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Abstract

I construct a search model to formalize the intuitive idea that sellers hold sales
to attract buyers and build customer relationships. The market consists of a large
number of buyers and sellers. All sellers sell a homogeneous good and all buyers
have the same publicly known valuation of the good. Buyers know the terms of trade
offered by sellers before choosing which seller to visit. A buyer is related to a seller
if the buyer just bought a good from the seller and the relationship is broken if the
buyer fails to continue to buy from the seller. Sellers are restricted to offer the same
price to all buyers, but they are allowed to give priority to their related buyers. I
prove that there is an equilibrium in which a seller gives priority to the related buyer
and a buyer makes repeat purchases from the related seller. In the equilibrium, a
seller who does not have a related buyer posts a low (sale) price to attract the buyers
who are unrelated to any seller and, once the seller is related to a buyer after a trade,
the seller will post a high (regular) price to sell only to the related buyer. The fraction
of related sellers is endogenous in the equilibrium. I calibrate the steady state of the
model to the data and find that the sale price represents a sizable markdown, and the
regular price a sizable markup, on the marginal cost. With the calibrated model, I
examine comparative statics and dynamics of the equilibrium with respect to changes
in the cost of and the demand for the good.

JEL classifications: D83; D40; E30.
Keywords: Sales; Customer relationship; Directed search.

∗ Address: 150 St. George Street, Toronto, Ontario, Canada, M5S 3G7. I thank Oleksiy Kryvtsov for
useful conversations and for providing some references. I would like to acknowledge financial support from
Canada Research Chair, the Bank of Canada Fellowship and the Social Sciences and Humanities Research
Council of Canada. The opinion expressed here is my own and does not reflect the view of the Bank of
Canada.



1. Introduction

Sales are common in the retail market. In the microdata collected monthly by the US

Bureau of Labor Statistics on goods and services that cover 70% of consumer expenditure,

about 11% of all price quotes are sales (see Klenow and Kryvtsov, 2008, and Nakamura

and Steinsson, 2008). Sales represent a significant fraction of the size and the frequency

of price changes. The average sale price in the BLS microdata is about 25% to 30% off

the regular price, depending on the estimation method. Excluding sales increases the

median duration of prices from 3.7 months to 7.2 months (Klenow and Kryvtsov, 2008).

Moreover, sale prices seem to respond to shocks differently from regular prices. These

empirical regularities of sales pose a challenge for macro models that rely on price rigidity

to explain aggregate propagation, because most of those models do not incorporate sales.

On the other hand, there is a sizable literature on sales in industrial organization (see a

brief review later) that is not designed to explain the regularities of sales in large markets.

In this paper, I formulate a theory of sales in a large market and calibrate the model to

the data to investigate the model’s comparative statics and dynamics.

The theory formalizes the intuitive idea that sellers hold sales to attract buyers and build

customer relationships. Consider a market with a large number of buyers and sellers, where

sellers sell one indivisible unit of a homogeneous good and buyers have the same publicly

known valuation of the good. In each period, buyers observe the terms of trade offered

by sellers before choosing which seller to visit. Suppose that buyers cannot coordinate on

their visiting decisions and they cannot switch sellers within the same period. Because of

these frictions, a seller may fail to get a visitor in a period and a buyer may fail to be

selected by the seller he visits. In this environment, there is a tradeoff between the price

of the good and the probability of trade. Individuals on the two sides of the market may

want to form relationships in order to increase the probability of trade. Suppose that a

seller treats a buyer who bought from him in the previous period as the related buyer and

can reward the relationship with the priority of trade over unrelated buyers. However, to

conform with the definition (e.g., in the BLS data) that a sale is a price cut available to

all buyers, suppose that a seller is not allowed to offer one price to the related buyer and

another price to unrelated buyers.1

1In reality, sellers may offer price discounts through frequent customer memberships. However, ab-
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I characterize the equilibrium in which it is optimal for a seller to give priority to the

related buyer and optimal for a buyer to make repeat purchases from the related seller.

Like most relationships, the informal relationship described in this model generates benefits

to the partners intertemporally and has implications on prices. For a buyer, forming the

relationship with a seller enables him to have a higher probability of trade in the future

with the related seller. Recognizing this benefit to the buyer, a seller who has a related

buyer will charge a high (regular) price on the good that will make the related buyer just

indifferent between visiting him and visiting an unrelated seller. Anticipating this high

price as the return to a relationship, a seller who does not have a related buyer posts a low

(sale) price in order to attract customers and acquire a relationship. The equilibrium has

complete separation between related and unrelated individuals: while related buyers only

visit their related sellers and pay the regular price, unrelated buyers only visit sellers who

do not have related buyers and pay the sale price.

The fraction of related sellers is endogenous. A relationship is broken if the buyer fails

to visit the related seller. To avoid the trivial case where all individuals on the shorter side

of the market are related, I introduce exogenous separation from a relationship in the form

of a taste shock that makes a buyer inactive in a period. Thus, a buyer may fail to show up

at the related seller, in which case the relationship is destroyed. This flow of sellers out of

relationships and the opposite flow of unrelated sellers who acquire relationships through

trade determine the dynamics of the fraction of related sellers.

Because the fraction of sellers who are unrelated is always positive, the fraction of sellers

who hold sales in any given period is positive. Similarly, because a seller has a positive

probability of losing a relationship, each seller holds sales regularly over time. The model

has precise predictions on the frequency, the duration and the price discount of sales. These

features of sales depend differently on the extensive and intensive margins of the market.

The extensive margin of the demand has two dimensions: the buyer/seller ratio and the

probability that a buyer is active in a period. The intensive margin of the market consists

of the utility of consuming a good and the marginal cost of a good. In the steady state, the

stracting from price discrimination enables me not only to focus on sales as price cuts available to all
buyers, but also to make the results on sales more robust. If a seller is allowed to use price to discriminate
buyers, it is easy to generate a differential between the price posted by a seller with a related buyer and
the price posted by a seller without a related buyer. For search models of the labor market that allow for
firms to post wages contingent on the worker’s type, see Shi (2002, 2006).
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frequency of sales, the duration of a sale and the fraction of related sellers in the market

depend only on the extensive margin and not on the intensive margin of the market. In

contrast, prices, markups and price discounts of sales depend on both margins.

To investigate the predictions of the model more specifically, I calibrate the steady

state of the model to the data. The identified model reveals that the sale price is below

the marginal cost, i.e., a markdown on the marginal cost, while the regular price is a

positive markup on the marginal cost. The markdown is 18.9%, the markup is 12.7%,

and the average markup weighted by the transaction frequency is 11.3%. Thus, customer

relationships induce large variations in retail prices.

With the identified model, I examine first comparative statics and then dynamics of the

equilibrium with respect to changes in the parameters. Relegating the details to subsections

4.2 and 4.3, I mention some of the results here. First, the duration of a sale reflects changes

in market conditions more accurately than do price-related variables such as markups and

price discounts of sales. While markups and price discounts can respond to market con-

ditions non-monotonically, the duration of a sale always responds monotonically. Second,

the two dimensions of the extensive margin of the demand affect prices differently. An

increase in the demand arising from a higher buyer/seller ratio increases the average price

of the good, but an increases in the demand arising from a higher probability that a buyer

is active in the market can reduce the price, which may explain the paradoxical finding

in the data by Chevalier et al. (2003). Third, an increase in the marginal cost of the

good induces relatively large and non-linear reductions in the markdown and the markup,

thus narrowing the gap between the regular price and the sale price. The reduction in the

markdown is larger in percentage terms than in the markup, indicating that the regular

price is more stable than the sale price. Fourth, in the short run, a shock to the demand

typically induces prices and the duration of a sale to overshoot the steady state because the

fraction of related sellers (as an aggregate state variable) is temporarily outside the steady

state. However, this fraction adjusts relatively quickly toward the steady state. Finally, I

examine how free entry of sellers affects the equilibrium by affecting the buyer/seller ratio.

In this model, search is directed in the sense that buyers know the terms of trade before

choosing which seller to visit. Thus, the model is related to the growing literature on di-

rected search. This literature is divided into two approaches. One assumes that a market
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is organized in many submarkets each offering specific terms of trade and that an exoge-

nous matching function determines the number of matches inside each submarket (e.g.,

Montgomery, 1991, Moen, 1997, Acemoglu and Shimer, 1999, and Shi, 2009). The other

approach derives the matching function endogenously from the equilibrium of individuals’

strategies (e.g., Peters, 1991, and Burdett et al., 2001). In this paper I follow the second

approach in order to capture explicitly how a seller’s decision on whether to give priority

to the related buyer affects the seller’s trading probability. To my knowledge, it is new to

use a directed search model to explain customer relationship and sales.

The literature on sales has a few strands. The first strand relies on the result that

when sellers face a discontinuous demand curve, there is an equilibrium in which each

seller follows a mixed strategy to determine the posted price (Shilony, 1977). Extending

this result, some authors interpret price reductions in the mixed strategy as sales. For

example, Salop and Stiglitz (1982) introduce durability of the product and Varian (1980)

introduces heterogeneity in buyers’ valuation. Interesting as it is, the interpretation of

price variations in a mixed strategy as sales seems too dubious to match the regularity and

the duration of sales in the data. Moreover, the mixed strategy may be purified when there

are a large number of sellers and buyers, as in Burdett and Judd (1983). The second strand

of the literature is based on the elegant model by Sobel (1984). In Sobel’s model, there is

a constant flow of buyers entering the market in each period who are either high-valuation

buyers local to particular sellers or low-valuation shoppers who can patiently wait for sales.

As the stock of patient shoppers builds up due to buyers’ entry, some sellers cut prices to

clear this stock of patient shoppers. This model has precise predictions on the frequency

and the price discount of sales, but the duration of a sale is one period. Related to but

different from this model is the one by Lazear (1986), where sellers hold sales to clear the

inventory of goods rather than a stock of patient shoppers.2 Broadening this category of

models even further, one may include the so-called sS models in which sellers use sales to

manage inventory and/or prices (e.g., Slade, 1998, Aguirregabiria, 1999). The third strand

of the literature on sales contains signaling models in which a seller uses promotional sales

to signal either the quality of the product (e.g., Milgrom and Roberts, 1986) or the cost of

2In Lazear’s model, a seller does not know the value of the good to the buyers and learns about the
distribution of such valuation from whether a good was sold at the previousely posted price. Sales are an
outcome of downward updating of the seller’s beliefs on buyers’ valuation of the good. Gonzalez and Shi
(2010) integrate a similar learning process into a search equilibrium of a large labor market.
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the product (e.g., Bagwell, 1987). Although inventory management and promotional sales

are important for some sales, many other sales are not motivated by these considerations.

In particular, promotional sales are likely to dissipate over time once buyers have learned

about the product, but sales in the data (e.g., Klenow and Kryvtsov, 2008) can occur

on the same product regularly over time. Finally, most of these models cannot generate

markdowns observed in the data (e.g., Dutta et al., 2002).

In contrast to this literature, I emphasize customer relationships as a motive for sales.

There are two main reasons for constructing such a theory. First, it is common sense

that sellers use sales to attract buyers and build customer relationships. The marketing

literature (e.g., Blattberg and Sen, 1974) emphasizes the importance of customer loyalty

but takes customer loyalty as a primitive of the model. In my model, there is nothing hard-

wired about customer loyalty; instead, the relationship is endogenously generated through

trade. A buyer values the relationship only if the related seller offers priority in trade, while

a seller values the relationship only if he can charge a higher price than an unrelated seller

does. Second, the above models on sales typically have a few sellers and/or buyers rather

than a large retail market. Some of the models are also difficult to be made dynamic. In

contrast, my model has an infinite horizon and many (in fact, infinitely many) sellers and

buyers. These features make the model promising for macro analyses, although more work

is needed to enrich the model. To focus on the link between customer relationships and

sales, I deliberately abstract from some elements that are important in the above literature

on sales, such as durability of the good, heterogeneity in buyers’ preferences, and private

information in buyers’ valuation or the quality/cost of the product.

2. A Model of Directed Search with Customer Relationship

2.1. The model environment

Time is discrete and lasts forever. There are M sellers and N buyers, where M and N are

large numbers which I will take to the limit ∞. Denote b = N/M as the buyer-seller ratio

and fix b ∈ (0,∞) until section 5 where I will allow for free entry of sellers to determine
b. All individuals discount future at a rate r > 0. In each period, a seller can produce

one indivisible unit of good, and the cost of producing a unit is c ≥ 0. Because goods

are perishable, however, a seller produces a good only after meeting a buyer. In any given
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period, a buyer needs to consume a good with probability λ ∈ (0, 1) and does not have such
a need with probability (1 − λ). These taste shocks occur at the beginning of the period

and are independently and identically distributed among the buyers and across time. Call

a buyer who has the need to consume an active buyer, and a buyer who does not have the

need an inactive buyer. In each period, the number of active buyers is λN . The utility

of consumption is U (> c) to an active buyer. Because the number of active buyers per

seller is bλ, I refer to bλ as the extensive margin of the demand, as opposed to the intensive

margin of the market which consists of U and c.

Although all sellers are identical in their production capacity and cost, they might have

had different outcomes of selling in the previous period. If a seller sold a good in the

previous period to a buyer, the two individuals are related to each other. If a seller did

not sell a good in the previous period, the seller is unrelated. I focus on the equilibrium

with priority where sellers give priority to their related buyers; that is, if the related buyer

and some unrelated buyers both visit a seller, the seller sells the good to the related buyer

first. I will find a condition under which this choice of priority is optimal for a seller.

The fraction of sellers who have related buyers is denoted ρ, which is an aggregate state

variable. Because each related seller has one and only one related buyer, the number of

buyers who have related sellers is equal to ρM , and the number of active buyers who have

a related seller is λρM . The number of buyers who do not have related sellers is N − ρM

and the number of active buyers who do not have related sellers is λ(N−ρM). I will verify
later that ρ < min{1, b} in the equilibrium; that is, some sellers are unrelated to any buyer
and some buyers are unrelated to any seller.

In each period, sellers simultaneously post the terms of trade. After observing the terms

of trade, active buyers choose which seller to visit. Sellers must post the terms of trade

before knowing which buyer is active in the period, and each buyer must make the visiting

decision without knowing other buyers’ choices. Moreover, a seller must sell a good for

the same price independently of which type of buyer comes to him; that is, a seller is not

allowed to use price to discriminate different buyers. As explained in the introduction, this

assumption is intended to capture the fact that a sale is available to all buyers. However,

a seller is allowed to give priority to the related buyer. If all visitors are unrelated to the

seller, the seller randomly selects one to trade with. Because a seller can give priority to
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the related buyer, a seller’s choice of price may depend on whether or not the seller has a

related buyer, i.e., whether or not the seller sold a good in the previous period.

A relationship between a buyer and a seller is informal, and the buyers are free to shop

at any seller. Moreover, a relationship ends when the buyer fails to visit the seller, either

because the buyer does not have the need to consume in the period or because the buyer

chooses to visit another seller. This assumption keeps the analysis tractable by reducing

an individual’s history from a potentially infinite sequence to one of two numbers.3

2.2. A buyer’s decision and payoff

In any arbitrary period, a buyer can be one of two “types”, denoted i ∈ {0, 1}. If i = 1,
the buyer has a related seller, and if i = 0, the buyer does not have a related seller. Let

V a
i (ρ) denote a type-i active buyer’s value function, which is the maximum value that the

buyer can obtain in the market. Let Vi(ρ) denote a type-i buyer’s value at the end of the

previous period.4 The functions Vi and V a
i are related as follows:

Vi(ρ) =
1

1 + r
[λV a

i (ρ) + (1− λ)V0(ρ+1)] , i ∈ {0, 1}. (2.1)

The subscripts “+1” indicate next period. This equation is intuitive. When a type-i buyer

at the end of the previous period looked forward, he expected to be active in the current

period with probability λ, in which case his value function is V a
i (ρ), and he expected to be

inactive in the current period with probability 1− λ, in which case he becomes unrelated

in the market and his value function is equal to V0(ρ+1). Discounting the expected value

of these two cases yields the value at the end of the previous period.

Consider the decision of a particular buyer after he becomes active in the period. If the

buyer does not have a related seller, he can visit one of two types of sellers, j ∈ {0, 1}. If
3Because the realization of a buyer’s taste shock is likely to be private information, it may be rational

for a seller to terminate a relationship when the related buyer does not show up. However, it is complicated
to explicitly model this decision under private information. Suppose that a buyer’s taste shock is publicly
observed. In the equilibrium I will establish later, a buyer is indifferent between visiting the related seller
and visiting an unrelated seller. For a seller to keep a relationship with a buyer when the buyer is inactive
in the period, the seller must pay a positive amount to the buyer. Such a sidepayment amounts effectively
to price discrimination, which is not allowed in this model.

4The fraction of sellers who are related to some buyers at the end of the previous period is the same as
that at the beginning of the current period, and there is no uncertainty about this aggregate state. Also,
since an individual’s state variable has only a finite number of values, I simplify the notation by putting
it as a subscript instead of an argument of the value function.
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j = 1, the seller has a related buyer, and if j = 0, the seller does not have a related buyer.

If the buyer has a related seller, he can visit one of three types of sellers, j ∈ {0, 1, s}.
If j = 0, the seller is not related to any buyer; if j = 1, the seller is related to some

buyer but not to the specific buyer in the discussion; and if j = s, the seller is related to

the specific buyer. Let vij(ρ, p) denote the value to an active type-i buyer from visiting

an individual type-j seller who posts price p, where ij ∈ {00, 01, 10, 11, 1s}. The buyer’s
choice is a probability θij(ρ, p) ∈ [0, 1] with which the buyer visits the seller. Note that
vij(ρ, p) ≤ V a

i (ρ) for all i and j by the definition of V a
i . Thus, an active type-i buyer’s

optimal decision satisfies:

θij(ρ, p)

⎧⎨⎩ = 0, if vij(ρ, p) < V a
1 (ρ)

∈ [0, 1], if vij(ρ, p) = V a
0 (ρ),

(2.2)

where j ∈ {0, 1, s} if i = 1 and j ∈ {0, 1} if i = 0.
Note that θij is the probability that a type-i buyer visits an individual seller. When

the number of sellers goes to infinity, θij is likely to approach zero, except for j = s. To

characterize a buyer’s strategy in the limit, I define the (expected) queue length of buyers

for a seller. Recall that the number of active buyers who are related to some sellers is

λρM and the number of active buyers who are unrelated to any seller is λ(N − ρM). For

j ∈ {0, 1}, define the (expected) queue length of type-1 buyers visiting a type-j seller
posting price p as q1j(ρ, p) ≡ λρMθ1j(ρ, p), and the (expected) queue length of type-0

buyers visiting a type-0 seller as q0j(ρ, p) ≡ λ(N − ρM)θ0j(ρ, p).
5

Let me calculate the value vij. Consider first an active type-1 buyer. If the buyer visits

the seller he is related to, the buyer will be chosen by the seller with certainty. In this case,

the buyer will obtain net utility from consumption in the period, U − p1, and will have an

ex ante value V1(ρ+1) at the end of the period. If p is the price posted by the related seller,

then the buyer’s value of visiting the related seller is

v1s(ρ, p) = U − p+ V1(ρ+1). (2.3)

If the buyer visits a seller who is not related to the buyer, then the buyer’s value is the

same as the value of a buyer who visits the same seller but is not related to any seller.

5As it is clear from this definition of the queue length, I follow the literature on directed search to focus
on the equilibrium where all buyers of the same type respond to a seller’s price (including deviations from
an equilibrium) in the same way (see Peters, 1991).
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That is, the following equalities hold for all p:

v11(ρ, p) = v01(ρ, p) and v10(ρ, p) = v00(ρ, p). (2.4)

Next, consider an active type-0 buyer and calculate v0j. I need to compute the probabil-

ity with which an active type-0 buyer will be chosen by a seller. Consider first a particular

type-0 seller who posts price p and label him seller A. In the limit N , M → ∞, the
particular buyer visiting seller A will be chosen to trade with by the seller with probability
1−e−(q10+q00)

q10+q00
, where qi0 = qi0(ρ, p) for i ∈ {1, 2} (see Appendix A for the derivation). Let me

explain this probability intuitively. The particular buyer is chosen by seller A if and only

if seller A receives at least one visitor and if the particular buyer is the chosen one. Since

the queue length of type-i buyers visiting seller A is qi0(ρ, p), where i ∈ {0, 1}, the total
queue length of buyers visiting seller A is (q10 + q00). This queue length is the expected

number of buyers visiting seller A. The actual number of visitors is a random variable

generated by buyers’ visiting probabilities, θ10(ρ, p) and θ00(ρ, p). The probability that

seller A has at least one visitor is 1−e−(q10+q00). Conditional on having at least one visitor,
seller A randomly chooses one visitor to trade with, and each visitor is chosen with the

same probability. The unconditional probability that the particular buyer in the discussion

is the chosen one is 1−e
−(q10+q00)
q10+q00

.

If a buyer is chosen by seller A, the buyer obtains utility U−p in the period. In addition,
the buyer becomes related to the seller and, relative to not trading, the relationship changes

the value for the buyer by V1(ρ+1)− V0(ρ+1). Thus, the buyer’s surplus from the trade is

[U − p+ V1(ρ+1)− V0(ρ+1)] and the buyer’s value of visiting seller A is:

v00(ρ, p) =
1− e−(q10+q00)

q10 + q00
[U − p+ V1(ρ+1)− V0(ρ+1)] + V0(ρ+1), (2.5)

where qi0 = qi0(ρ, p) for i ∈ {0, 1}.
Now consider an active type-0 buyer visiting a particular type-1 seller who posts price

p, i.e., a seller who has a related buyer. The type-0 buyer will have a chance to be chosen

by the seller only if the seller’s related buyer does not visit the seller, which occurs with

probability (1 − λθ1s), where θ1s = θ1s(ρ, p). If all visitors to the seller are unrelated to

the seller, the particular type-0 buyer will be chosen to trade with by the seller with a

probability that can be calculated similarly to the above, with qi0 being replaced with qi1.
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In the limit M,N →∞, this probability becomes:

(1− λθ1s)
1− e−(q11+q01)

q11 + q01
,

where qi1 = qi1(ρ, p) for i ∈ {0, 1}, and θ1s = θ1s(ρ, p). A trade gives the buyer utility

U − p in the period and, relative to not trading, the buyer’s value at the end of the period

changes by [V1(ρ+1)− V0(ρ+1)]. Thus, the buyer’s value of visiting the seller is:

v01(ρ, p) = (1− λθ1s)
1− e−(q11+q01)

q11 + q01
[U − p+ V1(ρ+1)− V0(ρ+1)] + V0(ρ+1), (2.6)

where qi1 = qi1(ρ, p) for i ∈ {0, 1}, and θ1s = θ1s(ρ, p).

Now I can express buyers’ optimal strategies in (2.2) explicitly as follows:

θ1s(ρ, p)

⎧⎨⎩ = 0 if v1s(ρ, p) < V a
1 (ρ)

∈ [0, 1] if v1s(ρ, p) = V a
1 (ρ),

(2.7)

qi1(ρ, p) ≥ 0 and v01(ρ, p) ≤ V a
i (ρ), i ∈ {0, 1}, (2.8)

qi0(ρ, p) ≥ 0 and v00(ρ, p) ≤ V a
i (ρ), i ∈ {0, 1}. (2.9)

In (2.8) and (2.9), the two inequalities hold with complementary slackness.

Let P0 be the set of prices posted by unrelated sellers and P1 by related sellers. The

market value for an active buyer is:

V a
0 (ρ) = maxj∈{0,1}maxp∈Pj v0j(ρ, p),

V a
1 (ρ) = max{v1s(ρ, p1), maxj∈{0,1}maxp∈Pj v1j(ρ, p)}.

(2.10)

2.3. A seller’s decision and payoff

In any arbitrary period, a seller either has a related buyer (type-1) or has no related buyer

(type-0). Let J1(ρ) be the value function of a seller who has a related buyer and J0(ρ) that

of a seller who does not have a related buyer. Both functions are measured at the end of

the previous period. To characterize a seller’s decision, consider a type-0 seller who posts a

price p0. Recall the assumption that a seller must set a price before knowing which buyer

is active. There are ρM type-1 buyers and, counting the probability that a buyer is active,
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each of these buyers visiting the seller with probability λθ10(ρ, p0). There are (N − ρM)

type-0 buyers each visiting the seller with probability λθ00(ρ, p0). In the limit M,N →∞,
the probability that the seller gets a buyer is:

1− (1− λθ10)
ρM(1− λθ00)

N−ρM → 1− e−(q10+q00),

where θi0 = θi0(ρ, p0) and qi0 = qi0(ρ, p0) for i ∈ {0, 1}.
When the seller has a trade, the current profit is p0 − c and relative to no trading, the

seller’s value at the end of the period changes by [J1(ρ+1)− J0(ρ+1)]. Thus, the surplus to

the seller from the trade is [p0 − c+ J1(ρ+1)− J0(ρ+1)]. The seller’s value function obeys

the following Bellman equation:

J0(ρ) =
1
1+r
max
p0

nh
1− e−(q10+q00)

i
[p0 − c+ J1(ρ+1)− J0(ρ+1)] + J0(ρ+1)

o
s.t. (2.9), where qi0 = qi0(ρ, p0), i ∈ {0, 1}. (2.11)

By incorporating (2.9) as a constraint, the seller explicitly takes into account the effect of

the price choice on queue lengths of buyers visiting him. Also, as an implication of dynamic

programming, a seller’s current choice affects whether the seller’s individual state in the

future will be 0 or 1 but does not affect the form of future value functions.

Next consider a type-1 seller who posts a price p1. The related buyer visits the seller

with probability λθ1s(ρ, p1). A buyer whose related seller is someone else visits the seller

with probability λθ11(ρ, p1), and a buyer who does not have a related seller visits the seller

with probability λθ01(ρ, p1). Taking the limit M,N → ∞ and suppressing the arguments

(ρ, p1) of θ1s, q11 and q01, I compute the probability that the seller has a trade as

1− (1− λθ1s)(1− λθ11)
ρM(1− λθ01)

N−ρM−1 → 1− (1− λθ1s)e
−(q11+q01).

The seller’s value function obeys the following Bellman equation:

J1(ρ) =
1
1+r
max
p1

nh
1− (1− λθ1s)e

−(q11+q01)
i
[p1 − c+ J1(ρ+1)− J0(ρ+1)] + J0(ρ+1)

o
s.t. (2.7) and (2.8), where (θ1s, qi0) = (θ1s, qi0)(ρ, p1), i ∈ {0, 1}. (2.12)

With (2.7) and (2.8), the seller explicitly takes into account the effect of the price choice

on the related buyer’s visiting probability and the queue length of unrelated buyers.
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2.4. Equilibrium definition

With many sellers and many buyers in the economy, the analysis is tractable only for

equilibria which are symmetric in the sense that all individuals of the same type use the

same strategy. In the definition of queue lengths, I have already assumed that all buyers

of the same type respond to a seller’s price (including a deviation) in the same way. If all

sellers of the same type also post the same terms of trade, they attract the same queue

length of visitors. In such a symmetric equilibrium, the set of prices posted by type-j

sellers is Pj = {pj}, where j ∈ {0, 1}. For now on, I will suppress the arguments (ρ, p0) of
(θi0, qi0, vi0) and (ρ, p1) of (θi1, θ1s, qi1, vi1, v1s), where i ∈ {0, 1}.
A buyer’s visiting probabilities must add up to one across the sellers. Consider first a

type-1 buyer. The number of sellers related to the buyer is one, the number of sellers who

are related to other buyers but not to the particular buyer is (ρM − 1), and the number of
sellers who do not have related buyers is (1−ρ)M . The buyer’s visiting probabilities must

satisfy: θ1s + (ρM − 1)θ11 + (1− ρ)Mθ10 = 1. Using the definition of the queue length, I

can rewrite this adding-up condition in the limit M,N →∞ as follows:

ρq11 + (1− ρ)q10 = (1− θ1s)ρλ. (2.13)

Similarly, for a type-0 buyer, the visiting probabilities across the sellers must add up to

one: ρMθ01 + (1− ρ)Mθ00 = 1, and the limit version of this condition is:

ρq01 + (1− ρ)q00 = (b− ρ)λ. (2.14)

In the equilibrium, the fraction of related sellers, ρ, is endogenously determined by the

flows of sellers between the two types. In a period, if a seller with a related buyer fails to

sell, the seller becomes unrelated. This happens with probability (1− λθ1s)e
−(q11+q01). In

the reverse direction, a seller without a related buyer becomes related if the seller succeeds

in selling in the period. This occurs with probability 1−e−(q10+q00). The fraction of related
sellers in the market changes between the current and the next period as

ρ+1 − ρ = (1− ρ)
h
1− e−(q10+q00)

i
− ρ(1− λθ1s)e

−(q11+q01). (2.15)

Note that if θ1s = 1, which will be proven to hold in the equilibrium, then λ = 1 implies

ρ = 1 in the steady state. This is why the assumption λ < 1 is needed for ρ < 1.

12



An equilibrium with priority consists of buyers’ choices θij, buyers’ value functions

(V a
i , Vi, vij) (where j ∈ {0, 1, s} for i = 1 and j ∈ {0, 1} for i = 0), sellers’ choices (p0, p1),

sellers’ value functions (J0, J1), and the fraction of related sellers ρ that satisfy:

(i) Buyers’ value functions (V a
i , Vi, vij) satisfy (2.1), (2.3), (2.4), (2.5), (2.6) and (2.10);

(ii) Buyers’ choices θij and implied queue lengths, q1j = λρMθ1j and q0j = λ(N − ρM)θ0j,

satisfy (2.7), (2.8), (2.9), (2.13), and (2.14);

(iii) Sellers’ value functions (J0, J1) satisfy (2.11), (2.12) and J1 ≥ J0;

(iv) p0 solves (2.11) and p1 solves (2.12);

(v) The fraction of related sellers, ρ, satisfies (2.15).

I have explained most of the requirements in the above definition, except the inequality

J1 ≥ J0 in (iii). This inequality is necessary and sufficient for a seller to find it optimal to

give priority to the related buyer. If J1 < J0, a seller with a related buyer can increase his

value by treating all visitors in the same way.

3. Equilibrium Characterization

Under the maintained assumption λ < 1, an equilibrium must have the feature that a buyer

obtains a strictly positive surplus from a trade. To see this, note that when λ < 1, there

is a positive probability that a seller’s related buyer will not show up. In this case, a seller

may fail to sell in a period with positive probability because there is lack of coordination

among the unrelated buyers. Thus, in any given period, there is a strictly positive fraction

of sellers in the market who are not related to any buyer. For such a seller, the tradeoff

between the price p0 and the trading probability 1 − e−(q10+q00) is smooth. Competition

among such unrelated sellers implies that the price p0 gives a strictly positive surplus to a

buyer. This also implies that the price charged by a seller with a related buyer, p1, must

give a strictly positive surplus to a buyer. For if it did not, the buyer related to the seller

would choose to visit an unrelated seller instead. I express this result as

pj < U + V1(ρ+1)− V0(ρ+1), j ∈ {0, 1}.

3.1. Types of equilibria with priority

In this subsection I characterize individuals’ optimal choices in more detail and narrow

down the set of equilibria. The following lemma is proven in Appendix B:
13



Lemma 3.1. An equilibrium with priority satisfies: (i) θ11 = 0 = θ10, and so θ1s = 1; (ii)

θ00 > 0; (iii) if θ01 > 0, then v1s > v00 = v10; (iv) if θ01 = 0, then v1s = v00.

The result θ11 = 0 in (i) of Lemma 3.1 says that a buyer with a related seller does not

visit a seller whose related buyer is someone else. Relative to visiting such a seller, the

buyer can get a strictly higher payoff from visiting his related seller, since the two sellers

post the same price and the buyer gets a good with probability one from the related seller.

The result θ10 = 0 says that it is a dominant strategy for a buyer with a related seller

not to visit a seller who does not have a related buyer; that is, the buyer only visits his

related seller. To explain this result, let me refer to the particular buyer as buyer B and

the seller related to him as seller A. Consider first the case where other buyers do not

visit seller A. For seller A to get a positive (expected) payoff in this case, the seller must

attract buyer B with positive probability. If this probability were strictly less than one,

seller A could increase the visiting probability to one by cutting the price only slightly,

which would increase the seller’s expected payoff by a discrete amount. Next, consider the

case where other buyers visit seller A with positive probability. In this case, if seller A

cuts the price slightly to induce buyer B to visit with probability one, it will generate a

discrete reduction in the probability that an unrelated visitor is chosen, which may drive

unrelated visitors away. To explain the result θ1s = 1 in this case, suppose that buyer B

visits another seller, say, seller C. Because buyer B is unrelated to seller C, his payoff from

the visit will be the same as the payoff to a buyer without a related seller who visits seller

C. Because such unrelated buyers visit seller A with positive probability in the case in

discussion, their payoff from visiting seller A must be at least as large as the payoff from

visiting seller C. This implies that buyer B’s payoff from visiting seller C cannot be higher

than the payoff from visiting the related seller A without being given priority. Because

buyer B does have priority from seller A, he must be strictly better off visiting seller A

than visiting any other seller.

The result (ii) says that a buyer without a related seller visits a seller without a related

buyer with positive probability. This result is easy to understand: Since a seller without a

related buyer does not discriminate the visitors, he can always attract the buyers without

related sellers. The result (iii) says that if unrelated buyers visit the sellers with related

buyers with positive probability, that the equilibrium payoff to a related buyer must be

14



strictly higher than the payoff to an unrelated buyer. This result is explained as part of

the explanation for (i) above. Finally, the result (iv) says that if unrelated buyers only

visit unrelated sellers, then the two types of buyers must have the same payoff in the

equilibrium. This is because in the case where a related seller’s only potential buyer is the

related buyer, a price increase does not generate crowding-out among the seller’s potential

visitors. In this case, the related seller can increase the payoff by raising price until the

related buyer just slightly prefers visiting the seller.

With Lemma 3.1, an equilibrium must be one of the two types:

(i) Partial mixing: An active buyer with a related seller only visits that seller, and an

active buyer without a related seller mixes between the two types of sellers. In this case,

q01 > 0, q00 > 0, θ1s = 1, and q10 = q11 = 0. This case has v1s > v01 = v00 = v10 and,

hence, V1(ρ) > V0(ρ). For partial mixing to be an equilibrium, it should not be profitable

for a type-1 seller to raise p1 to drive away type-0 buyers.

(ii) Complete separation: An active buyer with a related seller only visits his related seller,

and an active buyer without a related seller only visits the sellers without related buyers. In

this case, q01 = 0, q00 > 0, θ1s = 1, and q10 = q11 = 0. This case has v1s = v00 = v10 ≥ v01

and, hence, V1(ρ) = V0(ρ). For complete separation to be an equilibrium, it should not be

profitable for a type-1 seller to reduce p1 to attract type-0 buyers.

In both cases, the equilibrium satisfies V a
1 (ρ) = maxp v1s(ρ, p) and V

a
0 (ρ) = maxp v00(ρ, p).

Also, because q10 = q11 = 0, I shorten the notation q00 as q0, and q01 as q1.

I examine first the possibility of an equilibrium with partial mixing. For a seller without

a related buyer, the problem in (2.11) with partial mixing can be rewritten as

(1 + r)J0(ρ) = J0(ρ+1) + max
(p0,q0)

(1− e−q0) [p0 − c+ J1(ρ+1)− J0(ρ+1)]

s.t. 1−e−q0
q0

[U − p0 + V1(ρ+1)− V0(ρ+1)] = V a
0 (ρ)− V0(ρ+1).

(3.1)

Here I have expressed the dependence of the queue length q0 on the price p0 explicitly

as a constraint and added q0 to the list of choices accordingly. The constraint is a form

of (2.9) with q0 > 0, which requires that the expected surplus that a type-0 buyer gets

from the seller should be equal to the buyer’s expected surplus in the market.6 The seller

6The actual form of the constraint is that the expected surplus to the buyer should be at least as large
as the buyer’s surplus in the market. But it is never possible in an equilibrium for a seller to give a buyer
more than the market surplus.
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takes future value functions, (V0, V1, V
a
0 , J0, J1)(ρ+1), as given. The first-order condition,

the constraint and the Bellman equation in (3.1) imply:

V a
0 (ρ)− V0(ρ+1) = e−q0∆(ρ+1),

p0 = U + V1(ρ+1)− V0(ρ+1)− q0
1−e−q0 [V

a
0 (ρ)− V0(ρ+1)],

(3.2)

(1 + r)J0(ρ)− J0(ρ+1) =
h
1− (1 + q0)e

−q0
i
∆(ρ+1), (3.3)

where ∆ is the total surplus of the match defined as

∆(ρ+1) ≡ U − c+ V1(ρ+1)− V0(ρ+1) + J1(ρ+1)− J0(ρ+1). (3.4)

These results have two noteworthy features, although they are standard in models

of directed search. First, an individual’s trading probability (i.e., matching rate) and the

share of the match surplus are endogenous and are functions of only the queue length q0. A

buyer’s probability of trade when visiting an unrelated seller is 1−e
−q0
q0

, which is a decreasing

function of q0. When the buyer gets a trade, the buyer’s surplus is U+V1(ρ+1)−V0(ρ+1)−p0.
As implied by the two equations in (3.2), the buyer’s surplus is a share q0

eq0−1 of the match

surplus ∆. This share depends only on q0 and is a decreasing function of q0. Thus, a

buyer’s share of the match surplus has a one-to-one positive relation to the buyer’s trading

probability. Second, an individual is compensated with an ex ante surplus according to

the individual’s social marginal contribution to the match. For example, a buyer’s ex ante

surplus from visiting an unrelated seller, V a
0 (ρ) − V0(ρ+1), is equal to e

−q0∆. To see why

this is equal to the buyer’s social marginal contribution, suppose that an additional buyer

joins the matching process with unrelated sellers. Because this buyer contributes to the

match only if an unrelated seller fails to get a match, which occurs with probability e−q0,

the buyer’s social marginal contribution is precisely e−q0∆. Similarly, an unrelated seller’s

social marginal contribution is equal to the expected surplus the seller creates, (1−e−q0)∆,
minus the expected surplus the seller crowds out, q0e

−q0∆, as shown by (3.3).

With partial mixing, a type-1 seller’s decision problem in (2.12) can be written as

(1 + r)J1(ρ) = J0(ρ+1) + max
(p1,q1)

h
1− (1− λ)e−q1

i
[p0 − c+ J1(ρ+1)− J0(ρ+1)]

(3.5)

subject to

(1− λ)
1− e−q1

q1
[U − p1 + V1(ρ+1)− V0(ρ+1)] = V a

0 (ρ)− V0(ρ+1), (3.6)
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h
1− (1− λ)e−q1

i
[p1 − c+ J1(ρ+1)− J0(ρ+1)] ≥ λ [p̄− c+ J1(ρ+1)− J0(ρ+1)] ,

(3.7)

where

p̄ = U + V1(ρ+1)− V a
0 (ρ). (3.8)

As a form of (2.8) with q1 > 0, (3.6) requires that the expected surplus to a buyer who

does not have a related seller from visiting the type-1 seller should be equal to the buyer’s

surplus in the market. Note that this constraint implies U − p1 + V1(ρ+1) > V a
0 (ρ). That

is, if p1 satisfies (3.6), then a buyer gets a strictly higher payoff from visiting the related

seller than from visiting any other seller. The second constraint, (3.7), requires that the

seller should not gain from deviating to a price that attracts only the related buyer. To see

this, note that p̄ satisfies v1s(ρ, p̄) = V a
0 (ρ). That is, p̄ is the highest price that the type-1

seller can charge and still attract the related buyer to visit him. By posting p̄− ε, where

ε > 0 is sufficiently small, the seller can attract the related buyer with certainty, provided

that the related buyer is active in the period. Also, the price p̄ − ε does not attract any

type-0 buyer, because the expected value to an unrelated buyer from visiting the seller is

strictly less than the value V a
0 (ρ) that the buyer can get elsewhere. Thus, to the type-1

seller, posting p̄ yields the expected surplus λ [p̄− c+ J1(ρ+1)− J0(ρ+1)]. Constraint (3.7)

requires this expected surplus from the deviation not to exceed that from posting p1 to

attract both the related buyer and the buyers who have no related sellers.7

If (3.7) is binding, then the type-1 seller can gain by deviating to p̄ that attracts only

the related buyer. In this case, an equilibrium with partial mixing does not exist. Thus,

to characterize an equilibrium with partial mixing, I omit (3.7) for the moment and check

later whether it is satisfied. The first-order condition of the problem in (3.5) yields:

V a
0 (ρ)− V0(ρ+1) =

(1− λ)2(1− e−q1)2e−q1∆(ρ+1)

(1− λ) [1− e−q1 ]2 + λ [1− (1 + q1)e−q1]
, (3.9)

where ∆ is defined in (3.4), and (3.5) yields:

(1 + r)J1(ρ)− J0(ρ+1) =
[1− (1 + q1)e

−q1] [1− (1− λ)e−q1]2∆(ρ+1)

(1− λ) [1− e−q1 ]2 + λ [1− (1 + q1)e−q1]
. (3.10)

7In technical terms, a related seller’s payoff function has a discrete jump at q1 = 0. Constraint (3.7)
ensures that the maximum payoff that a related seller obtains with q1 > 0 is greater than or equal to the
payoff at this point of jump.
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Similar to the case with a type-0 seller, the expressions in (3.9) and (3.10) show that an

individual’s share of the surplus of a match with a type-1 seller is a function of the queue

length of buyers for such a seller. However, because a type-1 seller gives priority to the

related buyer, this function is more complicated than the ones in (3.2) and (3.3).

The two expressions for [V a
0 (ρ) − V0(ρ+1)] in (3.2) and (3.9) must be consistent with

each other, and so the following relation holds between q0 and q1:

q0 = h(q1) ≡ q1 + ln

(
1

1− λ

"
1 +

λ

1− λ

[1− (1 + q1)e
−q1]

(1− e−q1)2

#)
. (3.11)

It can be verified that h(q) is an increasing function for all q > 0.

Now I can establish the following lemma (see Appendix B for a proof):

Lemma 3.2. An equilibrium with partial mixing does not exist.

The reason why an equilibrium with partial mixing does not exist lies in its requirement

that a type-0 buyer should be indifferent between visiting a type-0 seller and a type-1 seller.

When visiting a type-0 seller, a type-0 buyer has the same chance of being chosen to trade

with as any other visitor to the seller. In contrast, when visiting a type-1 seller, a type-0

buyer has a chance of being chosen to trade with only when the seller’s related buyer does

not show up. In the presence of this low priority, a type-0 buyer is willing to visit a type-1

seller only when either the queue length of buyers for a type-1 seller or the price posted

by a type-1 seller is sufficiently lower than that at a type-0 seller. In either case, a type-1

seller’s expected surplus is lower than a type-0 seller’s, and so J1 < J0. That is, a type-1

seller would rather increase the price to p̄ to attract only the related buyer. This destroys

the equilibrium with partial mixing.

3.2. The equilibrium with complete separation

The analysis so far has established that the only possible equilibrium with priority is

the equilibrium with complete separation. With complete separation, a type-0 seller’s

maximization problem is still (3.1) and the optimality conditions are still given by (3.2)

and (3.3). In contrast, a type-1 seller now attracts only the related buyer (since q1 = 0)

and the price p̄ given by (3.8) is the best for doing so. Because p̄ does not attract any
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type-0 buyer to visit the seller, a type-1 seller’s value function is now given by

(1 + r)J1(ρ) = J0(ρ+1) + λ [p̄− c+ J1(ρ+1)− J0(ρ+1)] . (3.12)

For complete separation to be an equilibrium, a type-1 seller should not gain from deviating

to a price that attracts the buyers who do not have related sellers. Among all prices that

attract both types of buyers, the best price p1 and the implied queue length q1 solve the

maximization problem in (3.5) subject to the constraint (3.6). This pair (p1, q1) satisfies

(3.6) and (3.9). Let me denote the values of such (p1, q1) as (p̃1, q̃1). Because q̃1 satisfies

(3.9), the consistency between (3.9) and (3.2) implies q0 = h(q̃1), where h is defined in

(3.11). The price p̃1 can be retrieved from (3.6). Let me express this deviation as

q̃1 = h−1(q0), p̃1 = U + V1(ρ+1)− V0(ρ+1)− q̃1[V
a
0 − V0]

(1− e−q̃1)(1− λ)
. (3.13)

With this deviation, the type-1 seller sells the good with probability [1− (1− λ)e−q̃1 ], and

the resulted surplus of trade to the seller is [p̃1−c+J1(ρ+1) −J0(ρ+1)]. Thus, the deviation
is not profitable for the type-1 seller if and only ifh

1− (1− λ)e−q̃1
i
[p̃1 − c+ J1(ρ+1)− J0(ρ+1)] ≤ λ [p̄− c+ J1(ρ+1)− J0(ρ+1)] .

(3.14)

An equilibrium with complete separation must also satisfy J1(ρ) ≥ J0(ρ) in order to

ensure that it is optimal for a type-1 seller to give priority to the related buyer. Moreover,

q0 and ρ need to be determined and verified to satisfy q0 > 0 and ρ ∈ (0,min{1, b}). With
complete separation, the adding-up constraint (2.14) yields:

q0 = H(ρ) ≡ λ(b− ρ)/(1− ρ). (3.15)

Then, the law of motion of ρ given in (2.15) becomes:

ρ+1 = G(ρ) ≡ λρ+ (1− ρ)
h
1− e−H(ρ)

i
. (3.16)

Note that (3.15) and (3.16) are independent of other variables than (ρ, q0). Thus, the

steady state and the dynamics of (ρ, q0) can be solved from these two equations without

the help of any other equilibrium relations.

Denote the steady state of the equilibrium by adding the superscript ∗ to the variables.
I prove the following proposition in Appendix C:
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Proposition 3.3. (i) The fraction of related sellers in the market has a unique steady

state ρ∗, which is locally stable. The steady state and the dynamics of (ρ, q0) depend only

on (λ, b) and not on other parameters such as (c, U). Moreover, 0 < ρ∗ < min{1, bλ},
q∗0 > 0,

dρ∗
db

> 0,
dq∗0
db

> 0, and dρ∗
dλ

> 0.

(ii) There exists B(λ) > 0, defined in Appendix C, such that the steady state with complete

separation exists if and only if b ≤ B(λ). Under this condition, the steady state is unique.

B(λ) is independent of other parameters such as (c, U).

(iii) For ρ close to ρ∗, ∆(ρ) > 0, and the dynamic equilibrium satisfies:

p0 = U − q0e
−q0

1− e−q0
∆(ρ+1), (3.17)

p1 = p̄ = U − e−q0∆(ρ+1) > max{p0, c}, (3.18)

V1(ρ) = V0(ρ) =
1

1 + r

h
V0(ρ+1) + λe−q0∆(ρ+1)

i
, (3.19)

∆(ρ) = U − c+
1

1 + r

h
λ(1− e−q0)− 1 + (1 + q0)e

−q0
i
∆(ρ+1), (3.20)

where q0 = H(ρ) and ρ+1 = G(ρ) are given by (3.15) and (3.16).

The fraction of related sellers in the market has a unique steady state which is locally

stable. To understand this result, it is useful to consider the special case b = 1, i.e., the

case where the number of buyers is equal to the number of sellers. In this case, q0 = λ

(see (3.15)), and G(ρ) is linear in ρ with a slope (λ − 1 + e−λ) ∈ (0, 1). In this case, the
flow of related sellers who lose relationships due to the absence of related buyers from the

market is (1− λ)ρ, and the flow of unrelated sellers who gain relationships through trade

is (1 − ρ)(1− e−λ). If ρ > ρ∗, the flow of related sellers who lose relationships is greater,

and the flow of unrelated sellers who acquire relationships is smaller, than the flow in the

steady state. Because there is a positive net flow of sellers out of relationships, the fraction

of related sellers falls toward the steady state. On the other hand, if ρ < ρ∗, the flow

of related sellers who lose relationships is smaller, and the flow of unrelated sellers who

acquire relationships is greater, than the flow in the steady state. The fraction of related

sellers increases toward the steady state. Similar stabilizing forces are at play when b 6= 1,
although the dependence of q0 on ρ adds to the dynamics.
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It is notable that ρ and q0 depend only on (λ, b) and not on other parameters such

as (c, U). Recall that the extensive margin of the demand is bλ. To explain why ρ and

q0 depend on the extensive margin of the demand but not on the intensive margin of the

market, note that ρ and q0 in the equilibrium are determined by the requirements on the

matching rates and not by the size of the match surplus. Specifically, given the parameters

(λ, b) and the composition of sellers, ρ, the queue length q0 is uniquely pinned down by

the requirement that a buyer’s visiting probabilities across the sellers should add up to

one. Conversely, given (λ, b) and q0, each seller’s matching rate is uniquely determined, as

explained above. These matching rates in turn determine the transition of sellers between

the two types and, hence, the dynamics of the composition of sellers, ρ. These two relations

are given above as q0 = H(ρ) and ρ+1 = G(ρ), respectively. Because the only parameters

in these relations are (λ, b), the solutions for (ρ, q0) to these relations depend only on (λ, b)

and not on other parameters such as the cost c and the utility level U .8

It is intuitive that the fraction of related sellers in the steady state increases in the two

dimensions of the extensive margin of the demand, b and λ. A higher b or λ leads to a

larger number of trades in each period. Because a trade keeps a related seller related to

a buyer and turns an unrelated seller into a related one, the increase in the number of

trades increases the fraction of sellers who are related to some buyers in the equilibrium.

It is also intuitive that a higher buyer/seller ratio increases the queue length of buyers for

an unrelated seller in the steady state, q∗0, because the larger number of buyers must be

eventually allocated to the sellers. However, it is ambiguous whether a higher λ increases

q∗0. On the one hand, a higher λ increases the demand per seller, which has a positive effect

on q∗0. On the other hand, since sellers give priority to related buyers, a higher λ can lead

to proportionally more buyers visiting related sellers, which reduces the queue length of

buyers for each unrelated seller. The overall effect of λ on q∗0 depends on the values of λ

and b (see subsection 4.2.3 for an example).

The steady state with complete separation exists if and only if the buyer/seller ratio

is not too high, i.e., if and only if b ≤ B(λ). When the number of buyers for each seller

is small, it is difficult for a seller to obtain a trade. Because increasing the probability

of trade is relatively important for a seller in this case, it is optimal for a seller to give

8If there is free entry of sellers, then b is determined endogenously. In this case, ρ and q0 depend on
(c, U) through b. See section 5.
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priority to his related buyer so as to guarantee a trade when the buyer is active. Moreover,

when the buyer/seller ratio is low, the price charged by a seller without a related buyer

is likely to be low. Competing against such sellers for unrelated buyers is not optimal

for a seller with a related buyer, because it requires the seller to cut price sufficiently to

compensate unrelated buyers for their low priority. Thus, the equilibrium in this case has

complete separation between related and unrelated individuals. On the other hand, if the

buyer/seller ratio is high, getting a buyer is relatively easy for a seller, in which case it is

optimal for a seller to treat all buyers equally.

The critical level B depends only on λ and not on other parameters such as the cost c

and the utility U . To see why, note that an individual seller’s decisions on whether or not

to give priority to the related buyer and whether to attract one type or two types of buyers

change the seller’s expected share of the match surplus but not the size of the surplus

(which is given as ∆). As explained above, a seller’s expected share of the match surplus

is determined by the endogenous matching rate which, in turn, is only a function of the

queue length q0 and the parameters (λ, b). Because the queue length q0 depends only on

(λ, b), so does a seller’s expected surplus share. Other parameters, such as (c, U), affect the

size of the match surplus but do not affect how the surplus is shared between the two sides.

Different strategies of a seller lead to different expected shares of the match surplus to the

seller, all of which are only functions of (λ, b). The seller chooses the strategy that yields

the highest share. Thus, the condition needed for the strategy of complete separation to

be optimal is a restriction only on (λ, b), which is expressed as b ≤ B(λ).
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Figure 1. The critical level B(λ) of the buyer/seller ratio
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An increase in λ has two effects on the critical level B, similar to the two effects of λ

on q0. One effect is the general effect of a higher λ on the demand. This effect makes a

relationship less valuable, reduces B and makes the steady state with complete separation

less likely to exist. The other effect is that a higher λ tilts the demand toward related

sellers because of the priority. This effect makes a relationship more valuable, increases

B and makes the steady state with complete separation more likely to exist. The overall

effect of λ on B is difficult to determine analytically, despite that the B(λ) involves no

other parameter. It is straightforward to compute B(λ) numerically, which is depicted in

Figure 1. It is clear that B(λ) > 1 and B0(λ) < 0 for all λ ∈ (0, 1). Thus, a higher λ makes
the equilibrium with complete separation less likely to exist for any given b.

3.3. Relationship, the regular price and sales

In any period, related sellers post price p1 = p̄ and unrelated sellers post p0 < p̄ (see

(3.18)). Each price follows dynamics toward its own steady-state level as the fraction of

related sellers adjusts to the steady state. For reasons that will become clear below, let me

interpret p1 as the regular price and p0 as the sale price. A seller posts the regular price

as long as he has a related buyer. Once a seller loses the relationship, he holds a sale at

price p0 until he has a trade after which he switches back to the regular price.

There are two noteworthy features of such sales. First, the primary consideration for

holding a sale is intertemporal. By holding a sale, a seller intends to attract buyers and

build a relationship, but the relationship will be paid off only in the future through a higher

(regular) price. Second, the sale price can be even below the marginal cost of the good.

That is, it is possible that p0 < c, which can be verified with the formula of p0 in (3.17).

To explain why this possibility exists, note that the surplus of a trade to a seller without

a related buyer is [p0 − c+ J1 − J0]. Even if p0 < c, the surplus can still be positive if the

gain in the future through the relationship, as measured by (J1 − J0), is large enough to

outweigh the temporary loss (p0 − c). In contrast, the regular price p1 is always strictly

higher than the marginal cost (see (3.18)). This contrast between the two prices and the

intertemporal motivation for posting the lower price p0 justify the interpretation of p0 as

the sale price and p1 as the regular price.

The equilibrium has precise predictions on the frequency, the duration and the price

discount of sales. To calculate the frequency of trades at the sale price, note that the
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number of trades at p1 is Mρλ and the number of trades at p0 is M(1 − ρ)(1 − e−q0).

Denote the frequency of trades at the sale price as dprob. Then,

dprob =
(1− ρ)(1− e−q0)

ρλ+ (1− ρ)(1− e−q0)
. (3.21)

When ρ = ρ∗, where ρ∗ is the steady state of (3.16), it is easy to verify that dprob∗ =

1 − λ. The frequency of trades at the sale price in the steady state depends on λ but

not on (b, c, U). This result is intuitive: because the motive for holding a sale is to gain

a relationship with a buyer, how often a seller holds sales should depend only on how

frequently the seller loses a relationship, which is 1− λ.

Let dlength denote the expected duration of a sale. If a seller holds a sale in the current

period, the sale will continue next period if and only if the seller fails to trade in the current

period, which occurs with probability e−q0. Thus, dlength = 1 + e−q0 × dlength, and so

dlength =
1

1− e−q0
. (3.22)

As explained for Proposition 3.3, q0 depends only on the extensive margin of the demand,

(λ, b). Thus, the duration of a sale depends only on (λ, b) and not on the intensive margin of

the market. Moreover, the two dimensions of the extensive margin can affect the duration

of a sale differently. Because a higher b increases q0, the duration of a sale always falls when

the buyer/seller ratio increases. In contrast, λ affects the duration of a sale ambiguously

because it affects q0 ambiguously. The duration decreases in λ if q0 increases in λ, and the

duration increases in λ if q0 decreases in λ.

Let dsize denote the percentage price discount of a sale. Then,

dsize = 1− p0
p1
=
µ

q0
1− e−q0

− 1
¶ ∙

Ueq0

∆
− 1

¸−1
. (3.23)

In contrast to the frequency and duration of a sale, the price discount depends on the

factors on the intensive margin of the market, such as (c, U), as well as the factors on the

extensive margin, (λ, b). It depends (λ, b) through (q0,∆) and on (c, U) through U/∆. For

future use, I define the markup implied by each price as

markup0 =
p0
c
− 1, markup1 =

p1
c
− 1. (3.24)

Because the regular price is strictly higher than the cost (see (3.18)), the regular price

always implies a positive markup. In contrast, since it is possible to have p0 < c, the sale
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price can imply a markdown instead of a markup. Weighting each markup by the frequency

of trades occurring at the associated price, I obtain the average markup as

markavg = dprob×markup0 + (1− dprob)×markup1. (3.25)

Similarly, I can calculate the average price in the equilibrium.

4. Calibration, Comparative Statics and Dynamics

In this section I calibrate the steady state of the model to the data, compute the responses

of the steady state to changes in (c, b, λ), and then examine the dynamics.

4.1. Calibration

The model has five parameters, (r, U, c, b, λ). Table 1 lists the targets used to identify these

parameters and the identified values. The length of a period is chosen to be one week. By

setting the annual discount rate to 4%, I determine the value of the weekly discount rate

through (1 + r)52 = 1.04. The utility of consuming a good is normalized to one. I set the

fraction of price quotes (not trades) at p∗0 in the steady state to 1−ρ∗ = 0.15, which solves

ρ∗. Klenow and Kryvtsov (2008) report that roughly 11% of all price quotes are sale prices

in the microdata on the U.S. monthly CPI in 1988-2004 collected by the Bureau of Labor

Statistics. Because sales tend to be short-lived, the monthly data are likely to under-report

the frequency of sales, and so I use a larger number for the frequency of sales.9

Table 1. Parameters and calibration targets
parameter value target
r: discount rate 7.545× 10−4 annual discount rate = 0.04
U : utility level 1 normalization
λ: active prob. 0.956 frequency of sale price quotes = 0.15
b: buyer/seller ratio 0.895 average duration of a sale = 4 weeks
c: marginal cost 0.311 percentage price discount of a sale = 0.28

Next, I set the duration of a sale in the steady state to 4 weeks. Using the microdata

on U.S. CPI in 1988-2004, Nakamura and Steinsson (2008) report that the fraction of sales

9To get a sense of the effect of time aggregation, note that Klenow and Kryvtsov (2008) report that
15% of all (monthly) price quotes for food items are sales. With daily data collected on a specific food
item (bottled ketchup), Pesendorfer (2002) reports that 23% of prices fall in the range $0.99 - $1.19, while
60% of all daily prices fall in the range $1.39 - $1.49. If the first range is regarded as the range of sale
prices, then sale prices are at least 23% of all price quotes.
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that last just one month ranges between 35% and 60% in the four major groups (processed

food, unprocessed food, household furnishings, and apparel), and the average length of

sales is 1.8-2.3 months. Since these major groups tend to be the ones with more frequent

and longer sales than other goods, and since sales shorter than one month are likely to be

under-sampled in the monthly data, the length of 4 weeks is a reasonable target for the

duration of a sale.10 Because the length of a sale in the model is given by (3.22), this target

determines q∗0. Now that ρ
∗ and q∗0 are solved, I can retrieve λ and b from the steady-state

version of (3.15) and (3.16), which are (C.1) and (C.2) in Appendix C. Finally, I match

the price discount of a sale in the steady state to the target 28%. The sale price change

is 25.1% on average in the U.S. CPI microdata (see Klenow and Kryvtsov, 2008) and, in

eleven major groups of goods, it is 29.5% (see Nakamura and Steinsson, 2008). I take a

number between these two as the target. Since the price discount of a sale in the model is

given by (3.23), this target determines c.

Note that b is noticeably less than one, and so the condition b ≤ B(λ) under which

the steady state with complete separation exists is satisfied. Also, since λ is the fraction

of trades (rather than price quotes) that occur at the price p∗1, an overwhelming majority

of trades (about 95.6%) occur at p∗1 in steady state, which lends further support for the

interpretation of p1 as the regular price. Moreover, the average price in the steady state is

0.346 and the average markup in the steady state is markavg∗ = 0.113.

4.2. Comparative statics

Using the calibrated model, I conduct comparative statics with respect to changes in

(c, b, λ). The superscript ∗ on steady-state variables is suppressed in this subsection.

4.2.1. Steady-state responses to changes in the cost

The first experiment is to compute the responses of the steady state to changes in the

marginal cost of a good. The value of c identified above is 0.311. I vary c from 0.1 to 0.9.

10Kehoe and Midrigan (2010) report that the duration of a temporary price (such as a sale price) is
1/0.53 months in the BLS data and 1/0.46 weeks in scanner data collected from a large supermarket chain.
The difference between these two numbers reflects not only the fact that the BLS data covers more goods
and services than scanner data does, but also the fact that the BLS data samples prices monthly while
scanner data samples weekly. The duration of 4 weeks that I choose is close to the average of the two
numbers in the two datasets.
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Most variables respond to the cost in a predictable way. For example, as the cost increases,

both the regular price p1 and the sale price p0 increase. The values to a buyer and a seller

fall, regardless of whether the individual is related in the market. Because q0 and ρ are

independent of c, as established in Proposition 3.3, the matching rates, the frequency of

trades at the sale price and the duration of a sale are all independent of c.
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markup0 c( )
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Figure 2. Responses of markups to the marginal cost c

The responses of the markups to the marginal cost are noteworthy. In Figure 2, I depict

steady-state markups as functions of c. The markup implied by the sale price, markup0,

is negative for all values of c, and so the sale price is a markdown on the marginal cost.

The occurrence of this markdown is intuitive. Because the buyer/seller ratio is noticeably

less than one (b = 0.895), a relationship is important for a seller. By offering a markdown,

a seller can attract a buyer to visit and the resulting relationship enables the seller to sell

a good with a higher probability in the future. The current lose from the the markdown

is compensated with a markup at the regular price in the future. At the baseline value of

the cost, the markdown implied by the sale price is markup0 = −0.189 and the markup
implied by the regular price is markup1 = 0.127. The average markup is positive and close

to the markup implied by the regular price, because a majority (95.6%) of trades take

place at the regular price. The occurrence of markdowns is consistent with the finding by

Dutta et al. (2002) using scanner data from a supermarket chain. Note that most of the

IO models of sales cited in the introduction do not generate markdowns.

The markdown and the markup are large when the cost is very low and their absolute

values decrease precipitously when the cost increases. For example, when the cost is
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c = 0.1, the markdown is −0.765, the markup is 0.513 and the average markup is 0.457,
but when the cost increases to c = 0.5, the markdown is −0.085, the markup is 0.057 and
the average markup is 0.051. When the cost is very low, the markdown and the markup

are large because the gain to a seller from making a buyer related to him is large. As this

gain decreases in the cost, the room for markups is reduced, and so is the need to use large

markdowns to attract a buyer to build a relationship.

These responses of the markups to the cost have useful implications for constructing

macro models. First, if customer relationships are important in the retail market, then

the models with monopolistic competition popularly used in macro are not suitable for

capturing the responses of prices to cost shocks. Those models typically have constant

markups. Second, the percentage change in the regular price in response to the cost

change is less than that in the sale price. In this sense, the regular price is relatively more

stable than the sale price. The source of this difference is that a related seller’s trading

probability is higher than an unrelated seller’s, and so the same change in the price amounts

to a larger change in expected profit for a related seller than for an unrelated seller. To

cover the increase in the cost, a smaller change in the regular price is needed than in the

sale price. Third, since the sale price responds to the cost differently from the response of

the regular price, it has a life of its own. Specifically, after a cost shock, the new sale price

differs from the previous sale price and it is not a fixed fraction of the new regular price. A

model that ignores or simply filters out sales prices distorts the responses of prices to cost

shocks. Finally, across goods that differ in the cost and utility, the higher the difference

(U − c), the larger the difference between the regular price and the sale price. That is,

goods with a higher profit margin have a higher variability in prices.

4.2.2. Steady-state responses to changes in the buyer/seller ratio

The second experiment is to change the extensive margin of the demand by changing the

buyer/seller ratio b. As demonstrated analytically in Proposition 3.3, an increase in b

increases the queue length of buyers for each unrelated seller, q0, and increases the fraction

of sellers who have related buyers, ρ. As a result, the duration of a sale decreases. For b

ranging from 0.45 to 1.1, Figure 3.1 depicts steady-state markups and Figure 3.2 depicts
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the duration and the price discount of a sale in the steady state.11
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Figure 3.1. Markups as functions of b
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Figure 3.2. Sale duration and discount as functions of b

There are a number of notable features. First, the markdown feature in Figure 1

extends from the baseline value of b to all values of b ≤ 0.984. The absolute value of the
markdown reaches the maximum at b = 0.92. When b continues to increase above 0.92,

a seller’s incentive to use markdowns to attract buyers becomes increasingly weak, and so

the markup implied by the sale price eventually becomes positive. Second, the markup

implied by the regular price is positive and increases in b for all values of b. Together

with the behavior of the markup implied by the sale price, this implies that the percentage

price discount of a sale, dsize, has a hump-shaped dependence on b, as depicted in Figure

3.2. This price discount increases when b increases from low values, reaches the maximum

11All these values of b satisfy the condition b ≤ B(λ) required for the steady state with complete
separation to exist.
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around b = 0.98 and then starts to fall as b continues to increase. Third, in contrast to

the non-monotonic dependence of the markdown and the price discount of a sale on b, the

duration of the discount, dlength, monotonically decreases in b, as depicted in Figure 3.2.

This is because the duration of the discount is a decreasing function of the queue length

of buyers for each unrelated seller and, as shown in Proposition 3.3, this queue length

increases monotonically with the buyer/seller ratio.

Note that reductions in b generate large, non-linear increases in the duration of a sale.

For example, when b decreases from the baseline value 0.895 to 0.7 and then to 0.5, the

duration of a sale increases from 4 weeks to 11.3 weeks and then to 24.8 weeks. In contrast

to the non-monotonic responses of prices and the price discount, this monotonic increase

in the duration of a sale with the reduction of the buyer/seller ratio is a more reliable

indicator of the change in the market condition.

4.2.3. Steady-state responses to changes in λ

The third experiment is to change the probability that a buyer is active in a period, λ.

Although λ affects the extensive margin of the demand as does b, it is different from b.

While b affects the demand for related and unrelated sellers evenly, λ affects the demand

unevenly. For λ ranging from 0.1 to 0.95, Figure 4.1 depicts the queue length of buyers per

unrelated seller, q0, and the duration of a sale in the steady state, while Figure 4.2 depicts

the markups in the steady state. The queue length q0 depends on λ non-monotonically: it

increases in λ when λ increases from low values, reaches the maximum around λ = 0.78

and then decreases as λ increases further. This means that at low values of λ, the general

effect of a higher λ in increasing the demand dominates but at high values of λ, the effect

of a higher λ in shifting the demand to related sellers dominates. Because the duration

of a sale is a decreasing function of q0, the hump-shaped response of q0 to λ implies that

the duration of a sale has a U-shaped dependence on λ. That is, the duration of a sale is

higher at both high and low values of λ than at intermediate values of λ.

The markups also depend on λ non-monotonically. At low values of λ, the markups

implied by the regular price and the sale price are both positive, and both increase in

λ. The markup implied by the sale price reaches the maximum around λ = 0.45, after

which it falls and eventually becomes negative. The markup implied by the regular price

continues to increase until λ = 0.66, after which it also starts to fall but stays positive.
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As a result, the price discount of a sale (not depicted) has hump-shaped dependence on

λ. These responses of the two markups to λ reflect the fact that the gain to a seller from

building a relationship with a buyer is larger at intermediate values of λ than at both high

and low values of λ. At low values of λ, the return to a seller from a relationship is low

because the related buyer is unlikely to make a purchase in the future. At high values of

λ, there is not much need to build a relationship because a buyer is readily available. At

intermediate values of λ, there is a sizable benefit of giving priority to the related buyer

and charging a high regular price later. Reflecting this non-monotonic dependence of the

benefit of a relationship, a seller’s value function (not depicted here) has hump-shaped

dependence on λ and reaches the maximum around λ = 0.8, although a buyer’s value

monotonically increases in λ.
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Figure 4.1. Queue length of buyers for an unrelated
seller and the duration of a sale as functions of λ
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Figure 4.2. Markups as functions of λ

It is remarkable that the average markup can fall with λ when λ is large enough. Be-
31



cause λ is a dimension of the extensive margin of the demand, this result indicates that it

is possible for prices to fall when the demand increases. This result is not as perverse as it

seems. For example, Chevalier et al. (2003) find that prices of particular items in a super-

market chain typically fall when the items experience peak seasonal demand. The current

model offers customer relationship as an alternative explanation for this phenomenon. It

suggests that the phenomenon is more likely to arise when the peak demand comes from

a store’s regular customers than from general customers.

4.3. Dynamic responses of the equilibrium

Suppose that the economy is in the steady state with the baseline parameter values cali-

brated above. Then there is an unanticipated permanent change in one of the parameters.

I compute the dynamics of the equilibrium after this change. The main purpose of this

exercise is to check how the dynamics of the stock of customer relationships, ρ, affect

short-run responses of the equilibrium and, in particular, whether short-run responses are

significantly different from the long-run responses documented in subsection 4.2. It is

straightforward to compute the dynamics of the equilibrium after a permanent change in

a parameter (see the description at the end of Appendix C).

The equilibrium responds to a change in the cost in the same way in the short run as

in the long run, provided that the economy is at the steady state before the cost changes.

The reason is that the stock of customer relationships, ρ, and the queue length of buyers

for an unrelated seller, q0, are independent of the cost. The dynamics of these two variables

are completely determined by (3.15) and (3.16), where the cost c does not appear. If the

economy is in the steady state before the cost changes, then ρ and q0 will remain in the

steady state. So will the frequency and the duration of a sale. As a result, the total surplus

of a match, whose dynamics obey (3.20), will have a one-time jump from the old to the

new steady state. Prices, markups, and price discounts will also have a one-time jump,

and so the dynamics of the equilibrium are completed in one period.

To economize on space, let me analyze the dynamics after a shock to b and omit the

analysis on a shock to λ. Consider a permanent increase of b from the baseline value

0.895 to 0.95. For convenience of graphing the dynamics, let the increase in b occur at the

beginning of period 2 instead of period 1. Figure 5.1 depicts the dynamics of the queue

length q0 and the fraction of related sellers ρ, while Figure 5.2 depicts the dynamics of the
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markups. As established in Proposition 3.3, the increase in b increases steady-state values

of q0 and b. Notice that ρ increases monotonically from the initial steady state to the new

steady state, but the queue length q0 overshoots the new steady state immediately after

the shock (in period 2) and then decreases toward the new steady state. Overshooting in

q0 occurs because ρ is fixed in period 2 at the old steady-state level, which means that

each seller gets a higher expected number of buyers after the increase in b than in the new

steady state. Precisely, with b < 1, the function q0 = H(ρ) given by (3.15) is a decreasing

function of ρ, and so ρ < ρ∗ implies q0 > q∗0. Overshooting in q0 implies that the duration

of a sale falls by more in period 2 than in the new steady state.
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Similarly, because ρ is fixed in period 2 at the old steady state, the increase in the

buyer/seller ratio increases a seller’s expected profit by more in period 2 than in the new

steady state. Sellers are able to charge a higher price in period 2 than in the new steady

state. Thus, the markup implied by each price overshoots the new steady state, as depicted

in Figure 5.2. Notice that the transition is relatively short: the economy is very close to the

new steady state four weeks after the shock. Thus, the shock does not produce persistent

differences between short-run and long-run responses.

5. Free Entry of Sellers

In previous sections I have assumed that the buyer/seller ratio b is fixed. In this section,

I endogenize b by allowing free entry of sellers into the market. Let k be the cost of entry

and, to simplify various expressions, let it be measured at the end of the previous period.

If a seller pays the cost k to enter the market, the seller is unrelated to any buyer, and so

the seller’s value function is J0(ρ), also measured at the end of the previous period. Free

entry implies that the net value of an entry seller is zero, i.e., J0(ρ) = k. Let me focus on

the effect of entry on the steady state. With J0(ρ) in (3.3) and ∆
∗ in (C.11), the free-entry

condition implies the following equation in the steady state:

1 + r − λ(1− e−q
∗
0 )

1− (1 + q∗0)e−q
∗
0
+ 1− (1 + r)

U − c

rk
= 0. (5.1)

Once q∗0 is solved from this equation, the steady-state version of (3.16) determines ρ
∗ with

H(ρ∗) = q∗0, and (3.15) solves for the steady-state value of the buyer/seller ratio, b
∗. Other

steady-state variables can be recovered accordingly.

The following proposition states the condition for the existence of a steady state with

endogenous b and the properties of this steady state (see Appendix D for a proof):

Proposition 5.1. (i) There exists K > 0 such that a steady state with endogenous b and

complete separation exists if and only if k ≤ K, in which case the steady state is unique.

(ii) In the steady state, dq∗0/dc > 0, dρ
∗/dc > 0, db∗/dc > 0.

(iii) dp∗0/dc > 0, dp
∗
1/dc > 0, d(p

∗
1 − p∗0)/dc < 0, and d(p∗1 − c)/dc < 0.

The existence of the steady state requires the entry cost not to be very high. If the entry

cost is very high, then the expected value for an unrelated seller must increase accordingly
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in order to cover the entry cost. This requires the matching rate for an unrelated seller to

increase and, hence, the queue length of buyers per unrelated seller to increase. Since it is

relatively easy to have a trade as an unrelated seller in this case, a related seller finds it

optimal to attract unrelated buyers or to give no priority to the related buyer.

An increase in the marginal cost of the good increases the queue length per unrelated

seller, q∗0, the fraction of related sellers in the market, ρ
∗, and the buyer/seller ratio, b∗.

These effects are easy to explain. An increase in the marginal cost reduces ex post profit.

Since the entry cost has not changed, the trading probability must increase for an unrelated

seller in order keep the seller’s expected profit equal to the entry cost. This requires the

queue length for an unrelated seller to increase. As each unrelated seller succeeds in trading

more likely than before, the flow of sellers from unrelated ones into related ones increases,

and so the fraction of related sellers in the steady state, ρ∗, increases. Also, for the queue

length of buyers per unrelated seller to increase, there must be fewer sellers than before;

that is, the buyer/seller ratio, b∗, increases. Note that because the increase in the cost

increases the queue length, it reduces the duration of a sale, in contrast to the constant

queue length when b is fixed.

Part (iii) of Proposition 5.1 reveals that the increase in the cost increases the two prices

unevenly and it increases the prices not by the same amount as the increase in the cost

itself. First, the sale price increases with the cost by more than the regular price does. This

difference between the two prices’ responses to the cost is similar to that in subsection 4.2.1,

and it is reinforced here by the increase in the buyer/seller ratio induced by the increase

in the cost. As a result of this difference, the increase in the cost reduces the percentage of

the price discount. Second, the regular price increases by less than the increase in the cost,

again reflecting the feature that the regular price is relatively more stable with respect to

the change in the cost. This result implies that the markup implied by the regular price

falls as the cost increases. The response of the markup implied by the sale price to the

cost is ambiguous analytically.

On the quantitative side, I can calibrate the entry cost k so that the steady-state

buyer/seller ratio at the baseline value of c is equal to the one identified in Table 1. With

this value of k, the markup implied by the sale price is negative and increases with the cost.

More importantly, the responses of the two markups to the cost (not graphed here) are very
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close to the ones depicted in Figure 2. In particular, it is difficult to discern the difference

between the responses of the markdown by the sale price in the case with an endogenous

b and the case with a fixed b. The response of the markup by the regular price is slightly

flatter in the case with an endogenous b than in the case with a fixed b. Thus, endogenizing

b does not change the responses of prices to the cost by much. Instead, the main change

in the effect is that an increase in the cost reduces the duration of a sale sizably when b is

endogenous, in contrast to the constant duration when b is fixed. This contrast between

the two cases provides another illustration for the earlier statement that the duration of a

sale reflects the market conditions more accurately than prices or markups do.

The effects of an increase in the entry cost are similar to an increase in the cost of a

good, and so they are omitted here. The effects of an increase in the probability of a buyer

being active, λ, are quite different in the case with an endogenous b from those in the case

of a fixed b. It is easy to verify from (5.1) that when b is endogenous, an increase in λ leads

to a reduction in q∗0 rather than the non-monotonic response depicted in Figure 4.1. This

is because for most values of λ except high λ, an increase in λ increases the demand and

induces more sellers to enter the market, which drives down the queue length of buyers per

seller. As a result, the duration of a sale increases with λ. Moreover, when b is endogenous,

both the magnitude and the response of a markup to λ are different from those depicted in

Figure 4.2 for the case with a fixed b. With an endogenous b, the two markups are positive

when λ is low and they decrease with λ for all values of λ. The markup implied by the sale

price eventually becomes negative as λ becomes sufficiently large. Thus, with free entry of

sellers, an increase in λ reduces prices for all values of λ, not just for high values of λ. The

increasing part of the response of markups to λ in Figure 4.2 is reversed here by the effect

of a falling buyer/seller ratio.

6. Conclusion

I construct a search model to formalize the intuitive idea that sellers hold sales to attract

buyers and build customer relationships. The market consists of a large number of buyers

and sellers. All sellers sell a homogeneous good and all buyers have the same publicly

known valuation of the good. Buyers know the terms of trade offered by sellers before

choosing which seller to visit. A buyer is related to a seller if the buyer just bought a
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good from the seller and the relationship is broken if the buyer fails to continue to buy

from the seller. Sellers are restricted to offer the same price to all buyers, but they are

allowed to give priority to their related buyers. I prove that there is an equilibrium in

which a seller gives priority to the related buyer and a buyer makes repeat purchases from

the related seller. In the equilibrium, a seller who does not have a related buyer posts a

low (sale) price to attract the buyers who are unrelated to any seller and, once the seller

is related to a buyer after a trade, the seller will post a high (regular) price to sell only

to the related buyer. The fraction of related sellers is endogenous in the equilibrium. I

calibrate the steady state of the model to the data and find that the sale price represents

a sizable markdown, and the regular price a sizable markup, on the marginal cost. With

the calibrated model, I examine comparative statics and dynamics of the equilibrium with

respect to changes in the cost of and the demand for the good.

Aside from formalizing a theory on customer relationships and sales, this model is

intended to be a step toward building a macro model in which sales are an important part

of price adjustments in aggregate fluctuations. There is still some distance to go from the

current model to such a macro model. The model needs to incorporate money and add fixed

costs of changing prices in order to make nominal prices sticky. However, the current model

holds some promises. In contrast to other models of sales, this model has many buyers

and sellers, it is dynamic and it endogenizes customer relationships. The calibration shows

that customer relationship can be an important driving force of price fluctuations. It can

generate markdowns as well as markups and can explain some puzzling price behavior

in the data. Moreover, the regular price is less responsive to shocks than the sale price,

which is consistent with the microdata (Klenow and Kryvtsov, 2008, and Nakamura and

Steinsson, 2008). Finally, the model shows that the duration of a sale responds to shocks

more accurately than prices do. A macro model with sales should explicitly incorporate

the duration of a sale as part of price adjustments.12

12Recently, Guimaraes and Sheedy (2009) and Kehoe and Midrigan (2010) incorporate sales into a
macro model with sticky prices. Guimaraes and Sheedy (2009) assume that households are loyal to certain
brands exogenously. Kehoe and Midrigan (2010) assume that sale prices and regular prices are governed
by different processes and different menu costs.
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Appendix

A. Derivation of Trading Probabilities

I calculate the probability that a type-0 buyer B who visits a particular seller A of type-0

is chosen by seller A. Seller A posts price p. Each active type-i buyer visits seller A with

probability θi0(ρ, p), where i ∈ {0, 1}. The queue length of type-1 buyers visiting seller
A is q10(ρ, p) = λρMθ10(ρ, p), and the queue length of type-0 buyers visiting seller A is

q00(ρ, p) = λ(N −ρM)θ00(ρ, p). To simplify the notation below, I suppress the dependence

of θ10, θ00, q10 and q00 on (ρ, q).

Each buyer who has a related seller visits seller A with probability λθ10. Because

there are ρM such buyers, seller A will be visited by n1 type-1 buyers with probability

Cn1
ρM (λθ10)

n1 (1− λθ10)
ρM−n1, where Cn1

ρM = (ρM)!/ [(n1)! (ρM − n1)!]. In addition, each

type-0 buyer visits seller A with probability λθ00. Because there are N − ρM − 1 such
buyers other than buyer B, seller A will be visited by n0 other type-0 buyers with proba-

bility Cn0
N−ρM−1 (λθ00)

n0 (1− λθ00)
N−ρM−1−n0. If seller A is visited by n1 type-1 buyers and

n0 type-0 buyers in addition to buyer B, then buyer B will be chosen by seller A with

probability 1/(n1+n0+1). Considering all realizations of n1 and n0, I conclude that buyer

B will be chosen by seller A with probability g(1), where g(x) is defined for x ∈ [0, 1] as

g(x) =
ρMX
n1=0

N−ρM−1X
n0=0

1

n1 + n0 + 1

"
Cn1
ρM (xλθ10)

n1 (1− λθ10)
ρM−n1

×Cn0
N−ρM−1 (xλθ00)

n0 (1− λθ00)
N−ρM−1−n0

#
.

To compute g(x), let me first compute:

d
dx
[xg(x)] =

ρMX
n1=0

h
Cn1
ρM (xλθ10)

n1 (1− λθ10)
ρM−n1i

×
N−ρM−1X
n0=0

h
Cn0
N−ρM−1 (xλθ00)

n0 (1− λθ00)
N−ρM−1−n0i

= [xλθ10 + 1− λθ10]
ρM [xλθ00 + 1− λθ00]

N−ρM−1 .

Note that g(x) and xg(x) are bounded for all x ∈ [0, 1], and so they are integrable. Inte-
grating the above result from x = 0 to x = 1 yields:

xg(x) =
Z x

0
[1− (1− y)λθ10]

ρM [1− (1− y)λθ00]
N−ρM−1 dy.

Taking the limitM , N →∞ (with N/M = b being fixed) and using the definition of queue

lengths, I get: [1− (1− y)λθ10]
ρM → e−q10(1−y) and [1− (1− y)λθ00]

N−ρM−1 → e−q00(1−y).
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Thus, when visiting a seller who does not have a related buyer, a buyer is chosen to trade

with by the seller with probability:

xg(x)→
Z x

0
e−(q10+q00)(1−y)dy =

e−(q10+q00)(1−x) − e−(q10+q00)

q10 + q00
.

Setting x = 1 yields g(1) that is the probability used in the main text.

B. Proofs of Lemmas 3.1 and 3.2

Let me prove Lemma 3.1 first. Because p1 < U + V1(ρ+1)− V0(ρ+1), comparing (2.3) and

(2.6) yields v1s > v01 (= v11). Then (2.2) implies θ11 = 0, as stated in (i) of the lemma.

Now, the results θ10 = 0 and θ1s = 1 are equivalent to each other. To prove θ10 = 0, there

are two cases to consider. The first case has v00 ≤ v01. In this case, v10 = v00 ≤ v01 < v1s.

The strict inequality v10 < v1s implies θ10 = 0. The second case has v00 > v01. In this case,

θ00 = 1, and so q01 = 0. Recall that q11 = 0 (since θ11 = 0). From (2.12), I can compute

the payoff to a seller who has a related buyer in this case as

J1(ρ) =
1

1 + r
max
p1
{λθ1s[p1 − c+ J1(ρ+1)− J0(ρ+1)] + J0(ρ+1)} , s.t. (2.7).

If θ1s < 1, the seller can increase the payoff by reducing p1 slightly to induce θ1s = 1. This

price reduction does not change any other buyer’s choice, because the seller only attracts

his related buyer in this case. Thus, the reduction will increase the seller’s value, which

implies that θ1s < 1 cannot be equilibrium outcome. Now that θ1s = 1, I have θ10 = 0.

To prove (ii) of Lemma 3.1, suppose θ00 = 0 (i.e., θ01 = 1), to the contrary. Since q00 = 0

in this case, and since q10 = 0 (as a result of θ10 = 0), then (2.5) yields v00 = U−p0+V1(ρ+1).
A seller without a related buyer can set p0 = p1−ε, where ε > 0 is sufficiently small. Doing
so will yield v00 > v1s > v01 and, hence, θ00 = 1 that contradicts the supposition θ01 = 1.

To prove (iii) of Lemma 3.1, note that θ01 > 0 implies v00 ≤ v01. Since v1s > v01, then

v1s > v00 = v10 in this case.

For (iv) of Lemma 3.1, note that v1s ≥ v10 = v00, where the inequality follows from

θ1s = 1. If θ01 = 0, the formula of J1 in the above proof is valid. If v1s > v00 in this case,

a seller with a related buyer can raise p1 slightly without disturbing the outcome θ1s = 1,

thus increasing his payoff. Therefore, v1s = v00 must hold if θ01 = 0.

Now turn to Lemma 3.2. As discussed in the main text, if (3.7) is binding for a type-1

seller, then such a seller can gain by deviating to p̄ that attracts only the related buyer, and
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an equilibrium with partial mixing does not exist. So, suppose that (3.7) is not binding.

Then, a type-1 seller’s optimal choice q1 satisfies (3.9), the value function J1 satisfies

(3.10), and the relation q0 = h(q1) holds, where h is defined in (3.11). I prove that these

conditions lead to the result J0(ρ) > J1(ρ), which violates the equilibrium requirement

that it be optimal for a type-1 seller to give priority to the related buyer.

Because (1 + r)J0(ρ) is given by (3.3) and (1 + r)J1(ρ) by (3.10), the relation J0(ρ) >

J1(ρ) is equivalent to:

1− (1 + q0)e
−q0 >

[1− (1 + q1)e
−q1] [1− (1− λ)e−q1]2

(1− λ) [1− e−q1 ]2 + λ [1− (1 + q1)e−q1]
.

Here I have used the fact that ∆(ρ+1) > 0, where ∆ is defined in (3.4). Substituting

q0 = h(q1) from (3.11), I rewrite the above condition as f(a, q1) < 0, where a temporarily

denotes a = 1
1−λ and f temporarily denotes

f(a, q) = ln

(
a

"
1 + (a− 1)1− (1 + q)e−q

(1− e−q)2

#)
− (a− 1)[q1 + 1− (2q1 + 1)e

−q1 ]
(1− e−q1)2

.

Note that a > 1. Also, f(1, q) = 0 for all q > 0. Compute:

∂f(a, q)

∂a
=
1

a
+

"
a− 1 + (1− e−q)2

1− (1 + q)e−q

#−1
− [q1 + 1− (2q1 + 1)e

−q1]
(1− e−q1)2

.

From this expression it is easy to verify that

∂f(1, q)

∂a
= 1− q

1− e−q
< 0 for all q > 0.

It is also easy to verify that ∂f(a,q)
∂a

is decreasing in a for all q > 0 and all a > 1. Thus, for

all a > 1 and q > 0, the following results hold:

∂f(a, q)

∂a
<

∂f(1, q)

∂a
< 0, f(a, q) < f(1, q) = 0.

This establishes the result J0(ρ) > J1(ρ) under partial mixing and, hence, proves that an

equilibrium with partial mixing does not exist. QED

C. Proof of Proposition 3.3 and the Computation of Dynamics

For part (i) of Proposition 3.3, it is clear that the steady state and the dynamics of ρ are

determined by (3.16), given the initial value of ρ. For each value of ρ on the dynamic path,

q0 is given by (3.15). Because (3.15) and (3.16) depend only on (λ, b), the steady state and
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the dynamics of (ρ, q0) depend on (λ, b) but not on other parameters such as (c, U). Let

me solve the steady state of (ρ, q0), denoted (ρ
∗, q∗0). In the steady state, ρ+1 = ρ = ρ∗,

and so (3.16) and H(ρ) = q0 yield:

ρ∗ = ρ1(q∗0) ≡
"
1 +

1− λ

1− e−q∗0

#−1
. (C.1)

Rewriting (3.15) as ρ = b
h
1 + 1

λ
(1
ρ
− 1)q0

i−1
and substituting ρ∗ = ρ1(q∗0), I get:

ρ∗ = ρ2(q∗0) ≡ b

"
1 +

1− λ

λ

q∗0
1− e−q∗0

#−1
. (C.2)

The steady-state values, (ρ∗, q∗0), solve ρ∗ = ρ1(q∗0) = ρ2(q
∗
0). It is easy to verify that

ρ10(q) > 0, ρ1(0) = 0, ρ1(∞) = 1
2−λ < 1, ρ20(q) < 0, ρ2(0) = bλ > 0, and ρ2(∞) = 0.

Thus, there exists a unique q∗0 ∈ (0,∞) that solves ρ1(q∗0) = ρ2(q∗0). The implied solution

for ρ∗ satisfies ρ∗ ∈ (0, 1) because ρ1(q∗0) ∈ (0, 1). Also, ρ∗ < bλ because ρ2(q∗0) < bλ. Thus,

0 < ρ∗ < min{1, bλ}, as it is stated in part (i) of the proposition. Also, it is straightforward
to use (C.1) and (C.2) to verify that dρ∗

db
> 0,

dq∗0
db

> 0, and dρ∗
dλ

> 0.

Continuing the proof of part (i), I show that the steady state ρ∗ is locally stable. This

amounts to proving |G0(ρ∗)| < 1, where G is defined in (3.16). Using (3.15) to compute

H 0(ρ) = (q0 − λ)/(1− ρ) first and then G0, I have:

G0(ρ) = (1− λ+ q0)e
−q0 − (1− λ), where q0 = H(ρ).

Clearly, G0(ρ) > −(1−λ) > −1. Also, G0(ρ) < q0e
−q0 < 1. Thus, |G0(ρ)| < 1 for all ρ such

that q0 = H(ρ) > 0 and, clearly, for ρ = ρ∗.

For part (ii), let me first presume ∆(ρ+1) > 0, which will be verified in part (iii), and

find the conditions under which the requirements J1(ρ) ≥ J0(ρ) and (3.14) are satisfied.

Consider the condition J1(ρ) ≥ J0(ρ). Using (3.8) and V a
0 in (3.2), I can compute:

p̄ = U + V1(ρ+1)− V0(ρ+1)− e−q0∆(ρ+1). (C.3)

Then, a type-1 seller’s expected surplus and the value function are

λ [p̄− c+ J1(ρ+1)− J0(ρ+1)] = λ(1− e−q0)∆(ρ+1), (C.4)

(1 + r)J1(ρ) = J0(ρ+1) + λ(1− e−q0)∆(ρ+1). (C.5)
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Comparing (C.5) with (3.3), I express the condition J1(ρ) ≥ J0(ρ) equivalently as
q0

eq0−1 ≥
1 − λ. Because q

eq−1 is a decreasing function of q for all q > 0 and its value lies in (0, 1),

this condition is equivalent to q0 ≤ qa(λ) where qa is defined by the following equation:

qa
eqa − 1 = 1− λ. (C.6)

Note that qa(λ) is an increasing function of λ. Moreover, because e
λ < 1

1−λ for all λ ∈ (0, 1),
it can be verified that λ

eλ−1 > 1− λ, which implies qa(λ) > λ.

Now consider the condition (3.14), still under the presumption that ∆(ρ+1) > 0. Sub-

stituting p̃1 from (3.13), p̄ from (C.3), and q0 = h(q̃1), where h is defined in (3.11), I can

write (3.14) equivalently as f(q̃1) ≤ 0, where f temporarily denotes:
f(q) = e2q −

h
2− 2λ+ λ2 + (1 + λ)q

i
eq + (1− λ)(1− λ+ q).

Note that f(0) = 0, f(∞) =∞ and compute:

f 0(q) = 2e2q −
h
3− λ+ λ2 + (1 + λ)q

i
eq + 1− λ.

Note that f 0(0) = −λ2 < 0, f 0(∞) =∞ and compute:

f 00(q) = eq
h
4eq − 4− λ2

i
.

Thus, f 00(q) > 0 if and only if q > ln(1 + λ2

4
). With the properties of f 0(0) and f 0(∞),

this result implies that there exists q4 ∈ (0, ln(1 + λ2

4
)) such that f 0(q) > 0 if and only if

q > q4. In turn, with the properties of f(0) and f(∞), this result implies that there exists
q5(λ) ∈ (q4,∞) such that f(q) > 0 if and only if q > q5(λ). That is, f(q̃1) ≤ 0 if and only if
q̃1 ≤ q5(λ). It can be verified that h(q) defined in (3.11) is an increasing function. Because

q0 = h(q̃1), then q̃1 ≤ q5(λ) if and only if

q0 ≤ qb(λ) ≡ h(q5(λ)) ∈ (0,∞). (C.7)

Therefore, the requirement J1(ρ) ≥ J0(ρ) and the requirement (3.14) are both satisfied

if and only if q0 ≤ Q(λ), where Q(λ) is defined as

Q(λ) = min{qa(λ), qb(λ)} ∈ (0,∞). (C.8)

Because ρ2(q) < ρ1(q) if and only if q > q∗0, the steady state of the equilibrium satisfies

q∗0 ≤ Q(λ) if and only if ρ2(Q(λ)) ≤ ρ1(Q(λ)), which can be rewritten as b ≤ B(λ) where

B(λ) ≡ λ[1− e−Q(λ)] + (1− λ)Q(λ)

λ [2− λ− e−Q(λ)]
. (C.9)
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Together with part (i), this establishes that a steady state with complete separation exists

if and only if b ≤ B(λ). Under this condition, the steady state is unique. It is clear from

the definitions of qa(λ) and qb(λ) that they depend only on λ and not on other parameters

such as c and U . Thus, Q(λ) and B(λ) depend only on λ and not on (c, U).

For part (iii), note that the construction of the price p̄ in (3.8) implies v1s(ρ, p̄) = V a
0 (ρ).

Hence, (2.1) implies V1(ρ) = V0(ρ). Substituting V
a
0 from the first condition in (3.2) into

(2.1) for i = 0 yields the expression for V in (3.19). Combining the two conditions in (3.2)

to eliminate V a
0 yields the expression for p0 in (3.17) and substituting the result V1 = V0

into (C.3) yields the expression for p̄ in (3.18). Because q
1−e−q > 1 for all q > 0 and ∆ > 0,

it is clear that p̄ > p0. Let me delay the proof of p̄ > c.

To derive the dynamic equation for ∆ in (3.20) and verify ∆(ρ) > 0 for ρ near the

steady-state value ρ∗, I subtract (3.3) from (C.5) to get:

J1(ρ)− J0(ρ) =
1

1 + r

h
λ(1− e−q0)− 1 + (1 + q0)e

−q0
i
∆(ρ+1). (C.10)

The definition of ∆(ρ) in (3.4) and the result V1 = V0 then imply the dynamic equation

for ∆ in (3.20). Setting ∆(ρ) = ∆(ρ+1) = ∆∗ and q0 = q∗0 in (3.20), I obtain:

∆∗ =
(1 + r)(U − c)

1 + r − λ(1− e−q∗0 ) + 1− (1 + q∗0)e−q
∗
0
. (C.11)

Because r > 0, 1 > λ(1− e−q
∗
0 ), 1 > (1 + q∗0)e

−q∗0 and U > c, then ∆∗ > 0. If ρ is close to

ρ∗, then q0 = H(ρ) is close to q∗0, in which case ∆(ρ) is close to ∆
∗ and, hence, positive.

With (C.11) and (3.18), I can deduce that p̄∗ > c if and only if

(1 + r − λ)(1− e−q
∗
0 ) + 1− (1 + q∗0)e

−q∗0 > 0.

Note that the left-hand is an increasing function of q∗0 and its value is 0 if q
∗
0 = 0. Because

q∗0 > 0, then the left-hand side is strictly greater positive, indeed. This implies that if ρ is

close to ρ∗, then p̄ > c.

Finally, I describe the procedure of computing the dynamics of the equilibrium. Starting

with any initial value of ρ, the dynamic path of ρ can be solved by repeatedly using

(3.16). For each ρ on this dynamic path, the value of q0 is given by q0 = H(ρ), where

H is defined in (3.15). Let {ρ+t}∞t=0 be the path of ρ and {q0,+t}∞t=0 the path of q0. To
solve the dynamics of other variables, let me start with ∆, the total surplus of a match.
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From (3.20), it is clear that ∆ obeys a linear difference equation whose coefficients are

time-varying due to the dynamics of q0. Taking T to be a sufficiently large number and

choosing ∆(ρ+T ) to be sufficiently close to the new steady state level of ∆, I can iterate

on (3.20) backward to obtain the sequence {∆(ρ+t)}Tt=0. Similarly, I can iterate on (3.19)
backward to obtain {Vi(ρ+t)}Tt=0 and on (3.3) to obtain {J0(ρ+t)}Tt=0. Then, (C.10) gives
{J1(ρ+t)}Tt=0. Substituting the dynamic paths of q0 and ∆ into (3.17) and (3.18) yields the

dynamic paths of p0 and p1. Similarly, substituting the dynamic paths of (ρ, q0, p0, p1) into

(3.21) - (3.25) yields the dynamic paths of the probability, length, and the price discount

of a sale as well as the markups. QED

D. Proof of Proposition 5.1

For (i), note that a steady state with complete separation and endogenous b exists if and

only if the steady-state value b∗ satisfies b∗ ≤ B(λ), where B is defined in (C.9). This

requirement requires equivalently that (5.1) should have a solution for q∗0 which satisfies

q∗0 ≤ Q(λ), where Q is defined in (C.8). Temporarily denote the left-hand side of (5.1)

as LHS(q∗0). Because (1 − e−q) and [1 − (1 + q)e−q] are increasing functions of q, then

LHS(q) is a decreasing function. Because LHS(0) = ∞ > 0, (5.1) has a solution for q∗0
that satisfies q∗0 ≤ Q(λ) if and only if LHS(Q(λ)) ≤ 0. I express this condition as

k ≤ K ≡ (U − c)(
1

r
+ 1)

,"
1 + r − λ(1− e−Q(λ))
1− [1 +Q(λ)]e−Q(λ)

+ 1

#
. (D.1)

Clearly, K > 0. Also, under (D.1), the solution for q∗0 to (5.1) is unique, and so the solution

for b∗ to (3.15) is unique.

For (ii), it is easy to verify from (5.1) that dq∗0/dc > 0. Because ρ
∗ = ρ1(q∗0), where ρ1

is an increasing function given in (C.1), it is clear that dρ∗/dc > 0. From (C.2) I get:

b∗ = ρ∗
"
1 +

1− λ

λ

q∗0
1− e−q∗0

#
.

Because q/(1− e−q) is an increasing function of q, the results dq∗0/dc > 0 and dρ∗/dc > 0

imply that db∗/dc > 0.

To establish (iii), note that rJ∗0 = [1− (1+q∗0)e
−q∗0 ]∆∗. The free-entry condition J∗0 = k

implies: ∆∗ = rk/[1− (1 + q∗0)e
−q∗0 ]. Substituting ∆∗ into (3.17) and (3.18) yields:

p∗0 = U − rk q∗0
(eq

∗
0 − 1)[1− (1 + q∗0)e−q

∗
0 ]
, p∗1 = U − rk e−q

∗
0

1− (1 + q∗0)e−q
∗
0
.
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Because both expressions are increasing functions of q∗0, the result dq
∗
0/dc > 0 implies

dp∗0/dc > 0 and dp∗1/dc > 0. The difference between the two prices is:

p∗1 − p∗0 =
rk(q∗0 − 1 + e−q

∗
0 )

(1− e−q∗0 )(eq∗0 − 1− q∗0)
.

The derivative of this difference with respect to q∗0 has the same sign as that of

(1− e−q
∗
0 )[(2− q∗0)e

q∗0 − 2− q∗0]− (q∗0 − 1 + e−q
∗
0 )[1− (1 + q∗0)e

−q∗0 ].

Note that q − 1 + e−q > 0 and 1 − (1 + q)e−q > 0 for all q > 0. Also, the function

[(2 − q)eq − 2 − q] is equal to 0 when q = 0, and its derivative with respect to q is equal

to −[(q − 1)eq + 1] < 0. Thus, the function is negative for all q > 0. These results

imply that the above expression for (p∗1 − p∗0) decreases in q∗0. Because dq
∗
0/dc > 0, then

d(p∗1−p∗0)/dc < 0. Finally, using the above expression for p
∗
1 to compute (p

∗
1− c) and using

(5.1) to substitute (U − c), I obtain:

p∗1 − c = rk

"
1 +

(1 + r − λ)eq
∗
0 + λ− 1

eq
∗
0 − 1− q∗0

#
.

The derivative of this expression with respect to q∗0 has the same sign as that of

(1− λ)(1− e−q
∗
0 )− (1 + r − λ)q∗0.

Because r > 0, this expression is less than (1 − λ)[1 − e−q
∗
0 − q∗0] < 0. Thus, (p∗1 − c)

decreases in q∗0 and, hence, decreases in c. QED
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