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Abstract

We derive marginal conditions of optimality (i.e., Euler equations) for a general class of

Dynamic Discrete Choice (DDC) structural models. These conditions can be used to estimate

structural parameters in these models without having to solve for or approximate value functions.

This result extends to discrete choice models the GMM-Euler equation approach proposed by

Hansen and Singleton (1982) for the estimation of dynamic continuous decision models. We first

show that DDC models can be represented as models of continuous choice where the decision

variable is a vector of choice probabilities. We then prove that the marginal conditions of

optimality and the envelope conditions required to construct Euler equations are also satisfied in

DDC models. The GMM estimation of these Euler equations avoids the curse of dimensionality

associated to the computation of value functions and the explicit integration over the space of

state variables. We present an empirical application and compare estimates using the GMM-

Euler equations method with those from maximum likelihood and two-step methods.
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1 Introduction

The estimation of Dynamic Discrete Choice (DDC) structural models requires the computation of

expectations (value functions) defined as integrals or summations over the space of state variables.

In most empirical applications, the range of variation of the vector of state variables is continuous

or discrete with a very large number of values. In these cases the exact solution of expectations

or value functions is an intractable problem. To deal with this dimensionality problem, applied

researchers use approximation techniques such as discretization, Monte Carlo simulation, poly-

nomials, sieves, neural networks, etc.1 These approximation techniques are needed not only in

full-solution estimation techniques but also in any two-step or sequential estimation method that

requires the computation of value functions.2 Replacing true expected values with approximations

introduces an approximation error, and this error induces a statistical bias in the estimation of

the parameter of interests. Though there is a rich literature on the asymptotic properties of these

simulation-based estimators,3 little is known about how to measure this approximation-induced

estimation bias for a given finite sample.4

In this context, the main contribution of this paper is in the derivation of marginal conditions

of optimality (Euler equations) for a general class of DDC models. We show that these Euler

equations provide moment conditions that can be used to estimate structural parameters without

solving or approximating value functions. The estimator based on these Euler equations is not

subject to bias induced by the approximation of value functions. Our result extends to discrete

choice models the GMM-Euler equation approach that Hansen and Singleton (1982) proposed for

the estimation of dynamic models with continuous decision variables. The GMM-Euler equation

approach has been applied extensively to the estimation of dynamic structural models with contin-

uous decision variables, such as problems of household consumption, savings, and portfolio choices,

or firm investment decisions, among others. The conventional wisdom was that this method could

not be applied to discrete choice models because, obviously, there are not marginal conditions of

1See Rust (1996) and the recent book by Powell (2007) for a survey of numerical approximation methods in

the solution of dynamic programming problems. See also Geweke (1996) and Geweke and Keane (2001) for excellent

surveys on integration methods in economics and econometrics with particular attention to dynamic structural models.
2The Nested Fixed Point algorithm (NFXP) (Rust, 1987, Wolpin, 1984) is a commonly used full-solution method

for the estimation of single-agent dynamic structural models. The Nested Pseudo Likelihood (NPL) method (Aguirre-

gabiria and Mira, 2002, 2007) and the method of Mathematical Programming with Equilibrium Constraints (MPEC)

(Judd and Su, 2012) are other full-solution methods. Two-step and sequential estimation methods include Condi-

tional Choice Probabilities (CCP) (Hotz and Miller, 1993), K-step Pseudo Maximum Likelihood (Aguirregabiria and

Mira, 2002, 2007), Asymptotic Least Squares (Pesendorfer and Schmidt-Dengler, 2007), and their simulated-based

estimation versions (Hotz et al, 1995, Bajari, Benkard, and Levin, 2007).
3Lerman and Manski (1981), McFadden (1989), and Pakes and Pollard (1989) are seminal works in this literature.

See Gourieroux and Monfort (1993, 1997) Hajivassiliou and Ruud (1994), and Stern (1997) for excellent surveys.
4 In empirical applications, the most common approach to measure the importance of this bias is local sensitivity

analysis. The parameter that represents the degree of accuracy of the approximation (e.g., the number of Monte Carlo

simulations, the order of the polynomial, the number of grid points) is changed marginally around a selected value and

the different estimations are compared. This approach may have low power to detect approximation-error-induced

bias, especially when the approximation is poor and these biases can be very large.
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optimality with respect to discrete choice variables. In this paper, we show that the optimal de-

cision rule in a dynamic (or static) discrete choice model can be derived from a decision problem

where the choice variables are probabilities that have continuous support. Using this representation

of a discrete choice model, we obtain Euler equations by combining marginal conditions of opti-

mality and Envelope Theorem conditions in a similar way as in dynamic models with continuous

decision variables. Just as in the Hansen-Singleton approach, these Euler equations can be used

to construct moment conditions and to estimate the structural parameters of the model by GMM

without having to evaluate/approximate value functions.

Our derivation of Euler equations for DDC models extends previous work by Hotz and Miller

(1993), Aguirregabiria and Mira (2002), and Arcidiacono and Miller (2011). These papers derive

representations of optimal decision rules using Conditional Choice Probabilities (CCPs) and show

how these representations can be applied to estimate DDC models using simple two-step methods

that provide substantial computational savings relative to full-solution methods. In these papers,

we can distinguish three different types of CCP representations of optimal decisions rules: (1) the

present-value representation, that consists of using CCPs to obtain a closed-form expression for

the expected and discounted stream of future payoffs associated with each choice alternative; (2)

the terminal-state representation, that applies only to optimal stopping problems with a terminal

state; and (3) the finite-dependence representation, that was introduced by Arcidiacono and Miller

(2011) and applies to a particular class of DDC models with the finite dependence property.5

Our paper presents a new CCP representation that we call CCP-Euler-equation representation.

This representation has several advantages over the previous ones. The present-value representation

is the CCP approach more commonly used in empirical applications because it can be applied

to a general class of dynamic discrete choice models. However, that representation requires the

computation of present values and therefore it is subject to the curse of dimensionality and to biases

induced by approximation error (e.g., discretization, Monte Carlo simulation). The terminal-state,

the finite-dependence, and the Euler-equation CCP representations do not involve the computation

of present values, or even the estimation of CCPs at every possible state, and this implies substantial

computational savings as well as avoiding biases induced by approximation errors. Furthermore,

relative to terminal-state and finite-dependence representations, our Euler-equation applies to a

general class of DDC models. We can derive Euler equations for any DDC model where the

unobservables satisfy the conditions of additive separability in the payoff function, and conditional

independence in the transition of the state variables.

The estimation based on the moment conditions provided by the Euler-equation, or terminal-

state, or finite-dependence representations imply an efficiency loss relative to estimation based on

5A DDC model has the finite dependence property if given two values of the decision variable at period  and

their respective paths of the state variables after this period, there is always a finite period 0   (with probability

one) where the state variables in the two paths take the same value.
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present-value representation. As shown by Aguirregabiria and Mira (2002, Proposition 4), the

two-step pseudo maximum likelihood estimator based on the CCP present-value representation is

asymptotically efficient (equivalent to the maximum likelihood estimator). However, this efficiency

property is not shared by the other CCP representations. Therefore, there is a trade-off in the

choice between CCP estimators based on Euler equations and on present-value representations.

The present value representation is the best choice in models that do not require approximation

methods. However, in models with large state spaces that require approximation methods, the

Euler equations CCP estimator can provide more accurate estimates.

We present an empirical application where we estimate a model of firm investment. We compare

estimates using CCP Euler equations, CCP present-value, and maximum likelihood methods.

2 Euler equations in dynamic decision models

2.1 Dynamic decision model

Time is discrete and indexed by . Every period , an agent chooses an action  within the set of

feasible actions A that, for the moment, can be either a continuous or a discrete choice set. The

agent makes this decision to maximize his expected intertemporal payoff E[
P−

=0 
 Π(+  +)],

where  ∈ (0 1) is the discount factor,  is the time horizon that can be finite or infinite, Π() is
the one-period payoff function at period , and  is the vector of state variables at period . These

state variables follow a controlled Markov process, and the transition probability density function

at period  is (+1 |  ). By Bellman’s principle of optimality, the sequence of value functions
{() :  ≥ 1} can be obtained using the recursive expression:

() = max
∈A

½
Π( ) + 

Z
+1(+1) (+1 |  ) +1

¾
(1)

The sequence of optimal decision rules {∗ () :  ≥ 1} are defined as the argmax in  ∈ A of the

expression within brackets in equation (1).

Suppose that the primitives of the model {Π  } can be characterized in terms of vector of
structural parameters . The researcher has panel data for  agents (e.g., individuals, firms) overe periods of time, with information on agents’ actions and a subset of the state variables. The

estimation problem is to use these data to consistently estimate the vector of parameters . In this

section, we first describe this approach in the context of continuous-choice models, as proposed in

the seminal work by Hansen and Singleton (1982). Second, we show how a general class of discrete

choice models can be represented as continuous choice models where the decision variable is a vector

of choice probabilities. Finally, we show that it is possible to construct Euler equations using this

alternative representation of discrete choice models, and that these Euler equations can be used to

construct moment conditions and a GMM estimator of the structural parameters .
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2.2 Euler equations in dynamic continuous decision models

Suppose that the decision  is a vector of continuous variables in the  dimensional Euclidean

space:  ∈ A ⊆ R . The vector of state variables  ≡ ( ) contains both exogenous ()

and endogenous () variables. Exogenous state variables follow a stochastic process that does not

depend on the agent’s actions {}, e.g., the price of capital in a model of firm investment under the
assumption that firms are price takers in the capital market. In contrast, the evolution over time

of the endogenous state variables, , depends on the agent’s actions, e.g., the stock of capital in a

model of firm investment. More precisely, the transition probability function of the state variables

is:

 (+1 |  ) = 1 {+1 =  (  +1)}  (+1 | ) (2)

where 1 {} is the indicator function,  () is a vector-valued function that represents the tran-
sition rule of the endogenous state variables, and  is the transition density function for the

exogenous state variables. For the derivation of Euler equations in a continuos decision model, it

is convenient to represent the transition rule of the endogenous state variables using the expres-

sion 1 {+1 =  (  +1)}. This expression establishes that +1 is a deterministic function of
(  +1). However, this structure allows for a stochastic transition in the endogenous state vari-

ables because +1 is an argument of function  ().6 The following assumption provides sufficient

conditions for the derivation of Euler equations in dynamic continuous decision models.

ASSUMPTION EE-Continuous. (A) The payoff function Π and the transition function  () are

continuously differentiable in all their arguments. (B)  and  are both vectors in the -dimension

Euclidean space and for any value of (  +1) we have that

 (  +1)

0
= ( )

 (  +1)

0
(3)

where ( ) is a  × matrix.

For the derivation of the Euler equations, we consider the following constrained optimization

problem. We want to find the decisions rules at periods  and + 1 that maximize the one-period-

forward expected profit Π +  E(Π+1) under the constraint that the probability distribution of

the endogenous state variables +2 conditional on  implied by the new decision rules () and

+1() is identical to that distribution under the optimal decision rules of our original DP problem,

∗ () and ∗+1(). By construction, this optimization problem depends on payoffs at periods  and

6This representation is more general than it may look like because the vector of exogenous state variables in

+1 can include any i.i.d. stochastic element that affects the transition rule of the endogenous state variables

. To see this, suppose that the transition probability of +1 is stochastic conditional on (+1  ) such that

+1 =  (+1 +1  ) where +1 is a random variable that is unknown at period  and is i.i.d. over time.

We can expand the vector of exogenous state variables to include  such that the new vector is ∗ ≡ ( ).

Then, ∗(+1 ∗+1|  ∗ ) = ∗(+1|∗+1   ∗ ) 
∗
(∗+1|∗ ) and by construction ∗(+1|∗+1   ∗ ) =

1

+1 =  (+1 +1  )


.
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 + 1 only, and not on payoffs at  + 2 and beyond. And by definition of optimal decision rules,

we have that ∗ () and ∗+1() should be the optimal solutions to this constrained optimization

problem. For a given value of the state variables , we can represent this constrained optimization

problem as:

max
{+1}∈A2

©
Π( ) + 

R
Π+1(+1  (  +1) +1) 


 (+1 | ) +1

ª
subjectto :  (+1  (  +1) +1 +2) = ∗+2( +1 +2)

(4)

where  (+1  (  +1) +1 +2) represents the realization of +2 under arbitrary choice

( +1), and ∗+2( +1 +2) is a function that represents the realization of +2 under the

optimal decision rules ∗ () and ∗+1(+1), and it does not depend on ( +1). This constrained

optimization problem can be solved using the Lagrangian method. It is possible to show that the

optimal solution should satisfy the following marginal condition of optimality:7

E

µ
Π

0
+ 

∙
Π+1

0+1
−(+1 +1)

Π+1

0+1

¸
+1

0

¶
= 0 (5)

where E() represents the expectation over the distribution of {+1 +1} conditional on ( ).
This system of equations is the Euler equations of the model.

EXAMPLE 1. Optimal consumption and portfolio choice (Hansen and Singleton, 1982). The

vector of decision variables is ( 1 2  ) where  represents the individual’s consumption

expenditure, and  denotes the number of shares of asset/security  that the individual holds in

his portfolio at period . The utility function depends only on consumption, i.e., Π( ) = ().

The consumer’s budget constraint establishes that  +
P

=1   ≤  +
P

=1 , where  is

labor earnings, and  is the price of asset  at time . Given that the budget constraint is satisfied

with equality, we can write the utility function as Π( ) = (−
P

=1 [ − −1]), and

the decision problem can be represent in terms of the decision variables  = (1 2  ).

The vector of exogenous state variables is  = ( 1 2  ), and the vector of endogenous

state variables consists of the individual’s asset holdings at  − 1,  = (1−1 2−1  −1).

Therefore, the transition rule of the endogenous state variables is trivial, i.e., +1 = , such that

+1
0
 = 0, +1

0
 = I, and the matrix ( ) is a matrix of zeros. Also, given the form

of the utility function, we have that Π = − 0()  and Π−1 =  0() . Plugging

these expression in the general formula (5), we obtain the following system of Euler equations: for

any asset  = 1 2   :

E
¡
 0()  −   0+1(+1) +1

¢
= 0 (6)

7See section 9.5 in Stokey and Lucas (1989) and section 4 in Rust (1992).
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2.3 Random Utility Model as a continuous optimization problem

Before considering Dynamic Discrete Choice models, in this section we describe how the optimal

decision rule in a static discrete choice model can be represented using marginal conditions of

optimality in an optimization problem where decision variables are (choice) probabilities. Later,

we apply this result in our derivation of Euler equations in Dynamic Discrete Choice models.

Consider the following Additive Random Utility Model, ARUM (McFadden, 1978). The set of

feasible choices A is discrete and finite and it includes  + 1 choice alternatives: A = {0 1  }.
Let  ∈ A represent the agent’s choice. The payoff function has the following structure:

Π( ) = () + () (7)

where () is a real valued function, and  ≡ {(0) (1)  ()} is a vector of exogenous variables
affecting the agent’s payoff. The vector  has a cumulative distribution function (CDF)  that

is absolutely continuous with respect to Lebesgue measure, strictly increasing and continuously

differentiable in all its arguments, and with finite means. The agent observes  and chooses the

action  that maximizes his payoff () + (). The optimal decision rule of this model is a

function ∗() from the state space R+1 into the action space A such that: ∗() = argmax∈A
{() + ()}. By the additive separability of the ’s, this optimal decision rule can be written as
follows: for any  ∈ A,

{∗() = } iff {()− () ≤ ()− () for any  6= } (8)

Given this form of the optimal decision rule, we can restrict our analysis to decision rules with

the following ‘threshold form: {() = } if and only if {()− () ≤ ()− () for any  6= },
where () is an arbitrary real valued function. We can represent decision rules within this class

using a Conditional Choice Probability (CCP) function  (), that is the decision rule integrated

over the vector of random variables , i.e.,  () ≡ R 1 {() = }() . Therefore, we have that

 () =
R
1 {()− () ≤ ()− () for any  6= } ()

= e (()− () : for any  6= ) ,

(9)

where 1{} is the indicator function, and e is the CDF of the vector {()− () : for any  6= }.
Lemma 1 establishes that in an ARUM we can represent decision rules using a vector of CCPs

P ≡ { (1),  (2), ...,  ()} in the -dimension simplex.

LEMMA 1. [McFadden, 1981]. Consider an ARUM where the distribution of  is  that is

absolutely continuous with respect to Lebesgue measure, strictly increasing and continuously differ-

entiable in all its arguments. Let () be a discrete-valued function from R+1 into A = {0 1  };
let μ ≡ {(1), (2), ..., ()} be a vector in the -dimension Euclidean space, and consider the
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normalization (0) = 0; and let P ≡ { (1),  (2), ...,  ()} be a vector in the -dimension simplex
S. We can say that (), μ, and P represent the same decision rule in the ARUM if and only if

the following conditions hold:

() =

X
=0

 1 { ()− () ≤ ()− () for any  6=  } (10)

and for any  ∈ A,
 () = e (()− () : for any  6= ) (11)

where e is the CDF of the vector {()− () : for any  6= }.

Lemma 2 establishes the invertibility of the relationship between the vector of CCPs P and the

vector of threshold values μ.

LEMMA 2. [Hotz and Miller, 1993] Let eG() be the vector-valued mapping { e1() e2(), ..., e()}
from R into S. Under the conditions of Lemma 1, the mapping eG() is invertible everywhere. We
represent the inverse mapping as e−1().

Given an arbitrary decision rule, represented in terms (), or μ, or P, let Π be the expected

payoff before the realization of the vector  if the agent behaves according to this arbitrary decision

rule. By definition,

Π ≡
Z
{  (()) +  (()) } () = E [  (()) +  (()) ] (12)

where the expectation E() is over the distribution of . By Lemmas 1-2, we can represent this

expected payoff as a function either of (), or μ, or P. For our analysis, it is most convenient to

represent it as a function of CCPs, i.e., Π(P). Given its definition, this expected payoff function

can be written as:

Π(P) =

X
=0

 () { () + (P) }

= (0) + (0P) +

X
=1

 () {()− (0) + (P)− (0P)}

(13)

where (P) is defined as the expected value of () conditional on alternative  being chosen

under decision rule (). That is, (P) ≡ E (() | () = ), and as a function of P we have

that

(P) = E
³
() | ()− () ≤ e−1(P)− e−1(P) for any  6= 

´
(14)

The conditions of the ARUM imply that functions (P) and Π(P) are continuously differentiable

with respect to P everywhere on the simplex S. Therefore, this expected payoff function Π(P) has
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a maximum on S. We can define P∗ as the vector of CCPs that maximizes this expected payoff
function:

P∗ = argmax
P∈S

{ Π(P) } (15)

Then, we have two representations of the ARUM, and two apparently different decision prob-

lems. On the one hand, we have the discrete choice model with the optimal decision rule ∗() in

equation (8) that maximizes the payoff () + () after  is realized and known to the agent. We

denote this as the ex-post decision problem to emphasize that the decision is after the realization of

 is known to the agent. Associated to ∗, we have its corresponding CCP, that we can represent as

P∗ , that is equal to eG(eπ) where eπ is the vector of differential payoffs {e() ≡ ()−(0) : for any
 6= 0}. For econometric analysis of ARUM, we are interested in the P∗ representation because

these are CCPs from the point of view of the econometrician (who does not observe ) describing

the behavior of an agent who knows  and  and maximizes his payoff. On the other hand, we

have the optimization problem represented by equation (15) where the agent chooses the vector

of CCPs P to maximize his ex-ante expected payoff Π before the realization of . In principle,

this second optimization problem is not the one the ARUM assumes the individual is solving. In

the ARUM we assume that the individual makes his choice after observing the realization of the

vector of ’s. Proposition 1 establishes that these two optimization problems are equivalent, that

the choice probabilities P∗ and P∗ are the same, and that P∗ can be described in terms of the

marginal conditions of optimality associated to the continuous optimization problem in (15).

PROPOSITION 1. Let P∗ be the vector of CCPs associated with the optimal decision rule ∗

in the discrete decision problem (8), and let P∗ be the vector of CCPs that solves the continuous

optimization problem (15). Then, (i) the vectors P∗ and P∗ are the same; and (ii) P∗ satisfies

the marginal conditions of optimality Π(P∗) () = 0 for any   0, and the marginal expected

payoff Π(P) () has the following form:

Π(P)

 ()
= ()− (0) + (P)− (0P) +

P
=0

 ()
(P)

 () (16)

Proof in the Appendix.

Proposition 1 establishes a characterization of the optimal decision rule in terms of marginal

conditions of optimality with respect to CCPs. In section 3, we show that these conditions can be

used to construct moment conditions and a two-step estimator of the structural parameters.

EXAMPLE 2 (Multinomial Logit): Suppose that the unobservable variables () are iid with an

extreme value type 1 distribution. For this distribution, the function (P) has the following

simple form: (P) =  − ln (), where  is Euler’s constant (see the appendix to chapter 2 in
Anderson, de Palma, and Thisse, 1992, for a derivation of this property). Plugging this expression
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into (16), we get the following marginal condition of optimality:

Π(P∗)
 ()

= ()− (0)− ln ∗() + ln ∗(0) = 0 (17)

because in this model, for any , the term
P

=0  () [(P) ()] is zero.
8

EXAMPLE 3 (Binary Probit model): Suppose that the decision model is binary, A = {0 1},
and (0) and (1) are independently and identically distributed with a normal distribution with

zero mean and variance 2. Let () and Φ() denote the density and the cumulative distribution

functions for the standard normal, respectively, and let Φ−1() be the inverse function of Φ. Given

this distribution, it is possible to show that: (0  (1)) = √
2

(Φ−1[1− (1)])
1− (1) , and (1  (1)) = √

2

(Φ−1[ (1)])
 (1)

. Using these expressions, we have that:9

(0 (1))

 (1)
= √

2

∙
−Φ−1(1− (1))

1− (1) +
(Φ−1[ (1)])
[1− (1)]2

¸
(1 (1))

 (1)
= √

2

∙
−Φ−1( (1))

 (1)
− (Φ−1[ (1)])

 (1)2

¸ (18)

Solving these expressions into the first order condition in (16) and taking into account that by

symmetry of the Normal distribution Φ−1 (1−  (1)) = −Φ−1 ( (1)), we get the following marginal
condition of optimality:

Π(P∗)
 (1)

= (1)− (0)−√2 Φ−1 ( (1)) = 0 (19)

2.4 Euler equations in Dynamic Discrete Choice Models

Consider the dynamic decision model in section 2.1 but suppose now that the set of feasible actions

is discrete and finite: A = {0 1  }. There are two sets of state variables:  = ( ), where
 is the vector of state variables observable to the researcher, and  represents the unobservables

for the researcher. The set of observable state variables  itself is comprised by two types of

state variables, exogenous variables  and endogenous variables . They are distinguished by the

fact that the transition probability of the endogenous variables depends on the action , while the

transition probability of the exogenous variables does not depend on . The vector of unobservables

satisfies the assumptions of additive separability (AS) and conditional independence (CI) (Rust,

1994).

Additive Separability (AS): The one-period payoff function is additively separable in the unobserv-

ables: Π( ) = ( )+(), where  ≡ {() :  ∈ A} is a vector of unobservable random
variables.

8Note that


=0
 () [(P) ()] is equal to  () [−1 ()] +  (0) [1 (0)] = 0.

9For the derivation of these expressions, it is useful to take into account that 0() = − () and Φ−1( ) =

1(Φ−1( )).
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Conditional Independence (CI): The transition probability (density) function of the state variables

factors as:  (+1 | , ) =  (+1 | , )  (+1), where  () is the CDF of  which is

absolutely continuous with respect to Lebesgue measure, strictly increasing and continuously differ-

entiable in all its arguments, and with finite means.

Under these assumptions the optimal decision rules ∗ ( ) have the following form:

{∗ ( ) = } iff {()− () ≤ ( )− ( ) for any  6= } (20)

where ( ) is the conditional-choice value function that is defined as ( ) ≡ ( )+


R
+1

̄+1(+1) (+1 |  ) +1, and ̄() is the integrated value function, ̄() ≡R

( ) (). Furthermore, the integrated value function satisfies the following integrated

Bellman equation:

̄() =

Z


max
∈A

½
( ) + () + 

Z
̄+1(+1) (+1 |  ) +1

¾
() (21)

We can restrict our analysis to decision rules ( ) with the following "threshold" structure:

{( ) = } if and only if {() − () ≤ ( ) − ( ) for any  6= }, where ( )
is an arbitrary real valued function. As in the ARUM, we can represent decision rules using a

discrete valued function ( ), a real valued function ( ), or a probability valued function

( | ).
( | ) ≡

Z
1 {( ) = } () 

= e (( )− ( ) : for any  6= 0 )
(22)

where e has the same interpretation as in the ARUM, i.e., the CDF of the vector {() − () :

for any  6= }. Lemmas 1 and 2 from the ARUM extend to this DDC model (Proposition 1

in Hotz and Miller, 1993). In particular, at every period , there is a one-to-one relationship

between the vector of value differences eμ() ≡ {( ) − (0 ):   0} and the vector of
CCPs P() ≡ {( | ):  6= 0}. We represent this mapping as P() = e(eμ()), and the

corresponding inverse mapping as eμ() =
e−1(P()).

Given an arbitrary sequence of decision rules, represented in terms of either  ≡ {() :  ≥ 1},
or eμ ≡ {eμ() :  ≥ 1}, or P ≡ {P() :  ≥ 1}, let  

 () be the expected intertemporal payoff

function at period  before the realization of the vector  if the agent behaves according to this

arbitrary sequence of decision rules. By definition,

 
 () ≡ E

µ
−P
=0

 [+ (+(+ +) +) + + (+(+ +))] | 
¶

= E
∙
 (( ) ) +  (( )) + 

Z
 

+1 (+1) (+1|( ) )+1
¸

(23)
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We denote 
 () as the valuation function to distinguish it from the optimal value function and to

emphasize that  
 () provides the valuation of any arbitrary decision rule. We are interested in

the representation of this valuation function as a function of CCPs. Therefore, we use the notation

 
 (PP0). Given its definition, this function can be written using the recursive formula:

 
 (PP0) = Π (P) + 

Z
 

+1 (+1P+1P0+1)  (+1|P) (+1|) +1
(24)

where: Π (P) is the expected one-period profit
P

=0 ( | ) [ ( ) + (P())];

(P()) has the same definition as in the static model, i.e., it is the expected value of ()

conditional on alternative  being chosen under decision rule ( );
10 and  (+1|P) is the

transition probability of the endogenous state variables  induced by the CCP function P(), i.e.,P
=0 (|) (+1| ).
The valuation function  

 (PP0) is continuously differentiable with respect to the

choice probabilities over the simplex. Then, we can define P∗ as the sequence of CCP functions

{P∗ () :  ≥ 1,  ∈ X} such that for any ( ) the vector of CCPs P∗ () maximizes the values
 

 (PP0) given that future CCPs P0 are fixed at their values in P
∗.

P∗ () = arg max
P()∈S

©
 



¡
PP

∗
0
¢ ª

(25)

As in the ARUM, we have apparently two different optimal CCP functions. We have the CCP

functions associated with the sequence of optimal decision rules ∗ (), that we represent as {P∗
 :

 ≥ 1}. And we have sequence of CCP functions {P∗ :  ≥ 1} defined in equation (25). Proposition
2 establishes that the two sequences of CCPs are the same one, and that these probabilities satisfy

the marginal conditions of optimality associated to the continuous optimization problem in (25).

PROPOSITION 2. Let {P∗
 :  ≥ 1} be the sequence of CCP functions associated with the sequence

of optimal decision rules {∗ :  ≥ 1} as defined in the DDC problem (20), and let {P∗ :  ≥ 1}
be sequence of CCP functions that solves the continuous optimization problem (25). Then, for

every ( ): (i) the vectors P∗
 () and P

∗
 () are the same; and (ii) P

∗
 () satisfies the marginal

conditions of optimality
  



¡
P∗ P∗0

¢
(|) = 0 (26)

for any   0, and the marginal value  has the following form:

 


(|) = ( P0)− (0 P0) + (P())− (0P()) +
P

=0

(|)(P())(|)

(27)

where ( P0) is the conditional-choice value function ( )+ 
R
+1 (+1P+1P0+1)

(+1| ) +1.
10Therefore, we also have that (P()) is equal to E(() | ()−() ≤ −1(P())− −1(P()) for

any  6= ).
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Proof in the Appendix.

Proposition 2 shows that we can treat the DDC model as a dynamic continuous optimization

problem where optimal choices, in the form of choice probabilities, satisfy marginal conditions

of optimality. Nevertheless, the marginal conditions of optimality in equation (27) involve value

functions. We are looking for conditions of optimality in the spirit of Euler equations that involve

only payoff functions at two consecutive periods,  and +1. To obtain these conditions, we construct

a constrained optimization problem similar to the one for the derivation of Euler equations in section

2.2.

By Bellman’s principle, the optimal choice probabilities at periods  and  + 1 come from the

solution to the optimization problem maxPP+1 

 (PP+1P

∗
0+1), where we have fixed at

its optimum the individual’s behavior at any period after + 1, P∗0+1. In general, the CCPs P

and P+1 affect the distribution of the state variables at periods after +1 such that the optimality

conditions of the problem maxPP+1 

 (PP+1P

∗
0+1) involve payoff functions and state

variables at every period in the future. Instead, suppose that we consider a similar optimization

problem but where we now impose the constraint that the probability distribution of the endogenous

state variables at +2 should be the one implied by the optimal CCPs at periods  and +1. Since

(P∗ P∗+1) satisfy this constraint, it is clear that these CCPs represent also the unique solution to

this constrained optimization problem. That is,

{P∗ ()P∗+1} = arg max
{P()P+1}

∆ =
©
 

 (PP+1P
∗
0+1)− 

 (P
∗
 P

∗
+1P

∗
0+1)

ª
subject to: →+2(|PP+1) = →+2(|P∗ P∗+1)

(28)

where we use function →+2(|PP+1) to represent the distribution of +2 conditional on

 =  and induced by the CCPs P() and P+1, that can be written as:

→+2(+2 | PP+1) =

Z
+1(+2 | +1P+1) 


 (+1 | P) (+1|) +1 (29)

and, as defined above,  (|P) is the one-period-forward transition probability of the endogenous

state variables  induced by the CCP function P(), i.e.,
P

=0 (|) (+1| ).
By the definition of the valuation function  

 , we have that

 
 (P) = Π (P) + 

Z
Π+1 (+1P+1)  (+1|P) (+1|) +1

+ 2
Z

 
+2 (+2P0+1) →+2(+2 | PP+1) (+2|) +2

(30)

The last term in this expression is exactly the same for 
 ( P P+1 P

∗
0+1) and for


 ( P

∗
 

P∗+1 P
∗
0+1) because we have the same function 


+2 and because we restrict the distribution of

+2 to be the same. Therefore, subject to this constraint we have that ∆ is equal to Π

 (P)+

12





Z
Π+1(+1P+1) 


 (+1|P) +1, and the optimal CCPs at periods  and + 1 solve the

following optimization problem:

{P∗ ()P∗+1} = arg max
{P()P+1}

∆ =

½
Π (P) + 

Z
Π+1(+1P+1) 


 (+1|P) +1

¾
subject to: →+2(|PP+1) = →+2(|P∗ P∗+1)

(31)

Suppose that the space of the vector of endogenous state variables Y is discrete and finite.

Therefore, the set of restrictions on →+2(+2|PP+1) in the constrained optimization prob-

lem (31) includes at most |Y|− 1 restrictions, where |Y| is the number of points in the support set
Y. Therefore, the number of Lagrange multipliers, and the matrix that we have to invert to get
these multipliers is of at most as large as |Y|− 1. In fact, in many models, the number of Lagrange
multipliers that we must solve for can be much smaller than the dimension of the vector of endoge-

nous state variables. This is because in many models the transition probability of the endogenous

state variable is such that, given the state variable at period , the state variable at period  + 2

can take only a limited and small number of possible values. We present several examples below.

Let Y+() be the set of values that the endogenous state variables can reach with positive
probability  periods in the future given that the state today is . To be precise, Y+() includes all
these possible values except one of them because we can represent the probability distribution of +

using the probabilities of each possible value except one. Let λ() = {(+2|) : +2 ∈ Y+2()}
be the |Y+2()| × 1 vector of Lagrange multipliers associated to this set of restrictions. The

Lagrangian function for this optimization problem is:

L(P()P+1) = Π (P) + 
P
+1

Π+1(+1P+1) 

 (+1 | P) (+1|)

− P
+2

(+2|)
⎡⎣X
+1

+1(+2 | +1P+1) 

 (+1 | P) (+1|)

⎤⎦
(32)

Given this Lagrangian function, we can derive the first order conditions of optimality with respect

to P() and P+1 and combine these conditions to obtain Euler equations.

PROPOSITION 3. The marginal conditions for the maximization of the Lagrangian function in

(32) imply the following Euler equations. For every value of :

Π


(|) + 
X
+1

h
Π+1(+1)−m(+1)0

Π
+1(+1)

P+1(+1)

i e(+1| ) (+1|) = 0 (33)

where e(+1| ) ≡ (+1| ) − (+1|0 ); Π
+1(+1)P+1(+1) is a column vector

with dimension  |Y+1()| × 1 that contains the partial derivatives { Π+1(+1 +1) +1(

| +1 +1) } for every action   0 and every value +1 ∈ Y+1() that can be reach from ,

13



and fixed value for +1; and m(+1) is a  |Y+1()| × 1 vector such that m(+1) ≡ f+1(+1)0
[eF+1(+1)

0 eF+1(+1)]
−1 eF+1(+1)

0, where f+1(+1) is the vector of transition probabilities

{+1(+2 | +1) : +2 ∈ Y+2()}, and eF+1(+1) is matrix with dimension  |Y+1()|×|Y+2()|
that contains the probabilities e+1(+2| +1) for every +2 ∈ Y+2(), every +1 ∈ Y+1(),
and every action   0, with fixed +1.

Proof in the Appendix.

Proposition 3 shows that in general we can derive marginal conditional of optimality that involve

only payoffs and states at two consecutive periods. The derivation of this Euler equation, described

in the appendix, is based on the combination of the Lagrangian conditions L(|) = 0 and
L+1(|+1) = 0. Using the group of conditions L+1(|+1) = 0 we can solve for the
vector of Lagrange multipliers as [eF+1(+1)

0 eF+1(+1)]
−1 eF+1(+1)

0 Π
+1(+1)P+1(+1),

and then we can plug this solution into the first Lagrangian conditions, L(|) = 0. This
provides the expression for the Euler equation in (33). The main computational cost in the deriva-

tion of this expression comes from inverting the matrices [eF+1(+1)
0 eF+1(+1)]. The dimension

of these matrices is |Y+2()| × |Y+2()|, where Y+2() is the set of possible values that the en-
dogenous state variable +2 can take given . In most applications, the number of elements in the

set Y+2() is substantially smaller that the whole number of values in the space of the endogenous
state variable, and several orders of magnitude smaller than the dimension of the complete state

space that includes the exogenous state variables. This property implies very substantial computa-

tional savings in the estimation of the model. We now provide some examples of models where the

form of the Euler equations is particularly simple. In these examples, we have simple closed form

expressions for the Lagrange multipliers. These examples correspond to models that are commonly

estimated in applications of DDC models.

EXAMPLE 4 (Dynamic binary choice model of entry and exit). Consider a binary decision model,

A = {0 1}, where  is the indicator of being active in a market or in some particular activity. The
endogenous state variable  is the lagged value of the decision variable,  = −1, and it represents

whether the agent was active at previous period. The vector of state variables is then  = ( )

where  are exogenous state variables. Suppose that (0) and (1) are extreme value type 1

distributed with dispersion parameter . In this model, the one-period expected payoff function is

Π ( ) = (0|) [ (0 ) − ln(0|)]+ (1|) [ (1 ) − ln(1|)]. The transition
of the endogenous state variable induced by the CCP is the CCP itself, i.e.,  (+1| ) =
(+1|). Therefore, we can write the ∆ function in the constrained optimization problem as:

∆ = Π ( ) + 
P
+1

(+1|)
£
(0|) Π+1(0 +1 +1) + (1|) Π+1(1 +1 +1)

¤
(34)

Given , the state variable +2 can take two values, 0 or 1. Therefore, there is only one free
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probability in →+2 and one restriction in the Lagrangian problem. This probability is:

→+2(1 |  P+1) =
P
+1

(+1|) [(0|)+1(1|0 +1) + (1|)+1(1|1 +1)]
(35)

Let () be the Lagrange multiplier for this restriction. For a given , the free probabilities that

enter in the Lagrangian problem are (1|), +1(1|0 +1), and +1(1|1 +1) for any possible
value of +1 in the support set Z. The first order condition for the maximization of the Lagrangian
with respect to (1|) is

Π


(1|) + 
P
+1

£
Π+1(1)−Π+1(0)− () {+1(1|1 +1)− +1(1|0 +1)}

¤
(+1|) = 0

(36)

The marginal condition with respect to one of the probabilities +1(1|+1) (for a given value
of +1) is: 

Π
+1(0+1+1)

+1(1|0+1) = 
Π

+1(1+1+1)

+1(1|1+1) = (). Substituting the marginal condition

with respect to +1(1|+1) into the marginal condition with respect to (1|) we get the Euler
equation:

Π


(1|) +  E
¡
Π+1(1 +1)−Π+1(0 +1)

¢
+

 E
³
+1(1|0 +1)Π


+1(0+1+1)

+1(1|0+1) − +1(1|1 +1)Π

+1(1+1+1)

+1(1|1+1)
´

= 0

(37)

where we use E() to represent in a compact form the expectation over the distribution of (+1|).
Finally, for the logit version of this model and as shown in Example 2, the marginal expected profit

Π(1|) is equal to  (1 )−  (0 )−  (ln(1|)− ln(0|)). Taking this into

account and operating in the Euler equation, we can obtain this simpler formula for this Euler

equation: h
 (1  )−  (0  )−  ln

³
(1|)
(0|)

´i
+

 E
h
 (1 1 +1)−  (1 0 +1)−  ln

³
+1(1|1+1)
+1(1|0+1)

´i
= 0

(38)

EXAMPLE 5 (Machine replacement model). Consider a model where the binary choice variable

 is the indicator for a firm’s decision to replace an old machine or equipment by a new one. The

endogenous state variable  is the age of the "old" machine that takes discrete values {1 2 } and
it follows the transition rule +1 = 1+ (1− ), i.e., if the firm replaces the machine at period 

(i.e.,  = 1), then at period  + 1 it has a brand new machine with +1 = 1, otherwise the firm

continues with the old machine that at + 1 will be one period older. Given , we have that +1

can take only two values, +1 ∈ {1  + 1}. Thus, the ∆ function is:

∆ = Π () + 
P
+1

(+1|)
£
(0|) Π+1( + 1 +1) + (1|) Π+1(1 +1)

¤
(39)

Given , we have that +2 can take only three values, +1 ∈ {1 2  + 1}. There are only two
free probabilities in the distribution of →+2(+2|). Without loss of generality, we use the
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probabilities →+2(1|) and →+2(2|) to construct the Lagrange function. These probabilities
have the following form:

→+2(1 | ) =
P
+1

(+1|) [(0|)+1(1| + 1 +1) + (1|)+1(1|1 +1)]

→+2(2 | ) = (1|)
P
+1

(+1|) +1(0|1 +1)
(40)

The Lagrangian function depends on the CCPs (1|), +1(1|1 +1), and +1(1| + 1 +1).
The Lagrangian optimality condition with respect to (1|) is:

Π


(1|) + 
P
+1

(+1|)
£
Π+1(1 +1)−Π+1( + 1 +1)

¤
−(1) P

+1

(+1|) [+1(1|1 +1)− +1(1| + 1 +1)]
−(2) P

+1

(+1|) +1(0|1 +1) = 0

(41)

And the Lagrangian conditions with respect to +1(1|1 +1) and +1(1| + 1 +1) are: 
Π

+1(1+1)

+1(1|1+1)− (1)+ (2) = 0, and 
Π

+1(+1+1)

+1(1|+1+1)− (1) = 0, respectively. We can use the sec-

ond set of conditions to solve trivially for the Lagrange multipliers, and then plug in the expression

for this multipliers in the first set of Lagrangian conditions. We obtain the Euler equation:

Π


(1|) +  E
£
Π+1(1 +1)−Π+1( + 1 +1)

¤
+ E

h
Π

+1(1+1)

+1(1|1+1)+1(0|1 +1)−
Π

+1(+1+1)

+1(1|+1+1)+1(0| + 1 +1)
i
= 0

(42)

Finally, taking into account that for the logit specification of the unobservables the marginal ex-

pected profit Π(1|) is equal to  (1 )−  (0 )−  [ln(1|)− ln(0|)], and op-
erating in the previous expression, it is possible to obtain the following Euler equation:h

 (1  )−  (0  )−  ln
³
(1|)
(0|)

´i
+

 E
h
 (1 1 +1)−  (1  + 1 +1)−  ln

³
+1(1|1+1)

+1(1|+1+1)
´i

= 0

(43)

2.5 Relationship between Euler Equations and other CCP representations

Our derivation of Euler equations for DDC models above is related to previous work by Hotz and

Miller (1993), Aguirregabiria and Mira (2002), and Arcidiacono and Miller (2011). These papers

derive representations of optimal decision rules using CCPs and show how these representations

can be applied to estimate DDC models using simple two-step methods that provide substantial

computational savings relative to full-solution methods. In these previous papers, we can distin-

guish three different types of CCP representations of optimal decisions rules: (1) the present-value

representation; (2) the terminal-state representation; and (3) the finite-dependence representation.
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The present-value representation consists of using CCPs to obtain an expression for the ex-

pected and discounted stream of future payoffs associated with each choice alternative. In general,

given CCPs, the valuation function  
 (P) can be obtained recursively using its definition,

 
 (P) = Π


 (P)+ 

R
 

+1 (+1P) 

 (+1|P) +1. And given this valuation func-

tion we can construct the agent’s optimal decision rule (or best response) at period  given that

he believes that in the future he will behave according to the CCPs in the vector P. This present-

value representation is the CCP approach more commonly used in empirical applications because

it can be applied to a general class of dynamic discrete choice models. However, this representation

requires the computation of present values and therefore it is subject to the curse of dimensionality.

In applications with large state spaces, this approach can be implemented only if it is combined

with an approximation method such as the discretization of the state space, or Monte Carlo sim-

ulation (e.g., Hotz et al, 1995, and Bajari et al., 2007). In general, these approximation methods

introduce a bias in parameter estimates.

The terminal-state representation was introduced by Hotz and Miller (1993) and it applies

only to optimal stopping problems with a terminal state. The finite-dependence representation

was introduced by Arcidiacono and Miller (2011) and applies to a particular class of DDC models

with the finite dependence property. A DDC model has the finite dependence property if given

two values of the decision variable at period  and their respective paths of the state variables

after this period, there is always a finite period 0   (with probability one) where the state

variables in the two paths take the same value. The terminal-state and the finite-dependence CCP

representations do not involve the computation of present values, or even the estimation of CCPs

at every possible state. This implies substantial computational savings as well as avoiding biases

induced by approximation errors.

The system of Euler-equations that we have derived in Proposition 3 can be seen also a CCP

representation of the optimal decision rule in a DDC model. Our representation shares all the

computational advantages of the terminal-state and finite-dependence representations. However,

in contrast to the terminal-state and finite-dependence, our Euler equation representation applies

to a general class of DDC models. We can derive Euler equations for any DDC model where the

unobservables satisfy the conditions of additive separability in the payoff function, and conditional

independence in the transition of the state variables.

3 GMM estimation of Euler equations

Suppose that the researcher has panel data of  agents over e periods of time, where he observes
agents’ actions { :  = 1 2   ;  = 1 2  e}, and a subvector  of the state variables,

{ :  = 1 2   ;  = 1 2  }. The number of agents  is large, and the number of time

periods is typically short. The researcher is interested in using this sample to estimate the structural
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parameters of the model, . We describe here the GMM estimation of these structural parameters

using moment restrictions from the Euler equations derived in section 2.

3.1 GMM estimation of Euler equations in continuous decision models

The GMM estimation of the structural parameters is based on the combination of the Euler equa-

tion(s) in (5), the assumption of rational expectations, and some assumptions on the unobservable

state variables (Hansen and Singleton, 1982). For the unobservables, this literature has considered

the following type of assumption.

ASSUMPTION GMM-EE continuous decision. (A) The partial derivatives of the payoff function

are Π( ) = ( ) and Π( ) = ( )+ , where ( ) and ( )

are known functions to the researcher up to a vector of parameters , and  is a vector of unob-

servables with zero means, not serially correlated, and mean independent of ( −1 −1) such

that E(+1 | +1  ) = 0. (B) the partial derivatives of the transition rule, +1
0
 and

+1
0
, and the matrix ( ) do not depend on unobserved variables: i.e., +1

0
 =

( ), +1
0
 = ( ), and ( ) = ( ).

Under these conditions, the Euler equation implies the following orthogonality condition in

terms only of observable variables { } and structural parameters : E( (  +1 +1; ) |
) = 0, where

(  +1 +1; ) ≡ ( ; )

+  [(+1 +1; )−(+1 +1; ) (+1 +1; ) ]( ; )

(44)

The GMM estimator ̂ is defined as the value of  that minimizes the criterion function  ()
0

Ω (), where () ≡ {1() 2()  −1()} is the vector of sample moments

() =
1



P
=1

() (  +1 +1; ) (45)

and () is a vector of instruments (i.e., known functions of the observable state variables at

period ).

The GMM-Euler equation approach for dynamic models with continuous decision variables

has been extended to models with corner solutions and censored decision variables (Pakes, 1994,

Aguirregabiria, 1997, and Cooper, Haltiwanger, and Willis, 2010), and to dynamic games (Berry

and Pakes, 2000).11

11The paper by Cooper, Haltiwanger, and Willis (2010) is "Euler Equation Estimation for Discrete Choice Models:

A Capital Accumulation Application". However, that paper deals with the estimation of models with continuous but

censored decision variables, and not with pure discrete choice models.
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3.2 GMM estimation of static random utility models

Consider the ARUM in section 2.3. Now, the deterministic component of the utility function

for agent  is ( ; ), where  is a vector of exogenous characteristics of agent  and of the

environment which are observable to the researcher, and  is a vector of structural parameters.

Given a random sample of  individuals with information on { }, the marginal conditions of
optimality in equation (16) can be used to construct a semiparametric two-step GMM estimator

of the structural parameters. The first step consists in the nonparametric estimation of the CCPs

 (|) ≡ Pr( =  |  = ). Let bP ≡ { b (|)} be a vector of nonparametric estimates of
CCPs for any choice alternative  and any value of  in the sample. For instance, b(|) can be
a kernel (Nadaraya-Watson) estimator of the regression between 1{ = } and . In the second

step, the vector of parameters  is estimated using the following GMM estimator:

̂ = argmin
∈Θ

0


³
 bP

´
Ω 

³
 bP

´
(46)

where  (P) ≡ {1(P) 2(P)  (P)} is the vector of sample moments, with

(P) =
1



P
=1



"
( ; )− (0 ; ) + (   )− (0   ) +

P
=0

 (|)( ) (|)

#
(47)

This two-step semiparametric estimator is root-N consistent and asymptotically normal under mild

regularity conditions (see Theorems 8.1 and 8.2 in Newey and McFadden, 1994). The variance

matrix of this estimator can be estimated using the semiparametric method in Newey (1994), or as

recently shown by Ackerberg, Chen, and Hahn (2012) using a computationally simpler parametric-

like method as in Newey (1984).

3.3 GMM estimation of Euler equations in DDC models

The Euler equations that we have derived for DDC model implies the following orthogonality

conditions: E( (  +1; +1 ) |  ) = 0, where

(  +1; +1 ) ≡ Π


(|) + 
h
Π+1(+1)−m(+1)0

Π
+1(+1)

P+1(+1)

i (+1|)
(+1|)

(48)

Note that this orthogonality condition comes from the Euler equation (33) in Proposition 3, but

we have made two changes. First, we have included the expectation E( | ) that replaces the
sum

P
+1

and the distribution of +1 conditional on ( ), i.e., (+1| ) (+1|). And
second, the Euler equation applies to any hypothetical choice, , at period , but in the orthogonality

condition E( (  +1; +1 ) |  ) = 0 we consider only the actual/observed choice .
Given these conditions, we can construct a consistent an asymptotically normal estimator of 

using a semiparametric two-step GMM similar to the one described above for the static model. For
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simplicity, suppose that the sample includes only two periods,  and  + 1. Let bP and bP+1

be vectors with the nonparametric estimates of {(|)} and {+1(|+1)}, respectively at any
value of  and +1 observed in the sample. Note that we do not need to estimate CCPs at states

which are not observed in the sample. In the second step, the GMM estimator of  is:

̂ = argmin
∈Θ

0


³
 bP  bP+1

´
Ω 

³
 bP  bP+1

´
(49)

where  (PP+1) is the vector of sample moments:

 (PP+1) =
1



X
=1

( ) (  +1; +1 ) (50)

( ) is a vector of instruments, i.e., known functions of the observable decision and state

variables at period . As in the case of the static ARUM, this semiparametric two-step GMM

estimator is consistent and asymptotically normal under mild regularity conditions.

3.4 Relationship with other CCP estimators

The estimation based on the moment conditions provided by the Euler-equation, or terminal-

state, or finite-dependence representations imply an efficiency loss relative to estimation based on

present-value representation. As shown by Aguirregabiria and Mira (2002, Proposition 4), the

two-step pseudo maximum likelihood estimator based on the CCP present-value representation is

asymptotically efficient (equivalent to the maximum likelihood estimator). This efficiency property

is not shared by the other CCP representations. Therefore, there is a trade-off in the choice between

CCP estimators based on Euler equations and on present-value representations. The present value

representation is the best choice in models that do not require approximation methods. However,

in models with large state spaces that require approximation methods, the Euler equations CCP

estimator can provide more accurate estimates.

4 An Application

This section presents an application of the Euler equations - GMM method to a binary choice model

of firm investment. More specifically, we consider the problem of a dairy farmer who has to decide

when to replace a dairy cow by a new heifer. The cow replacement model that we consider here

is an example of asset or "machine" replacement model.12 We estimate this model using data on

dairy cow replacement decisions and milk production using a two step Pseudo Maximum Likelihood

(PML) estimator and the Maximum Likelihood (ML) estimator, and compare these estimates to

those of the Euler equations - GMM method.

12Dynamic structural models of machine replacement have been estimated before by Rust (1987), Sturm (1991),

Das (1992), Kennet (1993 and 1994), Rust and Rothwell (1995), Adda and Cooper (2000), Cho (2002), and Kasahara

(2004), among others.
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4.1 Model

Consider a farmer that produces and sells milk using dairy cows. The farm can be conceptualized

as a plant with a fixed number of stalls , one for each dairy cow. We index time by  and stalls

by . In our model, one period of time is a lactation period of 13 months. Farmer profits at period

 is the sum of profits across the stalls,
P

=1Π where Π is the profit from stall  at period ,

minus the fixed cost of operating a farm with  stalls/cows, (). In this application, we take

the size of a farm, , as exogenously given. Furthermore, profits are separable across stalls and we

can view the problem as maximization of profit from an individual stall.

The farmer decides when (after which lactation period) to replace the existing cow by a new

heifer. Let  ∈ {0 1} be the indicator for this replacement decision:  = 1 means that the

existing cow is replaced at the end of the current lactation period. The profit from stall  at period

 is:

Π =

⎧⎨⎩
 ( )− () + (0)   = 0

 ( )− ()−( 

 ) + (1)   = 1

(51)

( ) is the production of milk of the cow in stall  at period , where  ∈ {1 2  max} is
the current cow’s age or lactation number, and  is a cow-stall idiosyncratic productivity. 


 is

the market price of milk. () is the maintenance cost that may depend on the age of the cow.

( 

 ) is the net cost of replacing the existing cow by a new heifer. This net cost is equal to

the market price of a new heifer,  , plus some adjustment/transaction costs, minus the market

value of the retired cow. This market value depends on the quality of the meat, and this quality

depends on the age of the retired cow but not on her milk productivity. In what follows we assume

that the prices  and  are constants and as such, do not constitute part of the vector of state

variables. So the vector of observable state variables is  = ( ) where  is the endogenous

state variable, and  =  is the vector of endogenous state variable.

The estimations that we present below are based on the following specification on the functions

() and (): () =  , and () = . That is, the maintenance cost of a cow is linear

in the cow’s age, and the replacement cost is fixed over time.13 While the productivity shock  is

unobservable to the econometrician, as we show below, under some assumptions it can be recovered

by estimation of the milk production function,  =( ), where  is the amount of milk,

in liters, produced by the cow in stall  at period . The transition probability function for the

productivity shock  is:

Pr(+1| ) =
⎧⎨⎩

(+1|)   = 0

0(+1)   = 1

(52)

13The latter may seem a strong assumption, but given that almost every cow in our sample is sold in the first few

years of its life, the assumption may not be so strong over the range of ages observed in the data.

21



An important feature of this transition probability is that the productivity of a new heifer is

independent of the productivity of the retired cow. Once we have recovered , the transition

function for the productivity shock can be identified from the data. The transition rule for the cow

age is trivial: +1 = 1 + (1− ) . The unobservables (0) and (1) are assumed iid over 

and over  with type 1 extreme value distribution with dispersion parameter .

4.2 Data

The dataset comes from Miranda and Schnitkey (1995). It contains information on the replacement

decision, age and milk production of cows from five Ohio dairy farms over the period 1986-1992.

There are 2340 observations from a total of 1 103 cows: 103 cows from farmer 1, 187 cows from

farmer 2, 365 from farmer 3, 282 from farmer 4, and 166 cows from the last farmer. The data were

provided by these five farmers through the Dairy Herd Improvement Association.

Here we use the sample of cows which entered in the production process before 1987. The reason

for this selection is that for these initial cohorts we have complete lifetime histories for every cow,

while for the later cohorts we have censored durations. Our working sample consists of 357 cows

and 783 observations.

In table 1 we provide some basic descriptive statistics from our working sample. The hazard

rate for the replacement decision increases monotonically with the age of the cow. Average milk

production (per cow and period) presents an inverted-U shape patterns both with respect the

current age of the cow and with respect to the age of the cow at the moment of replacement. This

evidence is consistent with a causal effect of age of milk output but also with a selection effect, i.e.,

more productive cows tend to be replaced at older ages.

Table 1

Descriptive Statistics

(Working sample: 357 cows with complete spells)

Cow Lactation Period (Age)

1 2 3 4 5

Distribution of cows (%) by age of replacement 113 126 68 37 13

(31.7 %) (35.3 %) (19.0 %) (10.4 %) (3.6 %)

Hazard rate for the replacement decision 0.317 0.516 0.571 0.740 1.000

Mean Milk Production (thousand pounds) 1 14.90 18.13 18.76 18.42 16.85

by age (row) & age at replacement (column)

2 - 17.42 19.80 20.46 19.40

3 - - 20.06 23.74 22.28

4 - - - 20.07 21.60

5 - - - - 16.99
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4.3 Estimation

In this section we estimate the structural parameters of the profit function using our Euler equations

method, as well as two more standard methods for estimation of dynamic discrete choice models,

the two-step Pseudo Maximum Likelihood (PML) method and Maximum Likelihood (ML) method

for illustrative purposes.

4.3.1 Estimation of Milk Production Function

Regardless of the method we use to estimate the structural parameters in the cost functions, we

first estimate the milk production function,  = ( ), outside the dynamic programming

problem. We consider a specification for milk production that is nonparametric in age, and log-

additive in the productivity shock :

ln() =
maxP
=1

 1{ = }+  (53)

A potentially important issue in the estimation of this production function is that we expect age

 to be positively correlated with the productivity shock . Less productive cows are replaced at

early ages, and high productivity cows at later ages. Therefore, OLS estimates of  will not have a

causal interpretation, as the age of the cow  is positively correlated with unobserved productivity

. Specifically, we would expect that [|] is increasing in  as more productive cows survive
longer than less productive ones. This would tend to bias downward the ‘ at early ages and

upward bias the ‘ at old ages.14

To overcome this endogeneity problem, we consider the following approach. First, note that if

the productivity shock were not serially correlated, there would be no endogeneity problem because

age is a predetermined variable which is not correlated with an unanticipated shock at period .

Therefore, if we can transform the production function such that the unobservable is not serially

correlated, then the unobservable in the production function will not be correlated with age. Note

that the productivity shock  is cow specific and is not transferred to another cow in the same

stall. Therefore, if the age of the cow is 1, we have that  is not correlated with 1{ = 1}. That
is,

1 = E [ ln() |  = 1] (54)

and we can estimate consistently 1 using the frequency estimator [
P

 1{ = 1} ln()] 

[
P

 1{ = 1}]. For ages greater than 1, we assume that  follows an AR(1) process,  = 

−1 + , where  is an iid shock. Then, we can transform the production function to obtain

14The nature of this type of bias is very similar to the one in the estimation of the effect of firm-age in a production

function of manufacturing firms, or in the estimation of the effect of firm-specific experience in a wage equation.
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the following sequence of equations. For  ≥ 2:

ln() =  ln(−1) +
P
=2

1{ = }+  (55)

where  ≡  −  −1. OLS estimation of this equation provides consistent estimates of  and

0. Finally, using these estimates and the estimator of 1, we obtain consistent estimates of  and

0. We can also iterate in this procedure to obtain Cochrane-Orcutt FGLS estimator.

Table 2 presents estimates of the production function. In column 1 we provide OLS estimates of

equation (53) in levels. Column 2 presents OLS estimates of semi-difference transformed equation

(55). And column 3, provides the estimates of the  parameters implied by the estimates in column

2, where their standard errors have been obtained using the delta method. The comparison of the

estimates in columns 1 and 3 is fully consistent with the bias we expected. In column 1 we ignore

the tendency for more productive cows to survive longer and we estimate a larger effect of age on

milk production than when we do account for this in column 3. The difference is particularly large

when the cow is age 4 or 5.

Table 2

Estimation of Milk Production Function

(Working sample: 357 cows with complete spells)

Explanatory variables Estimates (standard errors)

Not controlling Controlling for selection

for selection  parameters  parameters

ln(−1) - 0.636 (0.048)

1{ = 1} 2.823 (0.011) - 2.823 (0.010)

1{ = 2} 2.905 (0.014) 1.068 (0.139) 2.863 (0.014)

1{ = 3} 3.047 (0.019) 1.150 (0.144) 2.971 (0.020)

1{ = 4} 3.001 (0.030) 1.004 (0.152) 2.894 (0.030)

1{ = 5} 2.809 (0.059) 0.862 (0.155) 2.702 (0.057)

R-square 0.130 0.364

Number of Observations 783 426

4.3.2 Structural Estimation of Payoff Parameters

We now proceed to the estimation of the structural parameters in the maintenance cost, replacement

cost/value, and variance of , i.e., θ = {   }. We begin by deriving the Euler equations of
this model. This Euler equations correspond to the ones in the machine replacement model in

24



Example 5 above. That is, h
 (1  )−  (0  )−  ln

³
 (1|)
 (0|)

´i
+

 E
h
 (1 1 +1)−  (1  + 1 +1)−  ln

³
 (1|1+1)

 (1|+1+1)
´i

= 0

(56)

where we have imposed the restriction that the model is stationary such as the functions ()

and  () are time-invariant. Using our parameterization of the payoff function, we have that

 (1  )− (0  ) = −, and  (1 1 +1)− (1  + 1 +1) = [(1 +1)− (+

1 +1)]+  , such that we can get the following simple formula for this Euler equation:

E
³
̃+1 −  +   +  e+1´ = 0 (57)

where ̃+1 ≡  [(1 +1)−(+1 +1)], and e+1 ≡ [ln (0|)+ ln (1|+1 +1)]−
[ln (1|) +  ln (1|1 +1)]. We estimate θ = {   } using a GMM estimator based on

the moment conditions E( {̃+1 −  +   +  e+1}) where the vector of instruments 

is {1, , , (1 )− ( + 1 ), ln (0|)− ln (1|), ln (1| + 1 )− ln (1|1 )}0.
Table 3 presents estimates of these structural parameters using GMM-Euler equations, and

using two other standard methods of estimation, the two-step Pseudo Maximum Likelihood (PML)

(see Aguirregabiria and Mira, 2002), and the Maximum Likelihood (ML) estimator. We use the

Nested Pseudo Likelihood (NPL) method of Aguirregabiria and Mira (2002) to obtain the ML

estimates15. For these PML and ML estimations, we discretize the state variable  in 201 values

using a uniform grid in the interval [−5b, 5b]. The two-step PML and the MLE are very similar
both in terms of point estimates and standard errors. Note that these estimators are asymptotically

equivalent (Proposition 4, Aguirregabiria and Mira, 2002). However, in small samples and with

large state spaces the finite sample properties of these estimators can be very different, and more

specifically the two-step PML can have a substantially larger small sample bias (Kasahara and

Shimotsu, 2008). In this application, it seems that the dimension of the state space is small relative

to the sample size such that the initial nonparametric estimates of CCPs are precise enough, and

the finite sample bias of the two-step PML is also small.

Table 3 presents two different GMM estimates based on the Euler equations: a 1-step GMM

estimator where the weighting matrix is (
P

  
0
)
−1, and 2-step GMM estimator using the

optimal weighting matrix. Both GMM estimates are substantially different to the MLE estimates,

but the optimal GMM estimator is closer. A possible simple explanation for the difference between

the GMM-EE and the MLE estimates is that the GMM estimates is asymptotically less efficient,

15 In the context of single agent DDC models with a globally concave pseudo likelihood, the NPL operator is a

contraction such that it always converges to its unique fixed point (Kasahara and Shimotsu) and this fixed point

is the MLE (Aguirregabiria and Mira, 2002). In this application the NPL algorithm converged to the MLE after 7

iterations using a convergence criterion of
 − −1  10−6.
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i.e., it is not using the optimal set of instruments. Other possible factor that may generate differ-

ences between these estimates is that the GMM estimator is not invariant to normalizations. In

particular, we can get quite different estimates of θ = {   } if we use a GMM estimator

under the normalization that the coefficient of ̃+1 is equal to (i.e., using moment conditions E(

{ ̃+1 −  +   +  e+1}) = 0) and if we use a GMM estimator under the normal-

ization that the coefficient of e+1 is equal to one (i.e., using moment conditions E( { (1)
̃+1 − () + () + e+1}) = 0). While the first normalization seems more ’natural’
because our parameters of interest appear linearly in the moment conditions, the second normal-

ization is ’closer’ the moment conditions implied by the likelihood equations and MLE. We plan to

explore this issue and obtain GMM-EE estimates under alternative normalizations.

Table 3

Estimation of Maintenance Cost and Replacement Cost Parameters

(Working sample: 357 cows with complete spells)

Structural Parameters Estimates

Two-Step MLE GMM-Euler equation

PML 1-step 2-step (Opt. Wei. matrix)

Dispersion of unobs.  0.296 (0.035) 0.288 (0.031) 0.133 (0.042) 0.138 (0.038)

Maintenance cost  0.136 (0.029) 0.131 (0.029) 0.103 (0.035) 0.105 (0.031)

Replacement cost  0.363 (0.085) 0.342 (0.079) 0.209 (0.087) 0.241 (0.085)

Number of Observations 770 770 770 770

Pseudo R-square 0.707 0.707

The estimates of the structural parameters in Table 3 are measured in thousands of dollars.

For comparison, it is helpful to take into account that the sample mean of the annual revenue

generated by a cow’s milk production is $150 000. According to the ML estimates, the cost of

replacing a cow by a new heifer is $34 200 (i.e., 22.8% of a cow’s annual revenue), and maintenance

cost increases every lactation period by $13 100 (i.e., 8.7% of annual revenue). There is very

significant unobserved heterogeneity in the cow replacement decision, as the standard deviation of

these unobservables is equal $28 800.

Figure 1 displays the predicted probability of replacement by age of the cow (replacement

probability at age 5 is 1). The probabilities are constructed using the ML estimates. The results

suggest that at any age, replacement is less likely the more productive the cow, and that for any

given productivity older cows are more likely to be replaced. There is an especially large increase

in the probability of replacement going from age 2 to age 3.
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Because its simplicity, this empirical application provides a helpful framework for a first look at

the estimation of DDC models using GMM-Euler equations. However, it is important to note that

the small state space also implies that this example cannot show the advantages of this estimation

method in terms of reducing the bias induced by the approximation of value functions in large state

spaces. To investigate this issue, in our future work we plan to extend this application to include

additional continuous state variables (i.e., price of milk, and the cost of a new heifer). We also plan

to implement Monte Carlo experiments.

5 Conclusions

This paper deals with the estimation of dynamic discrete choice structural models. We show that

we can represent the dynamic discrete choice model as a continuous choice model where the decision

variables are choice probabilities. Using this representation of the discrete choice model, we derive

marginal conditions of optimality (Euler equations) for a general class Dynamic Discrete Choice

structural models, and based on these conditions we show that the structural parameters in the

model can be estimated without solving or approximating value functions. This result generalizes

the GMM-Euler equation approach proposed in the seminal work of Hansen and Singleton (1982)

for the estimation of dynamic continuous decision models to the case of discrete choice models. The

main advantage of this approach, relative to other estimation methods in the literature, is that the

estimator is not subject to biases induced by the errors in the approximation of value functions.
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APPENDIX

[1] Proof of Proposition 1.

Part (i). Let Π( ) be the ex-post payoff function associated with a decision rule , such that

Π( ) =
P

=0 1{() = } [() + ()]. By Lemmas 1-2, there is a one-to-one relationship

between P and . Given this relationship, we can represent the ex-post payoff function associated

with a decision rule  using the following function of P:

Π(P ) ≡
P

=0

1
n
()− () ≤ e−1(P)− e−1(P) for any  6= 

o
[() + ()] (58)

Given that ∗ maximizes Π( ) for every possible value of , then by construction, P∗ maximizes

Π(P ) for every possible value of . The proof of this is by contradiction. Suppose that there is a

vector of CCPs P0 6= P∗ and a value 0 such that Π(P0 0)  Π(P
∗  0). This implies that the

optimal decision for 0 is the action  with the largest value of e−1(P0) + 0(). But because

[ e−1(P0)− e−1(P0)] 6= [ e−1(P∗)− e−1(P∗)] = ()− (), the action that maximizese−1(P0) + 0() is different to the action that maximizes () + (). This contradicts that

Π(P0 0)  Π(P
∗  0).

Because P∗ maximizes Π(P ) for every possible value of , it should be true that P∗ max-

imizes in P the "integrated" payoff function
R
Π(P ) (). It is straightforward to show that

this integrated payoff function is the expected payoff function Π(P). Therefore, P∗ maximizes

the expected payoff function. By uniqueness of P∗, this implies that P∗ = P∗.

Part (ii). The expected payoff function Π(P) is continuously differentiable with respect to P.

Furthermore, Π(P) goes to minus infinite as any of the choice probabilities in P goes to 0 or to 1,

i.e., when P goes to the frontier of the simplex S. Therefore, the maximizer P∗ should be in the
interior of the simplex and it should satisfy the marginal conditions of optimality Π(P∗)P = 0.

Finally, given the definition of the expected payoff function in equation (13), we have that:

Π(P)

 ()
= ()− (0) + (P)− (0P) +

X
=0

 ()
(P)

 ()
(59)

[2] Proof of Proposition 2.

The proof of this Proposition is a recursive application of Proposition 1. Let (  P0)

be the ex-post valuation function associated with a current decision rule  and future CCPs P0,

such that

(  P0) =

X
=0

1 {( ) = } [( P0) + ()] (60)

and ( P0) is the conditional choice value ( ) + 
R
+1 (+1P+1(+1)P0+1)

(+1|, ) +1. By Lemmas 1-2, there is a one-to-one relationship between P() and .

28



Given this relationship, we can represent the ex-post valuation function associated with a decision

rule  using the following function of P():

 ( P()P0) ≡
P

=0

1
n
()− () ≤ e−1(P())− e−1(P()) for any  6= 

o
[( P0) + ()]

(61)

By definition of the optimal decision rule, given P∗0 the decision rule 
∗
 maximizes ( 

 P
∗
0) for every possible value of . Then, as in Proposition 1, we have that by construction,

P∗
 () maximizes ( P()P0) for every possible value of . This implies that P

∗
 ()

also maximizes the "integrated" valuation function
R
 ( P()P0) (). But this

integrated function is equal to the expected valuation function  
 (P(),P0). Therefore,

P∗
 () maximizes 


 (P(),P0). By uniqueness of P

∗
 (), this implies that P

∗
 () = P

∗
 ().

The expected valuation function  
 (P(),P0) is continuously differentiable with respect

to P(). The maximizer 

 (P(),P0) with respect to P() should be in the interior of the

simplex and it should satisfy the marginal conditions of optimality  


¡
P∗ (),P∗0

¢
P∗ () =

0. Given the definition of the expected value function, we have that:

 


(|) = ( P0)− (0 P0) + (P)− (0P) +
P

=0

(|)(P)(|) (62)

[3] Proof of Proposition 3.

For the derivation of the expressions below for the Lagrangian conditions, note that, by definition

of  (+1|), we have that  (+1|)(|) = e(+1| ) ≡ (+1| )− (+1|0 ).
For any   0, the Lagrange condition L(|) = 0 implies that:

Π
(|) + 

X
+1

Π+1(+1)
e(+1| ) (+1|)

−
X

+2∈Y+2()
(+2 )

⎡⎣X
+1

+1(+2 | +1) e(+1| ) (+1|)
⎤⎦ = 0

(63)

We can also represent this expression as

Π
(|) + 

X
+1

∙
Π+1(+1)− f+1(+1)0

λ()



¸ e(+1| ) (+1|) = 0 (64)

where λ() is the vector with dimension |Y+2()|×1 with the Lagrange multipliers {(+2 ) :
+2 ∈ Y+2()}, and f+1(|+1) is the vector of transition probabilities {+1(+2 | +1) : +2 ∈
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Y+2()}. Similarly, for any   0 and any +1 ∈ X , the Lagrange condition L+1(|+1) = 0
implies that


Π+1(+1)

+1(|+1) −
X

+2∈Y+2()
(+2 ) e+1(+2| +1) = 0 (65)

We can represent this system of equations in vector form as:

eF+1(+1)
λ()


=

Π
+1(+1)

P+1(+1)
(66)

λ() is the vector of Lagrange multipliers defined above. Π

+1(+1)P+1(+1) is a column

vector with dimension  |Y+1()| × 1 that contains the partial derivatives { Π+1(+1 +1) 

+1( | +1 +1) } for every action   0 and every value +1 ∈ Y+1() that can be reach
from , and fixed value for +1. And eF+1(+1) is matrix with dimension  |Y+1()| × |Y+2()|
that contains the probabilities e+1(+2| +1) for every +2 ∈ Y+2(), every +1 ∈ Y+1(),
and every action   0, with fixed +1. In general, the matrix eF+1(+1) is full-column rank for

any value of +1. Therefore, for any value of +1, the square matrix eF+1(+1)
0 eF+1(+1) is

non-singular and we can solve for the Lagrange multipliers as:

λ()


=

heF+1(+1)
0 eF+1(+1)

i−1 ∙eF+1(+1)
0 Π


+1(+1)

P+1(+1)

¸
(67)

Solving this expression for the Lagrange multipliers into equation (64), we get the following Euler

equation

Π
(|) + 

X
+1

∙
Π+1(+1)−m(+1)0

Π
+1(+1)

P+1(+1)

¸ e(+1| ) (+1|) = 0 (68)

wherem(+1) is a  |Y+1()|×1 vector such thatm(+1)0 = f+1(+1)0 [eF+1(+1)
0 eF+1(+1)]

−1eF+1(+1)
0, and Π

+1(+1)P+1(+1) is the vector of partial derivatives defined above.
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