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Abstract

This paper develops an efficient approach to model and forecast time-series data
with an unknown number of change-points. Using a conjugate prior and conditional
on time-invariant parameters, the predictive density and the posterior distribution of
the change-points have closed forms. The conjugate prior is further modeled as hier-
archical to exploit the information across regimes. This framework allows breaks in
the variance, the regression coefficients or both. Regime duration can be modeled as
a Poisson distribution. A new efficient Markov Chain Monte Carlo sampler draws the
parameters as one block from the posterior distribution. An application to Canada
inflation time series shows the gains in forecasting precision that our model provides.
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1 Introduction

This paper develops an efficient Bayesian approach to model and forecast time series data
with an unknown number of change-points. A conjugate prior is modeled as hierarchical to
exploit information across regimes. Regime duration can be fixed or modelled as stochastic
such as a Poisson distribution. The application to Canada inflation time series shows the
gains in forecasting precision that our model provides.

Accounting for structural instability in macroeconomic and financial time series model-
ing and forecasting is important. Empirical applications by Clark and McCracken (2010),
Geweke and Jiang (2011), Giordani et al. (2007), Liu and Maheu (2008), Wang and Zivot
(2000), Stock and Watson (1996) among others demonstrate significant instability.

The problem of forecasting in the presence of structural breaks has been recently ad-
dressed by Koop and Potter (2007), Maheu and Gordon (2008), Maheu and McCurdy (2009)
and Pesaran et al. (2006) using Bayesian methods. These approaches provide feasible solu-
tions but are all computationally intensive.

The purpose of this paper is to forecast Canadian inflation with a change-point model
suitable for out-of-sample forecasting with the attractive features of the previous approaches
but which is computationally less demanding. Our approach allows for multiple structural
breaks in-sample and out-of-sample, a duration-dependent structural break probability and
estimation in several minutes. A new posterior simulator samples the parameters jointly as
one block which results in very good mixing of the Markov chain.

We extend Maheu and Gordon (2008) and Maheu and McCurdy (2009) in five direc-
tions. First, a conjugate prior for the parameters which characterize each regime is adopted.
Conditional on this prior and the time-invariant parameters, the predictive density has a
closed form. The computational burden is reduced compared to Maheu and Gordon (2008),
in which a non-conjugate prior is assumed.1 Second, a hierarchical structure for the con-
jugate prior is introduced to allow learning and sharing of the information across regimes
as in Pesaran et al. (2006). In the presence of a structural break, the new parameters are
drawn independently from the hierarchical prior. Third, we show how to model the regime
duration as a Poisson distribution, which implies duration dependent break probabilities.
Unlike Maheu and Gordon (2008) who focus on the filtering and forecasting problem we
show how to produce the smoothed distribution of the change-points. Lastly, different types
of the break dynamics including having breaks in the variance, the regression coefficients or
both are nested in this framework.

The differences between this paper and Koop and Potter’s (2007) who also model regime
durations are as follows. First, they assume a heterogeneous distribution for the duration
in each regime. Their approach augments the state space by regime durations, so there
are O(T 2) states, which implies a large transition matrix. In contrast, we assume that
the regime durations are drawn from the same distribution. This simplification results
in number of states being O(T ) in our model. Second, Koop and Potter (2007) assume
that after a structural change, the parameters in the new regime are related to those in
the previous regime through a random walk. This path dependence in parameters further

1Maheu and Gordon (2008) assume a conditional conjugate prior and use Gibbs sampling to compute the
predictive density.
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increases computation time.
In this paper parameters in each regime are drawn independently from a hierarchical

prior. This reflects an abrupt change of the parameters and is convenient for computation.
We introduce a new MCMC sampler to draw all the parameters including the hierarchical
prior, the parameters of the durations, the change-points and the parameters characterizing
each regime from their posterior distribution jointly. As a result the mixing of the chain is
very good.

Different versions of the model are applied to a Canada inflation series to investigate its
dynamic stability. Canadian inflation is challenging to forecast as inflation targeting was
introduced in 1991. This raises the question of how useful is the data prior to this date in
forecasting after 1991. We also show how to incorporate exogenous subjective information
from policy changes into our model.

The log-predictive likelihood is used as the criteria for model comparison. The best
model is the hierarchical model which allows breaks in the regression coefficients and the
variance simultaneously. This model provides large improvements compared to linear no
break models and to autoregressive benchmarks with a GARCH parameterization.

We identify 4 major change-points in the Canada inflation dynamics. The model com-
parison shows that the duration dependent break probability is not a significant feature of
the data. After controlling for the structural breaks, adding extra lags as the explanatory
variables does not improve the out-of-sample forecasting. Including exchange rates and a
commodity price index as predictors significantly improves linear models but is still domi-
nated by the structural change model without these regressors.

The paper is organized as follows. Section 2 introduces the model and a Markov Chain
Monte Carlo method is proposed to sample from the posterior distribution efficiently. Sec-
tion 3 extends the non-hierarchical prior to a hierarchical one in order to exploit the in-
formation across regimes. Different extensions of the hierarchical model are introduced in
Section 4, including a model with breaks only in the variance or in the regression coefficients.
Duration dependent break probability is also discussed by assuming a Poisson distribution
for the regime durations. Section 5 applies the model to a Canada inflation time series.
Section 6 concludes.

2 Structural Break Model with Conjugate Prior

In the following we assume that two consecutive structural breaks define a regime. A regime
consists of a set of contiguous data drawn from a data density with a fixed model parameter
θ. Different regimes will have different θ which is assumed to be drawn from a specified
distribution. The number of observations in a regime denotes the duration of a regime.

If time i is the starting point of the most recent regime, it is assumed that the data before
time i is not informative for the posterior of the parameters θ governing the current regime.

If the most recent break is at time i (i ≤ t) then the duration of the current regime at
time t is defined as dt = t− i + 1. The duration is used as a state variable in the following
for two reasons. First, we wish to study not only the forecasting problem but also the ex-
post analysis of multiple change-points in-sample.2 Second, working with dt facilitates the

2Maheu and Gordon did not consider the smoothed distribution of breaks and only focus on the filtered
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modeling of regime durations directly which we discuss later.
Formally, define dt as the duration of the most recent regime up to time t and dt ∈

{1, . . . , t} by construction. If a break happens at time t, then dt = 1. If dt = t, then there is
no break throughout the whole sample. Define Yi,t = (yi, . . . , yt) for 1 ≤ i ≤ t. If i > t, Yi,t
is an empty set.

To form the predictive density for yt+1 conditional on duration dt+1, we require the
posterior density based on data Y1,t. Let the data density of yt+1 given the model parameter
θ and information set Y1,t be denoted as p(yt+1 | θ, Y1,t). There are two cases to consider.
The first case is that the regime continues one more period while the second is a structural
change and a new draw of the parameter θ occurs between t and t + 1. If p(θ) is the prior
for θ then conditional on duration dt+1 the posterior is

p(θ|dt+1, Y1,t) ≡ p(θ|Yt−dt+1+2,t) ∝
{
p(yt−dt+1+2, . . . , yt|θ)p(θ) dt+1 > 1
p(θ) dt+1 = 1

(1)

The predictive density conditional on the duration is given by

p(yt+1 | dt+1, Y1,t) =

∫
p(yt+1 | θ, Y1,t)p(θ | dt+1, Y1,t)dθ (2)

=

∫
p(yt+1 | θ, Y1,t)p(θ | Yt−dt+1+2,t)dθ (3)

The second equality comes from the assumption that the data before a break point is un-
informative to the regime after it. For example, if dt+1 = 1, p(θ | Yt−dt+1+2,t) is equivalent
to its prior p(θ). The data density conditions on Y1,t to allow for autoregressive models and
other time series specifications.

The conditional distribution of yt+1 | θ, Y1,t is a linear model with an i.i.d. normal error
term. The prior is assumed a Normal-Gamma distribution, which is conjugate to the model.
By conjugacy, the posterior distribution θ | Yt−dt+1+2,t is also Normal-Gamma. The predictive
density p(yt+1 | dt+1, Y1,t) is a Student-t distribution if we integrate out θ. Conditional on
dt, the posterior distribution and the predictive density have analytic forms. If we assume a
constant structural break probability π ∈ (0, 1), the model with the conjugate prior can be
written as follows:

dt =

{
dt−1 + 1 w.p. 1− π
1 w.p. π

(βt, σ
−2
t ) ∼ 1(dt = 1)NG(β,H−1, χ/2, ν/2) + 1(dt > 1)δ(βt−1,σ

−2
t−1) (4)

yt | βt, σt, Y1,t−1 ∼ N(x′tβt, σ
2
t )

The covariate xt can include exogenous or lagged dependent variables. In this paper we
consider xt = (1, yt−1, . . . , yt−q)

′, which is an AR(q) model in each regime. To emphasize
that θ will change at each break point define θt ≡ (βt, σ

2
t ) as the collection of the parameters

which characterize the data density at time t. If a break happens (dt = 1), θt is drawn
independently from the prior NG(β,H−1, χ/2, ν/2), where NG represents a Normal-Gamma

distribution of change points.
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distribution.3 δθ represents a degenerate distribution at a mass point θ. If there is no break
(dt > 1), all parameters are the same as those in the previous period.

By conjugacy of the prior, the posterior distribution of the parameters which characterize
the data density at time t is still Normal-Gamma conditional on the duration dt.

βt, σ
−2
t | dt, Y1,t ∼ NG(β̂, Ĥ−1, χ̂/2, ν̂/2) (5)

with

β̂ = Ĥ−1(Hβ +X ′t−dt+1,tYt−dt+1,t), Ĥ = H +X ′t−dt+1,tXt−dt+1,t (6)

χ̂ = χ+ Y ′t−dt+1,tYt−dt+1,t + β′Hβ − β̂′Ĥβ̂, ν̂ = ν + dt (7)

where Xt−dt+1,t = (xt−dt+1, . . . , xt)
′.

If there is no break at time t + 1, the new duration increase by 1 (dt+1 = dt + 1) and
the parameters which characterize the data dynamics stay the same (θt+1 = θt) as the last
period. The posterior distribution of θt is used to compute the predictive density.

p(yt+1 | dt+1 = dt + 1, Y1,t) ∝

(
1 +

(yt − x′tβ̂)2

χ̂(x′tĤ
−1xt + 1)

)− (ν̂+1)
2

(8)

which is the kernel of a Student-t distribution,

yt+1 | dt+1 = dt + 1, Y1,t ∼ t

(
x′tβ̂,

χ̂(x′tĤ
−1xt + 1)

ν̂
, ν̂

)
. (9)

For the special case of dt+1 = 1, a structural change happens at time t + 1, so the data
before t+ 1 is uninformative to the predictive density. In this case the posterior is replaced
by the prior we obtain

yt+1 | dt+1 = 1, Y1,t ∼ t

(
x′tβ,

χ(x′tH
−1xt + 1)

ν
, ν

)
. (10)

By integrating out the model parameters, the predictive density depends on the duration
dt+1 and the past information Y1,t. Now Chib’s (1996) method to jointly sample the discrete
latent variable from a hidden Markov model can be applied to sample D1,T = (d1, . . . , dT )
jointly.

The first step in sampling D1,T is the forward-filtering pass as follows.

1. At t = 1, the distribution of the duration is p(d1 = 1 | y1) = 1 by assumption.

3The precision (inverse of variance) σ−2t is drawn from a Gamma distribution G(χ/2, ν/2), where χ/2 is

the multiplier and ν/2 is the degree of freedom. Its prior mean is ν
χ and the prior variance is 2ν

χ2 . It also

implies the prior mean of the variance σ2
t is

χ

ν−2 . Conditional on the variance, the vector of the regression

coefficients βt is drawn from a multivariate normal distribution N(β,H−1σ2
t ).
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2. The forecasting step:

p(dt+1 = j | π, Y1,t) =

{
p(dt = j − 1 | π, Y1,t)(1− π) for j = 2, · · · , t+ 1

π for j = 1

3. The updating step:

p(dt+1 = j | π, Y1,t+1) =
p(yt+1 | dt+1 = j, Y1,t)p(dt+1 = j | π, Y1,t)

p(yt+1 | π, Y1,t)

for j = 1, . . . , t+1. The first term in the numerator on the right hand side is a Student-
t distribution density function which we have derived using the conjugate prior. The
second term is obtained from step 2. The denominator is the predictive likelihood
given π and is computed by summing over all the values of the duration dt+1,

p(yt+1 | π, Y1,t) =
t+1∑
j=1

p(yt+1 | dt+1 = j, Y1,t)p(dt+1 = j | π, Y1,t). (11)

4. Iterate over step 2 and 3 until the last period T .

Then, use the backward-sampling method to draw the vector of durations D1,T = (d1 . . . , dT )
jointly.

1. Sample the last period duration dT from dT | π, Y1,T , which is obtained from the last
iteration of the forward-filtering step.

2. If dt > 1, then dt−1 = dt − 1.

3. If dt = 1, then sample dt−1 from the distribution dt−1 | π, Y1,t−1. This is because dt = 1
implies a structural change at time t. Hence, for any τ ≥ t, the data yτ is in a new
regime and uninformative to dt−1. The distribution dt−1 | dt = 1, π, Y1,t−1 is equivalent
to dt−1 | dt = 1, π, Y1,T .

4. Iterate step 2 and 3 until the first period t = 1.

Using the conjugate prior has several features. First, the computational burden is negli-
gible compared to the original model with the non-conjugate priors. The computer memory
required by the predictive likelihoods is O(T 2), which is manageable for a sample size up
to several thousands. The number of regimes is equal to the number of t such that dt = 1
in the sample D1,T . If K as the number of regimes implied by one sample of the vector

of the durations D1,T from the posterior distribution, then K =
T∑
t=1

1(dt = 1). The poste-

rior distribution of K − 1 is the distribution of the number of change-points. Finally, the
posterior sampler is efficient based on Casella and Robert (1996), because the parameters
Θ1,T = {θt}Tt=1 are integrated out.
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2.1 Estimation and Inference

In the case of the constant break probability, the prior of the break probability π is assumed as
a Beta distribution, B(πa, πb). Because the analytic conditional marginal likelihood p(Y1,T |
π) exists, π can be sampled through a Metropolis-Hastings framework by integrating out the
time-varying parameters Θ1,T and the regime durations D1,T .

For an efficient proposal sampling distribution, we exploit the information from the pre-
vious sample of the regime durations D

(i−1)
1,T in the Markov chain. In other words, we use

the known conditional distribution of π given the previous sample of D
(i−1)
1,T as a tailored

proposal distribution in a Metropolis-Hastings algorithm.
In the following, we sample from p(π | Y1,T ) first and then from p(Θ1,T , D1,T | π, Y1,T ).

This is equivalent to sampling from the joint posterior distribution p(π,Θ1,T , D1,T | Y1,T ).
The sampling steps are as follows.

1. Sample π | Y1,T from a proposal distribution:

π(i) | Y1,T ∼ Beta(πa +K(i−1) − 1, πb + T −K(i−1))

K(i−1) is the number of regimes implied from the previous sample of D
(i−1)
1,T . Accept

π(i) with probability

min

{
1,

p(π(i) | πa, πb)
p(π(i−1) | πa, πb)

p(YT | π(i))

p(YT | π(i−1))

p(π(i−1) | πa +K(i−1) − 1, πb + T −K(i−1))

p(π(i) | πa +K(i−1) − 1, πb + T −K(i−1))

}
If rejected, π(i) is set equal to π(i−1).

2. Sample Θ1,T , D1,T | π, Y1,T :

(a) Sample D1,T | π, Y1,T from the previously described forward-backward sampler.
Calculate the number of regimes K and index the regimes by 1, · · · , K. Use an
auxiliary variable st to represent the regime index at time t. Define s1 = 1 and
st = 1 for t > 1 until time τ with dτ = 1, which implies there is a break and the
data is in a new regime. Then set sτ = 2 at this break point, and iterate until
the last period with sT = K.

For example, if D1,T = (1, 2, 3, 1, 2, 1, 2, 3, 4), we can infer there are K = 3 regimes
and the time series of regime indicators is S1,T = (s1, . . . , sT ) = (1, 1, 1, 2, 2, 3, 3, 3, 3).
There is a one-to-one relationship between D1,T and S1,T .

(b) To sample Θ1,T | D1,T , π, Y1,T , we only need to sample K different sets of pa-
rameters because their values are constant in each regime. Define {β∗i , σ∗i } as the
distinct parameters which characterize the ith regime, where i = 1, . . . , K.

β∗i , σ
∗−2
i ∼ NG(βi, H

−1

i , χi/2, νi/2)

with

βi = H
−1

i (Hβ +X ′iYi), H i = H +X ′iXi
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χi = χ+ Y ′i Yi + β′Hβ − β′iH iβi, νi = ν +Di

Xi = (xt0 , . . . , xt1)′ and Yi = (yt0 , . . . , yt1)′, where st = i if and only if t0 ≤ t ≤ t1.
So, Xi and Yi represent the data in the ith regime. Di = t1− t0 +1 is the duration
of the ith regime.

The Markov chain is run for N0 + N times and the first N0 iterations are discarded as

burn-in samples. The rest of the samples of the parameters
{
π(i),Θ

(i)
1,T , D

(i)
1,T

}N
i=1

are used

for inferences and forecasting as if they were drawn from the posterior distribution. For
example, the posterior mean of the break probability is computed as the sample average of

π(i) as Ê(π | Y1,T ) = 1
N

N∑
i=1

π(i). The posterior mean of the volatility at time t is Ê(σ2
t | Y1,T ) =

1
N

N∑
i=1

σ2
t

(i)
. Similarly, we can estimate the predictive density for time T +1 by averaging over

the MCMC draws of π using (11) or based on the draws of π and D1,T following

p̂(yT+1 | Y1,T ) =
1

N

N∑
i=1

{
p(yT+1 | dT+1 = d

(i)
T + 1, Y1,T )(1− π(i)) + p(yT+1 | dT+1 = 1, Y1,T )π(i)

}
.(12)

This model has two crucial assumptions. One is the conjugate prior for the regime
dependent parameters which characterize the conditional data density. The other is that the
data before a break point is uninformative to the regime after it conditional on the time-
invariant parameters. Both are necessary for the analytic form of the predictive density.
If we do not use the conjugate prior, each predictive density p(yt+1 | dt+1, Y1,t) has to be
estimated numerically. If the second assumption is violated, the data before the break can
provide information to the regime after it, the duration dt itself is not sufficient for the
predictive density given the time-invariant parameters. For example, in Koop and Potter’s
(2007) model, in order to integrate out the parameters in the most recent regime, they need
to know the whole sample path of the durations D1,t = (d1, . . . , dt). However, since the
vector of durations D1,t takes 2t values in their model, it is computationally infeasible to
calculate the predictive likelihood for every case, while in the new model it is feasible.

Because data prior to a break point may be useful in forecasting we next consider a hier-
archical prior to exploit this but still maintain the computational feasibility of our approach.

3 Hierarchical Structural Break Model

In our model, forecasts immediately after a break are dominated by the prior and could be
poor if the prior is at odds with the new parameter value of the data density. Of course as
more data arrives the predictive density improves but this can take some time.

Pesaran et al. (2006) proposed to estimate the prior to improve forecasting by exploiting
the information across regimes. This section introduces a hierarchical prior for the struc-
tural break model. This is computationally feasible only if using the conjugate prior as in
the previous section. The model is referred as the hierarchical SB-LSV model: SB means
structural break and LSV means that the level, the slope and the variance are subject to
breaks. The model in the previous section is labelled as the non-hierarchical SB-LSV model.
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The previous prior parameters β,H, χ, ν are not fixed any more but given a prior distri-
bution. The hierarchical SB-LSV model is the following:

β,H ∼ NW(m0, τ
−1
0 , A0, a0)

χ ∼ G(d0/2, c0/2)

ν ∼ Exp(ρ0)

dt =

{
dt−1 + 1 w.p. 1− π
1 w.p. π

(13)

(βt, σ
−2
t ) ∼ 1(dt = 1)NG(β,H−1, χ/2, ν/2) + 1(dt > 1)δ(βt−1,σ

−2
t−1)

yt | βt, σt, Y1,t−1 ∼ N(x′tβt, σ
2
t )

The positive definite matrix H has a Wishart distribution W(A0, a0), where A0 is a positive
definite matrix and a0 is a positive scalar. The prior mean of H is a0A0. The prior variance
of H ij is a0(A2

ij + AiiAjj), where subscript ij means the ith row and the jth column. β | H
is a multivariate Normal N(m0, τ

−1
0 H−1), where τ0 is a positive scalar. χ has a Gamma

distribution with a prior mean of c0/d0 and a prior variance of 2c0/d
2
0. ν has an Exponential

distribution with both the prior mean and variance equal to ρ0.
Conditional on the number of regimes K and the distinct parameter values {β∗i , σ∗i }Ki=1,

the posterior distribution of the hierarchical parameters β and H are still Normal-Wishart.

β,H | {β∗i , σ∗i }Ki=1 ∼ NW(m1, τ
−1
1 , A1, a1)

with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

σ∗−2
i β∗i

)
, τ1 = τ0 +

K∑
i=1

σ∗−2
i (14)

A1 =

(
A−1

0 +
K∑
i=1

σ∗−2
i β∗i β

∗′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

, a1 = a0 +K (15)

The posterior of χ | ν,K, {σ∗i }Ki=1 is a Gamma distribution,

χ | ν, {σ∗i }Ki=1 ∼ G(d1/2, c1/2) (16)

with d1 = d0 +
K∑
i=1

σ∗−2
i and c1 = c0 +Kν. The posterior of ν | χ,K, {σ∗i }Ki=1 is

p(ν | χ,K, {σ∗i }Ki=1) ∝

(
(χ/2)ν/2

Γ(ν/2)

)K ( K∏
i=1

σ∗−2
i

)ν/2

exp

{
− ν

ρ0

}
.

which does not have a convenient form. It is sampled by a Metropolis-Hastings algorithm
using a random walk as the proposal distribution.

Sampling from the posterior density of the break probability π and the hierarchical prior
parameters follows the same approach used in non-hierarchical SB-LSV model. To implement
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the sampler, define Ψ = (π, β,H, χ, ν) as the collection of the break probability and the
parameters of the hierarchical prior, which are all time-invariant. To obtain a good proposal
density we base it on the previous iteration of the sampler and exploit known conditional
posterior densities. Since the analytic form of the marginal likelihood p(Y1,T | Ψ) exists,
the joint sampler draws Ψ from this proposal distribution and accepts the new draw with a
probability implied by the Metropolis-Hastings algorithm.

Following this, sample the regime durations D1,T and the time-varying parameters Θ1,T

conditional on Ψ and the data Y1,T . As in the previous specification we are sampling jointly
from the full posterior Θ1,T , D1,T ,Ψ|Y1,T which results is a well mixing Markov chain. The
details are in the appendix.

After discarding the burn-in samples, the rest of the sample is used to draw inferences
from the posterior as in the non-hierarchical model. The predictive density, p(yT+1 | Y1,T ) is
estimated by

1

N

N∑
i=1

{
p(yT+1 | dT+1 = d

(i)
T + 1,Ψ(i), Y1,T )(1− π(i)) + p(yT+1 | dT+1 = 1,Ψ(i), Y1,T )π(i)

}
.

Alternatively, averaging over the predictive density expression in (11) can be used. This
latter approach integrates out the durations.

4 Extensions

This section extends the model while preserving the two assumptions. The first extension
allows the structural breaks only in the variance σ2

t or in the regression coefficients βt. The
second extension considers the duration dependent break probabilities.

4.1 Breaks in the Variance

The model with breaks only in the variance is referred as the hierarchical SB-V model. It
assumes a time-invariant vector of the regression coefficients β. The time-varying variance
σ2
t are drawn from a hierarchical prior. The model is

χ ∼ G(d0/2, c0/2)

ν ∼ Exp(ρ0)

β ∼ N(β,H−1)

dt =

{
dt−1 + 1 w.p. 1− π
1 w.p. π

(17)

σ−2
t ∼ 1(dt = 1)G(χ/2, ν/2) + 1(dt > 1)δσ−2

t−1

yt | β, σt, Y1,t−1 ∼ N(x′tβ, σ
2
t ).

The prior for the regression coefficients β is not modelled as hierarchical since it is con-
stant across all regimes. The parameters of its prior β and H are fixed. On the other hand,
the prior for the variance σ2

t is modelled as hierarchical to share the information across
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regimes. Since the regression coefficient β is the same in all regimes, the data before a
break point is informative to the regime after it. So the duration of the most recent regime
dt is not sufficient for computing the posterior of the parameters in that regime. That
is, p(θt | dt, Y1,t) 6= p(θt | dt, Yt−dt+1,t). The predictive density p(yt+1 | dt+1, Y1,t) is not a
Student-t distribution any more as in the non-hierarchical SB-LSV model.

However, p(θt | dt, β, Y1,t) = p(θt | dt, β, Yt−dt+1,t) holds. Namely, conditional on β, if
a break happens, the volatility is independently drawn from the hierarchical prior and the
previous information is not useful for the current regime.

Meanwhile, conditional on β, the prior for the variance is conjugate. So the model can be
estimated using the method similar to that in the hierarchical SB-LSV model. Specifically,
define the collection of the time-invariant parameters as Ψ = (π, β, χ, ν). The posterior
MCMC sampler first randomly draw Ψ | Y1,T using a tailored proposal distribution and
accept it with the probability implied by a Metropolis-Hastings algorithm. Then, conditional
on Ψ and the data Y1,T , draw the regime durations D1,T and the time-varying parameters
Θ1,T . In the hierarchical SB-V model, Θ1,T = {σt}Tt=1, because the time-invariant regression
coefficients β ∈ Ψ are sampled in the first step. The details are in the appendix.

4.2 Breaks in the Regression Coefficients

We can also fix the variance σ2 as time-invariant and only allow the regression coefficients
to change over time. This model is named as the hierarchical SB-LS since the breaks only
happen for the level and slopes. Conditional on the variance σ2, the data before a break
is not informative to the current regime. Also, the conjugate prior exists for the regres-
sion coefficient βt in each regime. The hierarchical SB-LS model can be estimated as the
hierarchical SB-LSV or SB-V model. The model is:

β,H ∼ NW(m0, τ
−1
0 , A0, a0)

σ−2 ∼ G(χ/2, ν/2)

dt =

{
dt−1 + 1 w.p. 1− π
1 w.p. π

(18)

βt ∼ 1(dt = 1)N(β,H−1) + 1(dt > 1)δβt−1

yt | βt, σ, Y1,t−1 ∼ N(x′tβt, σ
2)

The posterior sampler randomly draws the time-invariant parameter Ψ = (π, β,H, σ)
from its posterior distribution using a MCMC sampler. Then it samples the regime durations
D1,T and the time varying parameters Θ1,T = {βt}Tt=1 conditional on the time-invariant
parameter Ψ and the data Y1,T . The details are in the appendix.

4.3 Duration Dependent Break Probability

Due to the analytic form for the predictive density even with duration dependent break
probabilities, our approach continues to be computationally straightforward. Since modeling
the duration dependent break probability is equivalent to modeling the duration, we assume
a Poisson distribution for each regime.

11



The hazard rate represents the duration dependent break probabilities4. The Poisson
distribution function is P (Duration = d | λ) = e−λ λ

(d−1)

(d−1)!
, where d ≥ 1. The implied break

probability is

πj = P (dt+1 = 1 | dt = j, λ) = P (Duration = j | Duration ≥ j, λ)

=
P (Duration = j | λ)

P (Duration ≥ j | λ)

=
e−λλ(j−1)

(j − 1)γ(j − 1, λ)

where γ(x, y) is the incomplete gamma functions with γ(x, y) =
∫ y

0
tx−1e−tdt. The no-break

probability P (dt+1 = j + 1 | dt = j, λ) is simply 1− P (dt+1 = 1 | dt = j, λ).
Previously, the time-invariant structural break probability π is used in the forecasting step

to compute p(dt+1 = j | π, Y1,t) in order to construct the filtered probability p(dt = j | π, Y1,t)
and the predictive density p(yt+1 | π, Y1,t). If the break probability depends on the regime
duration, p(dt+1 = 1 | λ, dt = j) = πj, then p(dt+1 = j | λ, Y1,t) is calculated as

p(dt+1 = j | λ, Y1,t) =

p(dt = j − 1 | λ, Y1,t)(1− πj−1) for j = 2, · · · , t+ 1
t∑

k=1

p(dt = k | λ, Y1,t)πk for j = 1.

The updating step of the forward filtering procedure and the backward sampling procedure
are not affected. Conditional on the durations D1,T , the posterior of the parameters which
characterize each regime are not changed either. So the estimation is still computationally
straightforward.

The priors for the other parameters are set the same as the hierarchical SB-LSV model.
This extension is labelled as the hierarchical DDSB-LSV model, where DD means duration
dependent.

To estimate the hierarchical DDSB-LSV model, notice that the set of the time-invariant
parameters Ψ now is (λ, β,H, χ, ν). The posterior sampler draws Ψ from its posterior distri-
bution by a Metropolis-Hastings sampler. Then the time-varying parameters Θ1,T and the
regime durations D1,T are sampled conditional on the time-invariant parameter Ψ and the
data Y1,T . This is still a joint sampler as in the hierarchical SB-LSV with the time-invariant
break probability. Details are in the appendix.

5 Application to Canadian Inflation

The model is applied to Canadian quarterly inflation time series to investigate its dynamic
instability and forecast performance. The data is constructed from the quarterly CPI, which
is downloaded from CANSIM5. The quarterly inflation rate is calculated as the log difference

4In general, any hazard function in the survival analysis can be applied to model the duration.
5TABLE NUMBER: 3800003. TABLE TITLE: GROSS DOMESTIC PRODUCT (GDP) INDEXES.

Data Sources: IMDB (Integrated Meta Data Base) Numbers: 1901 - NATIONAL INCOME AND EXPEN-
DITURE ACCOUNTS. SERIES TITLE: CANADA; IMPLICIT PRICE INDEXES 2002=100; PERSONAL
EXPENDITURE ON CONSUMER GOODS AND SERVICES SERIES FREQUENCY: Quarterly

12



of the CPI data and scaled by 100. It starts from 1961Q1 and ends at 2009Q4 with 196
observations in total. The summary statistics are in Table 1.

The hierarchical models used are SB-LSV, SB-V, SB-LS and DDSB-LSV models. Two
non-hierarchical SB-LSV models are also applied, one estimates the break probability π and
the other fixes π = 0.01. Linear autoregressive models are used as benchmarks for model
comparison and a GARCH specification to capture heteroskedasticity. For all the structural
break models, we assume that the explanatory variables in each regime include an intercept
and the one-period lag of the dependent variable. So the data follows an AR(1) process in
the each regime.

The prior of the hierarchical SB-LSV model is:

π ∼ B(1, 9), H ∼W(0.2I, 5), β | H ∼ N(0, H−1), χ ∼ G(2, 2), ν ∼ Exp(2)

This prior is informative but covers a wide range of empirically realistic values. The prior
mean of the break probability is E(π) = 0.1, which implies infrequent breaks. The inverse
of the variance in each regime is drawn from a Gamma distribution, which has a degree of
freedom centered at 2 and a multiplier centered at 1.

The prior and the posterior summary of the parameters are in Table 2. The posterior
mean of the structural change probability π is 0.04, which is less than its prior mean of 0.1.
The posterior mean implies an average duration of 6 years and 1 quarter. The 95% density
interval is narrower than that of the prior. Although the posterior mean of H is similar to the
prior the density intervals are tighter than the prior intervals. On the other hand, the prior
and the posterior mean for the intercept β

0
are 0 and 0.82, respectively. And the posterior

95% density interval of β
0

does not cover 0. After a structural break the new intercept tends
to be positive. The expected value of χ does not change from the prior to posterior but its
density interval shrinks, which implies that the data confirms the prior assumption. Lastly,
for ν there is a significant rightward shift in the posterior.

The posterior means of the regression coefficients E(βt | Y1,T ), the standard deviations
E(σt | Y1,T ) and the structural change probabilities p(dt = 1 | Y1,T ) for t = 1, . . . , T , are
plotted in Figure 1.6 The top panel is the data. The second panel plots the break probabilities
over time. The middle panel plots the intercept βt,0 over time. The AR(1) coefficient βt,1
is plotted in the fourth panel and is labelled as persistence. The standard deviation σt is
in the bottom panel. From the plot of the break probabilities, we can visually identify 4
major breaks in the inflation process. The first is in the mid-60’s, which is featured by
an increase of the inflation level. The second is in the early 70’s, which is associated with
oil crisis and characterized by an increase of the persistence and the volatility. In the mid
80’s, a structural change happened by decreasing both the persistence and the volatility,
which is consistent with the great moderation. The last break happened in the early 90’s,
which featured decreases in both the inflation level and its volatility and coincides with the
introduction of an inflation target by the Bank of Canada. Figured 1 shows that each break
brings different dynamic patterns to the inflation process.

The non-hierarchical SB-LSV model fixes the parameters of the priors at β = (0, 0)′, H =
I2, χ = 1, ν = 2, which are the prior means of the hierarchical SB-LSV model. The break

6At time t = 1, we plot p(dt = 1 | Y1,T ) = 0, because it is in the first regime by construction and not
marked as a change-point in this paper.
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probability π has the same prior as that of the hierarchical model, which is B(1, 9). The
posterior mean of π equals to 0.01. Its 95% density interval is (0.002, 0.029). The non-
hierarchical SB-LSV model implies a longer regime duration than the hierarchical SB-LSV
model. The posterior means of the time varying parameters E(βt | Y1,T ), E(σt | Y1,T ) and
the probabilities of breaks, p(dt = 1 | Y1,T ), are plotted in Figure 2. Each panel has the same
interpretation as in Figure 1. There are three points worth noticing. First, there is only one
spike in the break probabilities, which is in the early 90’s. It captures the decrease of the
variance and is consistent with the last change-point identified by the hierarchical SB-LSV
model. Second, although it is not visually identifiable in the second panel, from the middle
and the fourth panel, we can observe a gradual increase of the persistence and a decrease of
the intercept between the mid 60’s and the early 70’s. Lastly, the non-hierarchical SB-LSV
model fails to identify the great moderation in the mid 80’s.

As one alternative to the time-invariant break probability, the duration is modeled as
a Poisson distribution to fit the inflation dynamics. The prior of the duration parameter
λ is assumed as an exponential distribution with a mean of 50. The other priors are set
as the same as that of the hierarchical SB-LSV model. For simplicity, the first period is
assumed to be the first period of its regime. Table 3 shows the posterior summary of the
parameters. The posterior of summaries of β are similar to that in the hierarchical SB-
LSV model, but χ and ν are different. The estimates of λ implies one regime lasts about
7 years and a quarter, which is comparable to the length of 6 years and a quarter implied
by the hierarchical SB-LSV model. Figure 3 shows that the change-points identified by the
duration dependent model is consistent with Figure 1. The dynamic patterns of these two
figures are similar except for the last 10 years. The hierarchical DDSB-LSV model shows
some structural change uncertainty around the year 2000, after which the volatility increased.
Although the smoothed parameters for the hierarchical DDSB-LSV model are similar to that
of the hierarchical SB-LSV model, the later model comparison below shows that the Poisson
duration is strongly rejected. This is attributed to the fact that the duration dependent
break probability implied by the Poisson distribution is very small if the regime duration is
short. For example, if the duration parameter λ equals to the posterior mean of 28.9, the
break probability p(dt+1 = 1 | dt) is less than 1.0e−5 if the duration dt < 10. This feature
causes the model to learn regime changes slower than a constant break probability model.

For the hierarchical SB-V model, which only allows breaks in the variance, the prior of
the time-invariant regression coefficient vector is β ∼ N(0, I). Its mean and the precision
matrix are the prior means in the hierarchical SB-LSV model. The priors of π, χ and ν are
the same as the hierarchical SB-LSV model. The posterior summary is in Table 4. The most
prominent feature is that the posterior mean of the break probability π is 0.16, which is
much higher than that of the hierarchical or the non-hierarchical SB-LSV model. By fixing
β over the sample more breaks in σt are required to accommodate the data.

The frequent change of volatility is shown in Figure 4. The middle panel is the break
probability, from which we can observe that the process is characterized by many breaks in
the variance. This frequent break pattern is similar to the ARCH effects in Engle (1982;
1983). The bottom panel plots the posterior means of the standard deviations E(σt | YT ).
Although we can see some episodes such as from the mid 80’s to the early 90’s are more
stable, there is no general pattern about the volatility evolution. In practise, it is not
desirable to have too frequent structural changes, which implies that less data can be used to
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estimate the most recent regime. The frequent break pattern of Canadian inflation estimated
by the hierarchical SB-V model reflects model misspecification, because the more general
hierarchical SB-LSV model nests the hierarchical SB-V model and it does not find as many
breaks as the latter one does.

On the other hand, the hierarchical SB-LS model allows the breaks to happen only in
the regression coefficients and keeps the variance constant. The prior of the inverse of the
variance is σ−2 ∼ G(1, 0.5). The values of the multiplier and the degree of freedom in this
prior are the means implied by the prior for the hierarchical SB-LSV model. The priors
for π, β and H are set the same as that of the hierarchical SB-LSV model. The posterior
summary is in Table 5. The posterior for the break probability is similar to that of the
hierarchical SB-LSV model. Figure 5 plots the posterior means of the regression coefficients
and the probabilities of breaks. Surprisingly, the hierarchical SB-LS model locates the same
change-points as the hierarchical SB-LSV model does in Figure 1.

5.1 Model Comparison

Some questions are raised from the above results. Are changes in volatility important for the
Canada inflation series? Is the great moderation a feature of data? Can a duration dependent
break probability improve the out-of-sample forecasting? Which of the specification provide
the best fit to the data? Which model provides the best out-of-sample forecasts?

We use the log-marginal likelihoods to answer these questions. LetMi denote a particular
model. The marginal likelihood for Mi is defined as

p(Y1,T | Mi) =
T∏
t=1

p(yt | Y1,t−1,Mi). (19)

This decomposition shows that the marginal likelihood is intrinsically the comparison based
on the out-of-sample forecasts7, which automatically penalizes the over-parameterized model.
An improvement on the marginal likelihood implies better forecasting ability over the whole
sample.

The log-marginal likelihood is calculated as
T∑
t=1

log p(yt | Y1,t−1,Mi). The one-period

predictive likelihood p(yt | Y1,t−1,Mi) is calculated by using the data up to t− 1 to estimate
the model and plugging the value of yt into the predictive density function. The first period
is simply to use the prior as the posterior estimates.

Kass and Raftery (1995) propose to compare the model Mi and Mj by the log Bayes

factors log(BFij), where BFij =
p(Y1,T |Mi)

p(Y1,T |Mj)
is the ratio of the marginal likelihoods. A posi-

tive value of log(BFij) supports model Mi against Mj. Quantitatively, Kass and Raftery
(1995) suggest the results barely worth a mention for 0 ≤ log(BFij) < 1; positive for
1 ≤ log(BFij) < 3; strong for 3 ≤ log(BFij) < 5; and very strong for log(BFij) ≥ 5.

Table 6 shows the log marginal likelihoods of different models. The autoregressive models,

yt | β, σ, Y1,t−1 ∼ N(β0 + β1yt−1 + . . .+ βqyt−q, σ
2) (20)

7The marginal likelihood is a sequence of one-period ahead predictive likelihoods each of which have
parameter uncertainty integrated out based on the respective posterior using data Y1,t−1
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are applied as benchmarks. The prior is set as Normal-Gamma (β, σ−2) ∼ NG(β,H−1, χ/2, ν/2).
The parameters β = 0(q+1)×1, H = Iq+1, χ = 1, ν = 2. If q = 1, it is an AR(1) process and
the values are the same as in the non-hierarchical SB-LSV model. An AR(2)-GARCH(1,1)
model is also included to check that the structural break model is doing more than captur-
ing neglected heteroskedasticity. This model combines (20) with the conditional variance
specified as σ2

t = η0 + η1(yt−1 − β0 − · · · − β2yt−3)2 + η2σ
2
t−1.

The hierarchical SB-V, the hierarchical DDSB-LSV, the non-hierarchical models and the
AR(1) model perform the worst and have log marginal likelihoods less than −155. The
duration dependent break probability is not appropriate for the Canada inflation dynamics
in the application. The AR(2) and the AR(3) model improve the performance by adding
more lags.

The hierarchical SB-LS model has a log marginal likelihood of−140.4, which is larger than
that of the AR(2) and the AR(3) model by −140.4−(−144.2) = 3.8 and −140.4−(−144.7) =
4.3, respectively. Maintaining the AR(1) dynamics but allowing the breaks in the regression
coefficients improves the marginal likelihood more than adding extra lags. The optimal
choice is the hierarchical SB-LSV model with the log marginal likelihood of −122.5, which
dominates all other models strongly. The value of including the hierarchical prior in the SB-
LSV model is substantial. The log-Bayes factor for this model versus the non- hierarchical
break model is -122.5-(-158.4)=35.9.

The AR(2)-GARCH(1,1) model improves upon the homoskedastic AR(2) but is still
strongly dominated by the hierarchical SB-LSV specification.

For a robustness check, we estimate each of the break models by assuming an AR(2) or
AR(3) in each regime. For the hierarchical SB-LSV model, the log marginal likelihoods are
−126.3 and −129.7 for the AR(2) or AR(3) case, which are less than that with the basic
AR(1) model. The largest log marginal likelihood of the rest of the break models using an
AR(2) or AR(3) specification is −144.4. The optimal model is still the hierarchical SB-LSV
with AR(1) process in each regime. Hence, after controlling for the structural breaks, adding
extra number of lags does not improve the marginal likelihood or forecasting in terms of the
predictive likelihoods.

Based on this we conclude that the breaks in the regression and variance parameters
shown in Figure 1 are significant. None of the partial break models match this model with
breaks in both moments. In addition, the hierarchical prior provides a large improvement in
the log-marginal likelihood.

The last column of Table 6 report the the root mean squared error(RMSE) of the predic-

tive mean, computed as

√
1
T

T∑
t=1

(yt − E(yt | Y1,t−1,Mi))
2. RMSE comparison is consistent

with the results implied by the marginal likelihood. Modeling the structural changes in in-
flation translate into better out-of-sample point forecasts. For instance, there is about a 6%
reduction in the RMSE in moving from the AR(2) model to the hierarchical SB-LSV model.

5.2 Inflation Targeting

In February 1991, the Bank of Canada and the Government of Canada issued a joint state-
ment setting out a target path for inflation reduction, which is measured by the change of
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12-month CPI index excluding food , energy and temporary effect of indirect taxes. The
target is 3% by the end of 1992, 2.5% by the middle of 1994, and 2% by the end of 1995 with
a range of ±1%. In December 1993, the 1%− 3% plan was extended to the end of 1998. In
1998, it was further extended to 2001. In May 2001, it was extended to the end of 2006.8 In
2006, it was extended to the end of 2011.9

We further investigate whether a linear model is sufficient to describe inflation dynamics
by taking into account this important policy change. Two sample periods are used. The first
one is from 1991Q2 till the end (2009Q4) and represents the whole period of the inflation
targeting policy. The second one is from 1994Q1 till the end to show a more homogeneous
policy regime, in which the inflation target range is 1% − 3%. The linear models only use
the subsample data and the data that are necessary to calculate the first period predictive
density. For example, to calculate the predictive density at 1991Q2 from an AR(2) model in
the first subsample, the data starts at 1990Q4, which is the two-period lag of 1991Q2. On
the other hand, the hierarchical SB-LSV model uses the data from the first period(1961Q1),
because it can automatically learn about structural change.

The model comparison is based on the predictive likelihood. Geweke and Amisano (2010)
find the interpretation of the predictive likelihood is equivalent to the marginal likelihood if
the initial data set is viewed as a training sample to form the priors. The priors are assumed
the same as the previous model comparison in Table 6.

Table 7 shows the model comparison between linear models and the hierarchical SB-LSV
model. The log-predictive likelihood is included along with the RMSE of the predictive
mean. The last row of each subpanel is the naive forecast that the inflation next period is
2% annually.10

The two subsamples have the same implication for density forecasts as the full sample
results. First, the SB-LSV model is still strongly supported by the predictive likelihood. So
the learning of the hierarchical structure improves forecasting even after a well recognized
break point. Second, the linear models outperforms our approach in point forecasts. We
can see that the new monetary policy is associated with a simple forecasting rule, which
produces good first moment forecasts. On the other hand, a nonlinear model can play an
important role if incorporating higher moments is a concern to the policy makers.

5.3 Subjective Forecast

The econometrician is likely to have less information than a policy researcher does in the
Bank of Canada. Exogenous information can be modeled in our framework with a simple
revision. We consider 3 extra pieces of information in a revised version of the hierarchical
SB-LSV model:

1. The inflation on 1991Q1 experiences a temporary increase after the introduction of
GST (Goods and Services Tax). We assume its mean as 2%, which is consistent with
some conjectures of the policy researchers before 1991.

8See Freedman (2001)
9See Renewal of the Inflation-Control Target: Background Information by the Bank of Canada, Nov 2006.

10The quarterly rate used in the calculation is 100× log(1.02)
4 .
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2. A deterministic structural change happens on 1991Q1, because of the introduction of
the inflation targeting policy.

3. The dynamics of inflation follows a simple 2% rule starting from 1994Q1.

In order to encapsulate this extra information, the data is transformed and the model
is revised as follows. First, construct ỹ1991Q1 = y1991Q1 − 100 log(1.02) to replace y1991Q1 by
removing the expected inflation change on 1991Q1 with the introduction of the GST. Second,
to impose a deterministic break at time t = 1991Q1, set p(d1991Q1 = 1 | Y1961Q1,1991Q1) = 1
in the forward filtering step when sampling the regime allocation. Lastly, construct ỹt =
yt − 100 log(1.02)

4
and x̃t = 0 to replace yt and xt in Equation (4) for t ≥ 1994Q1.

After the data transformation, we set the rest of ỹt and x̃t equal to yt and xt. We
can simply apply our model to the transformed data and compute the predictive densities
and means. Since ỹt and x̃t are the same as yt and xt for t < 1991Q1, we will focus on
the predictive likelihood starting from the GST introduction in 1991Q1. The first panel of
Table 8 includes these results while the second and third panel of the table correspond to
the first and second panel of Table 7. The differences in the log-predictive likelihoods for
the AR(1) in the first and second panel show the 1991Q1 observation to be very influential.

The top panel of Table 8 shows the revised hierarchical SB-LSV model outperforms the
hierarchical SB-LSV model (the best model in Table 6) and the AR(1) model (the best linear
model in Table 7). The log of the predictive Bayes factor is 3.0 in favor of the revised model
and the predictive mean forecasts improve by 11% (from 0.430 to 0.382).

Even if we ignore the 1991Q1 outlier, the revised hierarchical SB-LSV model is still
close to the original hierarchical SB-LSV model in density forecasts (second and third panel
of Table 8). Meanwhile, the revised hierarchical SB-LSV model always provides better
predictive mean forecasts than the original hierarchical SB-LSV model but cannot match
the 2% rule between 1991Q1 and 1993Q4.

5.4 Exogenous Predictors

Are there other exogenous predictors useful in Canadian inflation forecasting? An anony-
mous attendant in the workshop on nowcasting and short-term forecasting at the Bank of
Canada in 2011 suggested that the commodity price and the exchange rate (CAD/USD) are
helpful predictors for the Canadian inflation.

The monthly commodity price data is from CANSIM (v52673496) and converted to
continuously compounded quarterly growth rate. The monthly exchange rate data is from
CITIBASE and transformed to quarterly exchange rate by taking the simple average of 3
months. The latest starting time of these data is 1972M1 (commodity price). All time series
are truncated to have the same length from 1972Q1 to 2009Q4.

The exogenous variables augment the regressors xt in Equation (4). For example, in a hi-
erarchical SB-LSV model with AR(1) process in each regime, xt = (1, yt−1, xcomm,t−1, xex,t−1),
where xcomm and xex are the commodity price growth rate and the exchange rate. We use
the data at period t− 1 to forecast the inflation yt.

For the above model, the informative priors assume the 3rd and the 4th element on the

diagonal of matrix A0 as A0,3,3 = 1
5

σ2
infl

σ2
comm

and A0,4,4 = 1
5

σ2
infl

σ2
ex

. σ2
infl, σ

2
comm and σ2

ex are the
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sample variance of the inflation, the commodity price growth rate and the exchange rate.
Since our approach is hierarchical, the hierarchical parameters are estimated. Meanwhile,
we performed robustness checks and the results were not changed significantly with different
priors. For example, if A0 is set as proportional to an identity matrix as that of the original
hierarchical SB-LSV model, our results are only different in the first decimal place for the
marginal likelihood. The rest of the priors are the same as that of the original hierarchical
SB-LSV model.

Table 9 shows the model comparison results after adding the exogenous variables. AR(p)+X
means the regressors include p lags of yt and the two exogenous variables. The top panel
shows that the best linear model is AR(3)+X based on the marginal likelihood and AR(2)+X
based on the predictive means. So adding exogenous variables is helpful for forecasting the
inflation in the linear framework.

On the other hand, the lower panel of Table 9 shows that after controlling for structural
instability, adding extra exogenous variables is strongly rejected by the original hierarchical
SB-LSV model. Table 9 also shows that the structural change approach strongly dominates
the linear models.

5.5 Computational Speed and Numeric Efficiency

To consider computational speed and numerical efficiency the Koop and Potter’s (2007)
model is compared with the hierarchical SB-LSV model. We assume each model has an
AR(1) process in each regime, which is the optimal model in Table 6. These two approaches
are not directly comparable in general since they assume slightly different data dynamics.

Both methods are applied to the whole sample of the Canadian inflation time series in
the application. Each posterior sampler draws 6000 random samples and the first 1000 are
discarded as burn-in samples. The CPU time used in Koop and Potter’s (2007) model and
our model are 1.1e9 and 1.4e8, respectively.11 The relative numeric efficiency12 (RNE) for
the mean of the number of regimes implied by Koop and Potter’s (2007) model is 49.2. Our
approach is more efficient since the RNE is only 0.49. If we combine the computational time
and the relative numeric efficiency together, Koop and Potter’s (2007) model requires about
1.1e9

1.48
49.2
0.49
≈ 789 times more computation time than our approach in order to achieve the same

numeric efficiency for estimating the posterior mean of the number of regimes.

6 Conclusion

This paper builds on existing structural change models to provide an improved approach to
estimate and forecast time series with multiple change-points. This methodology obtains the
analytic form of the predictive density by taking advantage of the conjugate prior for the

11Wall clock time is about 2 minutes for our model while it is between 15-20 minutes for the Koop and
Potter’s (2007) model.

12This is the ratio of the variance of the mean of a parameter relative to the variance from an iid sequence
computed as (1 + 2

∑τ
i=1

τ−i
τ ρ̂i) where τ = 1000 and ρ̂i is the i-th sample autocorrelation computed from

the posterior sample.
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parameters that characterize each regime. The prior is modeled as hierarchical to exploit
the information across regimes to improve forecast.

We discuss how to allow for breaks in the variance, the regression coefficients or both.
Duration dependent break probabilities can be used and one extension assumes the regime
duration has a Poisson distribution.

A new Markov Chain Monte Carlo sampler is introduced to draw the parameters from
the posterior distribution efficiently. Each of the models sample the parameters jointly as
one block which results in very good mixing.

We apply the model to a Canada inflation data. The best model is the hierarchical
model which allows the breaks in the regression coefficients and the variance simultaneously.
Modeling break results in improvements in density forecasts and point forecasts. We discuss
the importance of inflation targets introduced in the 1990s and investigate if forecasts can
be improved after this policy change.
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7 Appendix

7.1 Hierarchical SB-LSV Model

1. Sampling π(i), β(i), H(i), χ(i), ν(i) | YT from the following proposal distribution.

(a) Sample π(i) | K(i−1) ∼ B(πa +K(i−1)− 1, πb + T −K(i−1)) as the non-hierarchical
model.

(b) Sample H(i) | {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼W(A1, a1)

(c) Sample β(i) | H(i), {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼ N(m1, (τ1H

(i))−1)

(d) Sample χ(i) | ν(i−1), {σ(i−1)
k }Kk=1 ∼ G(d1/2, c1/2)

(e) Sample ν(i) | ν(i−1) ∼ G
(

ζ
ν(i−1) , ζ

)
with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

σ−2
i βi

)

τ1 = τ0 +
K∑
i=1

σ−2
i

A1 =

(
A−1

0 +
K∑
i=1

σ−2
i βiβ

′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

a1 = a0 +K

d1 = d0 +
K∑
i=1

σ−2
i

c1 = c0 +Kν(i−1)

Accept the whole set Ψ(i) = (π(i), β(i), H(i), χ(i), ν(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {st, βt, σt}Tt=1 | Ψ as the non-hierarchical structural break model.

7.2 Hierarchical SB-V Model

The predictive likelihood is computed as:

p(yt | st, Yt−1, β) ∝
(

1 +
(yt − x′tβ)2

χ̂

)− (ν̂+1)
2
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or

yt | st, Yt−1, β ∼ t

(
x′tβ,

χ̂

ν̂
, ν̂

)
with the mean x′tβ and the variance χ̂

ν̂−2
, where

χ̂ = χ+ E ′t−st+1,t−1Et−st+1,t−1

ν̂ = ν + st − 1

Et−st+1,t−1 = (et−st+1, . . . , et−1)′ is the residual vector with et = yt − x′tβ. The posterior
sampling scheme is the following:

1. Sampling π(i), β(i), χ(i), ν(i) | YT from the following proposal distribution.

(a) Sample π(i) | K(i−1) ∼ B(πa +K(i−1)− 1, πb + T −K(i−1)) as the non-hierarchical
model.

(b) Sample β(i) | {σ(i−1)
k }Kk=1, ST ∼ N(β,H

−1
)

(c) Sample χ(i) | ν(i−1), {σ(i−1)
k }Kk=1 ∼ G(d1/2, c1/2)

(d) Sample ν(i) | ν(i−1) ∼ G
(

ζ
ν(i−1) , ζ

)
with

β = H
−1

(
Hβ +

T∑
t=1

xtyt
σ2
t

)

H = H +
T∑
t=1

xtx
′
t

σ2
t

d1 = d0 +
K∑
i=1

σ−2
i

c1 = c0 +Kν(i−1)

Accept the whole set Ψ(i) = (π(i), β(i), χ(i), ν(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {st, σt}Tt=1 | Ψ similar to the non-hierarchical structural break model.
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7.3 Hierarchical SB-LS Model

The predictive likelihood of yt | st, Yt−1, σ is

yt | st, Yt−1, σ ∼ N(x′tβ̂, x
′
tĤ
−1xt + σ2)

where β̂ = Ĥ−1(Hβ+σ−2X ′t−st+1,t−1Yt−st+1,t−1) and Ĥ = H+σ−2X ′t−st+1,t−1Xt−st+1,t−1. The
posterior sampler is

1. Sampling π(i), β(i), H(i), σ(i) | YT from the following proposal distribution.

(a) Sample π(i) | K(i−1) ∼ B(πa +K(i−1)− 1, πb + T −K(i−1)) as the non-hierarchical
model.

(b) Sample H(i) | {β(i−1)
k }Kk=1 ∼W(A1, a1)

(c) Sample β(i) | H(i), {β(i−1)
k }Kk=1 ∼ N(m1, (τ1H

(i))−1)

(d) Sample σ−2(i) | {β(i−1)
k }Kk=1, ST ∼ G(χ1/2, ν1/2)

with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

βi

)
τ1 = τ0 +K

A1 =

(
A−1

0 +
K∑
i=1

βiβ
′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

a1 = a0 +K

χ1 = χ0 +
T∑
t=1

(yt − xtβt)2

ν1 = ν0 + T

Accept the whole set Ψ(i) = (π(i), β(i), H(i), σ(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {st, βt}Tt=1 | Ψ similar the non-hierarchical structural break model.

7.4 Hierarchical DDSB-LSV Model

1. Sampling λ(i), β(i), H(i), χ(i), ν(i) | YT from the following proposal distribution.

(a) Sample λ(i) by a random walk proposal distribution
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(b) Sample H(i) | {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼W(A1, a1)

(c) Sample β(i) | H(i), {β(i−1)
k , σ

(i−1)
k }Kk=1 ∼ N(m1, (τ1H

(i))−1)

(d) Sample χ(i) | ν(i−1), {σ(i−1)
k }Kk=1 ∼ G(d1/2, c1/2)

(e) Sample ν(i) | ν(i−1) ∼ G( ζ
ν(i−1) , ζ)

with

m1 =
1

τ1

(
τ0m0 +

K∑
i=1

σ−2
i βi

)

τ1 = τ0 +
K∑
i=1

σ−2
i

A1 =

(
A−1

0 +
K∑
i=1

σ−2
i βiβ

′
i + τ0m0m

′
0 − τ1m1m

′
1

)−1

a1 = a0 +K

d1 = d0 +
K∑
i=1

σ−2
i

c1 = c0 +Kν(i−1)

Accept the whole set Ψ(i) = (λ(i), β(i), H(i), χ(i), ν(i)) with probability

min

{
1,

p(Ψ(i))

p(Ψ(i−1))

p(YT | Ψ(i))

p(YT | Ψ(i−1))

pprop(Ψ(i−1))

pprop(Ψ(i))

}
where p(Ψ) is the prior density and pprop(Ψ) is the proposal density.

2. Sample {st, βt, σt}Tt=1 | Ψ as the non-hierarchical structural break model.
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Table 1: Summary statistics of Canada inflation

Mean 1.01
Min -0.54
Max 3.12
Variance 0.69
Skewness 0.83
Excess Kurtosis 0.09

Canada quarterly inflation rate from 1961Q1-2009Q4. There are 196
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901

Table 2: Posterior summary of the hierarchical SB-LSV model

Prior Posterior
Mean 0.95DI Mean Sd 0.95 DI

π 0.1 (0.003, 0.34) 0.04 0.02 (0.01, 0.07)
β
0

0.0 (-3.08, 3.08) 0.82 0.20 (0.45, 1.23)

β
1

0.0 (-3.08, 3.08) -0.05 0.17 (-0.40, 0.29)

H00 1.0 (0.16, 2.52) 1.01 0.45 (0.35, 2.08)
H01 0.0 (-0.91, 0.91) -0.01 0.37 (-0.77, 0.70)
H11 1.0 (0.16, 2.52) 1.30 0.58 (0.45, 2.68)
χ 1.0 (0.12, 2.79) 1.01 0.37 (0.43, 1.87)
ν 2.0 (0.05, 7.38) 6.04 2.27 (2.45, 11.1)

Canada quarterly inflation rate from 1961Q1-2009Q4. There are 196
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901
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Table 3: Posterior summary of the hierarchical DDSB-LSV model

Prior Posterior
Mean 0.95DI Mean Sd 0.95 DI

λ 50.0 (1.27, 184.4) 28.9 7.32 (14.70, 44.22)
β
0

0.0 (-3.08, 3.08) 0.74 0.16 (0.44, 1.08)

β
1

0.0 (-3.08, 3.08) -0.03 0.15 (-0.33, 0.28)

H00 1.0 (0.16, 2.52) 1.00 0.35 (0.43, 1.80)
H01 0.0 (-0.91, 0.91) -0.06 0.28 (-0.61, 0.48)
H11 1.0 (0.16, 2.52) 1.19 0.39 (0.56, 2.11)
χ 1.0 (0.12, 2.79) 3.86 1.76 (1.22, 8.26)
ν 2.0 (0.05, 7.38) 26.1 12.2 (8.03, 56.7)

Canada quarterly inflation rate from 1961Q1-2009Q4. There are 196
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901

Table 4: Posterior summary of the hierarchical SB-V model

Prior Posterior
Mean 0.95DI Mean Sd 0.95 DI

π 0.1 (0.003, 0.34) 0.16 0.07 (0.05, 0.32)
β0 0.0 (-1.96, 1.96) 0.16 0.05 (0.09, 0.28)
β1 0.0 (-1.96, 1.96) -0.05 0.17 (-0.40, 0.29)
χ 1.0 (0.12, 2.79) 0.96 0.42 (0.38, 1.99)
ν 2.0 (0.05, 7.38) 4.65 1.59 (2.22, 8.42)

Canada quarterly inflation rate from 1961Q1-2009Q4. There are 196
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901

Table 5: Posterior summary of the hierarchical SB-LS model

Prior Posterior
Mean 0.95DI Mean Sd 0.95 DI

π 0.1 (0.003, 0.34) 0.03 0.01 (0.01, 0.07)
σ2 - (0.14, 19.7) 0.17 0.02 (0.14, 0.21)
β
0

0.0 (-3.08, 3.08) 0.53 0.36 (-0.16, 1.21)

β
1

0.0 (-3.08, 3.08) -0.27 0.32 (-0.93, 0.33)

H00 1.0 (0.16, 2.52) 1.63 0.67 (0.62, 3.22)
H01 0.0 (-0.91, 0.91) 0.12 0.53 (-0.98, 1.14)
H11 1.0 (0.16, 2.52) 2.10 0.89 (0.76, 4.42)

Canada quarterly inflation rate from 1961Q1-2009Q4. There are 196
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901
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Table 6: Model comparison

Log-marginal likelihood RMSE
Hierarchical SB-LSV -122.5 0.457
Hierarchical SB-V -159.8 0.543
Hierarchical SB-LS -140.4 0.471
Hierarchical DDSB-LSV -155.6 0.479
Non-hierarchical SB-LSV -158.4 0.514
Non-hierarchical SB-LSV(π = 0.01) -156.6 0.517
AR(1) -160.8 0.541
AR(2) -144.2 0.486
AR(2)-GARCH(1,1) -141.8 0.497
AR(3) -144.7 0.489

Canada quarterly inflation rate from 1961Q1-2009Q4. There are 196
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901

Table 7: Model comparison after inflation targeting

Log-predictive likelihood RMSE

From the first quarter after inflation targeting(1991Q2-2009Q4)

Hierarchical SB-LSV -36.4 0.410
AR(1) -46.5 0.365
AR(2) -47.8 0.371
AR(3) -48.2 0.377
2% target 0.353

From the first quarter of 1%− 3% target (1994Q1-2009Q4)

Hierarchical SB-LSV -26.6 0.367
AR(1) -40.5 0.346
AR(2) -41.4 0.352
AR(3) -42.0 0.355
2% target 0.352

Canada quarterly inflation rate from 1961Q1-2009Q4. The SB-LSV model
uses all data while the linear models only use part of the data that is
associated with the inflation targeting period. The data is scaled by 100 to
represent quarterly percentage change. Data Sources: IMDB (Integrated
Meta Data Base) TABLE NUMBER: 3800003. Numbers: 1901
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Table 8: Subjective forecasting

Log-predictive likelihood RMSE

From the first quarter of inflation targeting(1991Q1-2009Q4)
Hierarchical SB-LSV -40.2 0.430
Revised Hierarchical SB-LSV -37.2 0.382
AR(1) -53.1 0.481
2% target 0.353

From the first quarter after inflation targeting(1991Q2-2009Q4)
Hierarchical SB-LSV -36.4 0.410
Revised Hierarchical SB-LSV -35.7 0.368
AR(1) -46.5 0.365
2% target 0.353

From the first quarter of 1%− 3% target (1994Q1-2009Q4)
Hierarchical SB-LSV -26.6 0.367
Revised Hierarchical SB-LSV -26.9 0.352
AR(1) -40.5 0.346
2% target 0.352

Canada quarterly inflation rate from 1961Q1-2009Q4. There are 196
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901

Table 9: Model comparison: Commodity price and exchange rate
as predictors

Marginal likelihood RMSE
AR(1) -125.5 0.530
AR(2) -120.6 0.542
AR(3) -120.0 0.530
AR(4) -120.1 0.531
AR(1)+X -129.8 0.575
AR(2)+X -118.3 0.502
AR(3)+X -118.2 0.504
AR(4)+X -118.3 0.508

Hierarchical SB-LSV -101.8 0.466
Hierarchical SB-LSV+X -109.7 0.527

Canada quarterly inflation rate from 1972Q2-2009Q4. There are 151
observations in total. The data is scaled by 100 to represent quarterly
percentage change. Data Sources: IMDB (Integrated Meta Data Base)
TABLE NUMBER: 3800003. Numbers: 1901. The monthly commodity
price data is downloaded from CANSIM(v52673496). The monthly
exchange rate data is downloaded from CITIBASE.
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Figure 1: Posterior mean of the regression coefficients, the standard deviations and the break
probabilities from the hierarchical SB-LSV model applied to a Canada quarterly inflation
series from 1961Q1-2009Q4.
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Figure 2: Posterior mean of the regression coefficients, the standard deviations and the
break probabilities from the non-hierarchical SB-LSV model applied to a Canada quarterly
inflation series from 1961Q1-2009Q4.
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Figure 3: Posterior mean of the regression coefficients, the standard deviations and the break
probabilities from the hierarchical DDSB-LSV model applied to a Canada quarterly inflation
series from 1961Q1-2009Q4.
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Figure 4: Posterior mean of the standard deviations and the break probabilities from the
hierarchical SB-V model applied to a Canada quarterly inflation series from 1961Q1-2009Q4.
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Figure 5: Posterior mean of the regression coefficients and the break probabilities from the
hierarchical SB-LS model applied to a Canada quarterly inflation series from 1961Q1-2009Q4.
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