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Abstract

I analyze a search equilibrium in a large market where customer relationship

based on past trade arises endogenously together with service priority and sales.

Specifically, there exists a unique equilibrium where it is optimal for a buyer to make

repeat purchases from the related seller and optimal for a seller to give service priority

to the related buyer. Customer relationship always improves welfare by reducing

search frictions, but the equilibrium is socially efficient only when the buyer/seller

ratio in the market is below a critical level. When the buyer/seller ratio exceeds this

critical level, the equilibrium is inefficient because it fails to induce the coexistence

of trading priority for related buyers and partial mixing of buyers for related sellers.

Customer relationship induces price variations for individual sellers over time even

when market conditions do not change. A seller posts a (high) regular price to sell to

the related buyer and, once the seller loses the relationship, the seller posts a (low)

sale price to sell to unrelated buyers until he gains a relationship. I also examine how

market conditions affect the aggregate stock of relationships, markups, the size and

the duration of a sale.
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1. Introduction

Sellers often give trading priority to repeat buyers. For example, a restaurant may give

the reservation priority to patrons, and an airline company may allow frequent flyers to

select seats in advance and board earlier. Such customer relationship is often informal, and

neither side of the relationship is abided by any agreement to continue the trade in the

future. Although common in practice, customer relationship has not been formally modeled

as an endogenous outcome of an equilibrium. In this paper, I demonstrate that customer

relationship arises in the equilibrium of a large market with search frictions and implies

a seller’s optimal pricing strategy that involves sales. I analyze whether the equilibrium

with relationships is socially efficient and examine how market conditions affect the stock

of relationships, markups, the size and the duration of a sale.

A formal model of customer relationship in a large market is useful for the following

reasons. First, repeat purchases are prevalent in retail transactions. Although the market-

ing literature has emphasized customer loyalty, it has taken customer loyalty as a primitive

of the model (e.g., Blattberg and Sen, 1974). Endogenizing customer relationship as an

equilibrium outcome in a large market helps understanding why it is prevalent. Second, a

theory of customer relationship can help explaining some salient features of price dynamics

at the micro level of retailers. In particular, prices exhibit large variability over time for

the same item at a given store, sales account for a significant part of this variability, and

prices excluding sales are sticky.1 When competition for repeat purchases is important, it

is natural that a seller may hold sales from time to time to attract buyers. Once a relation-

ship is formed, a seller may keep price relatively stable while using non-price instruments,

such as service priority, to maintain the relationship.

I study a market with a large number of buyers and sellers, where a seller in each

period tries to sell one indivisible unit of a homogeneous good and buyers have the same

publicly known valuation of the good. In each period, buyers observe the terms of trade

offered by sellers before choosing which seller to visit, but individuals cannot coordinate

1See Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008).
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their decisions. It is possible that a seller may fail to get a visitor and a buyer may fail

to be selected by the seller he visits. Hence, there is a trade-off between the price of the

good and the probability of trade. An important restriction is that a price posted by a

seller must be available to all buyers. That is, a seller is not allowed to offer one price to

a subset of buyers and another price to other buyers. This restriction is meant to capture

the reality that a sale is commonly understood as a price cut available to all buyers.

Sellers and buyers may want to form relationships in order to increase the probability

of trade. If a buyer bought from a seller in the previous period, the buyer is related to the

seller, and the seller can choose whether to give trading priority to the related buyer over

unrelated buyers. If the seller gives priority to the related buyer, a relationship is said to

exist between the two individuals. A relationship breaks if the two fail to trade with each

other in a period. Thus, there is nothing hard-wired about customer loyalty in this model;

instead, the two individuals in a relationship can trade with anyone they want to.

I characterize a unique equilibrium in which it is optimal for a seller to give priority to

the related buyer and optimal for a buyer to make repeat purchases from the related seller.

The necessary and sufficient condition for this equilibrium with customer relationship to

exist is that the number of buyers per seller in the market is below a critical level. Like any

relationship, the relationship in this model generates benefits to the partners intertempo-

rally and has implications on prices. A relationship enables a buyer to secure trade with

the related seller in the future. Knowing this benefit of a relationship to the buyer, the

related seller posts a high price that makes the related buyer just slightly prefer visiting

him to visiting other sellers. An unrelated seller posts a low price in order to attract buyers

and acquire a relationship. In the equilibrium, related buyers only visit their related sellers

and unrelated buyers only visit sellers who have no related buyers.

Individual prices follow stylized dynamics in the equilibrium. A seller posts the high

price as long as he has a related buyer and, after he loses the relationship, the seller posts

the low price until he gains a relationship. The high price is the regular price and the low

price is the sale price, not only because the high price is the one paid most often by buyers,
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but also because the low price is posted by an unrelated seller in the intention to revert

to the high price later.2 In each period, some unrelated sellers acquire the relationship as

they succeed in trade, and some related sellers lose the relationship as they fail to trade

due to their related buyers’ absence from the market. These flows of individuals between

the two types endogenously determine the stock of relationships in the market.

I compare the equilibrium with the social optimum that maximizes social welfare under

the same search frictions as in the market. The constrained social optimum always allocates

a related buyer to visit only the related seller and gives trading priority to a related buyer.

Giving priority to related buyers is socially efficient because it reduces the extent of search

frictions. The social optimum may also allocate unrelated buyers to visit both related and

unrelated sellers. This partial mixing is socially efficient when the buyer/seller ratio exceeds

a critical level, which is lower than the critical level below which the equilibrium exists.

Thus, when the buyer/seller ratio is low, the equilibrium is socially efficient. When the

buyer/seller ratio is intermediate, the equilibrium is inefficient because it does not feature

partial mixing. When the buyer/seller ratio is high, the market outcome is inefficient

because the equilibrium with priority ceases to exist.

The model has precise predictions on the frequency, the duration and the price discount

of sales. In the steady state, the frequency of sales, the duration of a sale and the fraction

of related sellers in the market depend only on the extensive margin of the market, which is

represented by the buyer/seller ratio and the probability that a buyer is active in a period.

These features of sales do not depend on the intensive margin of the market such as the

value and the cost of the good. In contrast, prices, markups and the size of the discount

depend on both margins. Moreover, prices and sales have the following features. First, the

sale price implies a negative markup, i.e., a markdown when a relationship is sufficiently

important. Second, goods with a higher profit margin have higher variability in prices

over time even for the same seller, because they have larger markups in regular prices and

larger markdowns in sales. Third, the regular price is relatively more stable than the sale

2Thus, it should not be surprising if a restaurant or airline company increases price or reduces the

quality of service once it has obtained enough regular customers.

3



price. Fourth, the duration of a sale reflects changes in the buyer/seller ratio better than

prices and markups, since the latter two can respond to such changes non-monotonically.

Finally, an increase in demand arising from a higher probability that a buyer is active in

the market can reduce the average price and markup.

In this model, search is directed in the sense that buyers know the terms of trade before

choosing which seller to visit. Directed search is a reasonable assumption because buyers

in many markets have information about the product and the price at particular stores

and choose where to shop, rather than randomly search among all sellers. A growing lit-

erature has used directed search to model ex ante competition in a market with search

frictions, dating back at least to Peters (1984, 1991) and Montgomery (1991). The partic-

ular approach in Peters (1991) is used here to derive each individual’s trading probability

endogenously as a function of strategies, which captures explicitly how a seller’s decision on

priority affects the selling probability.3 The capacity constraint that underlies the trade-

off between price and the trading probability is clearly presented in the two examples in

the service industry mentioned earlier. For consumer products, the inventory cost also

constrains the number of units available in a store and creates the possibility of stock-out.

This paper contributes to the literature of directed search as follows. First, this paper

focuses on customer relationship which the literature has not studied. Second, customer

relationship serves as an endogenous state variable in an individual’s decision problem,

which induces price dynamics and sales that are absent in the literature of directed search.

Third, by allowing prices to depend on the endogenous relational type, the model gener-

ates a price differential, despite that all sellers are identical and all buyers are identical

in exogenous characteristics. Moreover, the equilibrium generates a positive relationship

between price and the trading probability across sellers. This may help reconciling the

lack of strong evidence for the negative relationship between price and the seller’s trading

3Other examples of this approach are Julien et al. (2000), Burdett et al. (2001), Albrecht et al. (2006),

Galenianos and Kircher (2009), and Kircher (2009). For the alternative approach to directed search that

assumes a matching function, see Moen (1997), Acemoglu and Shimer (1999), Shi (2009), Gonzalez and

Shi (2010), Guerrieri et al. (2010), and Menzio and Shi (2011). Moreover, some models of directed search

in the labor market have incorporated trading priority (e.g., Shi, 2002, 2006, and Shimer, 2005), but they

have assumed that prices can be conditional on individuals’ type.
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probability with the prediction of a canonical model of directed search.

This paper is also related to the literature on sales, which has a few strands. The

first strand relies on the result that when each seller faces a discontinuous demand curve,

the equilibrium features a mixed strategy in posted prices (Shilony, 1977). Some authors

interpret price reductions in the mixed strategy as sales, e.g., Salop and Stiglitz (1982) and

Varian (1980).4 The second strand is based on Sobel (1984). In this strand, a constant

flow of buyers enter the market in each period who are either high-valuation buyers local to

particular sellers or low-valuation shoppers who can patiently wait for sales. As the stock

of patient shoppers reaches a critical level, some sellers cut prices to clear this stock. A sale

lasts for one period in this model.5 The third strand contains signaling models in which a

seller uses promotional sales to signal either the quality of the product (e.g., Milgrom and

Roberts, 1986) or the cost of the product (e.g., Bagwell, 1987).

I emphasize customer relationship, instead. As a mechanism to generate sales, cus-

tomer relationship has its intuitive appeal and is complementary to those examined in the

literature above. The theory helps explaining the regularity and the duration of sales.

Also, it can generate a sale as a markdown, which is consistent with the data (e.g., Dutta

et al., 2002) but missing in many of the models above. Finally, the literature on sales

typically models a few sellers and/or buyers, and some of the models are difficult to be

made dynamic. In contrast, the model here has an infinite horizon and many (in fact,

infinitely many) sellers and buyers, which can be useful for analyzing large retail markets.

To focus on the link between customer relationship and sales, I deliberately abstract from

some elements that are important in the above literature on sales, such as durability of the

good, heterogeneity in buyers’ preferences, and private information in buyers’ valuation or

the quality/cost of the product.

In an analysis of customer relationship, Gourio and Rudanko (2011) argue that treating

4Note that the mixed strategy can be purified when there are a large number of sellers and buyers, as

in Burdett and Judd (1983).
5Related to but different from Sobel’s (1984) model, Lazear (1986) assumes that a seller does not know

the value of the good to the buyers. After failing to sell the good, a seller updates his beliefs on buyers’

valuation downward and reduces the price to clear the inventory of goods.
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customer relationship as a type of intangible capital for a firm is useful for macro studies,

but they assume that firms’ pricing decisions depend exogenously on the customer base.

Albrecht et al. (2011) incorporate directed search into Sobel’s (1984) model to show that

sales arise in a non-stationary equilibrium. An important ingredient in their model is

that buyers are heterogeneous in tastes, as in Sobel’s model. In contrast, in my model,

all individuals on each side of the market are identical and sales are consistent with the

stationary equilibrium. More importantly, I focus on customer relationship as a motivation

for sales that is absent in Albrecht et al.

It is important to clarify that this paper is not about price discrimination or pricing

strategies that are dependent on buyers’ exogenous types. Instead, the emphasis is on

how trading strategies can depend on bilateral trading histories and how this dependence

generates price variations over time for the same seller even in the absence of the variations

in demand and costs.6 Because of search frictions, it is not feasible for a seller to offer

priority to any arbitrary buyer before search to entice the buyer to visit, but the seller can

give priority to the particular buyer related to him. This priority treatment arising from

past trade is a natural notion of customer relationship. Also, it should be evident that if a

seller picks up a buyer randomly to give priority after buyers visit, such priority is not able

to direct search because a buyer does not know beforehand whether he will be the one to

be chosen. To direct search, the priority must be either publicly announced or implicitly

understood as the way to play the game. Finally, the mechanism for customer relationship

in this paper differs from the locked-in effect arising from a fixed cost of switching sellers.

Such a fixed cost does not exist here. In particular, if the buyer/seller is sufficiently high,

the priority and the price differential will cease to exist in this model, but a fixed cost of

switching will continue to generate the locked-in effect.

6If a seller is allowed to price discriminate, it is easy to generate a differential between the prices posted

by a seller for related and unrelated buyers. For such models in the labor market with wage differentials,

see Shi (2002, 2006) and Shimer (2005). Note that a price differential exists in these models even if the

economy lasts for only one period. In contrast, a one-period version of the current model features no price

differential because there is no future for a relationship to be paid off.
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2. A Model of Directed Search with Customer Relationship

2.1. Model environment

Time is discrete and lasts forever. There are  sellers and  buyers, where  and  are

large numbers which I will take to the limit ∞. Denote  =  as the buyer-seller ratio

and, for simplicity, fix  ∈ (0∞). All individuals discount future at a rate   0. In each
period, a seller can produce one indivisible unit of good at a cost  ≥ 0. Because goods
are perishable, a seller produces a good only after meeting a buyer. In any given period,

a buyer has the need to consume a good with probability  ∈ (0 1). These taste shocks
occur at the beginning of the period, which are  among the buyers and across time.7

Call a buyer an active buyer if he has the need to consume, and an inactive buyer if he

does not have the need. In each period, the number of active buyers is  . The utility

of consumption is  ( ) to an active buyer. I refer to the number of active buyers per

seller, , as the extensive margin of the demand, as opposed to the intensive margin of

the market which is determined by  and .

Although all sellers are identical in the production capacity and cost, and all active

buyers have the same taste, individuals may have different histories of trade. If a seller

sold a good in the previous period to a buyer, the two individuals are related to each other;

if a seller did not sell a good in the previous period, the seller is unrelated. For brevity,

I refer to this history of trade as an individual’s type. As such, an individual’s type is

endogenous. A seller’s history is publicly observed. The focus is on the equilibria in which

it is optimal for a related seller to give priority to his related buyer. That is, if a buyer

visits the seller related to him, the seller chooses to trade with the buyer instead of an

unrelated visitor. A related seller can offer a different price than an unrelated seller does.

In each period, sellers simultaneously post the terms of trade without knowing which

buyer is active in the period. After observing the terms of trade, each active buyer chooses

which seller to visit without knowing other buyers’ choices. Then, a seller chooses one

7Alternatively, one can assume that a buyer exits the market with probability 1− in each period and
is replaced by a new buyer. The results are similar to the ones here if each seller must post a price without

knowing the identities of the buyers who exited.
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visitor to trade with. A seller must sell a good for the same price independently of the

number and the type of buyers who will visit the seller. As explained in the introduction,

this assumption is intended to capture the fact that a sale is available to all buyers and to

make the results robust. However, a seller is allowed to give priority to the related buyer,

as described above. If all visitors are unrelated to the seller, the seller randomly selects

one to trade with.

A relationship between a buyer and a seller is informal. A buyer is free to shop at any

seller, and a seller gives priority to the related buyer only when it is optimal to do so.

Moreover, a relationship ends when the buyer fails to visit the seller, either because the

buyer is inactive in the period or because the buyer chooses to visit another seller. This

assumption keeps the analysis tractable by reducing an individual’s history that is relevant

for choices from potentially an infinite sequence to {0 1}.8

The fraction of related sellers, denoted , is an endogenous aggregate state variable.

Because each related seller has one and only one related buyer, the number of related

buyers in the market is equal to  , and the expected number of active related buyers

is  . The number of unrelated buyers is  −  and the expected number of active

unrelated buyers is ( − ). I will verify later that   min{1 } in the equilibrium;
that is, some sellers are unrelated to any buyer and some buyers are unrelated to any seller.

2.2. A buyer’s decision and payoff

Denote a buyer’s (endogenous) type as  ∈ {0 1}, where the buyer has a related seller if
 = 1 and no related seller if  = 0. For a type 0 buyer, the type of the seller whom he can

visit is  ∈ {0 1}, where a seller  = 1 has a related buyer and a seller of type  = 0 does
not. For a type 1 buyer, the type of the seller whom he can visit is  ∈ {0 1 }, where  = 

is the particular seller related to the buyer and  = 1 is a seller related to someone else.

8A generalization is to allow a related seller to keep the relationship with a positive probability if the

related buyer is inactive and if no other buyer visits the seller in the period. This extension requires

a buyer’s taste shock to be public information. If the realization of a buyer’s taste shock is private

information, it may be rational for a seller to terminate a relationship when the related buyer does not

show up. However, explicitly modeling this decision under private information is complicated.
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When active, a type  buyer chooses the probability ( ) ∈ [0 1] with which the buyer
visits each seller of type  who posts price . Let ( ) denote the value to an active type

 buyer from such a visit. Let  
 () denote the maximum value that an active type  buyer

can obtain in the market, which is referred to as the market value for such a buyer. Clearly,

( ) ≤  
 () for all  ∈ {00 01 10 11 1}. If ( )   

 (), it is optimal for a

type  buyer not to visit a type  seller; i.e., ( ) = 0 is optimal. If ( ) =  
 (),

then a type  buyer is indifferent between visiting a type  seller and obtaining the market

value; i.e., the optimal choice is ( ) ∈ [0 1]. The optimal decisions in the two cases
can be put in a compact form:

( ) ≥ 0 and ( ) ≤  
 (), (2.1)

where the two inequalities hold with complementary slackness.

For ( )  0 to be optimal, the combination ( ) must attain the market value for

a type  buyer. To express this requirement formally, let 0 be the set of prices posted by

all unrelated sellers and 1 by all related sellers. The market value for an active buyer is

 
0 () = max

∈{01}
[max
∈

0( )],

 
1 () = max

(
1( 1), max

∈{01}
[max
∈

1( )]

)
,

(2.2)

The first equation is for a type 0 buyer. The inner maximization selects among type 

sellers the offer that gives the highest value to the buyer, and the outer maximization

selects between the two groups of sellers. Similarly, the second equation is for a type 1

buyer. The outermost maximization is the buyer’s choice between the particular seller

related to him and all other sellers.

Since a large market is the subject of interest here, I will analyze the equilibrium in

the limit where  → ∞, with a positive and finite ratio  =  . In this limit,

the number of active and related buyers,  , and the number of active and unrelated

buyers, ( − ), both become deterministic and approach infinity. Note that  is the

probability that a buyer visits an individual seller. In the limit,  approaches zero, except

for  = , and so it is not a convenient object to use to characterize the limit equilibrium.
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For the limit, it is standard in the literature to use the queue length to describe the buyers’

strategies, which is defined as the expected number of buyers of each type who visit a

seller.9 In particular, for a seller who posts price  in the aggregate state , let ( )

denote the queue length of type  visitors who are unrelated to the seller, where  ∈ {0 1}.
If a seller has a related buyer, this particular buyer is counted separately from the queue

length. Intuitively,  is equal to the total number of active type  buyers multiplied by

the probability that each of these buyers visits a type  seller. That is,

1( ) = 1( ) and 0( ) = ( − )0( ),  ∈ {0 1}.

The queue length remains finite when  → ∞, provided that  does not exceed the
order of magnitude 1 . A buyer’s optimal decision in (2.1) can be expressed as

1( ) ≥ 0 and 1( ) ≤  
1 (), (2.3)

1( ) ≥ 0 and 1( ) ≤  
 (),  ∈ {0 1}, (2.4)

0( ) ≥ 0 and 0( ) ≤  
 (),  ∈ {0 1}. (2.5)

The two inequalities on each line hold with complementary slackness.

A seller treats all visitors who are unrelated to him equally. Following standard deriva-

tions, the following lemma describes the probability of trade for an individual and the

constraints on the queue length (see Appendix A in Shi, 2011, for a proof):

Lemma 2.1. A type 0 seller succeeds in trade with probability 1−−(10+00) and a visitor
to a type 0 seller succeeds in trade with probability 1−−(10+00)

10+00
. Suppose that a type

1 seller gives priority to his related buyer. Then, a type 1 seller succeeds in trade with

his related buyer with probability 1 and with an unrelated visitor with probability

9The characterization of a buyer’s strategy by the queue length is justified by the focus on symmetric

equilibria where all buyers of the same type respond to a seller’s posting (including deviations from an

equilibrium) in the same way (see Peters, 1991).

10



(1 − 1)[1 − −(11+01)]. An unrelated visitor to a type 1 seller succeeds in trade with

probability (1− 1)
1−−(11+01)

11+01
. Moreover, the queue length satisfies

(1− 1)− [11 + (1− )10] = 0, (2.6)

(− )− [01 + (1− )00] = 0. (2.7)

To explain the trading probabilities, consider a type 0 seller first. The number of type

 visitors to a type 0 seller is a random variable generated by the visiting probability,

0( ), and the expected value of this number is 0. Since all buyers of the same type 

use the same visiting strategy, the distribution of type  visitors over all type 0 sellers is

generated by the urn-ball process, where type 0 sellers are the “urns” and type  buyers

are the “balls”. In the limit  → ∞, a type 0 seller receives no visitor of type  with
probability −0 . Thus, a type 0 seller succeeds in trade with probability 1 − −(10+00).

Since the expected number of visitors to a type 0 seller is (10 + 00), an arbitrary visitor

is chosen by the seller to trade with probability 1−−(10+00)
10+00

. The explanation for a type 1

seller is similar, except that a type 1 seller gives trading priority to his related buyer who

will show up for his related seller with probability 1. To explain the constraints on the

queue length, note that a type 1 buyer’s visiting probabilities should add up to one across

all the sellers, i.e., 1+(−1)11+(1−)10 = 1. Taking the limit →∞ on this

requirement yields (2.6). Similarly, (2.7) is the limit version of the adding-up constraint

on a type 0 buyer’s visiting probabilities across the sellers.

Let me calculate buyers’ value functions. First, denote () as a type  buyer’s value

function at the end of the previous period.10 Then,

() =
1

1 + 
[ 

 () + (1− )0(+1)] ,  ∈ {0 1}. (2.8)

The subscript “+1” indicates next period. This equation is intuitive. When a type  buyer

at the end of the previous period looked forward, he expected to be active in the current

10The fraction of sellers who are related to some buyers at the end of the previous period is the same as

that at the beginning of the current period, and there is no uncertainty about this aggregate state. Also,

since an individual’s state variable has only a finite number of values, I simplify the notation by putting

it as a subscript instead of an argument of the value function.

11



period with probability , in which case his value function is  
 (), and he expected to be

inactive in the current period with probability 1− , in which case he becomes unrelated

and obtains the value at the end of the current period, 0(+1). Discounting the expected

value of these two cases yields the value at the end of the previous period.

Second, I calculate 1, the value for a type 1 buyer when visiting a type  seller. If the

buyer visits seller , the buyer will be chosen by the seller with certainty. If  is the price

posted by the related seller, then the buyer’s value of visiting the related seller is

1( ) =  − + 1(+1), (2.9)

where ( − ) is net utility from consumption in the period and 1(+1) the continuation

value 1(+1). If the buyer visits a seller who is not related to the buyer, then the buyer’s

value is the same as the value for a buyer who visits the same seller but who is not related

to any seller. That is, the following equalities hold for all :

11( ) = 01( ) and 10( ) = 00( ). (2.10)

Third, I calculate 0( ), the value for a type 0 buyer who visits a type  seller posting

price . For  = 0, i.e., a seller without a related buyer, all visitors are chosen by the seller

with equal probability. If a buyer is chosen by such a type 0 seller, the trade yields the

utility  −  to the buyer in the period. In addition, the buyer becomes related to the

seller, and the relationship changes the value for the buyer by 1(+1)− 0(+1). Denote

the buyer’s surplus of trade at price  as

(+1 ) =  − + 1(+1)− 0(+1).

With the trading probabilities in Lemma 2.1, I have

00( ) =
1− −(10+00)

10 + 00
(+1 ) + 0(+1), (2.11)

01( ) = (1− 1)
1− −(11+01)

11 + 01
(+1 ) + 0(+1), (2.12)

where 0 = 0( ), 1 = 1( ) for  ∈ {0 1}, and 1 = 1( ).
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2.3. A seller’s decision and payoff

For a seller of type  ∈ {0 1}, let () be the value function that is measured at the end
of the previous period. Consider first a type 0 seller who posts a price 0. Because the

seller does not have a related buyer, the seller selects all visitors with equal probability.

The probability that the seller succeeds in trade is 1− −(10+00), as given in Lemma 2.1.

A trade yields profit 0 −  to the seller in the current period and, relative to no trading,

the seller’s value at the end of the period changes by [1(+1) − 0(+1)]. Let (+1 )

denote a seller’s surplus of trade at price :

(+1 ) = − + 1(+1)− 0(+1).

A type 0 seller’s value function obeys:

0() = 1
1+
max
0

nh
1− −(10+00)

i
(+1 0) + 0(+1)

o
s.t. (2.5), where 0 = 0( 0),  ∈ {0 1}.

(2.13)

By incorporating (2.5) as a constraint, the seller explicitly takes into account the effect of

the price choice on the queue length of visitors. Similarly, since a type 1 seller succeeds in

trade with probability 1− (1− 1)
−(11+01) (see Lemma 2.1), then

1() = 1
1+
max
1

nh
1− (1− 1)

−(11+01)
i
(+1 1) + 0(+1)

o
s.t. (2.3) and (2.4), where (1 1) = (1 1)( 1),  ∈ {0 1}.

(2.14)

In both (2.13) and (2.14), the seller takes as given the market value and future value

functions for a buyer. Also, the seller takes as given his own future value functions, 0(+1)

and 1(+1), as is standard in dynamic programming.

A type 1 seller can choose whether to give priority to the related buyer. If the seller

does not give such priority, the seller will obtain the value 0 as an unrelated seller does.

It is optimal for a seller to give priority to the related buyer if and only if 1 ≥ 0.

2.4. Equilibrium definition

With many sellers and buyers, the analysis is tractable only for equilibria which are sym-

metric in the sense that all individuals of the same type use the same strategy. In the
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definition of queue lengths, I have already assumed that all buyers of the same type re-

spond to a seller’s price (including deviations) in the same way. If all sellers of the same

type also post the same terms of trade, they attract the same queue length of visitors. As

explained by Burdett et al. (2001), the symmetric equilibrium is a reasonable object to

focus on in a large market without coordination. In the symmetric equilibrium, the set of

prices posted by type  sellers is  = {}, where  ∈ {0 1}. I will suppress the arguments
( 0) of (0 0 0) and ( 1) of (1 1 1 1 1), where  ∈ {0 1}.
In the equilibrium, the fraction of related sellers, , is endogenously determined by the

flows of sellers between the two types. In a period, a seller becomes unrelated if the seller

fails to sell, which occurs with probability (1−1)−(11+01). An unrelated seller becomes
related if the seller succeeds in trade, which occurs with probability 1 − −(10+00). The

fraction of related sellers changes between the current and the next period by

+1 −  = (1− )
h
1− −(10+00)

i
− (1− 1)

−(11+01). (2.15)

An equilibrium with customer relationship consists of buyers’ choices  and value func-

tions ( 
   ) (where  ∈ {0 1 } for  = 1, and  ∈ {0 1} for  = 0), sellers’ choices

(0 1) and value functions (0 1), and the fraction of related sellers  that satisfy:

(i) Buyers’ choices  and implied queue lengths, 1 = 1 and 0 = ( − )0,

satisfy (2.3) — (2.7), while ( 
   ) satisfy (2.2) and (2.8) — (2.12);

(ii) 0 solves (2.13), 1 solves (2.14), and (0 1) satisfy (2.13), (2.14) and 1 ≥ 0;

(iii)  satisfies (2.15).

It is important to repeat that the inequality 1 ≥ 0 in (ii) requires it to be optimal

for a seller to give priority to the related buyer. That is, the buyer-seller relationship is

endogenous rather than being imposed.

3. Equilibrium Characterization

3.1. Narrowing down the set of equilibria

Because   1, it is easy to see that competition among sellers implies that a buyer enjoys

a strictly positive surplus in an equilibrium. That is, (+1 )  0 for  ∈ {0 1}. The
14



following lemma is proven in Appendix A:

Lemma 3.1. An equilibrium with customer relationship satisfies: (i) 11 = 0, 1 = 1,

and 10 = 0; (ii) 00  0; (iii) if 01  0, then 1  00 = 10; (iv) if 01 = 0, then 1 = 00.

The result 11 = 0 in (i) says that a related buyer does not visit someone else’s related

seller. The reason is that, in comparison with the buyer’s own related seller, someone

else’s related seller posts the same price and does not give priority to the buyer. With

11 = 0, the result 1 = 1 implies 10 = 0. The result 1 = 1 says that a related buyer

chooses to visit only his related seller (say, seller ). This result is easy to understand if

buyers unrelated to seller  choose not to visit seller . In this case, whenever 1  1,

seller  can induce the related buyer to visit him with probability one by cutting the price

slightly. Because this marginal change in the price has no consequence on other buyers’

visiting probability to seller , which remains at zero in this case, the discrete increase

in the buyer’s visiting probability increases the expected payoff to seller . The result

1 = 1 is also intuitive if buyers unrelated to seller  choose to visit seller  with positive

probability. For an unrelated buyer to visit seller , the buyer must obtain at least the

same payoff from such a visit as visiting another seller. Since the buyer related to seller

 has the priority relative to an unrelated buyer, the related buyer obtains strictly higher

payoff from visiting seller  than visiting any other seller. Again, 1 = 1 in this case.

The result 1 = 1 implies that, in the equilibrium, a relationship breaks up only when the

related buyer receives a shock that makes him inactive in the period.11

The result (ii) in Lemma 3.1 says that an unrelated buyer visits an unrelated seller

with positive probability. This result is easy to understand: Since an unrelated seller does

not discriminate the visitors, he can always attract unrelated buyers with a sufficiently

low price. The result (iii) says that if unrelated buyers visit related sellers with positive

probability, then the equilibrium payoff to a related buyer must be strictly higher than

11The assumption   1 is needed to prevent all sellers from being related in the steady state (see

(2.15)). Endogenous breakups can be generated by allowing each buyer to contact two or more sellers in

each period, in a way similar to labor-search models by Albrecht et al. (2006) and Galenianos and Kircher

(2009). This extension is interesting but is left for future research. Also, see footnote 8.
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the payoff to an unrelated buyer. This result is explained as part of the explanation for

(i) above. Finally, the result (iv) says that if unrelated buyers only visit unrelated sellers,

then the two types of buyers must have the same payoff in the equilibrium. The reason is

that when a related seller’s only potential buyer is the related buyer, a price increase does

not crowd out the seller’s potential visitors. In this case, it is optimal for the related seller

to raise price until the related buyer just slightly prefers visiting him.

With Lemma 3.1, there are only two possibilities of an equilibrium with customer

relationship. The two differ in an unrelated buyer’s optimal choice:

Partial mixing: An unrelated buyer mixes between the two types of sellers, i.e., 01  0.

Complete separation: An unrelated buyer visits only unrelated sellers, i.e., 01 = 0.

In both cases, the equilibrium satisfies 00  0, 1 = 1, 10 = 11 = 0,  
1 () =

max 1( ), and  
0 () = max 00( ). Also, because 10 = 11 = 0, I shorten the

notation 00 as 0, and 01 as 1. The following lemma is proven in Appendix A:

Lemma 3.2. An equilibrium with partial mixing (and priority) does not exist.

An equilibrium with partial mixing requires a related seller to attract both the related

buyer and unrelated buyers. Because a seller’s type (related or unrelated) is public infor-

mation, an unrelated visitor to a seller who has a related buyer expects to be chosen to

trade with a low priority. An unrelated buyer will visit a related seller only if the seller cuts

price significantly below the price posted by an unrelated seller. The price cut defeats the

seller’s purpose of benefiting from the relationship. If forming a relationship is worthwhile

for a seller, then setting price high to attract only the related buyer yields higher expected

profit to a related seller than cutting price to attract both types of buyers. With the high

price, the related seller squeezes all the rent from the relationship. Attracting unrelated

buyers is optimal for a related seller only if there are so many buyers in the market that

a seller’s trading probability with an unrelated buyer is significantly higher than . In

this case, however, giving priority to the related buyer is no longer optimal for the seller.

By treating all buyers equally, instead, the seller can attract unrelated buyers more easily
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without cutting price below the one posted by unrelated sellers. Therefore, partial mixing

and priority do not coexist in an equilibrium.

3.2. The equilibrium

I have shown that the only possible equilibrium with customer relationship is one with

complete separation. To characterize the equilibrium, let me reformulate sellers’ maxi-

mization problems. In a type 0 seller’s problem, (2.13), the constraint (2.5) in the case

0  0 requires the seller to give a type 0 visitor the same expected surplus as in the market.

Expressing this constraint explicitly transforms a type 0 seller’s problem as follows:

(1 + )0() = 0(+1) + max
(00)

(1− −0)(+1 0)

s.t. 1−−0
0

(+1 0) =  
0 ()− 0(+1),

(3.1)

where  is the seller’s surplus and  the buyer’s surplus of trade defined earlier. Also as

explained before, the seller takes as given the market value,  
0 (), and future value func-

tions, (0 1 

0  0 1)(+1). The first-order condition, the constraint and the Bellman

equation in (3.1) imply:

 
0 ()− 0(+1) = −0∆(+1),

0 =  + 1(+1)− 0(+1)− 0
1−−0 [


0 ()− 0(+1)],

(3.2)

(1 + )0()− 0(+1) =
h
1− (1 + 0)

−0
i
∆(+1), (3.3)

where ∆ =  + is the joint surplus of the match given as

∆(+1) ≡  − + 1(+1)− 0(+1) + 1(+1)− 0(+1). (3.4)

The first equation in (3.2) states that a type 0 buyer’s gain from participating in the

market, relative to staying inactive for a period, is equal to a fraction −0 of the joint

surplus of a match. The second equation in (3.2) states that a type 0 buyer’s surplus from

a trade, , is equal to this gain from participating in the market multiplied by a factor

0
1−−0 . Together, the two conditions imply that the share of a type 0 buyer’s surplus from

a trade is equal to 0
0−1 . Equation (3.3) states that a type 0 seller’s expected surplus from

a trade is a share [1− (1 + 0)
−0] of the joint surplus of a match.

17



Note that the trading probability and the surplus share for an individual are both

endogenous and only functions of the queue length. A buyer’s trading probability when

visiting an unrelated seller, 1−−0
0

, and the buyer’s share of the match surplus, 0
0−1 ,

are decreasing functions of 0. Intuitively, if buyers visit unrelated sellers with higher

probability, there is higher congestion of buyers for such a seller. Each unrelated visitor

succeeds in trade less likely in this case and the buyer who succeeds in trade obtains a

smaller fraction of the match surplus. Moreover, because the matching probability for an

unrelated visitor and the buyer’s share of the match surplus are only functions of 0, the

two have a one-to-one positive relation with each other. Similarly, an unrelated seller’s

trading probability and surplus share are increasing functions of 0.

With complete separation, a type 1 seller attracts only the related buyer (since 1 = 0).

Denote ̄ as the price that makes the related buyer indifferent between visiting the related

seller and visiting other sellers; i.e., ̄ satisfies 1( ̄) =  
0 (). As explained after Lemma

3.2, the optimal price for attracting only the related buyer is ̄−, where   0 is arbitrarily
small. For convenience, I will simply refer to ̄ as a type 1 seller’s optimal choice of the

price. Solving the related buyer’s indifference condition, I get:

̄ =  + 1(+1)−  
0 (). (3.5)

Because ̄ does not attract any type 0 buyer, a type 1 seller’s value function satisfies:

(1 + )1() = 0(+1) +  [̄− + 1(+1)− 0(+1)] . (3.6)

For complete separation to be an equilibrium, a type 1 seller should not gain from

deviating to a price that attracts both the related buyer and unrelated buyers.12 Such

a deviation does not affect a related buyer’s visiting strategy, who still gets the selection

priority from the seller. Let ̃1 be the price in the best deviation of this kind, ̃1 the queue

length of unrelated buyers attracted by the deviation, and ̃1() be the deviating seller’s

value function. By modifying (2.14), I can express the best choices (̃1 ̃1) as the solution

12Lemma 3.2 states that there cannot be an equilibrium in which all type 1 sellers attract both types of

buyers. This does not automatically imply that a single type 1 seller’s deviation to attract both types of

buyers is not profitable.
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to the following problem:

(1 + )̃1() = 0(+1) + max
(11)

h
1− (1− )−1

i
(+1 1) (3.7)

subject to

(1− )
1− −1

1
(+1 1) =  

0 ()− 0(+1). (3.8)

As a form of (2.4) with 1  0, (3.8) requires that if 1 attracts unrelated buyers, then the

expected surplus to such a buyer should be equal to the buyer’s expected surplus in the

market.13 The deviation is not profitable if and only if ̃1() ≤ 1(). Equivalently, this

requires that the expected surplus generated by the deviation (̃1 ̃1) should not exceed

that by ̄, as expressed below:

h
1− (1− )−̃1

i
(+1 ̃1) ≤ (+1 ̄). (3.9)

Moreover, an equilibrium with complete separation must satisfy 1() ≥ 0() in order for

a type 1 seller to give priority to the related buyer.

In addition to the above conditions on prices and value functions, an equilibrium re-

quires 0 and  to be determined and satisfy 0  0 and  ∈ (0min{1 }). With complete
separation, the adding-up constraint (2.7) yields:

0 = () ≡ (− )(1− ). (3.10)

Then, the law of motion of  given by (2.15) becomes:

+1 = () ≡ + (1− )
h
1− −()

i
. (3.11)

Note that (3.10) and (3.11) are independent of variables other than ( 0). Thus, the

steady state and the dynamics of ( 0) can be solved from these two equations without

the help of any other equilibrium relations.

13The deviation is a one-period deviation. As such, it does not change the deviator’s future value

functions that appear in the suprlus (+1 ), which are still 0(+1) and 1(+1) rather than the ones
with tilde. As an implication of dynamic programming, a deviation is not profitable if and only if no

one-period deviation is profitable.
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To sum up, an equilibrium with customer relationship consists of prices (0 ̄), queue

length 0, value functions (0() 1()) and the fraction of related sellers  that satisfy

(3.2), (3.3), (3.5), (3.6), (3.9), 1() ≥ 0(), (3.10) and (3.11). In this equilibrium, all

active buyers have the same market value,  
1 () =  

0 (). Adding the superscript ∗ to
indicate the steady state, I prove the following proposition in Appendix B:

Proposition 3.3. (i) There exists (), defined by (B.10) in Appendix B, such that the

steady state exists if and only if  ≤ (). Moreover, ()  − 1−

ln(1− )  1 for all

 ∈ (0 1), and (1) = 1.

(ii) The steady state is unique and locally stable. Equilibrium  and 0 depend only on

( ). Moreover, 0  ∗  min{1 }, ∗0  0, ∗


 0,
∗0


 0, and ∗


 0.

(iii) For  close to ∗, the equilibrium satisfies ∆()  0 and

0 =  − 0
−0

1− −0
∆(+1), (3.12)

1 = ̄ =  − −0∆(+1)  max{0 }, (3.13)

1() = 0() =
1

1 + 

h
0(+1) + −0∆(+1)

i
, (3.14)

∆() =  − +
1

1 + 

h
(1− −0)− 1 + (1 + 0)

−0
i
∆(+1), (3.15)

where 0 = () and +1 = () are given by (3.10) and (3.11).

The steady state with customer relationship exists if and only if the buyer/seller ratio

 does not exceed the critical level (). This existence condition comes from the require-

ment that it should be optimal for a type 1 seller to give priority to the related buyer,

i.e., 1 ≥ 0. The condition is intuitive. To a type 1 seller, the benefits of giving priority

to his related buyer are that the seller can guarantee a trade whenever the related buyer

is active and that the seller can charge a relatively high price. The opportunity cost is

that the priority for the related buyer drives away unrelated buyers. When the number

of buyers per seller is small, unrelated buyers are difficult to attract regardless of whether
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a seller gives priority to the related buyer. In this case, the benefits of giving priority to

the related buyer outweigh the opportunity cost for a type 1 seller. On the other hand, if

the number of buyers per seller is high, giving priority to the related buyer can reduce a

type 1 seller’s trading probability significantly as it eliminates a large number of unrelated

buyers’ visit to the seller. In this case, it is optimal for a type 1 seller to give no priority

to his related buyer and treat all buyers equally.

Specifically, when a type 1 seller chooses whether to give priority to the related buyer,

the seller compares the expected share of the match surplus from the two options. If the

seller gives priority, the seller’s trading probability is . In such a trade, the seller sets

price as such that the related buyer’s surplus from the trade,  − ̄, is the same as the

expected surplus that the buyer can get from visiting another (unrelated) seller, which is

−0∆. Thus, by giving priority, the seller’s share of the match surplus is (1 − −0) and

the seller’s expected share is (1 − −0). If the seller does not give priority, the seller’s

trading probability is (1 − −0), the share of the match surplus is (1 − 0
0−1), and the

expected share is (1− −0)(1− 0
0−1). By giving priority to the related buyer, the seller

gets a higher expected share of the surplus if and only if   1 − 0
0−1 . This condition

puts an upper bound on the queue length of buyers for an unrelated seller and, hence, on

the number of buyers per seller.

The condition  ≤ () is also sufficient for (3.9) to be met. Namely, if it is optimal

for type 1 sellers to give priority to related buyers, then it is not profitable for a type 1

seller to deviate to attract both types of buyers. To explain why this is the case, note that

when the number of buyers per seller is low, the price posted by a type 0 seller is likely to

be low. If a type 1 seller deviates to attract unrelated buyers, competing against type 0

sellers for unrelated buyers entails a large price cut from ̄. This loss in profit outweighs

the benefit of the small increase in the trading probability induced by the deviation.

Because () ≥ 1 for all , a sufficient condition for the equilibrium with customer

relationship to exist is that the number of buyers does not exceed the number of sellers.

Moreover, since () depends only on , whether the equilibrium exists is independent
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of the intensive margin of the market ( ) and the discount rate . This independence

arises from the fact that (  ) affect the size of the match surplus but not an individual’s

trading probability or the share of the match surplus.

Similarly, the fraction of related sellers, , and the queue length, 0, depend only on

the extensive margin of the demand, ( ), and not on other parameters such as (  ).

Given the composition of sellers, , the queue length 0 is uniquely pinned down by the

requirement that a buyer’s visiting probabilities across the sellers should add up to one.

Conversely, given 0, each seller’s trading probability is uniquely determined, which deter-

mines the flows of sellers into and out of relationships and, hence, the dynamics of . These

two relations are given above as 0 = () and +1 = (), which uniquely determine 

and 0. Because the only parameters in these relations are ( ), the solutions for ( 0)

to these relations depend only on ( ) and not on other parameters such as (  ).

The fraction of related sellers in the steady state increases in the extensive margin of

demand. A higher  or  leads to more trades in each period, which turn more unrelated

sellers into related ones and so increase the fraction of related sellers in the equilibrium.

It is also intuitive that a higher buyer/seller ratio increases the queue length of buyers

for an unrelated seller in the steady state, ∗0. However, it is ambiguous whether a higher

 increases ∗0. On the one hand, a higher  increases the general demand by increasing

the number of active buyers. This effect increases ∗0. On the other hand, a higher  tilts

demand toward related sellers by making a larger fraction of buyers related to some sellers.

This effect reduces the queue length of buyers for an unrelated seller. The overall effect of

 on ∗0 depends on the values of  and .

The unique steady state is locally stable; namely, there is a unique saddle path along

which the fraction of related sellers converges to the steady state level ∗. If   ∗, the

flow of related sellers who lose relationships in a period is greater than the flow of unrelated

sellers who acquire relationships through trade. In this case, there is a positive net flow

of sellers out of relationships, and so the fraction of related sellers falls toward the steady

state. On the other hand, if   ∗, the flow of related sellers who lose relationships is
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smaller than the flow of unrelated sellers who acquire relationships through trade. In this

case, the fraction of related sellers increases toward the steady state.

4. Efficiency Properties of the Equilibrium

Because the equilibrium features priority for related buyers and complete separation be-

tween related and unrelated individuals, it is important to examine whether the equilibrium

is socially efficient. For this purpose, I characterize the allocation chosen by a social plan-

ner to maximize social welfare under the same matching frictions as in the market.14 The

planner knows each individual’s trading history in the previous period that determines

whether the individual is related or unrelated. For a related buyer, the planner chooses the

probability for the buyer to visit the related seller, 1, and queue lengths (11 10). For

an unrelated buyer, the planner chooses queue lengths (01 00). Because of coordination

frictions, the planner is constrained to treat all individuals of the same type equally, as in

the market. Thus, when the planner allocates a buyer to visit a seller who is unrelated to

the buyer, the allocation cannot depend on the identity of the buyer or the seller. This

constraint is implicit in the notation of queue lengths that can depend only on the buyer’s

and seller’s type. Similarly, the probability that a visitor to a seller is chosen to trade can

depend only on whether or not the visitor is related to the seller, but not on the visitor’s

identity. For the moment, I assume that the planner gives priority to the related buyer

when the buyer visits his related seller. Later I will verify that such priority is indeed

socially efficient. The matching probabilities are given in Lemma 2.1.

Because all individuals are risk-neutral, social welfare can be measured by the dis-

counted sum of surpluses in all matches divided by the number of sellers. Let () denote

this social welfare function, measured at the end of the previous period. To calculate  ,

recall that a seller fails to trade in a period with probability (1−1)−(11+01) if the seller
is related and with probability −(10+00) if the seller is unrelated. The average probability

14All proofs for this section are relegated to Appendix C.

23



of trade per seller in a period is:

 = 1− (1− 1)
−(11+01) − (1− )−(10+00).

The joint surplus of a match in a period is  − . Thus, the social welfare function and

the planner’s optimal choices solve the following problem:

(1 + ) () = max
(111100100)

[( − ) + (+1)] , (4.1)

subject to (2.6), (2.7), (2.15), 1 ∈ [0 1], and  ≥ 0 for  ∈ {11 10 01 00}. These
constraints have the same meanings as in the equilibrium.

Consider the following candidate for the social optimum:

1 = 1, 11 = 10 = 0;
00  0;
01 ≥ 0 and 01 ≥ 00 + ln(1− ), with complementary slackness.

⎫⎪⎬⎪⎭ (4.2)

This candidate allocates a related buyer to visit only the buyer’s related seller and an

unrelated buyer to visit unrelated sellers with positive probability, as in the equilibrium.

In contrast to the equilibrium, the candidate may or may not choose to partially mix

related and unrelated individuals. Precisely, the candidate allocates an unrelated buyer

to visit related sellers with positive probability if and only if 00  − ln(1 − ). Let me

delay the explanation why this condition is needed for efficiency and, instead, turn to the

comparison of efficiency between the allocations with and without priority.

To simplify the comparison, I focus on the steady state. The results also hold in a

neighborhood of the steady state. Comparing steady-state welfare amounts to comparing

the average trading probability per seller, . In any allocation without priority, all sellers

are the same, all buyers are the same, the queue length of buyers per seller is , and the

average trading probability per seller is 1− −. The following lemma shows that giving

priority to the related buyer is socially efficient, in addition to other results:

Lemma 4.1. Focus on the steady state. The average trading probability per seller is

 = . The allocation in (4.2) with trading priority for related buyers yields higher welfare
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than the allocation without priority. Moreover, the allocation in (4.2) induces 01  0 if

and only   () where

() ≡ − 1− 


ln(1− ). (4.3)

() satisfies 1  ()  − 1

ln(1− ) for all  ∈ (0 1), and (0) = (1) = 1.

The result  =  in the steady state is straightforward to explain. In any period, the

fraction of sellers who succeed in trade is . Because related sellers who fail to trade lose

their relationship, the fraction of related sellers in the next period will be +1 = . In the

steady state, the fraction of related sellers is constant over time, and so  = .

To explain why giving priority to related buyers is socially efficient, let me first explain

the condition for partial mixing in (4.2), i.e., 01 = 00 + ln(1 − ) if 1 −   −00, and

01 = 0 if 1 −  ≤ −00 . This efficiency condition arises from maximizing the marginal

contribution of an unrelated buyer to the number of trades and, hence, to social welfare.

To see why, note that allocating a buyer to match with a seller increases the number of

trades if and only if the seller is not already matched. Thus, the marginal contribution of

an unrelated buyer to the number of trades is (1 − )−01 when the buyer is assigned to

match with a related seller and −00 when the buyer is assigned to match with an unrelated

seller. If 1−  −00 , social welfare is maximized by equalizing the marginal contribution

of an unrelated buyer across sellers, i.e., by setting 01 = 00 + ln(1− ). If 1−   −00,

such equalization is not possible, because the marginal contribution of an unrelated buyer

is higher when the buyer is assigned to match with unrelated sellers than with related

sellers, even if only one unrelated buyer is assigned to match with related sellers. In this

case, all unrelated buyers should be assigned to match with only unrelated sellers.

It is socially efficient to give priority to related buyers because doing so reduces the

extent of matching frictions. The number of trades would be maximized if the planner could

allocate all individuals by their identities and assign each individual buyer to match with

a particular seller. This would ensure the shorter side of the market to be always matched.

However, this allocation is not feasible because matching frictions prevent the planner from
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allocating unrelated individuals by their identities. Nevertheless, it is feasible to assign a

related buyer to the particular seller related to him. For this reason, giving priority to the

related buyer in the match with the related seller reduces the extent of matching frictions

and increases the number of trades. This efficiency gain from priority is evident when

 ≥ 1 − −00 . In this case, because a related buyer is active with high probability, the

priority gives a related seller a higher trading probability than an unrelated seller. At the

same time, related sellers do not create congestion for unrelated sellers by competing for

unrelated buyers. When   1 − −00 , partially mixing can increase efficiency, but the

probability that an unrelated buyer is assigned to a related seller is still lower than that

to an unrelated seller. Thus, related sellers do not crowd out unrelated sellers by as much

as in the allocation without priority. Again, the number of trades and, hence, welfare is

higher with priority than without.

It is intuitive that partial mixing is efficient if and only if the number of buyers per seller

is sufficiently high, i.e., if   (). When buyers are abundant, there is high congestion

of buyers for each unrelated seller. Since a related seller has positive probability of failing

to trade with the related buyer, as   1, allocating an unrelated buyer to match with

related sellers with positive probability increases the total number of trades in this case.

Since ()  1 for all 0    1, a necessary condition for partial mixing to be socially

efficient is that the number of buyers exceeds the number of sellers.

The following proposition confirms the allocation in (4.2) as the social optimum and

compares the equilibrium with the social optimum:

Proposition 4.2. In a neighborhood of the steady state, the social optimum is the one

with customer relationship as described by (4.2). Moreover, ()  (). Thus, the

equilibrium is socially efficient when  ≤ () and socially inefficient when   (). The

inefficiency of the equilibrium arises from the absence of mixing when ()   ≤ (),

and from the absence of priority when   ().

It is not surprising that the allocation in (4.2) is socially efficient, given the above

explanation on how the allocation minimizes the difference in an unrelated buyer’s social
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marginal contribution across sellers. It is also not surprising that the equilibrium is socially

efficient when  ≤ (): In this case, both the equilibrium and the social optimum call

for complete separation between related and unrelated individuals.

When   (), the equilibrium is inefficient because it fails to induce the coexistence

of priority and partial mixing. I have explained this failure for Lemma 3.2. In the case

()   ≤ (), the equilibrium has priority but no mixing, because a related seller

would rather keep price at the high level ̄ to attract only the related buyer. In the case

  (), the equilibrium with customer relationship ceases to exist. Because there are a

large number of buyers per seller in this case, a seller’s trading probability with an unrelated

buyer can be higher than with the related buyer. By eliminating priority, a related seller

can attract a buyer more easily without a large price cut.

The source of the inefficiency is the restriction that a seller must offer one price to

all buyers. With this restriction, a related seller ends up choosing either to give priority

to attract only the related buyer or to attract all buyers without priority. If a related

seller can post prices conditional on the buyer’s type, then the seller will be able to use a

relatively low price to attract unrelated buyers and offer a high price and priority to the

related buyer. It can be shown that such conditional pricing can restore efficiency. This

efficiency role of conditional pricing resembles the one established by Shi (2002, 2006) and

Shimer (2005) in related models of the labor market with directed search.

5. Relationship, Prices and Sales

I now analyze prices and sales in the equilibrium and conduct comparative statics.

5.1. Dynamic patterns of pricing and matching

In each period, a related seller posts the high price 1 = ̄ and an unrelated seller posts the

low price 0  ̄. The high price 1 is paid by buyers not only in most trades in any given

period but also most often over time to any given seller. Thus, I call 1 the regular price

and 0 the sale price. The price posted by a seller varies over time between the two prices
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even though there is no change in market conditions. A seller posts the regular price as

long as he has a related buyer and, once the seller loses the relationship, he holds a sale at

price 0 until he gains a relationship. The fact that an unrelated seller cuts the price to 0

with an intention to revert to a higher price 1 in the future accords with the common sense

that 0 is a sale price. Outside the steady state, the two prices are not constant; instead,

they are functions of the fraction of related sellers in the market. As this aggregate state

approaches the steady state, so do the two prices.

The consideration for holding a sale is intertemporal. By holding a sale, a seller intends

to attract buyers and form a relationship, but the relationship will pay off only in the

future through a higher (regular) price. Moreover, it is possible that the sale price is lower

than the marginal cost of the good (see Corollary 5.1 below). Specifically, when the rent to

the seller from a relationship, measured by 1−0, is large enough, an unrelated seller may
find it optimal to incur the temporary loss of a markdown in order to form the relationship.

In contrast, the regular price 1 is always strictly higher than the marginal cost.

The intertemproal consideration also implies that price and the selling probability are

positively correlated across sellers when  is high. In particular, when  is close to one, a

seller who posts the high price 1 in the equilibrium has a selling probability close to one

while a seller who posts the low price 0 has a non-negligible probability of failing to sell.

At first glance, this positive relationship between price and the selling probability seems

to contradict the fundamental trade-off between the two variables in a directed-search

framework. But such a contradiction does exist in the model. In fact, if a type 0 seller

contemplates posting a price higher than 0, the queue length of visitors 0 will indeed

be lower, and so will the seller’s probability to sell. The positive relationship between

price and the selling probability in the equilibrium is fully consistent with the trade-off in

directed search, because the relationship arises across different types of sellers. A related

seller had a related buyer but an unrelated seller does not. By offering priority to explore

the relationship, a related seller is able to both charge a higher price and sell the good

more quickly. Thus, controling only for exogenous characteristics of sellers is not enough

for testing whether sellers make the trade-off between price and the selling probability. One
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must also control for endogenous heterogeneity among sellers, such as the seller’s trading

history that determines the seller’s type in this model.15

5.2. Frequency, duration and size of sales

The frequency of sales is equal to the fraction of trades that occur at the sale price. Because

the number of trades at the sale price in each period is (1− )(1− −0) and the total

number of trades in a period is  (see Lemma 4.1), the frequency of sales is 1− . Most

of the trades occur at the regular price if  is close to one. The duration of a sale is equal

to the expected length of time that an unrelated seller takes to succeed in trade. Because

an unrelated seller’s trading probability is 1− −0, the duration of a sale is 1(1− −0).

The markup implied by each price is

0 =
0

− 1 1 =

1

− 1.

Weighted by the frequency of trades, the average markup is (1 − ) × 0 +  ×
1. The size of the price discount of a sale is 1− 0

1
.

The frequency of sales in the steady state depends only on how frequently the seller

loses a relationship, which is 1−. The duration of a sale depends only on ( ) and not on
(  ), because the queue length 0 has this property (see Proposition 3.3). In contrast,

markups and the size of the price discount of a sale depend on both the extensive and the

intensive margin of the market. The following corollary describes additional features of

comparative statics (see Appendix D for a proof):16

Corollary 5.1. Let  → 0. The steady state has the following features:

(i) 1  0. Also, 1 increases in  and .

(ii) If  ≤ 12, then 0  0 and it increases in  and . If   12, then (a) there

exists 2  () such that 0  0 if and only if  ∈ (0 2); (b)0 decreases in

; and (c) there exists 1  2 such that 0 decreases in  if and only if  ∈ (0 1).
(iii) The size of the discount of a sale increases in . If   12, the size of the discount

15A buyer’s trading probability is positively related to the price, which is standard in directed search.
16A change in a parameter may also induce dynamics in the stock of relationships, . Such dynamics

are examined in Shi (2011) but omitted here to economize on space.
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increases in  when  is small and decreases in  when  is close to ().

(iv) The duration of a sale decreases in . If   1, then there exists 1  0 such that the

duration of a sale decreases in  if and only if  ∈ (0 1).

The behavior of the regular price is as expected. The positive markup implied by the

regular price, 1, reflects the rent that a related seller gets from a relationship.

Setting the regular price below the marginal cost would defeat the purpose of forming a

relationship. When the value of the good increases relative to the cost, 1 increases

because the profit margin increases. Also, as the number of buyers per seller increases,

1 increases to capture the benefit to a seller of the higher demand.

The sale price behaves similarly to the regular price only when  ≤ 12. When   12,

however, the sale price behaves quite differently. First, when the number of buyers per

seller is low, the sale price implies a negative markup, that is, a markdown on the marginal

cost. Second, when the value of the good increases relative to the cost, 0 increases if

and only if it is positive. Putting the result differently, if the sale price implies a markdown,

then the markdown is larger when the value of the good relative to the cost is larger. Third,

0 exhibits a U-shaped response to the buyer/seller ratio. When the buyer/seller

ratio is sufficiently small, the markdown implied by the sale price increases when the

buyer/seller ratio increases. After the buyer/seller ratio increases above the critical level

1, the markdown starts to decrease; i.e., the markup starts to increase but is still negative.

When the buyer/seller ratio increases further to pass the critical level 2, the markup

implied by the sale price becomes positive and increases with .

To explain why the sale price behaves so differently, note first that when   12, a

relationship generates a trade for the related seller with high probability. This motivates

an unrelated seller to cut price deeply in order to form a relationship. If the number

of buyers per seller is also low, the fierce competition among sellers for buyers induces an

unrelated seller to cut price below the marginal cost. As the value of the good relative to the

cost increases, the surplus of trade increases, and so the expected return to a relationship

increases. This large expected gain in the future motivates an unrelated seller to offer a
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larger markdown to attract buyers to form a relationship. Similarly, when the number

of buyers per seller increases from sufficiently low levels, an unrelated seller increases the

markdown to attract the increasing number of buyers. When the number of buyers per

sellers is sufficiently large, however, buyers are readily available and there is no need for

an unrelated seller to offer a markdown. In this case, the markup implied by the sale price

is positive and increases with the buyer/seller ratio.

The size of the price discount of a sale reflects these differences between the sale price

and the regular price. When the value of the good relative to the cost increases, the size of

the discount increases because an unrelated seller reduces the sale price to attract buyers

and a related seller increases the regular price to explore the larger profit margin. When

the number of buyers per seller is sufficiently small, an increase in this number increases

both the markdown and the markup, thus widening the gap between the regular and the

sale price. When the number of buyers per seller is sufficiently high, the incentive to offer a

price cut to form a relationship is weak, in which case an increase in the number of buyers

per seller reduces the price discount in a sale.

In contrast to the non-monotonic responses to  by the markdown and the size of the

discount, the duration of the discount monotonically decreases in . This is because an

increase in the buyer/seller ratio increases the queue length of buyers for each unrelated

seller. Although an increase in demand through  may induce unrelated sellers to offer

deeper discounts, a seller finds a trade more quickly and so a sale ends more quickly.

The above responses of the equilibrium to market conditions have several implications.

First, if customer relationship is important in the retail market, then markups change with

the marginal cost, in contrast to the constant markup in macro models based on monopo-

listic competition. Second, goods with a higher profit margin have a higher variability in

prices over time even for the same seller, because the gap between the regular price and the

sale price is larger for such goods. Third, the regular price is relatively more stable than

the sale price. Because a related seller’s trading probability is higher than an unrelated

seller’s, the same change in the price amounts to a larger change in expected profit for
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a related seller than for an unrelated seller. To cover the increased cost, only a smaller

change in the regular price is needed than in the sale price. Fourth, the duration of a sale

is a more reliable indicator of a change in the buyer/seller ratio than prices and markups,

since it responds to such a change monotonically in the intuitive direction.

I now discuss the response of the equilibrium to changes in . As explained for (ii) of

Proposition 3.3, an increase in  both increases the extensive margin of demand for goods

and tilts demand toward related sellers. As a result, a higher  does not necessarily increase

the queue length of buyers for an unrelated seller, in contrast to the effect of a higher .

Specifically, if   1 and if  is sufficiently small, an increase in  has a stronger effect of

tilting demand than increasing the general demand. In this case, a higher  reduces the

queue length of buyers for an unrelated seller and increases the duration of a sale, as stated

in (iv) of the above corollary.
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Queue length and duration of a sale

Figure 1.2

Markups

A related difference between  and  is the effect on the average price and the average

markup. Although an increase in  can induce non-monotonic responses in the sale price,

the regular price always increases in . Since most trades occur at the regular price, the

average price and the average markup increase in . In contrast, an increase in  can

lead to non-monotonic responses in the regular price, the average price and the average

markup. As an illustration, consider the following parameter values:  = 7545 × 10−4,
 = 1,  = 0311,  = 0956,  = 0895.17 Figures 1.1 and 1.2 illustrate the response

17See Shi (2011) for the calibration that led to these parameter values.
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of the steady state to changes in  from 01 to 095, while other parameters are fixed at

the values above. The queue length of buyers for an unrelated seller has a hump-shaped

dependence on , which results in a U-shaped dependence on  of the duration of a sale

depicted in Figure 1.1 as  (in weeks). Figure 1.2 shows that the two markups

depend on  non-monotonically. In addition, the average markup (depicted as )

is hump-shaped.

The hump-shaped dependence of the average markup on  reflects the fact that the

return of a relationship to a seller is larger at intermediate values of  than at both high and

low values of . This return is low at low values of  because the related buyer is unlikely

to be active in the future. This return is also low at high values of  because, when almost

all sellers have a related buyer, competition among them drives down the regular price.

In contrast, at intermediate values of , there is a sizable benefit of giving priority to the

related buyer and charging a high regular price. It is remarkable that prices and markups

can fall when the demand increases through . This result offers an explanation for the

finding by Chevalier et al. (2003) that prices of particular items in a supermarket chain

typically fall when the items experience peak seasonal demand. Specifically, the particular

items are likely demanded by a store’s regular customers. An increase in the demand for

such items increases competition for the regular customers and reduces prices.

6. Conclusion

Modeling customer relationship in a model of directed search, I prove that there exists

a unique equilibrium in which a seller gives priority to the related buyer and a buyer

makes repeat purchases from the related seller. Customer relationship always improves

welfare, but the equilibrium is socially efficient only when the buyer/seller ratio in the

market is below a critical level. When the buyer/seller ratio exceeds this critical level,

the equilibrium is inefficient because it fails to induce the coexistence of trading priority

for related buyers and partial mixing of buyers for related sellers. Customer relationship

induces price variations for individual sellers over time even when market conditions do

33



not change. A seller posts a (high) regular price to sell to the related buyer and, once the

seller loses the relationship, the seller posts a (low) sale price to sell to unrelated buyers

until he gains a relationship. I also examine how market conditions affect the aggregate

stock of relationships, markups, the size and the duration of a sale.

Endogenous entry of sellers and dynamics are abstracted from this paper, but they can

be incorporated (see Shi, 2011). With endogenous entry of sellers, in particular, changes in

the intensive margin of the market can affect the stock of relationships and the duration of

a sale by affecting the buyer/seller ratio. Another feasible extension of the model is to allow

each buyer to contact two or more sellers in each period, which will lead to endogenous

breakups of relationships in the equilibrium.

In addition to explaining customer relationship, this model has several features that

can be useful for future work to build models where aggregate fluctuations are consistent

with price dynamics at the micro level. The model has many buyers and sellers, it is

dynamic, and it endogenizes customer relationship. Consistent with the microdata, the

model shows that prices exhibit large variability over time for the same item at a given

store, sales account for a significant part of this variability, and the regular price is less

responsive to market conditions than the sale price. Moreover, an increase in the particular

extensive margin of demand, , can reduce the average markup. This result can be useful

for generating counter-cyclical markups that are central to business cycle models which

focus on demand shocks. Finally, the model reveals that the duration of a sale responds

to market conditions more accurately than prices do. A macro model with sales should

explicitly incorporate the duration of a sale as part of price adjustments.
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Appendix

A. Proofs of Lemmas 3.1 and 3.2

Let me prove Lemma 3.1 first. Because (+1 1)  0, comparing (2.9) and (2.12) yields

1  01 (= 11). Then, a type 1 buyer’s optimal decision implies 11 = 0, as stated in

(i) of the lemma. Now, the results 10 = 0 and 1 = 1 are equivalent to each other. To

prove 1 = 1, there are two cases to consider. The first case has 00 ≤ 01. In this case,

10 = 00 ≤ 01  1. The strict inequality 10  1 implies 1 = 1. The second case has

00  01. In this case, 00 = 1, and so 01 = 0. Recall that 11 = 0 (since 11 = 0). From

(2.14), I compute the payoff to a seller who has a related buyer in this case as

1() =
1

1 + 
max
1
{1(+1 1) + 0(+1)} , s.t. (2.3).

If 1  1, the seller can increase the payoff by reducing 1 slightly to induce 1 = 1. This

price reduction does not change other buyers’ choices, because the seller only attracts his

related buyer in this case. But this price reduction will increase the seller’s value, which

implies that 1  1 cannot be an equilibrium outcome.

To prove (ii) in Lemma 3.1, suppose 00 = 0 (i.e., 01 = 1), to the contrary. Since

00 = 0 in this case, and since 10 = 0 (as a result of 10 = 0), then (2.11) yields 00 =

 − 0 + 1(+1). A seller without a related buyer can set 0 = 1 − , where   0 is

sufficiently small. Doing so will yield 00  1  01 and, hence, 00 = 1 that contradicts

the supposition 01 = 1. To prove (iii) in Lemma 3.1, note that 01  0 implies 00 ≤ 01.

Since 1  01, then 1  00 = 10 in this case. For (iv) in Lemma 3.1, note that

1 ≥ 10 = 00, where the inequality follows from 1 = 1. If 01 = 0, the formula of 1

in the above proof is valid. If 1  00 in this case, a seller with a related buyer can raise

1 slightly without disturbing the outcome 1 = 1, thus increasing his payoff. Therefore,

1 = 00 must hold if 01 = 0. This completes the proof of Lemma 3.1.

Now turn to Lemma 3.2. Suppose, contrary to the lemma, that an equilibrium with

partial mixing (and priority) exists. Let a type 1 seller’s optimal choice be 1 and the

induced queue length of unrelated buyers be 1. The pair (1 1) solves a problem similar
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to (3.7), except that ̃1 is replaced with 1 and that all value functions are the ones

generated under the supposition that type 1 sellers attract both types of buyers. The

additional constraint on a type 1 seller is that the choice of attracting both types of buyers

should weakly dominate the choice of attracting only the related buyer with price ̄:

h
1− (1− )−1

i
(+1 1) ≥ (+1 ̄). (A.1)

If (A.1) is binding, then the type 1 seller can gain by deviating to ̄ that attracts only

the related buyer. Thus, for an equilibrium with partial mixing to exist, (A.1) cannot be

binding. In this case, the first-order condition of a type 1 seller’s problem yields:

 
0 ()− 0(+1) =

(1− )2(1− −1)2−1∆(+1)

(1− ) [1− −1 ]2 +  [1− (1 + 1)−1]
, (A.2)

where ∆ is defined in (3.4). Moreover, with 1() replacing ̃1() in (3.7), the seller’s

Bellman equation yields:

(1 + )1()− 0(+1) =
[1− (1 + 1)

−1] [1− (1− )−1]2∆(+1)

(1− ) [1− −1 ]2 +  [1− (1 + 1)−1]
. (A.3)

A type 0 seller’s optimization problem is (3.1), which yields the optimality conditions

(3.2) and (3.3). By equating the two expressions for [ 
0 ()− 0(+1)] in (3.2) and (A.2),

I get the following relation between 0 and 1:

0 = (1) ≡ 1 + ln

(
1

1− 

"
1 +



1− 

[1− (1 + 1)
−1]

(1− −1)2

#)
. (A.4)

It can be verified that 0()  1 for all   0.

I prove that these conditions lead to the result 0()  1(), which violates the equi-

librium requirement that it be optimal for a type 1 seller to give priority to the related

buyer. To start, I substitute (1+ )0() from (3.3) and (1+ )1() from (A.3) to rewrite

the relation 0()  1() as

1− (1 + 0)
−0 

[1− (1 + 1)
−1] [1− (1− )−1]2

(1− ) [1− −1 ]2 +  [1− (1 + 1)−1]
.
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Here I have used the fact that ∆(+1)  0, where ∆ is defined in (3.4). Substituting

0 = (1) from (A.4), I rewrite the above condition further as ( 1)  0, where 

temporarily denotes  = 1
1− and  temporarily denotes

( ) = ln

(


"
1 + (− 1)1− (1 + )−

(1− −)2

#)
− (− 1)[1 + 1− (21 + 1)

−1 ]
(1− −1)2



Note that   1. Also, (1 ) = 0 for all   0. Compute:

( )


=
1


+

"
− 1 + (1− −)2

1− (1 + )−

#−1
− [1 + 1− (21 + 1)

−1]
(1− −1)2



From this expression it is easy to verify that

(1 )


= 1− 

1− −
 0 for all   0.

It is also easy to verify that
()


is decreasing in  for all   0 and all   1. Thus, for

all   1 and   0, the following results hold:

( )




( )



¯̄̄̄
¯
=1

 0, ( )  (1 ) = 0.

This establishes the result 0()  1() under partial mixing and, hence, proves that an

equilibrium with partial mixing (and priority) does not exist. QED

B. Proof of Proposition 3.3

Let me first prove part (ii) of Proposition 3.3. The dynamics of  are determined by (3.11),

given the initial value of . For each value of  on the dynamic path, 0 is given by (3.10).

Because (3.10) and (3.11) depend only on ( ), the steady state and the dynamics of

( 0) depend only on ( ). Let me solve the steady state of ( 0), denoted (
∗ ∗0). In

the steady state, +1 =  = ∗, and so (3.11) and () = 0 yield:

∗ = 1(∗0) ≡
"
1 +

1− 

1− −∗0

#−1
. (B.1)

Rewriting (3.10) as  = 
h
1 + 1


(1

− 1)0

i−1
and substituting ∗ = 1(∗0), I get:

∗ = 2(∗0) ≡ 

"
1 +

1− 



∗0
1− −∗0

#−1
. (B.2)
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The steady-state values, (∗ ∗0), solve ∗ = 1(∗0) = 2(
∗
0). It is easy to verify that

10()  0, 20()  0, 1(0) = 0   = 2(0), and 1(∞) = 1
2−  0 = 2(∞).

Thus, there exists a unique ∗0 ∈ (0∞) that solves 1(∗0) = 2(∗0). This result and part

(i) proven below establish that the steady state is unique. The implied solution for ∗

satisfies ∗ ∈ (0 1), because 1(∗0) ∈ (0 1). Also, ∗   because 2(∗0)  . Thus,

0  ∗  min{1 }, as is stated in part (ii) of the proposition. Also, it is straightforward
to use (B.1) and (B.2) to verify that ∗


 0,

∗0


 0, and ∗


 0.

Continuing the proof of part (ii), I show that the steady state of  is locally stable.

Because  is the only aggregate state variable, this result proves that the steady state is

locally stable. The steady state of  is locally stable if and only if |0(∗)|  1, where

 is defined in (3.11). Using (3.10) to compute  0() = (0 − )(1 − ) first and then

computing 0, I have:

0() = (1− + 0)
−0 − (1− ), where 0 = ().

Clearly, 0()  −(1−)  −1. Also, 0()  0
−0  1. Thus, |0()|  1 for all  such

that 0 = ()  0. In particular, |0(∗)|  1.
For part (i) of Proposition 3.3, let me first presume ∆(+1)  0 (which will be verified

in part (iii)) and find the conditions for 1() ≥ 0() and (3.9). Consider the condition

1() ≥ 0(). Using (3.5) and  
0 in (3.2), I compute:

̄ =  + 1(+1)− 0(+1)− −0∆(+1). (B.3)

Then, a type 1 seller’s expected surplus and the value function are

 [̄− + 1(+1)− 0(+1)] = (1− −0)∆(+1), (B.4)

(1 + )1() = 0(+1) + (1− −0)∆(+1). (B.5)

Comparing (B.5) with (3.3), I express the condition 1() ≥ 0() as
0

0−1 ≥ 1−. Because


−1 lies in (0 1) and is decreasing for all   0, this condition is equivalent to 0 ≤ ()

where  is defined by


 − 1 = 1− . (B.6)
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Note that () is an increasing function. Moreover, because − ln(1 − )   for all

 ∈ (0 1), it can be verified that 
−1  1−  at  = − ln(1 − ), which implies () 

− ln(1− )   for all  ∈ (0 1). When  → 0, () → 0 and
()

→ 2. When  → 1,

()→∞ and (1− )()→ 0.

Now consider (3.9), the condition that requires it to be not optimal for a type 1 seller

to attract both types of buyers. Still maintain ∆(+1)  0. Because the queue length of

unrelated buyers attracted by the best deviation of this kind, ̃1, satisfies (A.2), consistency

between (A.2) and (3.2) requires 0 = (̃1), where  is defined in (A.4). The deviating

price ̃1 can be retrieved from (3.8). With  
0 − 0 = −0∆(+1), the best deviation is

̃1 = −1(0), ̃1 =  + 1(+1)− 0(+1)− ̃1
−0∆(+1)

(1− −̃1)(1− )
. (B.7)

Substituting ̃1 from (B.7), ̄ from (B.3), and 0 = (̃1), I can write (3.9) equivalently as

(̃1) ≤ 0, where  denotes:

() = 2 −
h
2− 2+ 2 + (1 + )

i
 + (1− )(1− + ). (B.8)

Compute:

 0() = 22 − [3− + 2 + (1 + )]  + 1− 
 00() =  [4 − 4− 2] .

Thus,  00()  0 if and only if   ln(1 + 2

4
). Because  0(0) = −2  0 and  0(∞) = ∞,

the property of  00 implies that there exists 4  ln(1 + 2

4
) such that  0()  0 if and only

if   4. In turn, because (0) = 0 and (∞) =∞, the property of  0 implies that there
exists 5() ∈ (4∞) such that ()  0 if and only if   5(). That is, (̃1) ≤ 0 if and
only if ̃1 ≤ 5(). Because () defined in (A.4) is an increasing function and 0 = (̃1),

then ̃1 ≤ 5() if and only if

0 ≤ () ≡ (5()) ∈ (0∞). (B.9)

Lemma B.1 below proves that if the deviation indeed attracts type 0 buyers (i.e., if ̃1  0)

and if it is optimal for a type 1 seller to give priority (i.e., if 0 ≤ ()), then () ≥ ()

for all  ∈ [0 1]. If 0 ≤ (), then 0 ≤ (), and so it is not profitable for a type 1 seller

to deviate to attract both types of buyers.
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Therefore, the requirement 1() ≥ 0() and the requirement (3.9) are both satisfied

if and only if 0 ≤ (). To express this condition in terms of parameters, recall that the

steady-state value ∗0 satisfies 2(
∗
0) = 1(∗0). Because 2()  1() if and only if   ∗0,

the steady state satisfies ∗0 ≤ () if and only if 2(()) ≤ 1(()), which can be

rewritten as  ≤ () where

() ≡ [1− −()] + (1− )()

[2− − −()]
. (B.10)

Together with part (i), this establishes that a steady state with complete separation exists

if and only if  ≤ (). Under this condition, the steady state is unique. It is clear from

(B.6) that () depends only on  and not on other parameters such as (  ). Thus,

() depends only on . Because (1)→∞ and lim→1(1− )() = 0, then (1) = 1.

Moreover, if  is treated as a separate argument from  in (B.10), then  can be written

as ̃( ()). For any given  ∈ (0 1), the derivative of ̃( ) with respect to  has

the same sign as (2− ) − 1−  + , which is strictly positive because   1 + . For

all   1, because   − ln(1 − ) and the value of  at  = − ln(1 − ) is equal to

− 1−

ln(1− ), then ()  − 1−


ln(1− ) ≥ 1, where the second inequality follows

from − ln(1− ) ≥ .

For part (iii) of Proposition 3.3, recall that ̄ in (3.5) is derived from the relation

1( ̄) =  
0 (). Hence, (2.8) implies 1() = 0(). Substituting  

0 from the first

condition in (3.2) into (2.8) for  = 0 yields the expression for  in (3.14). Combining

the two conditions in (3.2) to eliminate  
0 yields the expression for 0 in (3.12), and

substituting the result 1 = 0 into (B.3) yields the expression for ̄ in (3.13). Because


1−−  1 for all   0 and ∆  0, it is clear that ̄  0. Let me delay the proof of ̄  .

To derive the dynamic equation for ∆ in (3.15) and verify ∆()  0 for  near the

steady-state value ∗, I subtract (3.3) from (B.5) to get:

1()− 0() =
1

1 + 

h
(1− −0)− 1 + (1 + 0)

−0
i
∆(+1). (B.11)

The definition of ∆() in (3.4) and the result 1 = 0 then imply the dynamic equation
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for ∆ in (3.15). Setting ∆() = ∆(+1) = ∆∗ and 0 = ∗0 in (3.15), I obtain:

∆∗ =
(1 + )( − )

1 +  − (1− −∗0 ) + 1− (1 + ∗0)−
∗
0
. (B.12)

Because   0, 1  (1− −
∗
0 ), 1  (1 + ∗0)

−∗0 and   , then ∆∗  0. If  is close to

∗, then 0 = () is close to ∗0, in which case ∆() is close to ∆
∗ and, hence, ∆()  0.

With (B.12) and (3.13), I can deduce that ̄∗   if and only if

(1 +  − )(1− −
∗
0 ) + 1− (1 + ∗0)

−∗0  0.

Note that the left-hand is an increasing function of ∗0, and its value is 0 if 
∗
0 = 0. Because

∗0  0, then the left-hand side is strictly positive, indeed. Thus, if  is close to ∗, then

̄  . This completes the proof of Proposition 3.3. QED

Lemma B.1. If 0 ≤ () and ̃1  0, then () ≥ ().

Proof. Assume 0 ≤ () and ̃1  0. Define 1 by (1) = , where () is defined

by (A.4). Because (5) =  and () is strictly increasing,  ≥  if and only 5 ≥ 1.

By the proof above, () defined by (B.8) satisfies ()  0 if and only if  ∈ (0 5). Thus,
5 ≥ 1 if and only if (1) ≤ 0. I prove (1) ≤ 0 in the following steps.
First, I obtain a restriction on  that is needed for the maintained assumptions 0 ≤

() and ̃1  0 to hold. Note that because (1) =  ≥ 0 = (̃1) and () is strictly

increasing, then 1 ≥ ̃1  0. Also note that the function
[1−(1+)−]
(1−−)2 is strictly increasing

and its value at  = 0 is 12. Because 1  0, (A.4) implies

 = (1)  1 + ln
2− 

2(1− )2
.

Equivalently, 1   − ln 2−
2(1−)2 . Because 1  0, this condition requires   ln

2−
2(1−)2 .

With the definition of  in (B.6), I express this requirement on  as

1−  


 − 1
¯̄̄̄
= 2−

2(1−)2
=
2(1− )2

(3− 2) ln
2− 

2(1− )2
.

Write this condition further as

(
3

2
− )− (1− ) ln

2− 

2(1− )2
 0.
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It can be verified that this is equivalent to  ∈ (0 ), where  ≈ 07735. Because

() is an increasing function, then   ln 2−
2(1−)2 if and only if () ∈ (0 ), where

 = () ≈ 24811.
Second, I find a sufficient condition for the desired result (1) ≤ 0. The function ()

has the property that if () ≤ 0 for some   0, then ()  0 for all  ∈ [0 ]. Because
1   − ln 2−

2(1−)2 , then 1   + ln(1− ). Thus, a sufficient condition for (1) ≤ 0
is ( + ln(1− )) ≤ 0.
Third, I verify (() + ln(1 − )) ≤ 0 for all  ∈ (0 ). Note that +ln(1−) =

(1− ) = 1−  + , where the second equality follows from using the definition of 

to substitute . Then,

(() + ln(1− ))

= [(1− ) + (1 + )()]
n
− ln(1− )− [+()][1−+()]

(1−)+(1+)()
o
.

Clearly, (() + ln(1 − )) ≤ 0 if and only if the expression in {} is negative. Using
(B.6) to substitute  = 1− 

−1 , I can write the expression in {} above as (), where

() = ln

Ã
 − 1


!
− [1− (1 + )−][1 +  − (1 + 2)−]

(1− −)[2− (3 + )− + −2]
.

This function has no parameter. It can be verified that (0) = 0 and ()  0 for all

 ∈ (0 ). Thus, (() + ln(1− )) is negative for all  ∈ (0 ). That is, (1) ≤ 0
whenever 0 ≤ () and ̃1  0. QED

C. Proofs for Section 4

C.1. Proof of Lemma 4.1

In the steady state, (2.15) yields (1 − 1)
−(11+01) = (1 − )

h
1− −(10+00)

i
. Substi-

tuting into the expression for  yields  = .

Consider the allocation described by (4.2), with trading priority for related buyers. I

prove that 01  0 if and only if   (), where () is defined by (4.3) in the lemma.

Suppose 01  0 first. Then 01 = 00 + ln(1 − ), which indeed satisfies 01  0 iff

00  − ln(1− ). In the case 01  0, substituting 01 = 00 + ln(1− ) into the steady-

state version of (2.15) yields  = 1 − −00, which is denoted as 3(00). The constraint
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(2.7) yields: ( 

− 1) = 1


00 + ln(1 − ). Substituting  = 1 − −00 into the right-hand

side of this condition yields

 = 
∙
1 +

1



µ
ln(1− ) +

00
1− −00

¶¸−1
≡ 4(00).

The level of 00 in the steady state solves 3() = 4(). It is easy to verify that 30()  0,

40()  0 and 3(∞) = 1  0 = 4(∞). Thus, there is at most one solution to 3(00) =
4(00). This solution exists and satisfies 00  − ln(1− ) if and only if 3()  4() at

 = − ln(1− ). At  = − ln(1− ), 3() =  and 4() = 
h
1− 1−

2
ln(1− )

i−1
. Thus,

the solution for 00 exists and satisfies the requirement 00  − ln(1 − ) in the current

case if and only if   (), where () is defined by (4.3). Suppose 01 = 0 next. Then,

00 ≤ − ln(1− ). In this case, a derivation similar to that in Appendix B shows that 00

solves 1() = 2(), where 1() is defined by (B.1) and 2() by (B.2). Moreover, this

solution for 00 satisfies the requirement 00 ≤ − ln(1− ) if and only if 1() ≥ 2() at

 = − ln(1− ). This requirement is equivalent to  ≤ ().

Because lim→0 1 ln(1−) = −1 and lim→1(1−) ln(1−) = 0, then (0) = (1) =

1. For all  ∈ (0 1), the fact − ln(1− )   implies ()  1. This fact also implies

()  − ln(1− )− 1− 


ln(1− ) =

−1

ln(1− ), all  ∈ (0 1).

I now prove that the allocation in (4.2) together with priority for related buyers yields

higher welfare than the allocation without priority. As explained immediately before

Lemma 4.1, this amounts to proving   1 − −. Because  = , it suffices to prove

  1− −. Consider first the case where   (). In this case, 01  0, and 00 solves

3() = 4(), where 3 and 4 are defined above. Denote  temporarily as the solution

to 3() = 1− −. Then,   1− − if and only if 4()  1− −. Solving  = ,

I rewrite 4()  1− − as − ln(1−)  , which is satisfied for all  ∈ (0 1]. Consider
next the case where  ≤ (). In this case 01 = 0, 00 ≤ − ln(1 − ), and 00 solves

1() = 2(), where 1 and 2 are defined by (B.1) and (B.2). Denote  as the solution

to 1() = 1 − −. Then,   1 − − if and only if 2()  1 − −. Solving  as

 = − ln[1− (1− )( − 1)], I express 2()  1− − as ()  0, where

() =  − ( − 1) + ln[1− (1− )( − 1)].
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It is clear that (0) = 0. Also, 0()  0 if and only if 
−1 − (+1− )(1−)  0. The

expression on the left-hand side of this inequality is strictly decreasing in . This expression

is equal to 1− (1− )2  0 at  = 0 and to −∞ at  =∞. Thus, there exists  ∈ (0∞)
such that the expression is strictly positive if and only if   . That is, () is increasing

for    and decreasing for   . Since (0) = 0, then ()  0 for all  ≤ () if and

only if (())  0. To prove (())  0, note that since () 
−1

ln(1 − ), then

ln[1− (1− )( − 1)]  −, and so

()  
 − ( − 1)− = ( − 1)  0,

where the last inequality follows from   1. QED

C.2. Optimality conditions of the social planner’s problem

In the social planner’s problem, (4.1), let 1 be the Lagrangian multiplier of (2.6) and 0

the Lagrangian multiplier of (2.7). Then, the socially efficient choice of 1 satisfies:

[ − + 0(+1)] −(11+01) − 1
= 0 if 1 ∈ (0 1); ≤ 0 if 1 = 0; ≥ 0 if 1 = 1. (C.1)

Similarly, the efficient choices of (11 10 01 00) satisfy:

(1− 1) [ − + 0(+1)] −(11+01) ≤ 1 and 11 ≥ 0 (C.2)

[ − + 0(+1)] −(10+00) ≤ 1 and 10 ≥ 0 (C.3)

(1− 1) [ − + 0(+1)] −(11+01) ≤ 0 and 01 ≥ 0 (C.4)

[ − + 0(+1)] −(10+00) ≤ 0 and 00 ≥ 0, (C.5)

where the two inequalities on each line hold with complementary slackness. The envelope

condition is:

(1 + ) 0() = [ − + 0(+1)]
h
−(10+00) − (1− 1)

−(11+01)
i

+1 [(1− 1)− 11 + 10] + 0 (00 − 01 − ) .
(C.6)
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C.3. Proof of Proposition 4.2

I prove that Proposition 4.2 holds in the steady state. For the moment, assume  0()  0

in the social optimum so that −+ 0(+1)  0 (which will be verified later). I establish

(i) - (iv) below that together prove that the social optimum is characterized by (4.2):

(i) 1  0 and 0  0, where 1 and 0 are the Lagrangian multipliers of (2.6) and (2.7):

Constraints (2.6) and (2.7) imply that all queue lengths are finite. Since −+ 0(+1)  0,

then (C.3) implies 1  0 and (C.5) implies 0  0.

(ii) At least one of 00 and 10 is strictly positive near the steady state: If 00 = 0 and

10 = 0, then (2.15) implies  = 0 in the steady state. In this case, (2.7) is violated because

it becomes  = 0.

(iii) 1 = 1 and 11 = 10 = 0: If 1 = 1, then 11 = 10 = 0 by (2.6). So, it suffices to

prove 1 = 1. Suppose 1  1, to the contrary. Because a related buyer visits unrelated

sellers with probability 1−1  0, at least one of 11 and 10 is strictly positive. Also, with
1  1, (C.1) implies 1 ≥ [ − + 0(+1)] −(11+01) and 1 ≥ 0, with complementary
slackness. Consider first the case where one of the two inequalities is strict, i.e., either

1  [ − + 0(+1)] −(11+01) or 1  0. Then, 11 = 0 by (C.2). Since at least one

of 11 and 10 is strictly positive when 1  1, then 10  0, and so (C.3) holds with

equality. This equality and the inequality, 1 ≥ [ − + 0(+1)] −01, together yield

01 ≥ 10 + 00  0. Thus, (C.4) holds with equality. With this equality, the inequality

(1− 1)
−01  −(10+00), and (C.5), I have the following contradiction:

0 = (1− 1) [ − + 0(+1)] −01  [ − + 0(+1)] −(10+00) ≤ 0.

Thus, 1  1 is not socially efficient if either 1  [ − + 0(+1)] −(11+01) or 1  0.

Now consider the remaining case where 1 = [ − + 0(+1)] −(11+01) and 1 = 0.

With this expression for 1, (C.4) implies 1 ≤ 0, where the inequality becomes equality

if 01  0. If 01  0, then 1 = 0. If 01 = 0, then 00  0 and so (C.5) holds with

equality. This equality and (C.3) together imply 1 ≥ 0, which is consistent with 1 ≤ 0

only if 1 = 0. Thus, the current case has 1 = 0. Because at least one of 10 and

00 is strictly positive, as shown in (ii) above, (C.3) and (C.5) have at least one equality.
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This equality, together with 0 = 1, implies [ −  +  0(+1)]−(10+00) = 1. Since

1 = [ − + 0(+1)] −(11+01) in the current case, then 11 + 01 = 10 + 00. With this

result, adding up (2.6) and (2.7) yields 10 + 00 = . Substituting this result into (2.15)

solves  = 1 − − in the steady state. Then,  = 1− −. Thus, the allocation in this

case yields the same welfare level as the allocation without priority. By Lemma 4.1, this

allocation is not socially efficient. Hence, 1  1 is not socially efficient.

(iv) 00  0, 1 ≥ 0, 01 ≥ 0 and 01 ≥ 00 + ln(1− ), where the last two inequalities

hold with complementary slackness: Because 10 = 0 by (iii), then 00  0 by (ii), and

(C.3) yields 1 ≥ 0. The complementary slackness on 01 follows from (C.4), (C.5) and

00  0, as explained prior to Lemma 4.1.

Now I prove that  0()  0 in the steady state, which has been assumed above.

Substituting (4.2) into (C.6), I get:

(1 + ) 0() = [ − + 0(+1)] [−00 − (1− )−01] + 0 (00 − 01 − )
= [ − + 0(+1)] [(00 − 01 + 1− ) −00 − (1− )−01 ] .

To obtain the second equality, I have substituted 0 from (C.5) with the knowledge that

00  0 and 01 ≥ 0. If 01  0, then 01 = 00+ln(1−), in which case the above equation
in the steady state yields

 0() =
( − )[− ln(1− )− ]

 + 1− [− ln(1− )− ]−00
.

Since 00  − ln(1 − ) in this case (with 01  0) and − ln(1 − )   for all  ∈ (0 1],
then

1− [− ln(1− )− ]−00  (1− )
∙
1

1− 
+ + ln(1− )

¸
.

The expression in [] on the right-hand side is strictly increasing in , and its value is equal

to 1 at  = 0. Thus, the expression is positive for all . This shows that if 01  0 then

 0()  0 for all  ∈ (0 1]. If 01 = 0, then  0() in the steady state is given as

 0() =
( − )[(00 + 1− )−00 − 1 + ]

 + 2− − (00 + 1− )−00
.

The derivative of the expression [( + 1− )− − 1 + ] with respect to  is positive if and

only if   . Thus, the expression is maximized at  = . Also, the expression at  = 0 is
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equal to 0. Because 00  − ln(1− ) in the current case (with 01 = 0), then a sufficient

condition for (00 + 1− )−00 − 1 +   0 is [( + 1− )− − 1 + ]=− ln(1−)  0. It is

easy to verify that the latter condition is satisfied, noting that − ln(1− )  . Moreover,

because ( + 1− )− is maximized at  = , then

2− − (00 + 1− )−00  2− − (+ 1− )− = 2− − −  0.

Therefore, if 01 = 0, then  0()  0 also holds.

Finally, for all  ∈ (0 1), the inequality ()  () follows from part (i) of Propo-

sition 3.3. The comparison between the equilibrium and the social optimum stated in

Proposition 4.2 is evident. QED

D. Proof of Corollary 5.1

Let → 0. In the steady state, (3.12) - (3.15) yield:

0 = (

− 1)[1− 1

(0)
],

1 = (

− 1)[1− 1

(2−)0−(1+0−) ],

1− 0
1
= (1− 


)[ 0
1−−0 − 1]

.h


+ (2− )0 − (2− + 0)

i
,

(D.1)

where the function  temporarily denotes

( ) =
 − 1


h
2− − (1 +  − )−

i
.

It is easy to verify the properties of 1 stated in (i) of the corollary. To prove the

properties of 0 stated in (ii) of the corollary, let me first examine ( ). Note that

(0 ) = 1. Substituting  = 1 − 
−1 from (B.6) yields ( ) =

−1


 1. Compute

the derivatives of ( ) with respect to :

21( ) = [( − 1) + 1](2− − −) + ( − )[1− (1 + )−],


[21( )] = − [(2− )2 +  − − 1] .

Note that lim→0[21( )] = 0. The expression [(2− )2 +  − − 1] in the derivative


[21( )] is strictly increasing in , its value at  = 0 is 1 − 2, and it approaches
∞ as  → ∞. If  ≤ 12, then 


[21( )]  0 for all   0, and so 21( ) 

lim→0[21( )] = 0. This further implies that ( )  (0 ) = 1 for all   0. Since
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0 is an increasing function of  (see Proposition 3.3), then (0 )  1 for all   0

when  ≤ 12. If   12, on the other hand, 

[21( )] is negative if and only if  is

sufficiently small. Since lim→0[21( )] = 0, there exists   0 such that 1( )  0

if and only if  ∈ (0 ). In turn, there exists    such that ( )  (0 ) = 1 if

and only if  ∈ (0 ). Moreover,    because ( )  1. Since 0 is an increasing

function of  and lim→() 0() =  (see the proof of Proposition 3.3), there exist 1 and

2, with 0  1  2  (), such that 0(1) =  and 0(2) = . Moreover, 1(0 )  0

if and only if  ∈ (0 1), and (0 )  1 if and only if  ∈ (0 2).
From (D.1), it is evident that 0  0 if and only (0 )  1. Thus, if  ≤ 12,

then 0  0; if   12, then 0  0 if and only if  ∈ (0 2). This proves
(a) in (ii) of Corollary 5.1. The property (b) in (ii) follows from that fact that 0

increases in  if and only if 0  0. For (c) in (ii) of the corollary, note that

markups depend on  only through 0. If  ≤ 12, then 0 increases in 0 and,

hence, in . If   12, 0 decreases in 0 and, hence, in  if and only if  ∈ (0 1),
where 1  2 is defined above.

It is clear from the expression for (1 − 0
1
) in (D.1) that the size of the price discount

of a sale increases in . The dependence of the size of the discount on , stated in (iii)

of the corollary, follows from the dependence of the two markups on .

For (iv) of Corollary 5.1, it is evident that the duration of a sale decreases in  if and

only if 0 increases in . Recall that 0 solves the equation 1() = 2(), where 1 is

defined by (B.1) and 2 by (B.2). From this equation it can be verified that 0 increases

in  if and only if 0  2, which is equivalent to 1(2)  2(2) and, hence, to

0  (2− − −
2

)−
h
1 + (1− )− −

2
i
.

At  = 0, the expression on the right-hand side is equal to   0; at  = 1, the expression

is equal to ( − 1)(1 − −). Moreover, the derivative of the expression with respect to 

is −2
h
1− + (1− )−

2
i
. If   1, this derivative is negative and the expression at

 = 1 is negative. In this case, there is a unique 1 ∈ (0 1) such that the expression is
positive if and only if  ∈ (0 1). QED
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