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neutral buyers arrive over two periods. Buyers in the first cohort arrive in period one, are
privately informed about the distribution of their values, and then privately learn the value
realizations in period two. Buyers in the second cohort are “last-minute shoppers” that al-
ready know their values upon their arrival in period two. The seller can fully commit to
a long-term contract with buyers in the first cohort, but cannot commit to the future con-
tractual terms that will be offered to second-cohort buyers. The expected second-cohort
contract serves as an endogenous type-dependent outside option for first-cohort buyers,
reducing the seller’s ability to extract rents via sequential contracts. We derive the seller-
optimal equilibrium and show that the seller mitigates this effect by inducing some first-
cohort buyers to strategically delay their time of contracting—the seller manipulates the
timing of contracting in order to endogenously generate a commitment to maintaining
high future prices. The seller’s optimal contract pools low types, separates high types, and
induces intermediate types to delay contracting.
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DYNAMIC SCREENING WITH LIMITED COMMITMENT

1. INTRODUCTION

In many contracting settings, agents have private information that changes over time. Recent
advances in dynamic mechanism design have highlighted the benefits of using dynamic contracts
in such settings. Different short- and long-term prices, option contracts, and introductory offers
are all methods by which a principal can provide incentives for agents to reveal new private infor-
mation over time; by doing so, a principal is able to make contingent decisions that extract greater
rents than those generated by unconditional, static contracts. One of the basic intuitions arising
from this literature is that by contracting in the earliest stages of a relationship, when her infor-
mational disadvantage is at its smallest, a principal can relax the participation and incentive con-
straints she faces. Thus, early contracting leads to more effective price discrimination and smaller
information rents. This intuition arises in large part from the assumption that the principal is able
to determine the timing of contracting. In many settings, however, such an assumption need not
be justified: in many markets, agents are “born” or enter the market at different times, and they are
frequently able to time their transactions or delay entry into contractual relationships. Moreover,
a principal may not be able to prevent such delays and treat different agent cohorts differently.

This strategic delay by agents in the timing of contracting is even more of a concern when the
principal has limited commitment power. In particular, we have in mind settings in which the
principal can commit to fully enforceable long-term contracts that bind (with some restrictions)
her bilateral relationship with individual agents, but cannot to commit in advance to the contrac-
tual terms that may be offered in future periods. This form of limited commitment, in addition
to being of natural theoretical interest, also arises in a variety of real-world settings. For instance,
consider the market for airline tickets. Each ticket sold for future travel is a long-term contract,
complete with a commitment to its provisions for future refundability and exchangeability. The
features of tickets that may be sold in the future (including prices, fare classes, and other terms
and conditions) are not advertised or made available, nor is there any presumption that that an
airline is pre-committed to the details of those tickets. Potential ticket buyers, on the other hand,
face uncertainty about their value for traveling at the date in question. They must therefore decide
whether to purchase a ticket immediately and take advantage of its option-like features (cancel-
ing the ticket if their realized value is low), or instead postpone their purchase in hopes of more
advantageous contracting opportunities in the future. Optimal ticketing schemes must take this
strategic timing of contracting into account, accounting for buyers’ option value of postponing
purchases and the impact of such behavior on the seller’s ability to extract rents from different
cohorts of buyers.

With this in mind, the present work studies the role of limited commitment in dynamic screen-
ing with strategic agents. We construct a simple two-period model in order to isolate the role of
limited commitment in a transparent fashion. This model features a monopolist that faces two
cohorts of buyers that arrive over two periods; all consumption occurs at the end of the second
period. Each buyer in the first cohort (which arrives in the first period) initially has private in-
formation regarding the distribution from which her private value is drawn, but does not learn
the realized value until the second period. Buyers in the second cohort arrive in period two, and
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already know their private value (which is drawn from a commonly known distribution). We as-
sume that buyers are anonymous, so that the seller is unable to distinguish in period two between
first-cohort buyers who postponed contracting and second-cohort buyers who have just arrived
to the market. Thus, the seller cannot prevent first-cohort buyers from contracting in period two.

A straightforward strategic tension arises in this setting. Since buyers in the first cohort learn
their values over time, the seller has a strong incentive to sequentially screen these buyers using
(dynamic) option contracts. The seller would also like to sell to buyers in the second cohort by
offering a (static) “last-minute price” contract in period two. We assume that the seller can credibly
commit to a sequential contract offered in the first period; she cannot commit at that time, however,
to contracts that she might offer in the second period. This second-period contract affects the
seller’s ability to screen cohort-one buyers and extract rents: the period-two contract serves as an
endogenous outside option for cohort-one buyers. If the seller can commit to a relatively high
period-two price, this outside option becomes less attractive, and the seller’s profits from cohort-
one buyers increase. With limited commitment, however, competition between the period-one
seller and her future self increases the rents left to buyers and reduces the seller’s profits.

A simple thought experiment is helpful in illustrating the interplay between the seller’s limited
commitment and the possibility of strategic delay by buyers. Suppose that the mass of cohort
two is small, and suppose further that the monopoly price that corresponds to this cohort (in
isolation) is low. If cohort-one buyers anticipate this low price, then waiting until the second
period to contract is a very attractive outside option, and the seller’s ability to extract rents in
period one is reduced. Note, however, that the small mass of the second cohort implies that their
contribution to total profits is also small; therefore, a seller with full commitment power could
(relatively costlessly) commit to forgoing profits from the second-period cohort by charging an
excessively high second-period price, thereby reducing the option value of strategic delay for
cohort-one buyers and increasing overall profits. A seller with limited commitment power, on
the other hand, would be unable to carry out the threat to maintain a high price in period two.
Because the mass of cohort two is small, however, small changes in the composition of the set
of buyers contracting in the second period can have a large impact on the distribution of buyers’
values. In particular, the seller has a strong incentive to postpone contracting and encourage
delay by some cohort-one buyers in order to generate stronger period-two demand. This delayed
contracting by a subset of buyers generates (via sequential rationality) a higher period-two price
and, hence, a commensurately lower period-one outside option—appropriate “management” of
demand across the two periods yields the seller some measure of endogenous commitment power.
Our main result identifies the subset of buyers that the seller induces to delay in her optimal
contract, thereby characterizing this endogenous commitment and allowing an exploration of the
tradeoffs required to extract rents in a dynamic limited-commitment environment.

In solving the seller’s optimal contracting problem, we cannot resort to the revelation principle
due to the lack of commitment power. Instead, we follow the approach of Riley and Zeckhauser
(1983) and Skreta (2006) and solve for the seller-optimal equilibrium of a dynamic contracting
game by focusing on equilibrium outcomes (as opposed to the equilibrium strategies implement-
ing those outcomes). In particular, we solve for the optimal direct revelation mechanism with the

2



DYNAMIC SCREENING WITH LIMITED COMMITMENT

additional constraints imposed by sequential rationality and then show that there exists a perfect
Bayesian equilibrium of the general game that implements its outcomes. In doing so, we explic-
itly account for the possibility of strategic delay by buyers in the first cohort. So as to focus on
the seller-optimal equilibrium, however, we allow the seller to “suggest” which buyers participate
in the initial mechanism (just as a Myersonian mediator may “recommend” actions to agents).
We then verify that these suggestions are indeed optimal from the buyers’ perspective and are
therefore compatible with individual rationality.

As a benchmark, we consider the optimal contract when the seller is able to commit in advance
to the contract offered in the second period and buyers are unable to delay contracting. Here, the
seller simply treats the two cohorts separately, and standard tools immediately yield the optimal
contracts. The seller uses a set of sequential screening contracts as in Courty and Li (2000) to
maximize profits from the first cohort, while offering the optimal monopoly price to buyers in the
second cohort.

In order to isolate the role played by strategic delay in this dynamic setting, we then consider
the setting where first-cohort buyers can delay their purchases and the seller cannot exclude these
buyers from purchasing in the second period. The seller is still able, however, to commit in ad-
vance to the period-two contract. The seller thus faces a tradeoff between maximizing profits
from second-cohort buyers and reducing the outside option available to first-cohort buyers. Note,
however, that this outside option is type-dependent, as cohort-one buyers with different initial
types have different preferences over future contracts: buyers with high expected future values
derive greater expected utility from delaying their contracting than buyers with low expected fu-
ture values. We characterize the seller’s optimal contracts when faced with this type-dependent
“participation” constraint, and show that there is no delayed contracting in the seller-optimal
equilibrium. Instead, the seller’s optimal contract pools “low” types by offering them a contract
that replicates the fixed price offered in the second period, while “high” types are screened using
contracts that induce a strict preference for immediate contracting. Moreover, the second-period
price is higher than the monopoly price that would be offered in the benchmark no-delay case:
relaxing the participation constraint for first-cohort buyers increases the seller’s ability to discrim-
inate among them, and this is more profitable than the marginal increase in profits gained from
second-cohort buyers.

Finally, we examine the two-period game in which the seller cannot commit to the contract of-
fered in the second period and buyers are able to delay contracting. Our main result characterizes
properties of the seller-optimal equilibrium in this setting. We show that it is profitable for the
seller to induce delayed contracting by a subset of cohort-one buyers. By incentivizing some buy-
ers to postpone contracting, the seller is able to alter the distribution of buyer values in the second
period (and therefore the sequentially rational optimal price). We show that the set of types that
delay contracting must be an interval, and that this interval is typically an interior subset of the
set of all types; that is, both “low” and “high” types will choose to contract in the initial period
(with pooling of the low types and separation of the high types), while “intermediate” types de-
lay contracting until the second period. Thus, the seller endogenously commits to a less appealing
period-two contract by inducing the strategic delay of a subset of cohort-one buyers.
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This insight serves as a complement to the findings in the literature that long-term contracts
can be used by sellers in dynamic environments to increase profits. In particular, our result shows
that the absence of contracts with some buyers can be a useful tool for changing the composition of
the buyer population in future periods and thereby constraining the seller’s own future behavior.
This sheds new light on the role of commitment power in dynamic settings, and on the underlying
sources of that commitment.

In addition, note that the optimal contract with limited commitment features an interesting
non-monotonicity: in sharp contrast to most optimal contracting results in both the static and dy-
namic mechanism design literatures, where exclusion typically follows a simple cutoff rule, the
set of buyers in our setting that contract in the first period is disjoint. This non-monotonicity
reduces the seller’s ability to “separate” types and price discriminate in the first period. Thus,
demand management, though valuable in raising future prices and creating endogenous commit-
ment, entails an additional deadweight loss relative to the full commitment benchmark. Indeed,
the potential for endogenous commitment arising from delayed contracting highlights the com-
plications that arise due to limited commitment, but also suggests that studying such models can
lead to rich predictions and insights that further our understanding of dynamic contracting in
real-world settings.

The present work contributes to the literature on optimal dynamic mechanism design.1 This
literature focuses on characterizing revenue-maximizing dynamic contracts for a principal facing
agents with evolving private information. Typically, the principal is endowed with full commit-
ment power and observes agent arrivals, enabling her to commit to excluding agents that do not
contract immediately. Thus, in contrast to our model, all agents receive their (exogenously deter-
mined) reservation utility if they attempt to delay contracting, thereby incentivizing contracting
upon arrival. Baron and Besanko (1984) were the first to study such problems and point out the
crucial role of the “informativeness” of initial-period private information about future types in
determining the optimal distortions away from efficiency used to reduce information rents. More
recently, Pavan, Segal, and Toikka (2012) derive a dynamic envelope formula that is necessarily
satisfied in general dynamic environments, and also identify some sufficient conditions for incen-
tive compatibility.2

Our model is most closely related to the now-canonical work of Courty and Li (2000), who
demonstrate the utility of sequential screening when buyers’ private information may evolve be-
tween contracting and consumption.3 We extend their model in several important ways: we intro-
duce a second cohort of informed buyers who arrive in period two; we allow cohort-one buyers
to postpone contracting until the second period; and we relax the assumption that the principal

1There is also an extensive literature (see Athey and Segal (2007, 2012); Bergemann and Välimäki (2010); Gershkov
and Moldovanu (2009); Said (2012); and Skrzypacz and Toikka (2013), among others) on efficient dynamic mechanism
design. See Bergemann and Said (2011) and Vohra (2012) for surveys of both literatures.
2The present work employes a dynamic “first-order approach” in characterizing incentive compatibility. While we
show that our assumptions on primitives justify this approach, other settings may require a more careful accounting of
global incentive compatibility constraints; see Battaglini and Lamba (2012).
3Boleslavsky and Said (2013) show that sequential screening becomes “progressive” screening when buyers’ values are
subject to additional (correlated) shocks over time. In contrast, Krähmer and Strausz (2012) show that there is no benefit
to sequential screening when buyers have ex post participation constraints or limited (ex post) liability.
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has unlimited commitment power. The first two of these features are shared with the work of Ely,
Garrett, and Hinnosaar (2012), who show that a capacity-constrained seller with full commitment
power can benefit from “overbooking” (selling more units than capacity); units can then be repur-
chased from low-value buyers and reallocated. By committing to biasing the reallocation stage
away from late-arriving buyers, the seller is able to incentivize early purchases. Full commitment
also plays an important role in Deb (2011) and Garrett (2012), who also consider models where
agents’ incentives to delay contracting influence the optimal contracts.4

Since our seller cannot commit in advance to contracts that might be offered in the second
period, this paper also ties into the broader literature on mechanism design without commitment.
Although Bester and Strausz (2001) extend the revelation principle to such problems, their results
are restricted to settings with finite type spaces and static private information. As described above,
we avoid working with arbitrary message spaces by adapting the equilibrium outcome approach
of Skreta (2006) to our framework with evolving private information. In related work, Battaglini
(2005) shows that, in a setting where types evolve according to a Markov process, the optimal
full-commitment contract is often renegotiation-proof. Moreover, Battaglini (2007) demonstrates
that, when private information evolves stochastically, optimal contracts continue to (partially)
separate types, even when a renegotiation-proofness constraint binds. As in the present work,
the additional private information that agents learn over time alleviates the “ratchet effect,” as
the principal’s ability to extract rents in any period is limited by the need to provide incentives
for continued information revelation, even when the seller knows the history of private types. In
our model, however, the ratchet effect is only partially alleviated—the long-term contracts offered
in the seller-optimal equilibrium are not renegotiation-proof. Nonetheless, these contracts require
partial commitment only on the seller’s part, as buyers may end the contractual relationship at any
time. Indeed, buyers are even free to terminate their initial contract and participate in the second-
period contract offered to new entrants; in the seller-optimal equilibrium, however, buyers do not
benefit from this ability to anonymously re-contract with the seller in the second period.

2. MODEL

2.1. Environment

We consider a monopoly seller of some good who faces a continuum of privately informed buy-
ers. The seller has a constant marginal cost of production c ≥ 0 and faces no capacity constraints
on the quantity that she may sell. There are two time periods t ∈ {1, 2}. In each period t, a co-
hort of anonymous and risk-neutral buyers arrives. Anonymity implies that, outside a contractual
relationship, the seller is unable to distinguish in period two between buyers from each cohort.
Each buyer has single-unit demand, and all consumption occurs at the end of period two. For
simplicity, we assume that neither the seller nor the buyers discount the future; our results remain
essentially unchanged in the presence of discounting, however.

4There is also a growing body of work examining the incentives for delay when buyers’ private information does not
change over time—see, for example, Board (2008); Gershkov, Moldovanu, and Strack (2013); and Pai and Vohra (2013).
Deb and Pai (2013) and Mierendorff (2011) show that bunching may be necessary when buyers’ exit times are private.
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The first cohort of buyers consists of a unit mass of agents that arrive in period one. Each
such buyer has an initial private type λ ∈ Λ := [λ, λ̄], where λ is distributed according to the
distribution F with continuous and positive density f . In period two, each buyer then learns
her value v ∈ V := [v, v̄], where v is drawn from the conditional distribution G(·|λ) with con-
tinuous and positive density g(·|λ). We assume that G is twice continuously differentiable, and
further that the family of distributions {G(·|λ)}λ∈Λ is ordered by first-order stochastic dominance:
∂G(v|λ)

/
∂λ ≤ 0 for all v ∈ V and λ ∈ Λ.

The second cohort of buyers consists of a mass γ > 0 of new entrants that arrive in period two.
Each such buyer already knows, upon her arrival, her private value v ∈ V. We assume that values
for cohort-two buyers are drawn from the commonly known distribution H with continuous and
positive density h. We will denote by pH the monopoly price corresponding to this late-arriving
cohort of buyers; that is,

pH := max{argmax
p
{(p− c)(1− H(p))}},

where we choose the largest such price if there are multiple maximizers. Notice that, by definition,
we have pH ∈ (c, v̄). In addition, we assume that there exists some µ̂ ∈ Λ such that

pH = max{argmax
p
{(p− c)(1− G(p|µ̂))}};

that is, the second-cohort monopoly price also corresponds to the monopoly price for some cohort-
one initial type µ̂. Note, however, that we do not require H = G(·|µ̂), so the distribution of
cohort-two buyers’ values need not correspond to that of any type of cohort-one buyer.

2.2. Contracts

Due to our assumption of limited commitment, we cannot directly appeal to the revelation
principle. Instead, we must consider mechanisms with more general message spaces. Note that
we restrict attention throughout to deterministic contracts and mechanisms.

In the initial period, the seller offers, and fully commits to, a dynamic mechanism to cohort-
one buyers. Such a mechanism is a game form D = {M11, M12, τ11, τ12, a1}, where M11 is a set of
period-one messages; M12(m11) is a set of period-two messages that can depend on m11 ∈ M11;
τ11(m11) is a period-one transfer; τ12(m11, m12) is a period-two transfer; and a1(m11, m12) ∈ {0, 1}
is the eventual allocation in period two. We impose the restriction that there exist m11 ∈ M11

and m12 ∈ M12 that correspond to non-participation in the dynamic mechanism—buyers are not
compelled to participate in the seller’s mechanism in the first period, and are also free to exit the
mechanism in the second period.

In the second period, the seller offers, and fully commits to, a static mechanism S = {M22, τ22, a2}
offered to cohort-two buyers and cohort-one buyers that rejected the initial dynamic mechanism
D. Here, M22 is the set of possible (period-two) messages; τ22(m22) is a (period-two) transfer; and
a2(m22) ∈ {0, 1} is the resulting allocation. Note that the fact that the mechanism S is offered
to cohort-one buyers not participating in period one corresponds to our anonymity assumption:
the seller is unable to distinguish between these cohort-one buyers and newly arrived cohort-
two buyers. Since the game ends after period two, it is without loss of generality to assume that
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static mechanism S offered in period two is, in fact, a direct revelation mechanism. Such a mech-
anism may, in principle, attempt to discriminate across cohorts or initial-period types λ. Notice,
however, that this dimension of private information is payoff-irrelevant in the second period—in
period two, buyers’ payoffs depend only on their realized values. This implies that, conditional on
contracting in the second period, the seller is unable to screen across cohorts or initial types, and
so it is without loss to assume that the mechanism S only conditions on buyers’ reported values,
so that M22 = V.

We do not permit the seller to offer contracts in the first period that are contingent on the
seller’s choice of contract in the second period. In particular, note that no elements of the second-
period static mechanism S are arguments of any elements of the first-period dynamic mecha-
nism D. For instance, the seller cannot offer a contract in the first period that promises extremely
large payments to buyers if, in the second period, the seller proposes any contract other than the
full-commitment-optimal contract. Similarly, “most-favored nation” and “best-price guarantee”
clauses are prohibited. Since the seller can fully commit to the terms of the period-one contract,
such clauses serve as mechanisms to allow the seller to also commit to the terms of the period-two
contract, thereby implicitly endowing the seller with full commitment power and violating the
spirit of our limited commitment exercise.5

Strategy profiles are defined in the standard way: they are a choice of an action at each infor-
mation set. Similarly, beliefs at each information set are defined in the usual way. These jointly
generate outcomes: allocations and payments conditional on buyers’ types (λ) and values (v). For
buyers that contract in the initial period, these are

{p11(λ), p12(v, λ), q1(v, λ)}v∈V,λ∈Λ,

where p11 is the period-one payment; p12 is the period-two payment; and q1 is the allocation. For
buyers that contract in the second period, these are denoted by

{p22(v), q2(v)}v∈V,

where p22 is the period-two payment and q2 is the allocation.
Working directly with the underlying mechanism design game is quite intractable, as the set

of possible contracts is large and unwieldy. Instead, we search for optimal outcomes, with the
additional restriction that they are implementable in a perfect Bayesian equilibrium of the “full”
underlying game. We follow the approach of Skreta (2006) in considering the additional restric-
tions that sequential rationality imposes on a standard dynamic mechanism design problem and
verifying that our resulting contract is indeed implementable. Thus, our analysis proceeds as if
the seller uses direct revelation mechanisms for cohort-one buyers.

We must also account, however, for the potential for strategic delay by cohort-one buyers.
Therefore, the period-one mechanism includes a participation decision x : Λ → [0, 1], where
x(λ) denotes the probability with which type λ buyers contract immediately, and (1− x(λ)) is
the probability that a type λ buyer delays contracting until the second period. Since there is a
continuum of buyers, these probabilities do not generate any aggregate uncertainty about the set

5See Board (2008) and Butz (1990) for analyses of best-price guarantees in dynamic durable-goods monopoly models.
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of buyers who ultimately delay contracting. Therefore, x(λ) and (1− x(λ)) also correspond to the
fractions of type λ buyers that contract immediately or delay until the second period, respectively.

Our method of solving for the optimal contract involves the seller choosing x(λ), although in
the underlying game it is the buyers who choose their time of contracting; we will impose the re-
striction, however, that the seller’s choice of x(λ) is consistent with rational behavior (with respect
to correct expectations) on the buyers’ part.6 This contrast is deliberate: by analyzing the delay
decision as an explicit choice by the seller, we are able to determine the seller-optimal equilib-
rium. This is essentially the approach of Jullien (2000), who characterizes the optimal contract for
a principal facing an agent with an exogenously given type-dependent participation constraint—
the principal chooses which agent types to include or exclude from her mechanism. In the present
work, however, the option value of strategic delay is endogenously determined, so excluding
some buyers in the first period has an additional impact on the seller’s problem.

2.3. Payoffs and Constraints

The seller’s expected payoff is simply the sum of profits derived from three groups: cohort-one
buyers who contract in the first period; cohort-one buyers who delay until period two; and cohort
two buyers. Thus, the seller’s profits may be expressed as

Π :=
∫∫

Λ×V

x(λ)(p11(λ) + p12(v, λ)− cq1(v, λ))dG(v|λ)dF(λ)

+
∫∫

Λ×V

(1− x(λ))(p22(v)− cq2(v))dG(v|λ)dF(λ) + γ
∫
V

(p22(v)− cq2(v))dH(v).
(1)

Her objective is then to maximize her payoff above. This problem is, of course, subject to a variety
of incentive compatibility, individual rationality, and sequential rationality constraints.

We begin by considering the second-period constraints. First, all cohort-one buyers that contract
in the initial period must prefer truthful reporting of their value in period two to any misreport.
That is, we must have

U12(v, λ) := q1(v, λ)v− p12(v, λ) ≥ q1(v′, λ)v− p12(v′, λ) for all v, v′ ∈ V and λ /∈ x−1(0). (IC12)

A similar requirement holds for buyers in cohort two, as well as cohort-one buyers that delay
contracting. Thus, we must have

U22(v) := q2(v)v− p22(v) ≥ q2(v′)v− p22(v′) for all v, v′ ∈ V. (IC22)

In addition, these buyers’ participation must be voluntary, and so the optimal contract must satisfy

U22(v) ≥ 0 for all v ∈ V. (IR22)

Since commitment in our model is both limited and one-sided, cohort-one buyers that contract
in the first period are free to end their relationship with the seller and exit the contract. Indeed,
due to anonymity, these buyers are also free to avail themselves of the second-period contract if
they so choose. When the second-period contract participation constraint (IR22) holds, the option

6This is akin to ensuring obedience to the mediator’s recommended actions in Myerson (1986).
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of re-contracting is always at least as attractive as exiting the relationship entirely; thus, we may
express the second-period participation constraint for initial-period contracts as

U12(v, λ) ≥ U22(v) for all v ∈ V and λ /∈ x−1(0). (IR12)

Finally, in the absence of full commitment power, the second-period contract must be sequentially
rational given the seller’s beliefs; in particular, the seller chooses a mechanism in the second period
that maximizes profits, given the set of buyers that delay contracting. Therefore, we must have

{p22, q2} ∈ argmax
p̂,q̂



∫∫
Λ×V

(1− x(λ))( p̂(v)− cq̂(v))dG(v|λ)dF(λ)

+ γ
∫
V

( p̂(v)− cq̂(v))dH(v)


subject to (IC22) and (IR22).

(SR)

Note that the seller’s beliefs about buyers’ values in the second period are described by a smooth
and well-behaved distribution, regardless of the properties of the set of buyers that delay contract-
ing. Even if this set is disjoint, the induced second-period distribution of values has full support
on V. This follows from the evolution of buyers’ private information over time as buyers learn
their values. Moreover, note that the problem in (SR) is unaffected by measure-zero changes to
the set of buyers that postpone contracting, as such changes do not alter the seller’s beliefs about
the resulting distribution of values. Therefore, individual buyers’ decisions about delay will not
affect the contract offered in period two.

There is also a set of constraints that must be satisfied in period one. For all λ, λ′ ∈ Λ, we define

U11(λ, λ′) := x(λ′)
(
−p11(λ

′) +
∫

V
U12(v, λ′)dG(v|λ)

)
+ (1− x(λ′))

(∫
V

U22(v)dG(v|λ)
)

.

(Note that there is no need to consider compound deviations if the second-period constraints
(IC12) are satisfied, as the initial-period type is irrelevant to the buyer’s incentives in period two.)
Then incentive compatibility in the initial period requires that

U11(λ) := U11(λ, λ) ≥ U11(λ, λ′) for all λ, λ′ ∈ Λ. (IC11)

In addition, buyers must be incentivized to participate in the seller’s mechanism in period one.
Individual rationality in the initial period requires that

U11(λ) ≥ 0 for all λ ∈ Λ. (IR11)

Moreover, note that the possibility of strategic delay implies that buyers have an outside option
given by expectations about the contract offered in period two: each cohort-one buyer’s expected
payoff must always be at least as large as that obtained by delaying contracting. Recall, how-
ever, that buyers’ future values depend on their initial type; therefore, the value of strategic delay
varies with λ. Thus, the second-period contract effectively serves as a type-dependent participa-
tion constraint for cohort-one buyers. Moreover, rationality requires that type λ buyers must be
indifferent between immediate contracting and delay whenever x(λ) ∈ (0, 1). Thus, the seller’s
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contract must satisfy

U11(λ) ≥
∫

V
U22(v)dG(v|λ) for all λ ∈ Λ, with equality if x(λ) < 1. (SD)

Finally, notice that the option value of strategic delay is sufficient to make the “standard” partic-
ipation constraint (IR11) redundant whenever the period-two contract induces voluntary partici-
pation (that is, when (IR22) is satisfied).

2.4. Simplifying the Constraints

Before proceeding to the solution to the seller’s optimal contracting problem, it will be helpful
to first simplify some of the constraints. We begin by considering the period-two incentive com-
patibility constraints. Note that these constraints are “easy,” in the sense that standard arguments
may be used to simplify them. In particular, note that constraints (IC12) and (IC22) are essentially
static incentive compatibility constraints, and are therefore equivalent to the usual envelope and
monotonicity conditions. (The proof follows standard techniques, and is therefore omitted.)

LEMMA 1. The period-two incentive compatibility constraints (IC12) for buyers contracting in period one
are satisfied if, and only if, for all λ /∈ x−1(0),

∂U12(v, λ)

∂v
= q1(v, λ) almost everywhere, and (IC′12)

q1(v, λ) is nondecreasing in v. (MON12)

The period-two incentive compatibility constraints (IC22) for buyers contracting in period two are satisfied
if, and only if,

∂U22(v)
∂v

= q2(v) almost everywhere, and (IC′22)

q2(v) is nondecreasing in v. (MON22)

Note that Lemma 1 implies that, since the underlying mechanisms are deterministic, the allo-
cations must follow cutoff rules. More specifically, there exists some function k : Λ → V and a
constant α ∈ V such that

q1(v, λ) =

0 if v < k(λ),

1 if v ≥ k(λ);
and q2(v) =

0 if v < α,

1 if v ≥ α.
(2)

Incentive compatibility in period one is slightly less straightforward. Note that a cohort-one
buyer’s initial-period private type λ does not affect her payoffs directly. Instead, the impact of this
initial type is purely informational: changes in λ yield different future preferences over alloca-
tions, but do not affect a buyer’s ex post flow payoffs. That said, however, an envelope argument
implies that a cohort-one buyer’s expected payoff may be expressed as a function of the “effective”
allocation rule

q̄(v, λ) := x(λ)q1(v, λ) + (1− x(λ))q2(v) (3)

alone. Moreover, we can leverage the stochastic dominance order on {G(·|λ)}λ∈Λ to show that this
effective allocation rule must be monotone in both its arguments. Indeed, the period-one envelope

10
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condition we derive (with details in the appendix) and monotonicity of q̄ are also sufficient for
incentive compatibility.7

LEMMA 2. The incentive compatibility constraints (IC11), (IC12), and (IC22) are satisfied for all buyers if,
and only if,

U′11(λ) = −
∫

V
q̄(v, λ)Gλ(v|λ)dλ almost everywhere, and (IC′11)

q̄(v, λ) is nondecreasing in both v and λ, (MON11)

where Gλ denotes the partial derivative of G with respect to λ.

With this result in hand, we return to the seller’s objective function. In particular, note that the
seller’s payoff in Equation (1) may be rewritten as

Π =
∫∫

Λ×V
[q̄(v, λ)(v− c)−U11(λ)] dG(v|λ)dF(λ) + γ

∫
V
(q2(v)(v− c)−U22(v)) dH(v).

When the incentive compatibility constraints (IC11), (IC12), and (IC22) are satisfied, standard tech-
niques can be used to rewrite this objective function into a more “usable” form—in particular, a
form in which only the allocation rules q1 and q2 appear. Thus, the seller’s payoff from an incentive
compatible contract is∫∫

Λ×V

q̄(v, λ)ϕ1(v, λ)dG(v|λ)dF(λ)−U11(λ) + γ

(∫
V

q2(v)ψ2(v)dH(v)−U22(v)
)

, (4)

where we define

ϕ1(v, λ) := v− c +
Gλ(v|λ)
g(v|λ)

1− F(λ)
f (λ)

and ψ2(v) := v− c− 1− H(v)
h(v)

.

Note that ψ2(v) is simply the standard Myerson (1981) virtual value for second-cohort buyers.
The initial (v− c) term reflects a buyer’s contribution to the social surplus, while the remaining
term corresponds to the distortions arising from incentive compatibility; in particular, the hazard
rate (1−H(v))/h(v) appears because rents received to a buyer with some value v must also accrue
to buyers with higher values.

Similarly, ϕ1(v, λ) is the dynamic analog of the virtual value. The initial (v− c) term is simply
a cohort-one buyer’s ex post contribution to the social surplus, while the remaining term cor-
responds to the distortions arising from incentive compatibility. The hazard rate of first-period
types (1 − F(λ))/ f (λ) appears because contracting begins in the first period; for any realized
value v, any rents received by a buyer with initial type λ must also accrue to buyers with larger
initial types. Meanwhile, the Gλ(v|λ)/g(v|λ) term is the Baron and Besanko (1984) “informative-
ness measure” that captures the responsiveness of a buyer’s second-period value to changes in
her initial-period type.8 This term is zero if type and value are independent, and large if small
changes in λ have a large impact on G(v|λ). Moreover, recall that Gλ ≤ 0 due to first-order sto-
chastic dominance; thus, as is standard, any information rents are paid to the buyer instead of by

7Similar to a result found in Krähmer and Strausz (2011), sufficiency here relies on the deterministic nature of the
underlying mechanisms.
8Pavan, Segal, and Toikka (2012) refer to this ratio as the “impulse response” function.
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her, thereby reducing the virtual surplus. Throughout what follows, we assume the monotonicity
of the cohort-one virtual value.

ASSUMPTION 1. The cohort-one virtual value ϕ1(v, λ) is increasing in both v and λ.

Note that Assumption 1 is strictly stronger than the standard assumption that the distribution
of private information at the time of contracting is log-concave; indeed, it is a joint assumption on
both the distribution F of initial types λ and the conditional distributions G of values. As in much
of the previous literature in dynamic mechanism design, we employ this assumption in order to
justify our “local” first-order approach to incentive compatibility.9 The assumption is, however, an
easily verified condition on primitives that is satisfied in a wide variety of economic environments
of interest.

3. DYNAMIC SCREENING WITH FULL COMMITMENT

In this section, we present the benchmark contracts for a setting in which the seller has the
ability to fully commit to her future contracts. We proceed in three steps: first, we present the
optimal contract when cohort-one buyers are unable to delay contracting; second, we discuss the
optimal contract when the second-period contract is exogenously fixed; and finally, we present
the unconstrained full-commitment optimal contract.

3.1. Dynamic Screening without Strategic Delay

Suppose that cohort-one buyers are unable to delay contracting or re-contract in period two.
When this is the case, the seller is able to treat the two cohorts of buyers separately, with no regard
to the potential impact of the second-period contract on buyers in the first cohort.

To make this more clear, we consider the seller’s formal optimization problem. In order to
account for the impossibility of delay, we require that x(λ) = 1 for all λ ∈ Λ. (Thus, q̄(v, λ) =

q1(v, λ) for all (v, λ) ∈ V×Λ.) Making use of the expression for the seller’s payoff in Equation (4),
we can write the seller’s problem as

max
q1,q2,p11,p12,p22


∫∫

Λ×V

q1(v, λ)ϕ1(v, λ)dG(v|λ)dF(λ)−U11(λ)

+ γ

(∫
V

q2(v)ψ2(v)dH(v)−U22(v)
)


subject to (MON11), (MON12), (MON22), (IR11), and (IR22).

(PND)

Note first that the non-negativity of allocations combines with the conditions (IC′11) and (IC′22)
to simplify the participation constraints. Since U′11(λ) ≥ 0 for all λ ∈ Λ (as q1 ≥ 0 and Gλ ≤ 0),
the participation constraint (IR11) for cohort-one buyers in period one reduces to U11(λ) ≥ 0;
meanwhile, as is standard, the participation constraint (IR22) for cohort-two buyers reduces to

9Analogous conditions were first imposed by Baron and Besanko (1984) and Besanko (1985). Meanwhile, Pavan, Segal,
and Toikka (2012) develop a variety of sufficient conditions guaranteeing the validity of the first-order approach in
general dynamic environments. In the absence of such conditions, Battaglini and Lamba (2012) show that local incentive
compatibility need not yield global incentive compatibility.
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U22(v) ≥ 0. Clearly, both of these inequalities must bind in any solution to the problem (PND), as
the terms are merely additive constants.

Recall that, by Lemma 1, the allocation rules q1 and q2 must be cutoff rules. To pin down q2,
note that incentive compatibility of the cutoff rule, when combined with the binding cohort-two
participation constraint, requires that the period-two mechanism correspond to a simple price;
clearly, the cohort-two monopoly price pH is then optimal. Moreover, note that the seller’s objec-
tive function is linear in q1. Thus, setting aside the remaining cohort-one constraints momentarily,
the seller should simply sell the good only to those cohort-one buyers with nonnegative virtual
values. We thus define the cutoffs kND(λ) and αND by

ϕ1(kND(λ), λ) = 0 and αND := pH. (5)

(To ensure that these cutoffs are well-defined, we set kND(λ) := v if ϕ1(v, λ) > 0.) The optimal
allocation rules can then be written as

qND
1 (v, λ) :=

0 if v < kND(λ),

1 if v ≥ kND(λ);
and qND

2 (v) :=

0 if v < αND,

1 if v ≥ αND.
(6)

It only remains to determine the payment rule associated with these allocations. As is standard
in dynamic mechanism design problems, there may be many payment schemes implementing
the first-cohort allocation rule above. We choose to focus on a particularly natural set of option
contracts, where buyers pay a premium in the initial period in order to decrease the strike price
they face in the second period. Moreover, this strike price is chosen to yield interim individual
rationality. Thus, we let

pND
12 (v, λ) := qND

1 (v, λ)kND(λ) and pND
22 (v) := qND

2 (v, λ)αND. (7)

Finally, the initial period price pND
11 is determined using the envelope condition (IC′11); we define

pND
11 (λ) :=

∫
V

∫ v

v
qND

1 (v′, λ)dv′dG(v|λ) +
∫ λ

λ

∫
V

qND
1 (v, µ)Gλ(v|µ)dvdµ. (8)

It is straightforward to show that this contract is incentive compatible in the initial period, and
hence optimal.

THEOREM 1. Suppose that Assumption 1 is satisfied. Then {qND
1 , pND

11 , pND
12 } and {qND

2 , pND
22 }, as defined

in Equations (6), (7), and (8), are optimal contracts that solve problem (PND).

It is important to note that this cohort-one contract (depicted in Figure 1) is identical to that of
Courty and Li (2000); since the seller has full commitment power and the buyers are unable to
delay contracting, the presence of a second cohort of buyers does not affect the contract offered to
the first cohort.10

3.2. Dynamic Screening with Strategic Delay and a Fixed Period-Two Price

We now present the optimal contract for the case in which strategic delay of contracting is
permitted. We assume that the seller can commit in advance to her second-period contract, but

10Our proof differs slightly from that of Courty and Li (2000), and so is included in the appendix for completeness.
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λ

v

kND(λ)

pH

FIGURE 1. Optimal Contract without Strategic Delay

(as an intermediate step) we exogenously fix that contract and examine the incentives of the first-
cohort buyers in isolation. (We will later allow the seller to optimally choose her second-period
contract.) The seller’s problem is then to

max
x,q1,q2,p11,p12,p22


∫∫

Λ×V

[x(λ)q1(v, λ) + (1− x(λ)q2(v)] ϕ1(v, λ)dG(v|λ)dF(λ)−U11(λ)

+ γ

(∫
V

q2(v)ψ2(v)dH(v)−U22(v)
)


subject to (MON11), (MON12), (MON22), (IR11), (IR12), (IR22), and (SD).

(P FC)

So suppose that, for some exogenously given α ≥ c, the second-period contract is given by

qFC
2 (v) =

0 if v < α,

1 if v ≥ α;
and pFC

22 (v) = qFC
2 (v)α. (9)

Thus, the seller is constrained to offer the good at the fixed price α in period two, without regard
to that price’s optimality or sequential rationality. Note, however, that such a contract does satisfy
the incentive compatibility and individual rationality constraints (IC22) and (IR22). Thus, the seller
now faces the “restricted” problem

max
x,q1,p11,p12


∫∫

Λ×V

[
x(λ)q1(v, λ) + (1− x(λ)qFC

2 (v)
]

ϕ1(v, λ)dG(v|λ)dF(λ)−U11(λ)

+ γ

(∫
V

qFC
2 (v)ψ2(v)dH(v)−U22(v)

)


subject to (MON11), (MON12), (IR11), (IR12), and (SD).

(RFC)

Recall that the second-period contract serves as an outside option for each buyer in cohort one—
each buyer can avail herself of the second-period price α instead of contracting in the initial period.
Since different initial-period types value that contract differently, this implies that the second-
period contract serves as a type-dependent participation constraint for buyers in cohort one; this
is precisely the role of constraint (SD), which bounds cohort-one buyers’ payoffs from below by the
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value of the second-period contract. Understanding the role played by this constraint is crucial to
a determination of the optimal contract. The following lemma (with proof in the appendix) helps
characterize when that constraint binds.

LEMMA 3. If constraint (SD) binds at some λ̂ ∈ Λ in the solution to (RFC), then it must bind at all λ < λ̂.

Thus, whenever the induced “participation constraint” arising from the possibility of strategic
delay binds, it must bind on an interval that begins at the lowest possible type: we must have

U11(λ) = U11(λ)−
∫ λ

λ

∫
V

q̄(v, µ)Gλ(v|µ)dvdµ =
∫

V
U22(v)dG(v|λ)

for all λ in that interval (where we have used the envelope property from Lemma 2). Straightfor-
ward differentiation immediately implies that∫

V
q̄(v, λ)Gλ(v|λ)dv = −

∫
V

U22(v)
∂2G(v|λ)

∂v∂λ
dv =

∫
V

qFC
2 (v)Gλ(v|λ)dv

throughout the interval, where the second equality follows from integration by parts. Since both
q1 and q2 are cutoff policies whenever (IC12) and (IC22) are satisfied, the expression above im-
mediately implies that the cutoffs coincide. Thus, q1(v, λ) = qFC

2 (v) for all λ /∈ x−1(0) at which
constraint (SD) binds; that is, buyers in the interval where the constraint binds receive the same
contract (guaranteeing allocation of the good in period two if their value is greater than α) regard-
less of whether or not they delay contracting.

Denote by λ̂ the largest initial-period type for which the strategic delay constraint (SD) binds.
Then, incorporating the cutoffs implied by Lemma 1, we may rewrite the problem (RFC) as

max
p11,p12,λ̂,k


∫ λ̂

λ

∫ v̄

α
ϕ1(v, λ)dG(v|λ)dF(λ) +

∫ λ̄

λ̂

∫ v̄

k(λ)
ϕ1(v, λ)dG(v|λ)dF(λ)

−
∫

V
U22(v)dG(v|λ) + γ

(∫
V

qFC
2 (v)ψ2(v)dH(v)−U22(v)

)


subject to (MON11) and (IR12).

Note that constraint (IR11) has been dispensed with and replaced by the binding constraint (SD)
for the lowest period-one type λ, as this buyer receives greater expected utility from the second-
period contract than her reservation utility of zero. In addition, constraint (MON12) has been
replaced by the explicit inclusion of the cutoffs k(λ). Finally, note that the monotonicity constraint
(MON11) requires k(λ) ≤ α for all λ ≥ λ̂.

Define λ̃(α) by
ϕ1(α, λ̃(α)) = 0, (10)

and note that it is uniquely defined when ϕ1 is increasing in both its arguments, as is imposed by
Assumption 1. Notice that λ̃(α) is precisely the type for which pointwise maximization in (PND),
the problem without delay, would have led to kND(λ̃(α)) = α.

Now note that if λ̂ is chosen such that λ̂ > λ̃(α), pointwise maximization of the objective
function above yields cutoffs k(λ) for all λ > λ̂ satisfying ϕ1(k(λ), λ) = 0. By Assumption 1, this
implies that the monotonicity constraint (MON11) is satisfied. However, profits can be increased

15



DEB AND SAID

by decreasing λ̂, as there are buyers with positive virtual values (and hence positive profitability)
that are being excluded. In particular, note that ϕ1(α, λ) > 0 for λ ∈ (λ̃(α), λ̂), so decreasing the
cutoff for buyers with these values of λ is profitable.

Meanwhile, if λ̂ is chosen such that λ̂ < λ̃(α), pointwise maximization yields cutoffs k(λ) >

α for all λ ∈ (λ̂, λ̃(α)) (since ϕ1(α, λ) < 0 for these values of λ). Of course, this violates the
monotonicity constraint (MON11), which requires k(λ) ≤ α for all λ ≥ λ̂. This implies that this
constraint must bind for all λ ≤ λ̃(α), at which pointwise maximization leaves the constraint
slack. It is easy to see that this is the same as simply setting λ̂ = λ̃(α) and choosing k(λ) optimally
(without constraints) for λ ≥ λ̂, resulting in the no-delay-optimal cutoffs kND(λ).

Thus, we have a candidate solution (which we will denote with the superscript FC) where

xFC(λ) := 1; qFC
1 (v, λ) :=

0 if v < kFC(λ),

1 if v ≥ kFC(λ);
and kFC(λ) :=

α if λ ≤ λ̃(α),

kND(λ) if λ > λ̃(α).
(11)

Notice that no buyers are delayed, and the contracted allocation is everywhere at least as generous
as that available by delay. In fact, we can also easily satisfy the “re-contracting” constraint (IR12)
by simply charging a price equal to the cutoff in the second period; that is, by setting

pFC
12 (v, λ) := qFC

1 (v, λ)kFC(λ). (12)

Finally, pFC
11 (λ) is pinned down by integration of the envelope condition in Equation (IC′11), where

the constant of integration is simply the (strictly positive) utility that the lowest type λ receives
from the contract above:

pFC
11 (λ) :=

∫
V

∫ v

v
qFC

1 (v′, λ)dv′dG(v|λ) +
∫ λ

λ

∫
V

qFC
1 (v, µ)Gλ(v|µ)dvdµ

−
∫

V

∫ v

v
qFC

2 (v′)dv′dG(v|λ).
(13)

Thus, it only remains to verify that the payment rules above implement the optimal allocation.
Given Assumption 1 on the monotonicity of ϕ1 and the characterization of incentive compatibility
in Lemma 2, however, we can show (with details in the appendix) that this is indeed the case.

THEOREM 2. Suppose that the second-period contract {qFC
2 , pFC

22 } corresponds to a fixed price α ≥ c,
and suppose further that Assumption 1 is satisfied. Then the contract {xFC, qFC

1 , pFC
11 , pFC

12 } defined in
Equations (11), (12), and (13) is an optimal contract that solves problem (RFC).

Thus, the optimal contract (depicted in Figure 2) takes a particularly appealing form: no buy-
ers delay contracting to the second period; all buyers with types below λ̃(α) are guaranteed the
fixed price α at no additional upfront cost; and all buyers with types above λ̃(α) receive the same
contract as they would if there were no delay permitted, but with a smaller upfront premium.
In addition, notice that we may view the benchmark no-delay case discussed above as a special
case of the above solution. In particular, by fixing α ≥ v̄ (that is, fixing the second-period price to
be no smaller than the upper bound of the support of values), cohort-one buyers are effectively
dissuaded from delaying to the second period. This leads to an optimal contract for cohort-one
buyers identical to that in the no-delay case.
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λ

v

kFC(λ)

α

λ̃(α)

FIGURE 2. Optimal Contract with Strategic Delay and a Fixed Period-Two Price

3.3. Dynamic Screening with Strategic Delay and an Optimal Period-Two Price

We now consider the seller’s problem without artifically restricting her second-period price.
Notice first that the constraints (IC22) and (IR22) limit the seller to second-period contracts that
correspond to a fixed price α. Moreover, Theorem 2 pins down the optimal contract offered to
buyers in the first cohort for any second-period price α. In fact, we can write the seller’s total
profits (from both cohorts of buyers) for any second-period price α as

ΠFC(α) :=
∫ λ̃(α)

λ

∫ v̄

α
ϕ1(v, λ)g(v|λ) f (λ)dvdλ +

∫ λ̄

λ̃(α)

∫ v̄

kND(λ)
ϕ1(v, λ)g(v|λ) f (λ)dvdλ

−
∫ v̄

α
(v− α)g(v|λ)dv + γ [(α− c)(1− H(α))] .

(14)

Using this expression, we can characterize (with details in the appendix) the optimal second-
period price.

COROLLARY 1. Suppose αFC maximizes ΠFC(α) in Equation (14), and suppose that Assumption 1 is
satisfied. Then the contracts {xFC, qFC

1 , pFC
11 , pFC

12 } and {qFC
2 , pFC

22 } defined in Equations (9), (11), (12),
and (13) (with α = αFC) are optimal contracts for a seller with full commitment. Moreover, αFC > pH.

Thus, the seller optimally increases the second-period price above the price that would be
charged if there were no strategic delay. Clearly, this leads to a decrease in profits from second-
cohort buyers alone—in the absence of potential buyers from cohort one, the seller would simply
charge pH in the second period. This is, of course, offset by two effects. First, the outside option of
all first-cohort buyers is reduced, as delayed contracting involves a higher price; this implies that
the induced participation constraint (SD) is relaxed somewhat, reducing the rents left to cohort-
one buyers. Second, the increased price improves the seller’s ability to screen buyers in the first
period by relaxing the monotonicity constraint (MON11) implied by incentive compatibility. In
particular, recall that the buyer’s allocation rule, for any λ ≤ λ̃(α), is identical to the outside

17



DEB AND SAID

option, while for any λ ≥ λ̃(α), it has the same (optimal) distortions as when delay is not permit-
ted. Since λ̃ is decreasing, this implies that raising the second-period contract price increases the
seller’s ability to impose additional distortions that reduce buyers’ information rents.

Furthermore, notice that in the limit as γ shrinks to zero, the impact of cohort-two entrants on
the seller’s profits also shrinks to zero. This implies that the seller’s tradeoff between reducing the
outside option of cohort-one buyers and maximizing profits from cohort-two buyers disappears—
there is no longer a second-period cost associated with reducing the value of strategic delay. In-
deed, the proof of Corollary 1 demonstrates that, in the limit, we have ∂ΠFC(α)

/
∂α > 0 for all

α < v̄. Therefore, in the limit, the seller commits to αFC ≥ v̄ and no sales in the final period,
thereby reducing the value of strategic delay to zero.

4. DYNAMIC SCREENING WITH LIMITED COMMITMENT

We now consider the general solution to the problem with limited commitment. Returning to
the objective function in Equation (4), we can write the seller’s problem as

max
x,p11,p12,q1,p22,q2


∫∫

Λ×V

[x(λ)q1(v, λ) + (1− x(λ))q2(v)] ϕ1(v, λ)dG(v|λ)dF(λ)−U11(λ)

+ γ

(∫
V

q2(v)ψ2(v)dH(v)−U22(v)
)


subject to (MON11), (MON12), (MON22), (IR11), (SD), (IR12), (IR22), and (SR).

(P LC)

As in the case above where the seller can pre-commit to future contracts, the second-period incen-
tive compatibility and individual rationality constraints (MON22) and (IR22) imply that the seller’s
period-two contract will always take the form of a price; that is, there exists some α ∈ V such that

qLC
2 (v) :=

0 if v < α,

1 if v ≥ α;
and pLC

22 (v) := q2(v)α. (15)

Notice, however, that the sequential rationality constraint (SR) implies that the seller’s optimiza-
tion problem involves an “internal” problem for the choice of the second-period price α. In partic-
ular, α must solve

max
α′

{
(α′ − c)

[∫
Λ
(1− x(λ))(1− G(α′|λ))dF(λ) + γ(1− H(α′))

]}
. (SR′)

Since x(λ) is endogenously determined, this implies that Lemma 3—which describes the set of
initial-period types for which the constraint (SD) binds in an optimal contract—no longer applies
to the seller’s problem with limited commitment. The following result, however, demonstrates
(with details in the appendix) that Lemma 3 does in fact extend to the present setting with limited
commitment.11

LEMMA 4. If constraint (SD) binds at some λ̂ ∈ Λ in the solution to (P LC), then it must bind at all λ < λ̂.

11Recall that Lemmas 1 and 2 describe the properties and implications of the incentive compatibility constraints (IC11),
(IC12), and (IC22). As these results make no further assumptions about the optimization problem that the constraints
apply to, they continue to hold in the present problem.

18



DYNAMIC SCREENING WITH LIMITED COMMITMENT

As was the case with a fixed second-period contract, we can use Lemma 4 to pin down the
allocation rule for buyers that face a binding “induced” participation constraint and contract in
period one. Since (SD) binds on an interval [λ, λ̂], Lemma 2 then implies that all cohort-one buyers
with types λ ∈ [λ, λ̂] \ x−1(0)—that is, those buyers with initial types below λ̂ who do not delay
contracting—receive exactly their anticipated outside option via the optimal period-one contract.
Thus, q̄(v, λ) = q2(v) for all λ ∈ [λ, λ̂]. Moreover, recall that Lemma 1 implies that the first-period
contract’s allocation rule is a set of cutoff policies. We can therefore rewrite the seller’s problem as

max
x,λ̂,p11,p12,k


∫ λ̂

λ

∫ v̄

α
ϕ1(v, λ)dG(v|λ)dF(λ) +

∫ λ̄

λ̂

∫ v̄

k(λ)
ϕ1(v, λ)dG(v|λ)dF(λ)

+ γ(α− c)(1− H(α))−U11(λ)


subject to (MON11), (IR11), (SD), (IR12), and (SR′).

Note that the monotonicity constraint (MON11) implies that we must have k(λ) ≤ α for all λ ≥ λ̂.
Fixing λ̂ and x(·) (and hence, via the sequential rationality constraint (SR′), also fixing α), we
can isolate the question of optimally choosing the cutoffs k(λ). As was the case with the full-
commitment problem (RFC), it is easy to see that the optimal allocation and cutoff are

qLC
1 (v, λ) :=

0 if v < kLC(λ),

1 if v ≥ kLC(λ);
where kLC(λ) :=

α if λ ≤ λ̃(α),

kND(λ) if λ > λ̃(α).
(16)

Therefore, if the choice of λ̂ is such that λ̂ ≥ λ̃(α), then kLC immediately “jumps” down to the
pointwise optimal (no-delay) cutoff kND to the right of λ̂. On the other hand, if λ̂ < λ̃(α), we can
“extend” λ̂ to λ̃(α). Note, as before, that Assumption 1 implies that kLC is decreasing, and so the
induced allocation rule is increasing in λ.

We now turn to characterizing the set of buyers that delay contracting—which, via sequential
rationality, in turn determines the period-two price. Any solution α to (SR′) must satisfy its asso-
ciated first-order condition; with some rearrangement, this condition may be written as∫

Λ
(1− x(λ))ψ1(α, λ)g(α|λ)dF(λ) + γψ2(α)h(α) = 0, (SR′′)

where

ψ1(v, λ) := v− c− 1− G(v|λ)
g(v|λ)

is the (static) virtual value for the conditional distribution of cohort-one values G(·|λ). In general,
the first-order condition (SR′′) is necessary but not sufficient. Moreover, even when (SR′′) is suf-
ficient, drawing meaningful conclusions about the prices generated by different delay decisions
need not be possible: first-order stochastic dominance alone does not provide sufficient structure
for meaningful analysis. We therefore make two additional assumptions about the environment:

ASSUMPTION 2. The monopoly profit functions {(p− c)(1− G(p|λ))}λ∈Λ and (p− c)(1− H(p)) are
strictly concave for all p ∈ [c, v̄].

ASSUMPTION 3. The monopoly price pλ := argmaxp{(p− c)(1− G(p|λ))} is strictly increasing in λ.
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Assumption 2 guarantees the uniqueness of a solution to the second-period maximization prob-
lem (SR′) for any delay choices x(λ); it also (via the Theorem of the Maximum) guarantees the
continuity of that solution. Assumption 3, on the other hand, implies that the period two-price
responds in the expected manner to changes in the set of delayed buyers: roughly speaking, de-
laying buyers with higher initial types increases the period-two price while delaying buyers with
lower initial types decreases the period-two price.12,13

With this additional structure in hand, it is possible to show that it is without loss of generality
to consider contracts that induce all buyers within an interval to delay contracting, while all other
buyers contract immediately. Any contract in which delayed buyers are “dispersed”—that is,
with either “gaps” in the set of delayed buyers or only “fractional” delay for some types—can
be improved upon by concentrating the mass of delayed buyers and “closing” any gaps. Indeed,
this can be done while leaving the induced second-period price unchanged. This implies that the
seller’s ability to price discriminate in the first period is improved without affecting the tradeoff
between cohort-one outside options and period-two profits. It is easy to see that this implies an
increase in the seller’s profits. A complete proof of this result may be found in the appendix.

LEMMA 5. Suppose Assumptions 2 and 3 are satisfied. Fix any period-one contract {x∗, q∗1 , p∗11, p∗12} such
that

∫
Λ(1− x∗(λ))dF(λ) > 0 with induced second-period price α∗ and total profits Π∗. Then there exists

some µ1, µ2 ∈ Λ and another period-one contract {x∗∗, q∗∗1 , p∗∗11 , p∗∗12} with

x∗∗(λ) =

0 if λ ∈ [µ1, µ2],

1 otherwise;

such that the induced second-period price is α∗∗ = α∗ and total profits are Π∗∗ ≥ Π∗.

With this result in hand, we can therefore rewrite the seller’s problem as

max
µ1,µ2,p11,p12


∫ µ2

λ

∫ v̄

α
ϕ1(v, λ)dG(v|λ)dF(λ) +

∫ λ̄

µ2

∫ v̄

kLC(λ)
ϕ1(v, λ)dG(v|λ)dF(λ)

+ γ(α− c)(1− G(α|µ̂))−
∫ v̄

α
(v− α)dG(v|λ)


subject to (IR12) and (SR′′).

(RLC)

Notice that we have incorporated the optimal allocation and cutoffs defined in Equation (16);
replaced λ̂ with µ2; and also replaced constraint (IR11) with the binding constraint (SD) at λ, as the
non-negative option value of delayed contracting implies (IR11) is satisfied. The only remaining
constraints are the re-contracting constraint and sequential rationality constraints (IR12) and (SR′′).

Before characterizing the optimal interval of delayed buyers, note that we may first determine
the seller’s optimal payment rules for buyers that contract in period one. In particular, let

pLC
12 (v, λ) := qLC

1 (v, λ)kLC(λ). (17)

12A sufficient condition that implies Assumption 3 is that the family of conditional distributions {G(·|λ)}λ∈Λ is ordered
by hazard rate dominance: if λ > λ′, then g(v|λ)

/
(1− G(v|λ)) ≤ g(v|λ′)

/
(1− G(v|λ′)) for all v ∈ V.

13Note that Assumptions 2 and 3 are satisfied by a wide variety of distributional families. One natural example is the
family of power distributions where G(v|λ) = vλ for v ∈ V = [0, 1] and λ ∈ Λ ⊆ R+.
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This corresponds to simply charging each buyer a price equal to her (type-dependent) cutoff.
Since kLC(λ) ≤ α for all λ, this also implies that the re-contracting constraint (IR12) is satisfied.
Moreover, pLC

11 (λ) is determined by integration of the envelope condition in Equation (IC′11), where
the constant of integration is simply the (non-negative) utility received by the lowest type λ:

pLC
11 (λ) :=

∫
V

∫ v

v
qLC

1 (v′, λ)dv′dG(v|λ) +
∫ λ

λ

∫
V

qLC
1 (v, µ)Gλ(v|µ)dvdµ

−
∫

V

∫ v

v
qLC

2 (v′)dv′dG(v|λ).
(18)

Notice that this payment rule is the immediate analogue (in the limited-commitment setting) of
pFC

11 (λ) defined in Equation (13).
With these preliminaries in hand, we can proceed to our main result (a complete proof of which

may be found in the appendix) characterizing the seller’s optimal contract when she has limited
commitment power.

THEOREM 3. Suppose that Assumptions 1, 2, and 3 are satisfied. Let µLC
1 and µLC

2 solve problem (RLC),
and define

xLC(λ) :=

0 if λ ∈ [µLC
1 , µLC

2 ],

1 otherwise.

Then

(1) the contracts {xLC, qLC
1 , pLC

11 , pLC
12 } and {qLC

2 , pLC
22 } defined in Equations (15), (16), (17), and (18)

(with α = αLC) are optimal contracts for a seller with limited commitment;
(2) the solution to (SR′′), given µLC

1 and µLC
2 , is αLC ∈ [pH, αFC];

(3) if αLC ∈ (pH, αFC), then the set of cohort-one buyers that delay contracting is an interval [µLC
1 , µLC

2 ]

with µ̂ ≤ µLC
1 < µLC

2 ; and
(4) the seller’s profits are given by

ΠLC := ΠFC(αLC)−
∫ max{λ̃(αLC),µ2}

λ̃(αLC)

∫ αLC

kND(λ)
ϕ1(v, λ)dG(v|λ)dF(λ). (19)

There are several key features of the characterization in Theorem 3 (illustrated in Figure 3) to
note. First, the seller delays an interval of cohort-one buyers; by doing so, she is able to increase the
second-period price αLC above the cohort-two monopoly price pH. This has two effects: it relaxes
the participation constraint (SD) induced by the possibility of strategic delay, thereby increasing
the seller’s profits from cohort-one buyers; but it also moves prices away from the cohort-two op-
timum, thereby decreasing the seller’s profits from cohort-two buyers. Notice, however, that the
induced second-period price αLC is lower than the second-period price under full commitment
αFC. Thus, in the absence of commitment concerns, the seller would continue trading off cohort-
two profits in order to decrease the implicit outside option available to cohort-one buyers. This
tradeoff is not feasible when the seller has limited commitment, however; in order to continue in-
creasing the period-two price, the seller needs to induce delayed contracting by additional buyers
with higher types (as a cohort-one buyer’s impact on the sequentially rational second-period price
is increasing in her type). While doing so succeeds in reducing the endogenous outside option in
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FIGURE 3. Optimal Contract with Limited Commitment

period one, it also reduces the seller’s ability to screen buyers in the first period. In particular,
each additional buyer that delays contracting until the second period is a buyer whom the seller
cannot separate in the first period and sequentially screen. This reduced screening ability reflects
the “deadweight loss” of limited commitment: in order to reduce the option value of strategic de-
lay, the seller must inefficiently exclude buyers with initial types λ ∈ (λ̃(αLC), µLC

2 ) and realized
values v ∈ (kND(λ), αLC). If, on the other hand, the seller was able to fully commit in advance to
a period-two price equal to αLC, these buyers (indicated by the shaded region in Figure 3) would
not be excluded. This deadweight loss (measured by the integral in Equation (19)) is, of course, in
addition to the fact that αLC is suboptimally low for a seller with full commitment power.

Note further that there is, in general, a gap between the type µ̂ corresponding to the cohort-
two monopoly price and the lower bound of the interval of delayed types. To see why this is the
case, notice that as we increase the mass of cohort-one buyers who delay contracting, we decrease
the responsiveness of the sequentially rational second-period price to the composition of that set.
Thus, increasing the second-period price is most efficiently achieved by inducing the delay of a
relatively small set of buyers with relatively high monopoly prices (as opposed to a large set of
buyers with low-to-intermediate monopoly prices). This implies that the optimal contract in the
case of limited supply will generally display an interesting non-monotonicity: cohort-one buyers
with relatively low and relatively high initial-period types will contract in the initial period, while
intermediate initial-period types will delay contracting to the second period.

It is easy to see that the optimal contract described in Theorem 3 satisfies the “re-contracting”
constraint (IR12). Each buyer with initial type λ who contracts in period one faces a call option
in period two, where the strike price for consumption is the cutoff kLC(λ). Since kLC(λ) ≤ αLC

for all λ, a buyer that exits her initial-period contract in period two and partakes in the second-
period mechanism faces a higher price. Doing so is clearly suboptimal, and so buyers do not
benefit from their ability to anonymously re-contract with the seller in period two.14 This does

14Even if we implemented the optimal allocation using refund contracts, as in Courty and Li (2000), this would continue
to be the case. In fact, we could even allow buyers to claim their refund and then purchase at the prevailing price in
period two; in the optimal contract, there is no benefit to doing so.
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not imply, however, that the optimal initial-period contracts are renegotiation-proof. Indeed, the
seller has a strict incentive to renegotiate with type-λ buyers who face a strike price kLC(λ) greater
than the λ-specific monopoly price (which solves ψ1(v, λ) = 0). It is easy to see that the set of
such buyers is generally nonempty: Theorem 3 shows that all initial-period types λ < µ̂ face a
cutoff kLC(λ) = αLC > pH, while Assumption 3 implies that they have monopoly prices strictly
lower than pH. Thus, even though the seller is unable to commit to future contractual terms, her
commitment to long-term contracts plays an important role in her rent-extraction ability.

Recall that we have approached this dynamic contracting problem in a “reduced form” ap-
proach that focuses on the allocations and payments that are generated by equilibrium behavior
by the seller and buyers. We have not yet verified, however, that there indeed exists a perfect
Bayesian equilibrium in the underlying game that implements the contracts described above. Sup-
pose, however, that the seller offers the menu of call options

M := {(pLC
11 (λ), kLC(λ))}λ>µ ∪ {(0, αLC)}

in the first period, where each (π1, π2) ∈ M denotes an upfront premium π1 that guarantees the
period-two strike price π2. If each cohort-one buyer expects that all buyers with initial-period
types λ ∈ [µLC

1 , µLC
2 ] will delay contracting, then they will expect the seller to (rationally) set a

price αLC in the second period. Moreover, as each buyer is infinitesimal, a unilateral deviation
(either to delay or to contract in the first period) will not affect the seller’s second-period pricing
problem (SR). Since constraints (IC11) and (SD) are satisfied in the contract described in Theorem 3,
this implies that it is, in fact, optimal for buyers with λ < µLC

1 to choose the (0, αLC) option; for
buyers with λ ∈ [µLC

1 , µLC
2 ] to delay contracting; and for buyers with λ > µLC

2 to choose the
(pLC

11 (λ), kLC(λ)) option. Thus, the seller will indeed set her second-period equal to αLC. Finally,
the strike prices have been chosen to implement the optimal cohort-one allocation rule qLC

1 . Thus,
the sequence of contracts described in Theorem 3 are indeed implementable in a perfect Bayesian
equilibrium.

This equilibrium construction highlights one potential shortcoming of the optimal contract de-
scribed in Theorem 3. In equilibrium, “low” buyers that contract in the first period and “interme-
diate” buyers that delay contracting until period two receive contracts that are essentially identi-
cal; that is, members of each group are indifferent about their timing of contracting. If the seller
is willing to sacrifice an arbitrarily small amount of profits, however, it is possible to provide
strict incentives to these two groups of buyers. In particular, the seller can decrease the likelihood
of allocation promised to low buyers while also providing them with a small subsidy; doing so
provides a strict incentive to contract immediately. Intermediate buyers, however, derive greater
benefit from allocation due to their increased likelihood of high values, and so prefer to delay
contracting.

To see this more formally, fix any arbitrarily small ε > 0, and define the allocation rule

qε
1(v, λ) :=

0 if v < kε(λ),

1 if v ≥ kε(λ);
where kε(λ) :=

αLC + ε if λ ≤ µLC
1 ,

kND(λ) if λ ≥ µLC
2 .

This allocation rule (depicted in Figure 4) simply increases the cutoff for buyers that, in the opti-
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FIGURE 4. ε-Optimal Contract with Limited Commitment

mal contract, contract immediately while being indifferent about delay. Of course, kε is (weakly)
decreasing, so initial-period incentive compatibility is maintained. Indeed, this is true even when
we continue to charge a second-period price pε

12(v, λ) = qε
1(v, λ)kε(λ) equal to the cutoff—the

first-period payment rule must be modified. In particular, we can subsidize all cohort-one buyers
with λ < µLC

1 by an amount

δ :=
∫ αLC+ε

αLC
(1− G(v|µLC

1 ))dv,

which is chosen to make type µLC
1 exactly indifferent between contracting immediately and delay-

ing until period two. Thus, if a buyer with initial-period type λ chooses the contract intended for
types λ′ ∈ [λ, µLC

1 ), her expected payoff is

δ +
∫

V
(qε

1(v, λ′)v− pε
12(v, λ′))dG(v|λ) = δ +

∫ v̄

αLC+ε
(v− αLC − ε)dG(v|λ)

=
∫ αLC+ε

αLC
(1− G(v|µLC

1 ))dv +
∫ v̄

αLC+ε
(1− G(v|λ))dv.

Meanwhile, if this buyer postpones contracting to the second period, her expected payoff is∫
V
(qLC

2 (v)v− pLC
22 (v))dG(v|λ) =

∫ v̄

αLC
(v− αLC)dG(v|λ) =

∫ v̄

αLC
(1− G(v|λ))dv.

The former option is strictly preferred to the latter if, and only if,

0 <
∫ αLC+ε

αLC
(1− G(v|µLC

1 ))dv +
∫ v̄

αLC+ε
(1− G(v|λ))dv−

∫ v̄

αLC
(1− G(v|λ))dv

=
∫ αLC+ε

αLC
(1− G(v|µLC

1 ))dv−
∫ αLC+ε

αLC
(1− G(v|λ))dv =

∫ αLC+ε

αLC
[G(v|λ)− G(v|µLC

1 )]dv.

Of course, this inequality holds whenever λ < µLC
1 ; the subsidy δ is more than sufficient to com-

pensate these buyers for their less attractive allocation. On the other hand, buyers with initial-
period types λ ≥ µLC

1 still prefer to sort as they did in the limited-commitment optimal contract,
and their expected payoff remains unchanged. Thus, it is easy to see that the seller’s loss from this
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contract can be made arbitrarily small by taking ε to zero; that is, it is possible to provide strict in-
centives for the “best” timing of purchases using an ε-optimal contract for arbitrarily small ε > 0.

5. CONCLUDING REMARKS

A critical assumption in our analysis is our assumption, as is common in the dynamic mech-
anism design literature, that the distribution of values G(·|λ) for any type λ first-order stochas-
tically dominates that of any lower type λ′ < λ. A natural alternative ordering is one in which
higher types face greater uncertainty about their realized values (in the sense of second-order sto-
chastic dominance). Indeed, Courty and Li (2000) also examined a special case of second-order
stochastic dominance in which the family of distributions {G(·|λ)}λ∈Λ are rotation ordered.15

They showed that, under certain additional conditions on the allocation rule, monotonicity of the
optimal cutoffs kND(·) continues to be sufficient for incentive compatibility and hence optimality.
The additional assumptions ensure that the cutoffs kND(·) are in regions where the cumulative
distributions are ordered in a well-behaved manner similar to first-order stochastic dominance.

Unfortunately, our analysis in the present work does not in general extend to such type spaces.
(In the special case where both kND(·) and pH are larger than the distributional rotation point, our
results extend immediately. In this case, all the relevant allocations occur in a region where types
are ordered “as though” by first-order stochastic dominance.) One difficulty arises in identifying
the set of types for which the strategic delay constraint (SD) binds in an optimal contract—even for
a fixed period-two price. In particular, finding an analogue to Lemma 3 is difficult because there
is no general relationship governing the relative rankings of the cutoffs kND(·) and the period-two
price α; the utility from either may be increasing, decreasing, or simply non-monotone in λ. An
additional complication arises in fully characterizing initial-period incentive compatibility: with-
out the structure imposed by first-order stochastic dominance, general necessary and sufficient
conditions for incentive compatibility are not known. This precludes the “first-order approach” to
solving for optimal contracts, thereby necessitating a consideration of “global” incentive compat-
ibility constraints as in Battaglini and Lamba (2012).

There are a number of other natural generalizations of our model. One such extension is to
allow for uncertain market conditions in the second period; for example, suppose that the mass γ

of cohort-two entrants is randomly drawn from some distribution. When the seller can observe
the realization of this draw before choosing her period-two mechanism, the price charged in the
second period becomes (from the perspective of a cohort-one buyer) a random variable. Clearly,
there exists some deterministic “certainty equivalent” contract for each initial-period type λ such
that the buyer receives exactly the same utility from contracting immediately instead of delaying
contracting to period two. However, first order stochastic dominance is not sufficient to guarantee
that this certainty equivalent price is well-behaved and monotonically decreasing in λ. Since in-
centive compatibility requires monotonicity in the effective allocation rule, this implies that there

15In the rotation order, all distributions G(v|λ) pass through a single point z ∈ V. Moreover, G(v|λ) is increasing in λ
for all v < z and decreasing in λ for all v > z. For more on this order, see Johnson and Myatt (2006).
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can no longer be an interval of types contracting in the initial period for whom the “induced partic-
ipation constraint” binds.16 This, in turn, complicates the seller’s revenue management problem
as she now must provide rents (beyond this endogenous outside option) to low initial types to
prevent them from delaying contracting until the second period.

A second natural extension of our framework provides a tractable model to study a seller with-
out commitment who has a limited supply of the good. Since we have a continuum of buyers
in each period, there is no aggregate uncertainty regarding the distribution of values of cohort
one buyers in the second period. Thus, for a given contract, the seller knows exactly the quantity
promised to cohort-one buyers who contract in the first period. This precludes over-sale situations
in which the seller promises a greater quantity than her available supply. Moreover, it is easy to
see that the optimal second-period price is simply determined by market-clearing. Despite this
apparent simplicity, however, the case of limited supply introduces some additional complexity:
in addition to determining which cohort-one buyer purchases should be postponed to the second
period, the seller must also determine the constraint on period-two supply remaining after period-
one contracting. In particular, offering generous contracts in the first period ensures that there is
greater scarcity and increased competition in the second period, thereby inducing higher prices.17

Understanding the tradeoffs involved when the seller has an additional avenue for endogenously
generating commitment power is certainly an interesting question, but is also one that is beyond
the scope of the present work.

One limitation of our approach is that all consumption occurs at the end of period two, and we
do not permit multiple periods of consumption. In practice, there are many dynamic contracting
environments in which buyers’ valuations evolve and payoffs accrue over multiple periods. In
such settings, the private information at any point of time is correlated with future preferences (as
in our model), while remaining payoff-relevant in the present. Pavan, Segal, and Toikka (2012)
develop useful tools for such a setting under the assumptions that the seller has full commitment
power and that agents cannot strategically delay contracting. Relaxing these assumptions would
almost surely yield rich predictions. We leave such questions, however, for future work.

16Similar complications can arise in our setting when we consider stochastic (as opposed to deterministic) contracts.
17This is similar to the intuition (in a model with fully persistent private information) of Dilme and Li (2012), where the
seller holds occasional fire-sales in order to endogenously commit to future supply restrictions.
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APPENDIX

PROOF OF LEMMA 2. We begin by proving the necessity of condition (IC′11). So suppose that the
incentive compatibility constraints (IC11), (IC12), and (IC22) are satisfied, and consider the expected
payoff U11(λ, λ′) of a cohort-one buyer with initial type λ who reports λ′. Recall that

U11(λ, λ′) := x(λ′)
[
−p11(λ

′) +
∫

V
U12(v, λ′)dG(v|λ)

]
+ (1− x(λ′))

[∫
V

U22(v)dG(v|λ)
]

.

It is straightforward to see that

∂U11(λ, λ′)

∂λ
= x(λ′)

∫
V

U12(v, λ′)
∂2G(v|λ)

∂λ∂v
dv + (1− x(λ′))

∫
V

U22(v)
∂2G(v|λ)

∂λ∂v
dv

= x(λ′)
[

U12(v, λ′)Gλ(v|λ)
∣∣v̄
v=v −

∫
V

∂U12(v, λ′)

∂v
Gλ(v|λ)dv

]
+ (1− x(λ′))

[
U22(v)Gλ(v|λ)|v̄v=v −

∫
V

∂U22(v)
∂v

Gλ(v|λ)dv
]

= −
∫

V

(
x(λ′)

∂U12(v, λ′)

∂v
+ (1− x(λ′))

∂U22(v)
∂v

)
Gλ(v|λ)dv,

where we have made use of the fact that Gλ(v|µ) = Gλ(v̄|µ) = 0 for all µ ∈ Λ. Moreover, we can
apply the result of Lemma 1 to conclude that

∂U11(λ, λ′)

∂λ
= −

∫
V

[
x(λ′)q1(v, λ′) + (1− x(λ′))q2(v)

]
Gλ(v|λ)dv = −

∫
V

q̄(v, λ′)
Gλ(v|λ)
g(v|λ) dG(v|λ).

Note, however, that the constraint (IC11) implies that U11(λ, λ) = maxλ′ {U11(λ, λ′)}. Since
U11(λ) = U11(λ, λ), the envelope theorem (see Milgrom and Segal (2002), for instance) implies
that U′11(λ) = ∂U11(λ, λ′)

/
∂λ|

λ′=λ
, immediately yielding the expression in Equation (IC′11).

To see that condition (MON11) is a necessary implication of incentive compatibility, note that
the cutoff property described in Equation (2) immediately implies that the effective allocation rule
q̄(v, λ) is nondecreasing in v for all λ ∈ Λ. To see that q̄(v, λ) is also nondecreasing in λ for all
v ∈ V, note that the envelope properties described in Lemma 1 imply that the second-period
payoffs have the standard revenue equivalence property. Thus, for all λ /∈ x−1(0) and all v ∈ V,

U12(v, λ) = max{v− k(λ), 0} −U12(v, λ) and U22(v) = max{v− α, 0} −U22(v).

Fix any λ, λ′ /∈ x−1(0). Then (IC11) implies that

0 ≤ U11(λ)−U11(λ, λ′) = p11(λ
′)− p11(λ) +

∫
V

(
U12(v, λ)−U12(v, λ′)

)
dG(v|λ) and

0 ≤ U11(λ
′)−U11(λ

′, λ) = p11(λ)− p11(λ
′) +

∫
V

(
U12(v, λ′)−U12(v, λ)

)
dG(v|λ′).

Adding these two inequalities and simplifying yields

0 ≤
∫

V

(
max{v− k(λ), 0} −max{v− k(λ′), 0}

)
d[G(v|λ)− G(v|λ′)].

Notice that max{v− k(λ), 0} −max{v− k(λ′), 0} is increasing in v whenever k(λ) < k(λ′). Since
the family of distributions {G(·|µ)}µ∈Λ is ordered by first-order stochastic dominance, we must
have (k(λ)− k(λ′))(λ− λ′) ≤ 0; otherwise, a contradiction obtains.
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Similarly, fix any λ ∈ x−1(0) and any λ′ /∈ x−1(0). Then (IC11) implies that

0 ≤ U11(λ)−U11(λ, λ′) = p11(λ
′) +

∫
V

(
U22(v)−U12(v, λ′)

)
dG(v|λ) and

0 ≤ U11(λ
′)−U11(λ

′, λ) = −p11(λ
′) +

∫
V

(
U12(v, λ′)−U22(v)

)
dG(v|λ′).

Adding these two inequalities and simplifying yields

0 ≤
∫

V

(
max{v− α, 0} −max{v− k(λ′), 0}

)
d[G(v|λ)− G(v|λ′)].

As above, max{v− α, 0} −max{v− k(λ′), 0} is an increasing function whenever α < k(λ′) and
is a decreasing function whenever α > k(λ′). Due to the stochastic order on {G(·|λ)}, we must
therefore have (α− k(λ′))(λ− λ′) ≤ 0.

Thus, we may conclude that the cutoffs associated with the allocation rules q1 and q2 are (weakly)
decreasing in λ. This monotonicity implies that q̄(v, λ) is nondecreasing in λ for all v ∈ V, thereby
establishing the necessity of (MON11).

To prove the converse, suppose that conditions (IC′11) and (MON11) are satisfied. Note that,
with deterministic allocations, we may write the allocation rules q1 and q2 as cutoff rules, as in
Equation (2), where (MON11) implies that the “effective” cutoff k̄(λ) := x(λ)k(λ) + (1− x(λ))α is
decreasing. In addition, note that (IC′11) implies that we may write

U11(λ)−U11(λ
′) =

∫ λ

λ′
U′11(µ)dµ =

∫ λ′

λ

∫
V

q̄(v, µ)Gλ(v|µ)dvdµ.

Now fix arbitrary κ11 ∈ R, κ12 ∈ RΛ, and κ22 ∈ R, and define

p22(v) := q2(v)α + κ22, p12(v, λ) := q1(v, λ)k(λ) + κ12(λ), and

p11(λ) :=
∫

V
U12(v, λ)dG(v|λ)−

∫ λ

λ
U′11(µ)dµ− κ11.

(20)

Clearly, the second-period incentive compatibility conditions (IC12) and (IC22) are satisfied given
(MON11) and the payment rules above. Thus, it remains to be shown that (IC11) is also satisfied.
To see that this is the case, notice that the payment rules above allow us to write

U11(λ, λ′) = x(λ′)
[

U11(λ
′)−

∫
V

U12(v, λ′)dG(v|λ′) +
∫

V
U12(v, λ′)dG(v|λ)

]
+ (1− x(λ′))

[∫
V

U22(v)dG(v|λ)
]

= x(λ′)
[

U11(λ
′)−

∫
V

q12(v, λ′)(v− k(λ′))d[G(v|λ′)− G(v|λ)]
]

+ (1− x(λ′))
[∫

V
q2(v)(v− α)dG(v|λ)− κ22

]
= x(λ′)

[
U11(λ

′) +
∫ v̄

k(λ′)
[G(v|λ′)− G(v|λ)]dv

]
+ (1− x(λ′))

[∫ v̄

α
[1− G(v|λ)]dv− κ22

]
.
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So fix any λ, λ′ ∈ Λ, and suppose that x(λ′) > 0. Then

U11(λ)−U11(λ, λ′) = U11(λ)−U11(λ
′)−

∫ v̄

k(λ′)
[G(v|λ′)− G(v|λ)]dv

=
∫ λ′

λ

∫
V

q̄(v, µ)Gλ(v|µ)dvdµ−
∫ v̄

k(λ′)
[G(v|λ′)− G(v|λ)]dv

≥
∫ λ′

λ

∫
V

q̄(v, λ′)Gλ(v|µ)dvdµ−
∫ v̄

k(λ′)
[G(v|λ′)− G(v|λ)]dv

=
∫ v̄

k(λ′)

∫ λ′

λ
Gλ(v|µ)dµdv−

∫ v̄

k(λ′)
[G(v|λ′)− G(v|λ)]dv = 0,

where the second equality follows from applying the Fundamental Theorem of Calculus to (IC′11),
and the inequality follows from the fact that, by (MON11), q̄(v, µ) is increasing in µ. Similarly,
suppose that x(λ′) = 0. Then

U11(λ)−U11(λ, λ′) = U11(λ)−
∫ v̄

α
[1− G(v|λ)]dv + κ22

= U11(λ
′)−

∫ λ

λ′

∫
V

q̄(v, µ)Gλ(v|µ)dvdµ−
∫ v̄

α
[1− G(v|λ)]dv + κ22

=
∫ λ′

λ

∫
V

q̄(v, µ)Gλ(v|µ)dvdµ−
∫ v̄

α
[G(v|λ′)− G(v|λ)]dv

≥
∫ λ′

λ

∫
V

q̄(v, λ′)Gλ(v|µ)dvdµ−
∫ v̄

α
[G(v|λ′)− G(v|λ)]dv

=
∫ v̄

α

∫ λ′

λ
Gλ(v|µ)dµdv−

∫ v̄

α
[G(v|λ′)− G(v|λ)]dv = 0,

where the second equality follows from (IC′11) and the Fundamental Theorem of Calculus; the
third equality from the fact that U11(λ

′) =
∫

V U22(v)dG(v|λ′) since x(λ′) = 0; and the inequality
from the fact that, since (MON11) holds, q̄(v, µ) is increasing in µ.

Thus, U11(λ) ≥ U11(λ, λ′) for all λ, λ′ ∈ Λ, implying that the initial-period incentive compati-
bility constraint (IC11) is satisfied. �

PROOF OF THEOREM 1. Constraints (IC′11), (IC′12), and (IC′22) are satisfied by construction, as these
constraints have been incorporated into the objective function in problem (PND). Meanwhile, As-
sumption 1 implies that the monotonicity conditions (MON11) and (MON12) are also satisfied.
(Constraint (MON22) is trivially satisfied.) Invoking Lemma 2, there exist payment rules that im-
plement the contract above. Indeed, it is easy to verify that the payments in Equations (7) and (8)
equal those defined in Equation (20), but with κ11 = 0, κ12(λ) = 0 for all λ ∈ Λ, and κ22 = 0. Thus,
the contracts {qND

1 , pND
11 , pND

12 } and {qND
2 , pND

22 } solve the seller’s problem. �

PROOF OF LEMMA 3. Denote the solution to (RFC) using a ∗ superscript, and suppose that the
hypothesis is false; that is, suppose there exists some µ̃ < λ̂ such that U∗11(µ̃) >

∫
V max{v −

α, 0}dG(v|µ̃). Recalling that U∗11 is absolutely continuous (due to Lemma 2), this also implies that
(SD) is slack for all µ in some neighborhood of µ̃. Notice that, of course, this slack can only exist if
x∗(µ) = 1.
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Moreover, notice that (SD) binding at λ̂ implies that q̄∗(v, λ̂) ≥ q2(v). To see why this is the
case, note that if

(U∗)′(λ̂) = −
∫

V
q̄∗(v, λ̂)Gλ(v|λ̂)dv < −

∫
V

q2(v)Gλ(v|λ̂)dv =

[
∂

∂λ

∫
V

U22(v)dG(v|λ)
]

λ=λ̂

,

then the binding (SD) constraint U∗11(λ̂) =
∫

V U22(v)dG(v|λ̂) implies that the same constraint is
violated in the interval (λ̂, λ̂ + ε), where ε > 0 is sufficiently small.

Now define an alternative mechanism (which we will denote using a ∗∗ superscript) with
x∗∗(λ) = x∗(λ) for all λ ∈ Λ, and for all λ ∈ (x∗)−1(1)

q∗∗1 (v, λ) :=

q∗1(v, λ) if λ > λ̂,

q2(v) if λ ≤ λ̂,

p∗∗11 (λ) :=

p∗11(λ) if λ > λ̂,

0 if λ ≤ λ̂,

p∗∗12 (v, λ) :=

p∗12(v, λ) if λ > λ̂,

p22(v) if λ ≤ λ̂.

Note that this new contract inherits all the required properties of the optimal contract—the set
of delayed buyers (and profitability thereof) is unchanged, the contract is incentive compatible
in period two (since the mechanisms in period two correspond to prices), and the contract is
incentive compatible in period one. To see that this last claim is true, notice that incentives for
λ > λ̂ are not affected by the change in contracts. In addition, q̄∗∗ is monotone in λ since q̄∗ was
(and since q̄∗(v, λ̂) ≥ q2(v), as shown above), and so it easy to verify that buyers with λ < λ̂ are
also incentivized to report their types truthfully. Finally, since (SD) is satisfied for all λ ∈ Λ, it
must be the case that the contract is also individually rational in the first period.

Now notice that standard techniques allow us to write the seller’s expected profits from each
initial-period type λ as

Π11(λ) = x(λ)
[

p11(λ) +
∫

V
(p12(v, λ)− cq1(v, λ))dG(v|λ)

]
+ (1− x(λ))

∫
V
(p2(v)− cq2(v))dG(v|λ)

=
∫

V
(v− c)q̄(v, λ)dG(v|λ))−U11(λ̂)−

∫ λ

λ̂
U′1(µ)dµ

=
∫

V
(v− c)q̄(v, λ)dG(v|λ)−U1(λ̂) +

∫ λ

λ̂

∫
V

q̄(v, µ)Gλ(v|µ)dvdµ.

Since q∗1(v, λ) = q∗∗1 (v, λ) for all λ > λ̂, x∗ = x∗∗, and U∗11(λ̂) = U∗∗11 (λ̂) =
∫

V max{v− α, 0}dG(v|λ̂),
we have Π∗∗11 (λ) = Π∗11(λ) for all λ > λ̂.

Recalling the monotonicity result from Lemma 2, we have k∗(λ) ≥ α for all λ ≤ λ̂. How-
ever, this inequality must be strict in some neighborhood of µ̃ where x∗(λ) = 1; if not, we have
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(U∗11)
′(λ) = −

∫
V q2(v)Gλ(v|λ)dv everywhere, implying that, in contradiction to our previous as-

sumption, constraint (SD) binds everywhere. On the other hand, k∗∗(λ) = α for all λ < λ̂ such
that x∗∗(λ) = 1.

Therefore, we have Π∗∗1 (λ) ≥ Π∗1(λ) for all λ ≤ λ̂, with strict inequality in a neighborhood of
µ̃. This follows from the facts that q∗∗1 is more generous than q∗1 , as it requires a lower cutoff for
buyers’ values; this additional generosity is efficient since α ≥ c; and the information rents are
smaller since Gλ ≤ 0 (and therefore we are adding more profits in the final term of Π11 above).

Of course, this contradicts the optimality of the original ∗ contract. Thus, as desired, constraint
(SD) must bind for all λ < λ̂. �

PROOF OF LEMMA 4. Notice that the proof of Lemma 3 extends to the present setting with limited
commitment. That proof is by contradiction: if the constraint (SD) binds at some λ̂ ∈ Λ but is slack
for some µ̃ < λ̂, then it is possible to construct an alternative first-period contract that increases the
seller’s profits while maintaining incentive compatibility. Since that construction does not alter the
set of cohort-one buyers that delay contracting to period two, constraint (SR) is unaffected and the
resulting period-two price is unchanged. Therefore, the strategic delay constraint (SD) is satisfied
in the construction, and the result follows immediately. �

PROOF OF THEOREM 2. Constraints (IC′11) and (IC′12) are satisfied by construction, as these con-
straints have been incorporated into the objective function in problem (RFC). Meanwhile, As-
sumption 1 implies that the monotonicity conditions (MON11) and (MON12) are also satisfied.
Invoking Lemma 2, there exist payment rules that implement the contract above. Indeed, it is
easy to verify that the payments in Equations (12) and (13) equal those defined in Equation (20),
but with κ11 =

∫
V qFC

2 (v)dG(v|λ), κ12(λ) = 0 for all λ ∈ Λ, and κ22 = 0. Finally, it is trivial to ver-
ify that each buyer’s expected utility from the cohort-one contract is no smaller than the expected
value of delay, so constraint (SD) is also satisfied. Thus, the contract {xFC, qFC

1 , pFC
11 , pFC

12 } solves the
seller’s problem. �

PROOF OF COROLLARY 1. If αFC maximizes ΠFC(α), then Theorem 2 immediately implies that
the contracts {xFC, qFC

1 , pFC
11 , pFC

12 } and {qFC
2 , pFC

22 } defined in Equations (9), (11), (12), and (13) (with
α = αFC) are optimal.

In addition, notice that we may rewrite the seller’s profits ΠFC(α) in Equation (14) as ΠFC(α) =

ΠFC
1 (α) + ΠFC

2 (α), where

ΠFC
1 (α) :=

∫ λ̃(α)

λ

∫ v̄

α
ϕ1(v, λ)g(v|λ) f (λ)dvdλ +

∫ λ̄

λ̃(α)

∫ v̄

kND(λ)
ϕ1(v, λ)g(v|λ) f (λ)dvdλ

−
∫ v̄

α
(v− α)g(v|λ)dv and

ΠFC
2 (α) := γ [(α− c)(1− H(α))]
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are the profits derived from cohort-one and cohort-two buyers, respectively. Moreover,

∂ΠFC
1 (α)

∂α
=

∂λ̃(α)

∂α

∫ v̄

α
ϕ1(v, λ̃(α))g(v|λ̃(α)) f (λ̃(α))dv−

∫ λ̃(α)

λ
ϕ1(α, λ)g(α|λ) f (λ)dλ

− ∂λ̃(α)

∂α

∫ v̄

kND(λ̃(α))
ϕ1(v, λ̃(α))g(v|λ̃(α)) f (λ̃(α))dv + (α− α)g(α|λ) +

∫ v̄

α
g(v|λ)dv

= 1− G(α|λ)−
∫ λ̃(α)

λ
ϕ1(α, λ)g(α|λ)dF(λ),

where the second equality follows from the fact that kND(λ̃(α)) = α. Assumption 1 implies that,
for any α, ϕ1(α, λ) ≤ 0 for all λ ≤ λ̃(α). Therefore, ∂ΠFC

1 (α)
/

∂α ≥ 0 for all α (with strict inequality
for α < v̄). Since ΠFC

2 (α) is, by definition, maximized at pH, ΠFC
1 strictly increasing immediately

implies that αFC > pH. �

PROOF OF LEMMA 5. Consider the ∗ contract, and define µ̄ := sup{λ|x∗(λ) < 1} to be the largest
initial-period type that may delay contracting. In addition, note that (by Assumptions 2 and 3) the
first-order condition in (SR′′) implies the existence of some µ∗ ∈ Λ such that

α∗ = argmax
α
{(α− c)(1− G(α|µ∗))}.

Moreover, Assumptions 2 and 3 also imply that ψ1(α
∗, λ)g(α∗|λ) < 0 for all λ > µ∗, and that

ψ1(α
∗, λ)g(α∗|λ) > 0 for all λ < µ∗.

So define

X1 :=
∫ µ∗

λ
(1− x∗(λ))ψ1(α

∗, λ)g(α∗|λ)dF(λ) and X2 :=
∫ µ̄

µ∗
(1− x∗(λ))ψ1(α

∗, λ)g(α∗|λ)dF(λ).

Note that X1 ≥ 0 ≥ X2, and that X1 + X2 + γψ2(α∗)h(α∗) = 0. In addition, define

Y1(µ) :=
∫ µ∗

µ
ψ1(α

∗, λ)g(α∗|λ)dF(λ) and Y2(µ) :=
∫ µ

µ∗
ψ1(α

∗, λ)g(α∗|λ)dF(λ).

It is easy to see that Y1(µ) is strictly increasing, and that Y1(µ
∗) = 0 and Y1(λ) ≥ X1. This implies

that there exists a unique µ1 ∈ [λ, µ∗] such that Y1(µ1) = X1. Similarly, Y2(µ) is strictly decreasing,
Y2(µ∗) = 0, and Y2(µ̄) ≤ X2. Hence, there exists a unique µ2 ∈ [µ∗, µ̄] such that Y2(µ2) = X2.

Thus, we may define x∗∗ by

x∗∗(λ) :=

0 if λ ∈ [µ1, µ2],

1 otherwise.

By construction, α∗ solves the first-order condition (SR′′) induced by x∗∗, implying that α∗∗ =

α∗. Thus, the option value of strategic delay is unchanged for all buyers, leaving constraint (SD)
unaffected. Since Lemma 4 implies that this constraint must bind for all λ ≤ µ2, we must have
Π∗∗(λ) = Π∗(λ) for all such λ. However, Π∗∗(λ) ≥ Π∗(λ) for all λ > µ2, since we now have
greater freedom in choosing λ̂ in the seller’s optimization problem. In particular, note that λ̂

cannot be lower than the upper bound of the set of delayed cohort-one buyers; thus, by decreasing
this upper bound from µ̄ to µ2, we have relaxed an implicit constraint on the seller’s problem. �
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PROOF OF THEOREM 3. Since µLC
1 and µLC

2 solve problem (RLC), Theorem 2 immediately implies
that the proposed contract is optimal.

It is easy to see that we cannot have αLC < pH. Delaying some cohort-one buyers in order
to reduce the second-period price below pH has two effects: it reduces the profits derived from
cohort-two buyers (which are, by definition, maximized at pH), and it also increases the utility
that must be promised to all cohort-one buyers while decreasing the seller’s ability to price dis-
criminate. Each of these forces decreases overall profits, and so we must have αLC ≥ pH.

Abusing notation slightly, denote by α(µ1, µ2) the second-period price induced when the set of
delayed cohort-one buyers (which Lemma 5 implies we can take, without loss, to be an interval)
is [µ1, µ2]. We can then write the seller’s profits from the objective function in (RLC) as

ΠLC(µ1, µ2) :=
∫ µ2

λ

∫ v̄

α(µ1,µ2)
ϕ1(v, λ)dG(v|λ)dF(λ) +

∫ λ̄

µ2

∫ v̄

min{α(µ1,µ2),kND(λ)}
ϕ1(v, λ)dG(v|λ)dF(λ)

+ γ(α(µ1, µ2)− c)(1− H(α(µ1, µ2)))−
∫ v̄

α(µ1,µ2)
(v− α(µ1, µ2))dG(v|λ)

=
∫ λ̃(α(µ1,µ2))

λ

∫ v̄

α(µ1,µ2)
ϕ1(v, λ)dG(v|λ)dF(λ)

+
∫ max{λ̃(α(µ1,µ2)),µ2}

λ̃(α(µ1,µ2))

∫ v̄

α(µ1,µ2)
ϕ1(v, λ)dG(v|λ)dF(λ)

+
∫ λ̄

max{λ̃(α(µ1,µ2)),µ2}

∫ v̄

kND(λ)
ϕ1(v, λ)dG(v|λ)dF(λ)

+ γ(α(µ1, µ2)− c)(1− H(α(µ1, µ2)))−
∫ v̄

α(µ1,µ2)
(v− α(µ1, µ2))dG(v|λ).

We can rearrange this expression to yield

ΠLC(µ1, µ2) = ΠFC(α(µ1, µ2))−
∫ max{λ̃(α(µ1,µ2)),µ2}

λ̃(α(µ1,µ2))

∫ α(µ1,µ2)

kND(λ)
ϕ1(v, λ)dG(v|λ)dF(λ),

where ΠFC is the full-commitment profit function as defined in Equation (14). Notice that when-
ever µ2 > λ̃(α(µ1, µ2)), the integrand in the last line above is always positive, as kND is decreasing
in λ, and ϕ1(v, λ) ≥ 0 whenever v ≥ kND(λ). We may use this expression to evaluate the seller’s
profits when she induces a second-period price αLC > αFC.

Define Γ :=
{

µ ∈ Λ : there exists µ′ ≤ µ with α(µ′, µ) = αFC}. If Γ is empty, then it is not pos-
sible to induce a second-period price αFC. Since α(µ1, µ2) is continuous and α(λ, λ) = pH < αFC,
this implies that αLC ≤ maxµ1,µ2{α(µ1, µ2)} < αFC. On the other hand, if Γ is nonempty, we may
define µFC

2 := min{µ ∈ Γ}; that is, µFC
2 is the smallest upper bound of the set of delayed buyers

that is compatible with inducing a second-period price αFC. In addition, we implicitly define µFC
1

by α(µFC
1 , µFC

2 ) = αFC.
Note that if µFC

2 ≤ λ̃(αFC), the seller is able to replicate the effective allocation and payment
rules from the full commitment case. This implies that the payoff of the (less-constrained) full-
commitment problem is achievable even with limited commitment, and so αLC = αFC. So suppose
instead that µFC

2 > λ̃(αFC), and note that Assumptions 2 and 3 imply that inducing αLC > αFC
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requires µLC
2 > µFC

2 . Then

ΠLC(µFC
1 , µFC

2 ) = ΠFC(αFC)−
∫ µFC

2

λ̃(αFC)

∫ αFC

kND(λ)
ϕ1(v, λ)g(v|λ) f (λ)dvdλ

= ΠFC(αFC)−
∫ αFC

kND(µFC
2 )

∫ µFC
2

λ̃(v)
ϕ1(v, λ)g(v|λ) f (λ)dλdv, and

ΠLC(µLC
1 , µLC

2 ) = ΠFC(αLC)−
∫ µLC

2

λ̃(αLC)

∫ αLC

kND(λ)
ϕ1(v, λ)g(v|λ) f (λ)dvdλ

= ΠFC(αLC)−
∫ αLC

kND(µLC
2 )

∫ µLC
2

λ̃(v)
ϕ1(v, λ)g(v|λ) f (λ)dλdv,

where the second equality in each expression follows from reversing the order of integration.
Subtracting the two expressions above and then rearranging the integrals, we have

ΠLC(µFC
1 , µFC

2 )−ΠLC(µLC
1 , µLC

2 ) = ΠFC(αFC)−ΠFC(αLC) +
∫ αLC

αFC

∫ µFC
2

λ̃(v)
ϕ1(v, λ)g(v|λ) f (λ)dλdv

+
∫ αLC

kND(µLC
2 )

∫ µLC
2

µFC
2

ϕ1(v, λ)g(v|λ) f (λ)dλdv.

By definition, ΠFC(αFC) ≥ ΠFC(αLC). Moreover, it is straightforward to verify that each of the
integrands is positive, and therefore ΠLC(µFC

1 , µFC
2 ) > ΠLC(µLC

1 , µLC
2 ); thus, the seller with limited

commitment induces a second-period price αLC ≤ αFC.
Now suppose that αLC ∈ (pH, αFC), and that the set of buyers that delay contracting is the

(nonempty) interval [µLC
1 , µLC

2 ]. Since αLC > pH, Assumption 2 implies that ψ2(αLC)h(αLC) > 0.
Similarly, since ψ1(pH, µ̂)g(pH |µ̂) = 0 (by the definition of µ̂), Assumption 2 also implies that
ψ1(α

LC, µ̂)g(αLC|µ̂) > 0. Finally, notice that the first-order condition (SR′′) may be rewritten as∫ µLC
2

µLC
1

ψ1(α
LC, λ)g(αLC|λ)dF(λ) + γψ2(α

LC)h(αLC) = 0.

So suppose that µLC
1 < µ̂. Assumptions 2 and 3 then imply that ψ1(α

LC, µLC
1 )g(αLC|µLC

1 ) > 0.
In addition, the first-order condition above implies that ψ1(α

LC, µLC
2 )g(αLC|µLC

2 ) < 0. Therefore,
there exists some µ∗ ∈ [µLC

1 , µLC
2 ] such that ψ1(α

LC, µ∗)g(αLC|µ∗) = 0. So define

X :=
∫ µ̂

µLC
1

ψ1(α
LC, λ)g(αLC, λ)dF(λ) and Y(z) :=

∫ z

µ̂
ψ1(α

LC, λ)g(αLC, λ)dF(λ),

and note that X > 0, Y(µ̂) = 0, Y(µLC
2 ) = −(γψ2(αLC)h(αLC) + X)<0, and Y′(z) < 0 for all

z > µ̂. Therefore, there must exist some µ′ ∈ (µ̂, µLC
2 ) such that Y(µ′) = −γψ2(αLC)h(αLC). Thus,

α(µ̂, µ′) = αLC = α(µLC
1 , µLC

2 ), implying that the seller can achieve the same second-period price
by delaying a (strictly) smaller subset of buyers. If µ′ ≥ λ̃(αLC), the seller is now able to increase
profits by separating cohort-one buyers with types in (µ′, µLC

2 ), contradicting the optimality of the
proposed contract. On the other hand, if µ′ < λ̃(αLC), then the seller can increase the second-
period price towards the full-commitment price αFC by expanding the delay set “rightwards”
without sacrificing the ability to screen. This again contradicts the optimality of the proposed
contract. Thus, we must have µLC

1 ≥ µ̂. �
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