rp uK(u)du = 0; (3)
∫

Rp ‖u‖2K(u)du < ∞; (4) supu |K(u)| = K < ∞.

Assumptions 3.1 to 3.3 are standard in the nonparametric estimation literature (see, e.g.

Pagan and Ullah, 1999). Further, Assumption 3.1 implies that f is bounded above.

For any generic value of a ∈ Rd and any subset A ⊆ B, let ρ (a, A) = infb∈A ‖a− b‖,
where ‖ · ‖ is the usual Euclidean norm. Theorem 1 below establishes the consistency of

our set estimator, the proof of which is similar to that for Proposition 3 in MT.

Theorem 1. Let Assumptions 2.1 to 2.4 and 3.1 to 3.3 hold. Then sup
b∈B f

n
ρ(b, B∗)

p→ 0; if

in addition supb∈B [Ln(b, λ)− Ln(β, λ)] /εn
p→ 0 and supb∈B |Ln(b, λn)− Ln(b, λ)|/εn

p→
0, then supb∈B∗ ρ(b, B f

n)
p→ 0.

Proof. See Appendix A.1. �

Note that the condition supb∈B |Ln(b, λn)− Ln(b, λ)|/εn
p→ 0 in Theorem 1 is also re-

quired by MT; the condition supb∈B [Ln(b, λ)− Ln(β, λ)] /εn
p→ 0 is similar to Condition

C.1 (e) in Chernozhukov, Hong, and Tamer (2007). The conditions in Theorem 1 require us

to specify a sequence εn converging to zero at a proper rate. In Sections 3.1 and 3.2, we will

derive a uniform convergence rate for Ln(·, λ)− Ln(β, λ) and Ln(·, λn)− Ln(·, λ) under

additional conditions, which provides a guidance for choosing εn such that the resulting

level set is a consistent estimator for B∗.
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3.1. Convergence rate. In this section we derive the convergence rate for the density–

weighted MMS estimator using the standard U –process theory.

Let gn(zi, zj; b, λ) = (1/2)
[
g∗n(zi, zj; b, λ) + g∗n(zj, zi; b, λ)

]
be a symmetric function

of zi and zj. By definition, Ln(b, λ) = 1
n(n−1) ∑1≤i<j≤n gn(zi, zj; b, λ). Let further

g̃n(zi, zj; b, λ) = gn(zi, zj; b, λ)− gn(zi, zj; β, λ) be the corresponding normalization such

that g̃n(zi, zj; β, λ) = 0. We define a U –process sample criterion function by

Un(b, λ) =
1

n(n− 1) ∑
1≤i<j≤n

g̃n(zi, zj; b, λ).

By definition, Un(b, λ) = Ln(b, λ)− Ln(β, λ). Equivalently, our set estimator is a level

set of the U –process sample criterion function,

B f
n = [b ∈ B : sup

c∈B
Un(c, λn)−Un(b, λn) ≤ εn].

Let further U(b, λ) = EUn(b, λ). Note that U(b, λ) = Eg̃n(z1, z2; b, λ), which depends

on sample size n implicitly through bandwidth h.

To derive the convergence rate for our set estimator, the key step is to establish the uniform

convergence rate of of Un(b, λn)−U(b, λ), which can be decomposed as

Un(b, λn)−U(b, λ) = [Un(b, λ)−U(b, λ)] + [Un(b, λn)−Un(b, λ)] . (7)

The first term of the right hand side of equation (7) is a demeaned U –process. By extending

Kim and Pollard (1990), Proposition 3.1 below provides an upper bound for the norm of

this term. The second term on the right hand side of equation (7) is related to the asymptotic

orthogonality condition in two–step semiparametric estimation.5 In Proposition 3.2, we

show that this term is asymptotically negligible (of the order op(n−2/3)), which exploits

the fact that the plug–in estimator λn does not introduce much error to the sample criterion

function unless the term [P(zi)− (1− α)]× f (zi) is quite close to zero.

5For more discussion about the orthogonality condition in two step–semiparametric estimation, see Andrews
(1994).
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Sherman (1994b) studies the asymptotic properties of a generalized semiparametric

regression estimator using a type of U –process structure. The problem that we are looking

at is different from that of Sherman’s in the sense that our sample objective function is non–

smooth and does not allow for a quadratic Taylor expansion. As a result, the convergence rate

of our density–weighted MMS estimator is slower than the
√

n–rate in Sherman (1994b).

Assumption 3.4. The kernel K satisfies all the conditions in Assumption 3.3 and
∫

Rp K2(u)du <

∞.

Proposition 3.1. Let Assumptions 2.1 to 2.4, 3.1, 3.2 and 3.4 hold. Then for any ε > 0,

there exists a sequence of random variables {Mn} of order Op (1), which does not depend

on B∗, such that

|Un (b, λ)−U (b, λ)| ≤ ερ (b, B∗)2 + n−
2
3 M2

n, for all b ∈ B.

Proof. See Appendix A.2. �

Note that Proposition 3.1 is not directly applicable to derive the convergence rate as it is

stated under unknown function λ. To ensure the error introduced by the first stage estimation

of λ is negligible, we strengthen Assumptions 3.1, 3.2 and 3.4 as follows.

Assumption 3.5. The kernel K satisfies all the conditions in Assumption 3.4 and for some

R ≥ 1, (i)
∫

Rp ur1
1 , ..., urp

p K(u)du = 0 if 1 ≤ ∑
p
k=1 rk ≤ R− 1; (ii)

∫
Rp ur1

1 , ..., urp
p K(u)du =

1 if ∑
p
k=1 rk = R, where rk ∈N+ for k = 1, ..., p.

Let fε|(x,ν) be the conditional density of ε given (x, ν), similarly for fν|z.

Assumption 3.6. (1) f is everywhere R-continuously differentiable with bounded R-th

partial derivatives. (2) fε|(x,ν) is (R − 1)-continuously differentiable with respect to ν

and has a bounded (R− 1)–th partial derivatives in a neighbourhood of x′β + ν for all

(x, ν). fν|z is everywhere R-continuously differentiable with respect to (x, ν0, ν1) and has a

bounded R-th partial derivative.
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Assumption 3.6 imposes smoothness conditions for fε|(x,ν), fν|z and the marginal density

f of z. It ensures P(·) and f (·) are everywhere R–continuously differentiable with bounded

R–th partial derivatives.

Assumption 3.7. h is a deterministic sequence satisfying n
1
3+r (nhp)−

1
2 → 0 and n

1
3+rhR →

0 for some r > 0.

Assumption 3.7 requires that the high order kernel we use should satisfy R > p, a similar

condition is also assumed in Powell, Stock, and Stoker (1989). Note that if we choose

the optimal rate for bandwidth, i.e., h ∝ n−
1

2R+p , then Assumption 3.7 is equivalent to

1/3 < R/(2R + p). It should also be noted that Assumptions 2.4 and 3.5 to 3.7 guarantee

that ( fn(z), Pn(z)) converge to ( f (z), P(z)) faster than 3
√

n for all z ∈ Z .

Assumption 3.8. There exists a neighborhood around zero, denoted as Nδ, and a constant

Cδ > 0, such that for any subset S ⊆ Nδ, there is

P(ξ ∈ S) ≤ Cδ × µ(S),

where ξ = [P(z)− (1− α)] f (z) and µ is the Lebesgue measure.

Assumption 3.8 is a technical condition that ensures that [P(z)− (1− α)] f (z) is smoothly

distributed in a small neighborhood of zero. It plays a similar role as Assumption 2.2.

Proposition 3.2. Let Assumptions 2.1 to 2.4 and 3.5 to 3.8 hold. Then,

sup
b∈B
|Un(b, λn)−Un(b, λ)| = op(n−2/3).

Proof. See Appendix A.3. �

Proposition 3.2 is crucial because it allows us to focus on the infeasible sample analog

Ln(b, λ), or the U –process Un(b, λ).
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Assumption 3.9. Let ∂B∗ denote the boundary of the identified set B∗ and β is in the

interior of B∗. Then

sup
b∗∈∂B∗

lim
η↑0
∇2

ηη L
(
ηβ + (1− η)b∗, λ

)
< 0.

Assumption 3.9 is a partial identification condition. The primitive conditions can be

derived use the method of derivatives as surface integrals (see Loomis and Sternberg,

1968). In particular, it holds when the structural error ε is independent of z, ε has a

continuous density and the angular component of z also has a continuous density. In the

point identification case, Assumption 3.9 is equivalent to the condition that the population

objective function has a negative definite second deravtive matrix at β.

Assumption 3.10. n2/3εn → ∞ and εn → 0.

Under Assumption 3.10, we can choose εn → 0 at a rate slightly slower than n−2/3.

One possible choice is the iterated logrithm: εn = n−2/3
√

2 ln ln n. Note that the state-

ment in the second part of Theorem 1 imposes a restriction on the choice of εn, i.e.

supb∈B∗δ
|Ln(b, λn)− L(b, λ)|/εn

p→ 0 for some fixed δ > 0. By Propositions 3.1 and 3.2

and Assumption 3.9, it can be verified that εn = n−2/3
√

2 ln ln n satisfies the requirement.

For any two generic sets A and B, let ρH(A, B) be the Hausdorff distance between them,

i.e. ρH(A, B) = max{supa∈A infb∈B ‖a− b‖, supb∈B infa∈A ‖a− b‖}.

Theorem 2. Suppose Assumptions 2.1 to 2.4 and 3.5 to 3.10 are satisfied, then the Hausdorff

distance ρH

(
B f

n, B∗
)
= Op (

√
εn).

Proof. See Appendix A.4. �

3.2. Inference. We now construct confidence regions for B∗. Our method follows the

subsampling procedure proposed by Chernozhukov, Hong, and Tamer (2007), which is also

used in Blevins (2012). To give a heuristic argument, let 1− α ∈ (0, 1) be the confidence
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level and Cα be a positive constant to be specified. Define a level set

B̂α = {b : Un(b, λn) ≥ sup
b∈B

Un(b, λn)− n−2/3Cα}.

and a random variable

Cn = n2/3 sup
b∈B

Un(b, λ)− n2/3 inf
b∈B∗

Un(b, λ).

Further, in Lemma B.13 it has been shown that Cn converges in distribution to a random

variable C. Suppose that C is continuous at its 1− α quantile Cα. Then

P(B∗ ⊆ B̂α) = P( inf
b∈B∗

Un(b, λn) ≥ sup
b∈B

Un(b, λn)− n−2/3Cα)

= P(n2/3 sup
b∈B

Un(b, λ)− n2/3 inf
b∈B∗

Un(b, λ) ≤ Cα + op(1))

= P(Cn ≤ Cα + op(1)) = P(C ≤ Cα) + o(1) = 1− α + o(1) (8)

where the second inequality is due to Proposition 3.2. This gives a confidence region for

B∗ with asymptotic coverage probability 1− α. The critical value Cα can be estimated by

following subsampling procedure.

Assumption 3.11. m is proportional to some polynomial of n such that m → ∞ and

m/n→ 0 as n→ ∞.

Algorithm 1 (Subsampling). Our subsampling procedure consists the following steps.

(1) Obtain a consistent estimate Bn using the whole sample.

(2) Choose a subsample of size m such that m→ ∞ and m/n→ 0. Let Tn = ( n
m ) be

the number of subsamples.

(3) For the j–th subsample, j = 1, · · · , Tn, compute ˆ̀ j,m,n as

ˆ̀ j,m,n = m2/3 sup
b∈B

Um,j(b, λm,j)−m2/3 inf
b∈B f

n

Um,j(b, λm,j), (9)
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where Um,j is the sample criterion function and λm, j is the nonparametric estimates

of the j–th subsample, respectively.6

(4) Let Ĉα be the (1− α) empirical quantile of { ˆ̀ j,m,n}j=1,··· ,Tn .

(5) Calculate the confidence set of B∗ at (1− α)× 100% level as

B̂α = {b : Un(b, λn) ≥ sup
b∈B

Un(b, λn)− n−2/3Ĉα}.

Theorem 3. Suppose that Assumptions 2.1 to 2.4 and 3.5 to 3.11 hold. Then

lim
n→∞

P
(

B∗ ⊆ B̂α

)
≥ 1− α.

Proof. See Appendix A.5. �

The proof to Theorem 3 follows Chernozhukov, Hong, and Tamer (2007, Theorem 3.3).

In particular, Lemmas B.13 and B.14 play similar roles as their conditions C.4 and C5,

respectively.

4. EXPERIMENTS

This section presents some simulation results on the finite sample performance of the

density–weighted MMS estimator and the proposed subsampling inference procedure. We

consider the following binary response model,

y = 1[β0 + β1ν + β2x− ε ≥ 0],

where (β0, β1, β2) = (1, 1,−1), (ν, x, ε) are mutually independent. ε ∼ N(0, 1), x ∼
U[0, 5] and ν ∼ U[−2, 3]. We specify the bounds as ν0 = 1

κ int(κν) and ν1 = 1
κ ( int(κν) +

1), where int(ν) denote the largest integer smaller than ν and κ ∈ [1, ∞). The length of the

interval is 1/κ. When κ increases, the interval becomes smaller and more informative.7

6Note that due to Proposition 3.2, we can also use the nonparametric estimate λn of the original sample to
replace λm,j. As a matter of fact, we try both in the Monte Carlo experiments. Using λn yields a slightly better
finite sample performance.
7The numerical examples in Manski and Tamer (2002) set κ = 1.
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Figure 1 plots the sample objective functions (fixing β0 = 1) with sample size n =

2× 106. With such a large sample size, we can view them as good approximations to the

population objective functions. For the purpose of comparison, all functions are rescaled

such that the maximum values equal to 1. The solid and dashed lines are our density–

weighted and MT’s objective function, respectively. Note that across different values of κ,

ours and MT’s objective functions have the same maximum value region, which has been

shown in Lemma 3.1. As κ increase, the maximum value region of the functions become

shorter, reflecting the fact that the identification power of the interval becomes stronger.
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FIGURE 1. Objective Functions (β0 = 1, n = 2× 106)

Table 1 reports the estimation results for β2 under different combinations of sample sizes

and choices of slackness parameter εn. In particular, we consider εn = cQ∗n−2/3
√

2 ln ln n,

where c ∈ {0.1, 0.5, 1.0}, Q∗ = supb∈B Un(b, λn). We include Q∗ in the expression of
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εn only for the purpose of normalization. We choose κ ∈ {1, 10}, representing two levels

of informativeness of the interval. The set estimators are computed by a grid search with

grid length equals to 0.001.8 The numbers in the brackets are averages of bounds of the

set estimators. The numbers in the parenthesis are the standard deviation of the estimated

bounds. All results are based on 2000 replications.9

Under appropriate choices of εn, both estimators are consistent. Our set estimates are

slightly wider than MMSEs, but the standard deviations of the estimated bounds are smaller.

The reason is as follows. We modify MT’s objective function by replacing y with Pn(z),

and add a density weight. Our objective function is hence smoother and slightly flatter

around identified set B∗ than MT’s. As a consequence, our set estimator is wider but has

much smaller variance. Overall, it seems that neither estimator dominates the other in finite

samples.

Next we examine the finite sample performance of the proposed inference procedure.

Figure 2 reports the coverage frequencies of the subsampling confidence region for the

identified interval of β2: B∗2 . We first compute set estimator B f
n using slackness parameter

εn = 0.1Q∗n−2/3
√

2 ln ln n. Then we generate 4000 subsamples (without replacement) of

size m. For the j–th subsample, j = 1, · · · , 4000, we compute the statistic ˆ̀ j,m,n based on

equation (9). The critical value Ĉα is computed as the 100(1− α)% empirical quantile of

{ ˆ̀ j,m,n}4000
j=1 , with α = 0.01, 0.05, and 0.1 respectively. Lastly, the confidence region for B∗2

is then chosen as

B̂α = {b : Un(b, λn) ≥ sup
b∈B

Un(b, λn)− n−2/3Ĉα}.

All coverage frequencies are calculated based on 2000 replications.

8The unknown functions are estimated using a fourth order kernel k(u) = 0.5(3− u2)φ(u), where φ is the
standard normal density function. The bandwidth h = 1.06n−0.1. With R = 4 and p = 3, we can verify that
the requirements in Assumption 3.7 are satisfied.
9Throughout this section, we fixed the value β0 = 1. Based on a simulation with sample size 200, 000, when
κ = 1, the identified region for β2 is [−1.142,−0.852].
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TABLE 1. Estimation, κ ∈ {1, 10}

κ = 1 κ = 1 κ = 10 κ = 10
n εn B f

n BMT
n B f

n BMT
n

200 c = 0.1 [−1.198,−0.812] [−1.088,−0.929] [−1.087,−0.946] [−1.047,−0.975]
(0.140, 0.089) (0.222, 0.197) (0.117, 0.089) (0.144, 0.129)

1600 [−1.193,−0.822] [−1.058,−0.982] [−1.052,−0.966] [−1.015,−0.996]
(0.051, 0.033) (0.188, 0.191) (0.038, 0.031) (0.069, 0.067)

12800 [−1.173,−0.835] [−1.053,−0.963] [−1.032,−0.977] [−1.007,−0.992]
(0.020, 0.014) (0.151, 0.166) (0.013, 0.011) (0.037, 0.036)

200 c = 0.5 [−1.401,−0.728] [−1.301,−0.785] [−1.125,−0.855] [−1.165,−0.891]
(0.183, 0.073) (0.208, 0.117) (0.168, 0.078) (0.172, 0.106)

1600 [−1.274,−0.778] [−1.222,−0.814] [−1.118,−0.916] [−1.070,−0.940]
(0.056, 0.029) (0.119, 0.091) (0.042, 0.028) (0.068, 0.056)

12800 [−1.212,−0.810] [−1.184,−0.837] [−1.064− 0.949] [−1.040− 0.960]
(0.013, 0.011) (0.178, 0.027) (0.013, 0.010) (0.034, 0.029)

200 c = 1.0 [−1.568,−0.067] [−1.456,−0.711] [−1.397,−0.798] [−1.284,−0.834]
(0.254, 0.084) (0.230, 0.083) (0.219, 0.073) (0.196, 0.088)

1600 [−1.335,−0.748] [−1.440,−0.721] [−1.294,−0.768] [−1.121,−0.902]
(0.060, 0.027) (0.083, 0.046) (0.047, 0.027) (0.069, 0.046)

12800 [−1.242,−0.792] [−1.227,−0.801] [−1.088,−0.930] [−1.066− 0.940]
(0.013, 0.010) (0.017, 0.002) (0.014, 0.010) (0.031, 0.022)

(1) Slackness parameter εn = cn−2/3
√

2 ln ln n supb∈B Un(b, λn), c ∈ {0.1, 0.5, 1.0}
(2) Results are based on 2000 replications.

To the best of our knowledge, there are no generic rules of choosing subsample size m.

We report results for different choices as a robustness check. Figure 2 plots the coverage

probabilities as a function of subsample sizes. It shows that the inference procedure in

general works reasonably well, especially when sample size is large. For a wide range

subsample sizes, the coverage frequencies are close the targeted levels. For a given sample

size, the coverage frequencies decrease with the subsample size. This is not surprising.
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FIGURE 2. Coverage probabilities under combinations of (n, m).

When m is large, the sequence { ˆ̀ j,m,n}j in equation (9) tends to take smaller values (giving

everything else equal), so does its empirical quantiles and Ĉα. As a result, computed

confidence sets are smaller. Based on the numerical results in Figure 2, the choice of

m ≈ 10n0.45 seems to produce the best overall performance for this data generating process.

19



5. EXTENSION: DENSITY WEIGHTED MODIFIED MINIMUM–DISTANCE ESTIMATOR

In this section, we briefly describe an extension of our approach to the problem of

inference on parametric regression models with interval data, i.e.

E(y|x, ν) = g(x, ν; θ)

in which g is a known function, θ ∈ Θ ⊂ Rp is the (finite dimensional) parameter of

interest, and ν ∈ R is the latent regressor with observed bounds (ν0, ν1), i.e. ν0 ≤ ν ≤ ν1.

Further, MT assume that E(y|x, ν, ν0, ν1) = E(y|x, ν) and g is weakly monotone in ν for

each x ∈ Rd and θ ∈ Θ.

From above model restrictions, MT characterize the sharp identification region for the

model parameter θ using moment inequalities: let ΘI be a collection of c ∈ Θ satisfying

the following conditions

g(x, ν0; c) ≤ E(y|x, ν0, ν1) ≤ g(x, ν1; c), a.s.

MT further employ a minimum–distance type objective function for which ΘI is a set–valued

maximizer, the sample analog of which then leads to MT’s modified minimum–distance

(MMD) estimator. MMD is shown to be consistent under weak conditions.

Similarly, we can introduce density–weights to MT’s objective function, for which we can

establish asymptotic properties for the induced set estimator and provide an asymptotically

valid inference procedure for the identified region in a similar way.

Let z = (x′, ν0, ν1)
′ and z is continuously distributed with a probability density function

f . Let further λb(z; c) = [E(y|z)− g(x, νb, c)]× f (z) for b = 0, 1 and λ = (λ0, λ1).

Then our density–weighted MMD objective function is defined as follows

Q(c, λ) ≡
∫ {

1 [λ1(z; c) > 0] λ2
1(z; c) + 1 [λ0(z; c) < 0] λ2

0(z; c)
}

dF(z).
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Therefore, we define our sample objective function

Qn(c, λ̂) ≡ 1
n

n

∑
i=1

[
1
{

λ̂1(zi; c) > 0
}

λ̂2
1(zi; c) + 1

{
λ̂0(zi; c) < 0

}
λ̂2

0(zi; c)
]
,

where λ̂ is the nonparametric estimator of λ: for d = 0, 1,

λ̂b(zi, c) =
1

(n− 1)hd+2 ∑
j 6=i

{
yj − g(xi, νbi; c)

}
K
(

zj − zi

h

)
.

Similarly to Proposition 3.2, it could be shown that Qn(c, λ̂) behaves asymptotically equiv-

alent to the following infeasible sample criteria function

1
n

n

∑
i=1

[
1 {λ1(zi; c) > 0} λ̂2

1(zi; c) + 1 {λ0(zi; c) < 0} λ̂2
0(zi; c)

]
,

which indeed could also be written as a U –process (after all cross–product terms have been

left out).

Our set estimator Θ̂ f
I is defined as the set of parameter values which nearly minimize

Qn(·, λ̂),

Θ̂ f
I = {c ∈ Θ : Qn(c, λ̂) ≤ inf

c̃∈Θ
Qn(c̃, λ̂) + εn}, εn ↓ 0.

By choosing the deterministic sequence εn proportional to, e.g. n−1
√

2 ln ln n and under a

similar set of conditions, it could be shown that ρH(Θ̂
f
I , ΘI) = Op(n−1/2 4

√
2 ln ln n). We

can also conduct inference on the identified set by taking appropriate level sets of Qn, with

the critical values chosen based on a similar subsampling procedure as in Section 3.2.

6. CONCLUSION

This paper studies the semiparametric binary response model with interval data investi-

gated by Manski and Tamer (2002). We propose a density–weighted modified maximum

score estimator and derive its asymptotic properties. Further, we propose to construct confi-

dence sets for the identification region by subsampling. Monte Carlo experiments provide

supports to our inference procedure.
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MANSKI, C. F. (1975): “Maximum score estimation of the stochastic utility model of

choice,” Journal of Econometrics, 3(3), 205–228.

(1985): “Semiparametric analysis of discrete response : Asymptotic properties of

the maximum score estimator,” Journal of Econometrics, 27(3), 313 – 333.

MANSKI, C. F., AND E. TAMER (2002): “Inference on Regressions with Interval Data on a

Regressor or Outcome,” Econometrica, 70(2), 519–546.

NOLAN, D., AND D. POLLARD (1987): “U process: rate of convergence,” The Annals of

Statistics, pp. 780–799.

NOLAN, D., AND D. POLLARD (1988): “Functional Limit Theorems for U–Process,” The

Annals of Probabilities, 16(3), 1291–1298.

PAGAN, A., AND A. ULLAH (1999): Nonparametric Econometrics. Cambridge University

Press.

POWELL, J. L., J. H. STOCK, AND T. M. STOKER (1989): “Semiparametric Estimation of

Index Coefficients,” Econometrica, 57(6), 1403–1430.

SHERMAN, R. (1994a): “Maximal inequalities for degenerate U-processes with applications

to optimization estimators,” The Annals of Statistics, pp. 439–459.

(1994b): “U-processes in the analysis of a generalized semiparametric regression

estimator,” Econometric Theory, 10(2), 372–395.

VAN DER VAART, A., AND J. WELLNER (1996): Weak convergence and empirical processes.

Springer Verlag.

WAN, Y., AND H. XU (2012): “Semiparametric identification and estimation of binary

decision games of incomplete information with correlated private signals,” Working paper.

APPENDIX A. PROOF OF MAIN RESULTS

A.1. Proof of Theorem 1.
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Proof. Assumption 2.3 and Lemma 3.1 imply that the population objective function L(·, λ) is

continuous on B and is maximized over B∗. Then for any given η > 0, let δη = supb∈B L(b, λ)−

supb∈B/B∗η
L(b, λ) > 0, where B∗η is the η–expansion of B∗.

To show sup
b∈B f

n
ρ(b, B∗)

p→ 0, it is equivalent to show that for any given η > 0, B f
n ⊆ B∗η with

probability approaching to one (w.p.a.1.), for which it suffices to show that inf
b∈B f

n
L(b, λ) >

supb∈B/B∗η
L(b, λ) w.p.a.1. Let ∆n(b, λ) ≡ Ln(b, λn) − L(b, λ). By Lemmas B.1 and B.2,

supb∈B

∣∣∆n(b, λ)
∣∣ = op(1). Then we have

inf
b∈B f

n

L(b, λ)
(a)
≥ inf

b∈B f
n

Ln(b, λn)− sup
b∈B f

n

∆n(b, λ)≥ inf
b∈B f

n

Ln(b, λn)− sup
b∈B
|∆n(b, λ)|

(b)
≥ sup

b∈B
Ln(b, λn)− εn − sup

b∈B
|∆n(b, λ)|

(c)
≥ sup

b∈B
L(b, λ)− εn − 2 sup

b∈B
|∆n(b, λ)|

(d)
= sup

b∈B/B∗η

L(b, λ) + δη − εn − 2 sup
b∈B
|∆n(b, λ)| ,

where (a) is because of infx [g(x) + h(x)] ≥ infx g(x) + infx h(x) = infx g(x)− supx[−h(x)];

(b) is by the definition of B f
n; (c) comes from the fact supx [g(x) + h(x)] ≥ supx g(x) −

supx[−h(x)] ≥ supx g(x) − supx |h(x)|; and (d) is by the definition of δη . Since εn ↓ 0,

supb∈B |∆n(b, λ)| p→ 0, and δη > 0, it follows that w.p.a.1., δη − εn − 2 supb∈B |∆n(b, λ)| > 0.

Thus the result follows immediately.

Now we show the second part of Theorem 1. Suppose that supb∈B |Ln(b, λn)− Ln(β, λn)|/εn
p→

0 and supb∈B |Ln(b, λn)− Ln(b, λ)|/εn
p→ 0. It suffices to show that B∗ ⊆ B f

n w.p.a.1, which

implies that supb∈B∗ ρ(b, B f
n)

p→ 0. W.p.a.1,

inf
b∈B∗

Ln(b, λn) ≥ inf
b∈B∗

Ln(b, λ)− sup
b∈B∗
|Ln(b, λn)− Ln(b, λ)|

(e)
≥ sup

b∈B
Ln(b, λ)− sup

b∈B
|Ln(b, λ)− Ln(β, λ)| − sup

b∈B∗
|Ln(b, λn)− Ln(b, λ)|

≥ sup
b∈B

Ln(b, λn)− sup
b∈B

[Ln(b, λ)− Ln(β, λ)]− 2 sup
b∈B
|Ln(b, λn)− Ln(b, λ)|

( f )
≥ sup

b∈B
Ln(b, λn)− εn,

where (e) is by the facts that (i) infb∈B∗ Ln(b, λ) = Ln(β, λ) a.s., as implied by Assumption 2.2,

ϑ(z, b, λ) = ϑ(z, β, λ) a.s. for all b ∈ B∗; (ii) Ln(β, λ) ≥ supb∈B Ln(b, λ)− supb∈B |Ln(b, λ)− Ln(β, λ)|.
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( f ) is because of our assumption that supb∈B [Ln(b, λ)− Ln(β, λ)] /εn
p→ 0 and supb∈B |Ln(b, λn)−

Ln(b, λ)|/εn
p→ 0; and also note that both supb∈B [Ln(b, λn)− Ln(β, λn)] and εn are non-negative.

Thus, by the definition of B f
n, it follows that B∗ ⊆ B f

n w.p.a.1. �

A.2. Proof of Proposition 3.1.

Proof. Note that the point identification does not play a particular role in the proof of Kim and Pollard

(1990, Lemma 4.1). We replace θ0 in their proof with our identified set B∗ (therefore A(n, j) ={
b : (j− 1)n−1/3 ≤ ρ(b, B∗) ≤ jn−1/3}) and using the fact that U(b, λ) = Un(b, λ) = 0 for all

b ∈ B∗ (by the definitions of B∗, Un and U). Note also that the function class has an integrable

envelope function (because of indicator functions). Lemma B.5 verifies the maximal inequality for

the U –process objective function.

To apply Kim and Pollard (1990, Lemma 4.1), it remains to verify that when n is large, E[G2
] ≤

CRg, where Rg is the constant defined in Equation (11) and C is any finite positive constant. Recall

that

ḡn(zi, b, λ) =

∣∣∣∣12{E[g∗(zi, zj, b, λ)|zi]−E[g∗(zi, zj, β, λ)|zi]}
∣∣∣∣︸ ︷︷ ︸

≡ḡn1

+

∣∣∣∣12{E[g∗(zj, zi, b, λ)|zi]−E[g∗(zj, zi, β, λ)|zi]}
∣∣∣∣︸ ︷︷ ︸

≡ḡn2

.

where ḡn1 and ḡn2 have their own point–wise upper bounds (with respect to index b), respectively. In

particular, for ḡn1,

|ḡn1(zi, b, λ)| ≤ 1
2

sup
z
|ξ(z)|

∫
|K(u)|du

×
[ ∣∣sgn{x′ib + ν1i} − sgn{x′i β + ν1i}

∣∣+ ∣∣sgn{x′ib + ν0i} − sgn{x′i β + ν0i}
∣∣ ] ≡ G1(zi, b, λ);

and for the ḡn2 part, let ϑ̃(zj, b, λ) = ϑ(zj, b, λ)− ϑ(zj, β, λ) and f̄ = supz f (z),

|ḡn2(zi, b, λ)| =
∣∣∣∣(P(zi)− 0.5)E

{
1
hp K

(
zj − zi

h

)
ϑ̃(zj, b, λ)|zi

}∣∣∣∣
=

∣∣∣∣(P(zi)− 0.5)
∫

K(u) f (zi + hu)ϑ̃(zi + hu, b, λ)du
∣∣∣∣ ≤ f̄

∣∣∣∣∫ K(u)ϑ̃(zi + hu, b, λ)du
∣∣∣∣ ≡ G2(zi, b, λ).
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It is then sufficient to verify that E[G2
1] and E[G2

2] are bounded by CRg/2. Similar to the analysis

in (Kim and Pollard, 1990, Example 6.4), this is true for E[G2
1]. For E[G2

2], let K̄ = supu K(u),

E[G2
2] ≤ f̄ 2

∫
z

(∫
u

K(u)
∣∣ϑ̃(zi + hu, b, λ)

∣∣ du
)2

f (z)dz

≤ f̄ 2
∫

z

∫
u

K2(u)
∣∣ϑ̃(zi + hu, b, λ)

∣∣2 du f (z)dz = f̄ 2K̄
∫

u

∫
z

∣∣ϑ̃(zi + hu, b, λ)
∣∣2 K(u) f (z)dudz

≤ f̄ 2K̄
∫

u

∫
z

[∣∣sgn{x′b + u′x(hb) + ν1 + huν1} − sgn{x′β + ν1 + u′x(hβ) + ν1 + huν1}
∣∣

+
∣∣sgn{x′b + u′x(hb) + ν0 + huν0} − sgn{x′β + ν0 + u′x(hβ) + ν0 + huν0}

∣∣]K(u) f (z)dudz

where u = (u′x, uν1 , uν0)
′. Treating (z, u) as a R2p dimensional random vector, and following the

the same argument in (Kim and Pollard, 1990, Example 6.4), the right hand side integral is bounded

by the order ‖b− β‖+ ‖hb− hβ‖, and therefore bounded by CRg/2 when n is large. �

A.3. Proof of Proposition 3.2.

Proof. First note that Un(b, λn)−Un(b, λ) = [Ln(b, λn)− Ln(b, λ)]− [Ln(β, λn)− Ln(β, λ)].

Thus supb∈B |Un(b, λn)−Un(b, λ)| ≤ 2 supb∈B |Ln(b, λn)− Ln(b, λ)|.

Moreover, for r satisfying Assumption 3.7, define ϕn(zi, r) = 1
{
|ξn(zi)| > n−

1
3−

r
2

}
, then

sup
b∈B
|Ln(b, λn)− Ln(b, λ)| = sup

b∈B

∣∣∣∣∣ 1n n

∑
i=1

{
ξn(zi)× φ(zi, b)× [λn(zi)− λ(zi)]

}∣∣∣∣∣
≤ 2

n

n

∑
i=1

{
|ξn(zi)| × |λn(zi)− λ(zi)| × ϕn(zi, r)

}
+

2
n

n

∑
i=1

{
|ξn(zi)| × |λn(zi)− λ(zi)| × [1− ϕn(zi, r)]

}
. (10)

The conclusion follows from Lemmas B.8 and B.10. �

A.4. Proof of Theorem 2. First, by Theorem 1, B f
n ⊆ B∗δ w.p.a.1. for any δ > 0, hence it is

sufficient to consider a small neighborhood of B∗.

Part I. By Proposition 3.1, for any ε > 0, there exists Mn of order Op(1) such that

Un (b, λ) ≤ U (b, λ) + ερ (b, B∗)2 + n−
2
3 M2

n, for all b ∈ B.
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Let ε1, ε2 and δ > 0 be defined in Lemma B.11 and ε = ε2
2 > 0. Then for all b ∈ B∗δ and n

sufficiently large,

ε2

2
ρ (b, B∗)2 − ε1hRρ (b, B∗) + Un (b, λ) ≤ n−

2
3 M2

n.

By definition of B f
n, for any b̃ ∈ B f

n we have Un
(
b̃, λ
)
≥ supb∈B Un (b, λ)− εn ≥ −εn. Then

ε2

2
ρ
(
b̃, B∗

)2 − ε1hRρ
(
b̃, B∗

)
≤ n−

2
3 M2

n + εn,

which implies that

ε2

2

[
ρ
(
b̃, B∗

)
− ε1hR

ε2

]2

≤ n−
2
3 M2

n + εn +
ε2

1
2ε2

h2R.

By Assumptions 3.7 and 3.10, we have ρ(b̃, B∗) = Op(
√

εn) for any b̃ ∈ B f
n.

Part II. By the proof for Theorem 1, it suffices to show supb∈B Un(b, λ)/εn
p→ 0 and supb∈B |Ln(b, λn)−

Ln(b, λ)|/εn
p→ 0, the latter of which is given by Proposition 3.2. For the first statement,

P(B f
n ⊆ B∗δ )→ 1 for any fixed δ > 0 implies that supb∈B∗δ

Un(b, λn) = supb∈B Un(b, λn) w.p.a.1..

Applying Proposition 3.2 to both sides, it follows that supb∈B∗δ
Un(b, λ) = supb∈B Un(b, λ) w.p.a.1..

By Lemma B.12, supb∈B∗δ
Un(b, λ)/εn

p→ 0 for some δ > 0. Therefore supb∈B Un(b, λ)/εn
p→ 0.

Combine Part I and II, we can conclude that ρH

(
B f

n, B∗
)
= Op (

√
εn). �

A.5. Proof of Theorem 3. The argument follows the proof of Chernozhukov, Hong, and Tamer

(2007, Theorem 3.3) and Blevins (2012, Theorem 4). Let and ηn =
√

εn = n−1/3(2 ln ln n)1/4. Let

B∗ηn
be the ηn expansion of B∗. Under the rate condition of m, ρH(B∗ηn

, B∗) = O(ηn) = o(m−1/3).

Define

ˆ̀−
j,m,n = m2/3 sup

b∈B
Um,j(b, λm,j)−m2/3 inf

b∈B∗εn

Um,j(b, λm,j),

and

ˆ̀+
j,m,n = sup

{K:ρH(K,B∗)≤ηn}

{
m2/3 sup

b∈B
Um,j(b, λm,j)−m2/3 inf

b∈K
Um,j(b, λm,j)

}
.

Recall that ˆ̀ j,m,n = m2/3 supb∈B Um,j(b, λm,j)−m2/3 infb∈Bn Um,j(b, λm,j), then ˆ̀−
j,m,n ≤ ˆ̀ j,m,n ≤

ˆ̀+
j,m,n by construction, and

L̂ ≡ 1
Tn

Tn

∑
j=1

1[ ˆ̀−j,m,n ≤ x] ≤ 1
Tn

Tn

∑
j=1

1[ ˆ̀ j,m,n ≤ x] ≡ L̂ ≤ 1
Tn

Tn

∑
j=1

1[ ˆ̀ j,m,n ≤ x] ≡ L̂.
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Consider L̂ first.

L̂ (a)
= P

(
m2/3 sup

b∈B
Um,j(b, λm,j)−m2/3 inf

b∈B∗ηn

Um,j(b, λm,j) ≤ x

)
+ op(1)

(b)
= P

(
m2/3 sup

b∈B
Um,j(b, λm,j)−m2/3 inf

b∈B∗
Um,j(b, λm,j) ≤ x

)
+ op(1)

(c)
= P (C ≤ x)+ op(1).

Step (a) holds due to the fact that L̂ is an U–statistic of order m and takes value from unit interval;

(b) holds by Lemma B.14; (c) holds by Assumption 3.11 and Lemma B.13. By similar arguments,

L̂ = P (C ≤ x) + op(1). If P(C = 0) ≥ 1 − α, then limn→∞ P
(

B∗ ⊆ B̂α

)
> 1 − α; if

P(C = 0) < 1− α, then limn→∞ P
(

B∗ ⊆ B̂α

)
= 1− α. �

APPENDIX B. PRELIMINARY LEMMAS

We begin with some preliminary lemmas. Lemmas B.1 and B.2 will be used to show the

consistency of our estimator; Lemmas B.3 to B.12 are primarily for convergence rate; Lemmas B.13

and B.14 are for the validity of inference.

Let ξn(zi) = [Pn(zi)− (1− α)] fn(zi) and ξ(zi) = [P(zi)− (1− α)] f (zi). Let further

φ(zi, b) = sgn(xib + ν1i) − sgn(xib + ν0). By definition, |φ(z, b)| ≤ 2 for all b and z. Note

that under Assumptions 2.4 and 3.1 to 3.3, it is standard in the nonparametric estimation literature

that ξn(z)
L2→ ξ(z) for all z ∈ Z , where Lr refers to the convergence in the r–th mean.

Lemma B.1. Suppose that Assumptions 2.4 and 3.1 to 3.3 hold, then

sup
b∈B
|Ln(b, λ)− L(b, λ)| = op(1).

Proof. Note that Ln(b, λ) can be rewritten as Ln(b, λ) ≡ 1
n ∑n

i=1 [ξn(zi)× ϑ(zi, b, λ)]. Let Ln(b, λ) =

1
n ∑n

i=1 [ξ(zi)× ϑ(zi, b, λ)]. Thus

sup
b∈B

∣∣Ln(b, λ)− Ln(b, λ)
∣∣ ≤ sup

b∈B

1
n

n

∑
i=1

∣∣∣ξn(zi)− ξ(zi)
∣∣∣× |ϑ(zi, b, λ)|.
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By definition |ϑ(zi, b, λ)| = 1. It follows that

E sup
b∈B

∣∣Ln(b, λ)− Ln(b, λ)
∣∣ ≤ E

[
1
n

n

∑
i=1

∣∣∣ξn(zi)− ξ(zi)
∣∣∣]

= E

∣∣∣ξn(z1)− ξ(z1)
∣∣∣ ≤ {E [ξn(z1)− ξ(z1)]

2
}1/2

→ 0,

where the last step comes from the fact that ξn(z)
L2→ ξ(z) for all z ∈ Z .

By ULLN, supb∈B

∣∣Ln(b, λ)− L(b, λ)
∣∣ = op(1). Hence, supb∈B

∣∣Ln(b, λ)− L(b, λ)
∣∣ = op(1).

�

Lemma B.2. Suppose that Assumptions 2.4 and 3.1 to 3.3 hold, then

sup
b∈B

∣∣Ln(b, λn)− Ln(b, λ)
∣∣ = op(1).

Proof. Because

|Ln(b, λn)− Ln(b, λ)| ≤ 1
n

n

∑
i=1
|ξn(zi)| × |ϑ(zi, b, λn)− ϑ(zi, b, λ)|

≤ 1
n

n

∑
i=1
|ξn(zi)| × |φ(zi, b)| ×

∣∣∣1 {ξn(zi) > 0} − 1 {ξ(zi) > 0}
∣∣∣

≤ 2
n

n

∑
i=1
|ξn(zi)| ×

∣∣∣1 {ξn(zi) > 0} − 1 {ξ(zi) > 0}
∣∣∣.

Note that the RHS does not depend on b, then

E

{
sup
b∈B
|Ln(b, λn)− Ln(b, λ)|

}
≤ E

{
2
n

n

∑
i=1
|ξn(zi)| ×

∣∣∣1 {ξn(zi) > 0} − 1 {ξ(zi) > 0}
∣∣∣}

= E
{
|ξn(zi)| ×

∣∣∣1 {ξn(zi) > 0} − 1 {ξ(zi) > 0}
∣∣∣} .

Thus, it suffices to show for any z ∈ Z , there is

E
{
|ξn(z)| ×

∣∣∣1 {ξn(z) > 0} − 1 {ξ(z) > 0}
∣∣∣}→ 0.

Because

|ξn(z)|×
∣∣∣1 {ξn(z) > 0}− 1 {ξ(z) > 0}

∣∣∣ ≤ |ξn(z)− ξ(z)|×
∣∣∣1 {ξn(z) > 0}− 1 {ξ(z) > 0}

∣∣∣,
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then

E

{
sup
b∈B
|Ln(b, λn)− Ln(b, λ)|

}
≤ E |ξn(z)− ξ(z)| ≤

{
E [ξn(z)− ξ(z)]2

}1/2
−→ 0. �

Let ḡn(zi, b, λ) = E
[
g̃n(zi, zj, b, λ)|zi

]
. Given λ, and a constant Rg > 0, for each n, define a

class of functions mapping from Z to R indexed by b ∈ B, where Z is the suppport of z:

G n ≡
{

ḡn(·; b, λ) : b ∈ B, ρ(b, B∗) ≤ Rg
}

. (11)

Let G be its envelop function. Recall that gn(zi, zj, b, λ) = 1
2{g∗(zi, zj, b, λ) + g∗(zj, zi, b, λ)}.

Under Assumptions 3.1 and 3.3, ḡn(zi, b, λ) is the sum of a continuous function and indicator

functions of finite dimensional parameter b and hence belongs to VC–class (Kosorok, 2008, Lemmas

9.6, 9.9 and 9.12).

To simplify the notation, we write ḡi(b) and g̃ij(b) for ḡn(zi, b, λ) and g̃n(zi, zj, b, λ), respectively.

Our proofs of Lemmas B.3 to B.5 is modified from the proof in Sherman (1994a).

Lemma B.3. Suppose that Assumptions 2.1 to 2.4 and 3.1 to 3.3 hold. Then for some finite constant

J,
√

nE

{
sup
b∈B

∣∣∣∣∣ 1n ∑
i

ḡi(b)−Eḡ1(b)

∣∣∣∣∣
}
≤ J
√

EG
2
. (12)

Proof. Since function class G n is a VC class, by maximal inequality 3.1 in Kim and Pollard (1990),

it follows that there exists some universal constant J such that

√
nE

{
sup
b∈B

∣∣∣∣∣ 1n ∑
i

ḡi(b)−Eḡ1(b)

∣∣∣∣∣
}
≤ J
√

EG
2
. �

Let ˜̃gij(b) = g̃ij(b)− ḡi(b)− ḡj(b) + Eg̃ij(b). By construction, E[ ˜̃gij(b)|zi] = E[ ˜̃gij(b)|zj] =

0 for all b. Define the degenerate class ˜̃Gn = { ˜̃gij : b ∈ B}. Then in Nolan and Pollard (1987)’s

terminology, the process 1
n(n−1) ∑1≤j<i≤n ˜̃gij(·) is P–degenerate. Since ˜̃gij is a sum of functions of

V–C class, by Kosorok (2008, Lemmas 9.6, 9.9), ˜̃Gn is V-C class as well.
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Lemma B.4. Suppose that Assumptions 2.1 to 2.4, 3.1, 3.2 and 3.4 hold. Then for some finite

constant J,

E

{
sup
b∈B

√
n

∣∣∣∣∣ 1
n(n− 1) ∑

1≤j<i≤n

˜̃gij(b)

∣∣∣∣∣
}

= O
(

n−1/2h−p/2
)

, (13)

Proof. Since

| ˜̃gij(b)| ≤ |g̃ij(b)|+ |ḡi(b)|+ |ḡj(b)|+ |Eg̃ij(b)| ≤ |g̃ij(b)|+ 3G,

It follows that the class ˜̃Gn has an envelop function Gn ≡ |K(
zi−zj

h )/hp|+ 3 supz |ξ(z) f (z)| ×∫
|K(u)|du. Note that EG

2
n = O(h−p) under Assumptions 3.1 and 3.4. Then by Theorem 6 of

Nolan and Pollard (1987), there exists a finite universal constant J′ > 0

√
nE

{
sup
b∈B

∣∣∣∣∣ 1
n(n− 1) ∑

1≤j<i≤n

˜̃gij(b)

∣∣∣∣∣
}
≤ J′

√
EG

2
n√

n
= O

(
n−1/2h−p/2

)
. �

The constant J′ is finite because ˜̃Gn is V–C class and Nolan and Pollard (1987, Lemma 16).

Lemma B.5. Suppose that Assumptions 2.1 to 2.4, 3.1, 3.2 and 3.4 hold. Then for some finite

constant J and large n,

√
nE

{
sup
b∈B
|Un(b, λ)−EUn(b, λ)|

}
≤ J
√

EG
2
. (14)

Proof. Note that

Un(b, λ)−EUn(b, λ) =
2
n ∑

i
ḡi(b)− 2Eḡ1(b) +

1
n(n− 1) ∑

1≤j<i≤n

˜̃gij(b).

The last term on the right hand side is negligible by Lemma B.4 and Assumption 3.2. The conclusion

then follows from Lemma B.3. �

Lemma B.6 (Bernstein’s tail inequality). Let X1, · · · , Xn be independent real-valued random

variables with zero mean, such that ∀ i, |Xi| ≤ M a.s. Defining σ2 = n−1 ∑n
i=1 VarXi and

Sn = ∑n
i=1 Xi. We obtain for any ε > 0,

P

(
1
n
|Sn| > ε

)
≤ 2 exp

(
− nε2

2σ2 + 2
3 Mε

)

Proof. See Van der Vaart and Wellner (1996, lemma 2.2.9). �
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Lemma B.7. Suppose that Assumptions 2.1 to 2.4 and 3.5 to 3.7 hold, then for any q > 0

nqP
{
|ξn(z1)− ξ(z1)| > n−

1
3−

r
2

}
→ 0.

Proof. By Dominance Convergence theorem, it suffices to show nqP
{
|ξn(z)− ξ(z)| > n−

1
3−

r
2

}
→

0 for any z ∈ Z . Because

P
{
|ξn(z)− ξ(z)| > n−

1
3−

r
2

}
≤ P

{
|ξn(z)−Eξn(z)|+ |Eξn(z)− ξ(z)| > n−

1
3−

r
2

}
= P

{
|ξn(z)−Eξn(z)| > n−

1
3−

r
2 − |Eξn(z)− ξ(z)|

}
= P

{
1
n

∣∣∣∣∣ n

∑
i=1

(wi −Ewi)

∣∣∣∣∣ > τn

}
,

where wi = [yi − (1− α)]× K
( zi−z

h

)
and τn = hp

[
n−

1
3−

r
2 − |Eξn(z)− ξ(z)|

]
. Thus, by Bern-

stein’s tail inequality (Lemma B.6),

P

{
1
n

∣∣∣∣∣ n

∑
i=1

(wi −Ewi)

∣∣∣∣∣ > τn

}
2 ≤ exp

(
− nτ2

n

2Var(wi) +
2
3 Kτn

)
.

Note that Eξn(z)− ξ(z) = Op(hR) by Assumptions 3.5 and 3.8. Further, under Assumption 3.7,

for sufficient large n there is 0.5hpn−
1
3−

r
2 ≤ τn ≤ hpn−

1
3−

r
2 . It should also be noted that

Var(wi) ≤ Ew2
i ≤ EK2

(
zi − z

h

)
≤ hp × K2 ×

∫
Rp

f (z + th)dt.

Since
∫

Rp f (z + th)dz→ f (z), then for sufficient large n, there is

Var(wi) ≤ C× hp,

for some constant C > 0. Hence, we have

P

{
1
n

∣∣∣∣∣ n

∑
i=1

(wi −Ewi)

∣∣∣∣∣ > τn

}
≤ 2 exp

(
−

1
4 nh2pn−

2
3−r

2Chp + 2
3 Mhpn−

1
3−

r
2

)
= 2 exp

(
−

1
4 nhpn−

2
3−r

2C + 2
3 Kn−

1
3−

r
2

)
.

Again, for sufficient large n, there is 2
3 Kn−

1
3−

r
2 ≤ 1 and 1

4 nhpn−
2
3−2r ≥ 1 (by Assumption 3.7).

Thus for n sufficiently large,

P

{
1
n

∣∣∣∣∣ n

∑
i=1

(wi −Ewi)

∣∣∣∣∣ > τn

}
≤ 2 exp

(
−0.25nhpn−

2
3−r

2C + 1

)
≤ 2 exp

(
− nr

2C + 1

)
.
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Therefore, for any q > 0

nqP
{
|ξn(z)− ξ(z)| > n−

1
3−

r
2

}
≤ 2nq exp

(
− nr

2C + 1

)
→ 0. �

For r satisfying Assumption 3.7, define ϕn(zi, r) = 1
{
|ξn(zi)| > n−

1
3−

r
2

}
.

Lemma B.8. Let Assumptions 2.1 to 2.4 and 3.5 to 3.7 hold, then

2
n

n

∑
i=1

[
|ξn(zi)| × |λn(zi)− λ(zi)| × ϕn(zi, r)

]
= op(n−

2
3 )

Proof. Because of Assumption 3.5, there is |ξn(zi)| ≤ K/hp a.s.. Also note that λn(zi) =

1 {ξn(zi) > 0} and λ(zi) = 1 {ξ(zi) > 0}, then

E

{
2
n

n

∑
i=1

[
|ξn(zi)| × |λn(zi)− λ(zi)| × ϕn(zi, r)

]}

≤ 2K
hp E1

{
|ξn(z1)− ξ(z1)| > n−

1
3−

r
2

}
=

2K
hp P

{
|ξn(z1)− ξ(z1)| > n−

1
3−

r
2

}
.

Thus, the conclusion holds by Lemma B.7. �

Lemma B.9. Let Assumptions 2.1 to 2.4 and 3.5 to 3.8 hold, then

E1
{
|ξn(z1)| ≤ n−

1
3−

r
2

}
= Op(n−

1
3−

r
2 ).

Proof. Note that

E1
{
|ξn(z1)| ≤ n−

1
3−

r
2

}
= P

[
|ξn(z1)| ≤ n−

1
3−

r
2

]
≤ P

[
|ξ(z1)| ≤ 2n−

1
3−

r
2

]
+ P

[
|ξn(z1)− ξ(z1)| ≥ n−

1
3−

r
2

]
.

The first term of RHS is O(n−
1
3−

r
2 ) by Assumption 3.8; the second term is o(n−q) for any q > 0 by

Lemma B.7. �

Lemma B.10. Let Assumptions 2.1 to 2.4 and 3.5 to 3.8 hold, then

2
n

n

∑
i=1

{
|ξn(zi)| × |λn(zi)− λ(zi)| × [1− ϕn(zi, r)]

}
= op(n−

2
3 ).
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Proof. Note that

2
n

n

∑
i=1

{
|ξn(zi)| × |λn(zi)− λ(zi)| × [1− ϕn(zi, r)]

}
≤ 2

n

n

∑
i=1

[
|ξn(zi)| × [1− ϕn(zi, r)]

}
=

2
n

n

∑
i=1

{
|ξn(zi)| × 1

{
|ξn(zi)| ≤ n−

1
3−

r
2

} ]
≤ 2

n

n

∑
i=1

[
n−

1
3−

r
2 × 1

{
|ξn(zi)| ≤ n−

1
3−

r
2

} ]
.

Thus

E

(
2
n

n

∑
i=1

{
|ξn(zi)| × |λn(zi)− λ(zi)| × [1− ϕn(zi, r)]

})
≤ 2n−

1
3−

r
2 E1

{
|ξn(z1)| ≤ n−

1
3−

r
2

}
= o(n−

2
3 ),

where the last equality follows from Lemma B.9. �

Lemma B.11. Let Assumptions 2.1 to 2.4, 3.5 to 3.7 and 3.9 hold, then there exists ε1, ε2 ∈ R+,

such that for some δ > 0, U(b, λ) ≤ ε1hRρ(b, B∗)− ε2ρ2(b, B∗), when b ∈ B∗δ and n sufficiently

large.

Proof. Let b in the δ–neighborhood of B∗ and b 6∈ B∗. Note that

U(b, λ) = ELn(b, λ)−ELn(β, λ)

= E

{∫
ξ(z1 + uh)K(u)du× ϑ(z1, b, λ)

}
−E

{∫
ξ(z1 + uh)K(u)du× ϑ(z1, β, λ)

}
.

Let Γn(b) = E
{∫

ξ(z1 + uh)K(u)du× ϑ(z1, b, λ)
}

. Note that Γn(b) = Γn(β) for all b ∈ B∗.

For each b ∈ B, let b∗ ∈ B∗, which depends on b, such that ‖b∗ − b‖ = ρ(b, B∗). Thus U(b, λ) =

Γn(b)− Γn(b∗). By Taylor expansion

U(b, λ) = ∇bΓn(b∗)× (b− b∗) + (b− b∗)′ ×∇2
b′bΓn(bη)× (b− b∗)

where bη = ηb∗ + (1− η)b for some η ∈ (0, 1).
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To obtain the derivative∇bΓn(b∗), we first look at the derivative of Γn(b)−E {ξ(z)ϑ(z1, b, λ)}.

Let ζn(z) =
∫

ξ(z + uh)K(u)du− ξ(z). Then

∇b E {ζn(z)× ϑ(z, b, λ)} = 2∇b ∂
∫

ζn(z)× 1(ξ(z) > 0)× 1(xb + ν1 > 0)× f (z)dz

+ 2∇b ∂
∫

ζn(z)× 1(ξ(z) < 0)× 1(xb + ν0 < 0))× f (z)dz.

Note that

∇b ∂
∫

ζn(z)1(ξ(z) > 0)1(xb∗+ ν1 > 0) f (z)dz = E[ξn(z)1(ξ(z) > 0)|xb∗+ ν1 = 0]× fxb∗+ν1(0)

where fxb∗+ν1 denotes the density function of xb∗ + ν1 Because E
(
ζn(z)1(ξ > 0)|x, ν1) ≤ C1hR

for some constant C1 > 0 and fxb∗+ν1 is also bounded above (because f is bounded above), it follows

that ‖∇bE {ζn(z1)× ϑ(z1, b∗, λ)}‖ ≤ ε1hR for some constant ε1 > 0 that does not depend on the

value of b∗. Moreover, note that the first order directional derivative of E {ξ(z1)× ϑ(z1, b, λ)} at

b∗ ∈ B∗ equals to zero by the definition of B∗. Hence supb∗∈∂B∗ ‖∇bΓn(b∗)‖ ≤ ε1hR.

Moreover, note that

∇2
b′bΓn(bη) = ∇2

ηηΓn(ηb∗ + (1− η)b)

= ∇2
ηη L(ηb∗ + (1− η)b) +∇2

ηη E {ζn(z)× ϑ(z, ηb∗ + (1− η)b, λ)} .

Similarly, by Assumption 3.6, we have ∇2
ηη E {ζn(z)× ϑ(z, ηb∗ + (1− η)b, λ)} ≤ C2hR for

some constant C2 > 0. Further, by Assumption 3.9, for all bη belongs to a neighborhood of B∗, there

exists some positive constant ε2 such that (b− b∗)′ ×∇2
b′bΓn(bη)× (b− b∗) ≤ −ε2‖b− b∗‖2 for

n sufficiently large. �

Lemma B.12. Let Assumptions 2.1 to 2.4, 3.5 to 3.7 and 3.9 hold, then supb∈B∗δ
Un(b, λ) =

Op(n−2/3) for some δ > 0.

Proof. First, note that supb∈B∗δ
Un(b, λ) ≥ 0, since Un(β, λ) = 0. It suffices to show that

supb∈B∗δ
Un(b, λ) ≤ Op(n−2/3) for some δ > 0. By Proposition 3.1, for any ε > 0, there

exist random variables {Mn} of order Op (1) independent with b such that

|Un (b, λ)−U (b, λ)| ≤ ερ (b, B∗)2 + n−
2
3 M2

n, for all b ∈ B.
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Then by setting ε = ε2/2 > 0 and Lemma B.11, for all b ∈ B∗δ0
there is Un (b, λ) ≤ ε1hRρ (b, B∗)−

ερ (b, B∗)2 + n−
2
3 M2

n, which implies that supb∈B∗δ0
Un (b, λ) ≤ ε2

1h2R

4ε + n−
2
3 M2

n = Op(n−2/3).

�

Lemma B.13. Suppose that Assumptions 2.1 to 2.4 and 3.5 to 3.10 are satisfied, then

Cn = n2/3 sup
b∈B

Un (b, λn)
d→ C ≡ sup

t∈Rp,b̃∈∂B∗

{
S(b̃, t)− t′V(b̃)t

}
,

where for every b̃ ∈ ∂B∗, S(b̃, ·) is a mean zero Gaussian process , and V(b̃) is a positive definite

matrix. Moreover, C is continuous on (0, ∞).

Proof. By Proposition 3.2, Cn = n2/3 supb∈B Un (b, λ)+ op(1). It it sufficient to consider n2/3 supb∈B Un (b, λ).

Fixing a given b̃ ∈ ∂B∗, we write q̃ijn(b̃, t) = n1/6 g̃ij(b̃ + t/ 3
√

n, λ). Note that q̃ijn(b̃, 0) = 0

for all b̃ ∈ ∂B due to normalization. For every given b̃ ∈ ∂B, we can rewrite n2/3Un
(
b̃, λ
)

as a

U –process indexed by t:

Sn(b̃, t) =
√

n
n(n− 1) ∑

i 6=j

{
q̃ijn(b̃, t)−E[q̃ijn(b̃, t)]

}
.

Note that g̃ijn is a product of continuous bounded function ξ(z) and sign function ϑ̃, and hence is

Euclidean (Nolan and Pollard, 1987, lemma 16, 18, and 19). By Nolan and Pollard (1988, Theorem

5), Sn(b̃, ·) converges in distribution to a mean zero Guassian process S(b̃, ·) with a bounded and

nonzero covariance kernel H(b̃, ·, ·) defined by

H(b̃, t1, t2) = lim
c→∞

cE
{

E[q̃ij(b̃, t1/c)|zi]E[q̃ij(b̃, t2/c)|zi]
}

. (15)

By Assumption 3.9 and following similar argument in Lemma B.11, for any b̃ ∈ ∂B∗ and

b̃ + t/ 3
√

n /∈ B∗, there exist a positive semidefinite matrix V(b̃) such that
√

nE[q̃ijn(b̃, t)] =

−t′V(b̃)t + o(1). Sn(b̃, t) hence converges in distribution to S(b̃, t)− t′V(b̃)t. Note that for each

(b̃, t), S(b̃, t) is a Gaussian random variable, hence by Davydov, Lifshits, and Smorodina (1998,

Theorem 11.1), C ≡ sup(b̃,t){S(b̃, t)− t′V(b̃)t} is continuously distributed over (0,+∞). The

proof completes by observing supb∈B Un(b, λ) = supb̃,t Sn(b̃, t). �
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Lemma B.14. Let Assumptions 2.1 to 2.4 and 3.5 to 3.10 be satisfied. Let B̃n be a sequence of subset

such that ρH(B̃n, B∗) = op(n−1/3), then

n2/3 inf
b∈B∗

Un(b, λn)− n2/3 inf
b∈B̃n

Un(b, λn) = op(1).

Proof. By Proposition 3.2, and the fact that Un(b, λ) = 0 for all b ∈ B∗, it is sufficient to show that

infb∈B̃n
Un(b, λ) = op(n−2/3).

Define Ã(n, j) =
{

b : (j− 1)cnn−1/3 ≤ ρ(b, B∗) ≤ jcnn−1/3} for some cn ↓ 0. Then B̃n ⊆

∪∞
j=1 Ãj,j. We apply the same argument as in the proof of Kim and Pollard (1990, lemma 4.1) with

Ã(n, j) in the place of A(n, j). Notice that cn ↓ 0, it follows that there exists M̃n = op(1) such that

|Un (b, λ)−U (b, λ)| ≤ ερ (b, B∗)2 + n−
2
3 M̃2

n, for all b ∈ B̃n.

By Lemma B.11, supb∈B̃n
U (b, λ) = op(n−2/3), then it follows that infb∈B̃n

U(b, λ) = op(n−2/3).

�

37


