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Abstract

Dispersion of money balances among individuals is the basis for a range of policies but it
has been abstracted from in monetary theory for tractability reasons. In this paper, we fill in
this gap by constructing a tractable search model of money with a non-degenerate distribution
of money holdings. We assume search to be directed in the sense that buyers know the terms
of trade before visiting particular sellers. Directed search makes the monetary steady state
block recursive in the sense that individuals’ policy functions, value functions and the market
tightness function are all independent of the distribution of individuals over money balances,
although the distribution affects the aggregate activity by itself. Block recursivity enables
us to characterize the equilibrium analytically. By adapting lattice-theoretic techniques, we
characterize individuals’ policy and value functions, and show that these functions satisfy the
standard conditions of optimization. We prove that a unique monetary steady state exists.
Moreover, we provide conditions under which the steady-state distribution of buyers over
money balances is non-degenerate and analyze the properties of this distribution.
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1. Introduction

Money is unevenly distributed among individuals at any given point of time. Because this distrib-

ution implies dispersion in individuals’ marginal value of money and consumption, the distribution

has important implications for the efficiency of resource allocation and is the basis for a range of

policies. For example, many central banks use open market operations and overnight markets to

supply liquidity or channel liquidity from one set of individuals to another. Despite this impor-

tance of a non-degenerate distribution of money holdings, monetary theory has often abstracted

from it, largely for tractability reasons. To fill in this gap between theory and policy, we construct

a tractable model with a microfoundation of money and a non-degenerate distribution of money

holdings. We prove that a unique monetary steady state exists and analyze its properties.

The microfoundation of money we refer to is the so-called search theory of money, pioneered

by Kiyotaki and Wright (1989). This is a natural framework to use to study the role of the

distribution of money holdings. It endogenously generates a positive value for fiat money, an

object with no intrinsic value. The framework models exchange as a decentralized process in

which each trade involves only a small group (usually two) of anonymous individuals who do

not have a double coincidence of wants. In this environment, fiat money facilitates exchange. In

addition, decentralized exchange naturally induces a non-degenerate distribution of buyers over

money balances. Two individuals with the same amount of money may meet trading partners

who differ in money holdings, tastes, and productivity, in which case they trade away different

amounts of money. Thus, even if all individuals hold the same amount of money initially, the

distribution of buyers over money balances can fan out as the exchange continues.

It has been a challenge to characterize an equilibrium with such a non-degenerate distribution

while keeping the model non-trivial for macro analysis. The difficulty lies in the endogeneity and

the potentially large dimensionality of the distribution. The distribution of money holdings is

an aggregate state variable that can affect individuals’ trading decisions in general. In turn, the

trading decisions of all individuals together affect the evolution of the distribution. An equilibrium

typically needs to determine individuals’ decisions and the aggregate distribution simultaneously.

This is a difficult task because the distribution can potentially have a large dimension. To avoid

the difficulty, earlier search models restrict individuals to hold either zero or one unit of money

(e.g., Shi, 1995, and Trejos and Wright, 1995). This restriction makes not only the distribution of

buyers over money balances degenerate, but also the analysis of some policies contrived because

it artificially ties the number of money holders to the money stock in the economy. In more

recent attempts, Shi (1997) and Lagos and Wright (2005) offer tractable models where money
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and goods are fully divisible. However, Shi (1997) assumes that each household consists of a large

number of members who share consumption and utility, and Lagos and Wright (2005) assume

that individuals have quasi-linear preferences over a good which can be traded in a centralized

market to immediately rebalance money holdings. Both assumptions make the distribution of

money balances among the households degenerate.

In this paper, we construct a monetary search model where money distribution can be non-

degenerate. The main deviation from the literature lies in the way we model search. The monetary

search literature assumes search to be undirected in the sense that individuals do not know the

terms of trade before they are matched. In contrast, we assume search to be directed in the

sense that individuals know the terms of trade before a match, as in Peters (1991), Moen (1997),

Acemoglu and Shimer (1999), and Burdett, Shi and Wright (2001). In particular, for each type

of good, there is a continuum of submarkets, each of which specifies the terms of trade and a

tightness (i.e., the ratio of trading posts to buyers). Buyers choose which submarket to enter and

firms choose how many trading posts to create in each submarket. There is a cost of creating

a trading post for a period, and the number of trading posts in each submarket is determined

endogenously by free entry. Once inside a submarket, buyers and trading posts are brought

into bilateral meetings through a frictional matching function that has constant returns to scale.

The matching probability for a buyer or a trading post is a function of the tightness of the

submarket. In equilibrium, the tightness in each submarket is consistent with buyers’ choices on

which submarket to enter and firms’ choices on the creation of trading posts.

Directed search allows buyers to go directly to sellers who sell the goods they want. More

importantly, directed search allows buyers with different money holdings to optimally sort into

submarkets that differ in the terms of trade. Specifically, because the marginal value of money

is lower to a buyer who has a relatively high money balance, such a buyer has a strong desire

to spend a relatively large amount of money on consumption goods and to spend it sooner than

later. To satisfy this desire, the buyer chooses to enter a submarket where he has a relatively high

matching probability to trade a relatively large amount of money for a large quantity of goods.

Firms cater to this desire by creating a relatively large number of trading posts per buyer in this

submarket. Because buyers with different money holdings choose not to mix with each other,

a buyer’s optimal choices depend on the buyer’s own money balance and the tightness of the

submarket he enters, but not on the distribution of individuals over money balances. Moreover,

because each submarket is tailored to only one group of buyers with a particular money balance,

the tightness of each submarket that ensures zero profit for a trading post does not depend on

the distribution of money holdings. Precisely, individuals’ policy functions, value functions and
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the market tightness function are all independent of the distribution of individuals over money

holdings. We refer to this feature of the equilibrium as block recursivity.

Block recursivity makes the analytical characterization of the equilibrium tractable. Although

the distribution of individuals affects the aggregate activity, it is not part of the state space in

individuals’ decision problems. As a result, we can characterize an individual’s policy and value

functions as functions of only the individual’s own money balance. Having done so for each money

balance separately, we can compute the net flows of individuals across money balances to obtain

money distribution. In the steady state, an individual goes through purchasing cycles. When the

individual has no money, he works to obtain money and then becomes a buyer. Starting with

a high money balance, a buyer enters a submarket where he has a high matching probability,

spends a large amount of money and obtains a large quantity of goods. For the next trade, the

buyer will go into a submarket where the matching probability is lower, the required spending is

lower and the quantity of goods obtained in a trade is lower. The buyer will continue this pattern

until he depletes his balance, at which point he will work again.

The analytical characterization of the equilibrium enables us to prove that a unique mone-

tary steady state exists, to determine when the steady-state distribution of buyers over money

balances is non-degenerate, and to analyze the properties of this distribution. The distribution

is degenerate when individuals are sufficiently impatient. In this case, all buyers hold the same

amount of money and spend the entire amount in one trade. Although this result provides a

case to rationalize the behavioral pattern assumed in models with indivisible money (e.g., Shi,

1995, and Trejos and Wright, 1995), our model does not share a key result on policy analysis

with those models. That is, a one-time change in the money stock affects real activities in models

with indivisible money, but it is neutral in the steady state in our model regardless of whether

money distribution is degenerate or not.

The steady-state distribution of buyers over money balances is non-degenerate if individuals

are sufficiently patient, if the utility function of consumption is sufficiently concave, if the disutility

function of labor supply is not very convex, and if the cost of creating a trading post is low. In

subsection 4.3 we will explain intuitively why these conditions are needed for money distribution

to be non-degenerate. Moreover, the distribution has a particular shape. Starting from the

highest money balance in the equilibrium, buyers go through a sequence of trades before running

out of money. The frequency function of the distribution of buyers is a decreasing function of

money holdings in this sequence, because the buyers who hold a high balance trade relatively

quickly and exit from that balance.
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A large part of this paper is devoted to the analysis of a buyer’s decision problem. This analysis

is necessary here because it establishes the properties of the policy and value functions that are

needed for block recursivity. The analysis is of independent interest because it provides a set of

analytical tools to overcome some difficulties in the use of dynamic programming. The difficulties

are that a buyer’s objective function is not concave and that a buyer’s value function cannot

be assumed to be differentiable a priori. These difficulties prevent us from using the standard

approach in dynamic programming (e.g., Stokey et al., 1989) to analyze the policy and value

functions. To overcome these difficulties, we adapt lattice-theoretic techniques (see Topkis, 1998)

to prove that a buyer’s policy functions are monotone functions of the buyer’s money balance.

Using this result, we prove further that the optimal choices obey the first-order conditions, the

value functions are differentiable and the envelope conditions hold. By validating these standard

conditions, we make the model easy to use. In addition, this procedure of analyzing a dynamic

programming problem is intuitive and the techniques used are likely to apply to a variety of

dynamic models that involve both discrete and continuous choices.

Our paper is related to the literature on directed search cited earlier, most of which studies

non-monetary economies. In this literature, Shi (2009) studies a block recursive equilibrium,

which is explored further by Menzio and Shi (2008, 2010) and Gonzalez and Shi (2010). In

particular, our use of lattice-theoretic techniques in dynamic programming with non-concave

objective functions has similarities to that in Gonzalez and Shi (2010). The monetary issues in

our paper are obviously different from the issues in labor search. Also, a monetary equilibrium

is more challenging to characterize than a non-monetary labor equilibrium. First, in a monetary

model, an individual’s gain from a match depends not only on how the match surplus is split, but

also on how all individuals in the economy value money. The equilibrium must determine this

value of money. Second, money balance is a state variable in an individual’s decision problem

and it can be accumulated or decumulated over time through trade. Third, a buyer’s objective

function is not supermodular, which prevents a straightforward application of lattice-theoretic

techniques. We overcome this difficulty by decomposing a buyer’s decision problem into several

steps and applying lattice-theoretic techniques in each step.

In the money literature, Corbae et al. (2003) assume search to be directed, but they focus

on the formation of trading coalitions and assume that money and goods are indivisible. Also,

Rocheteau and Wright (2005) check the robustness of their model to the use of directed search,

and Galenianos and Kircher (2008) and Julien et al. (2008) examine directed search with auctions.

These papers do not formulate a block recursive equilibrium. Moreover, money distribution in
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these papers either is temporary or does not have important wealth effects.1 In the money

literature with undirected search, Green and Zhou (1998) take the first step to characterize the

distribution of money holdings. They restrict goods to be indivisible and money to be in discrete

units. By making goods divisible, Zhu (2005) studies a sequence of economies with discrete money

and characterizes the limit where the size of discreteness goes to zero. Finally, some authors have

numerically computed a monetary equilibrium with a non-degenerate distribution (e.g., Molico,

2006, and Chiu and Molico, 2008).

2. A Monetary Economy with Directed Search

2.1. The model environment

There are I types of individuals and I types of perishable goods indexed by i ∈ {1, 2, ..., I}, where
I ≥ 3. Each type i consists of a continuum of individuals with measure one who are specialized

in the consumption of good i and the production of good i+ 1 (modulo I). The preferences of a

type i individual are represented by the utility function
P∞

t=0 β
t[U(qt)− h( t)], where β ∈ (0, 1)

is the discount factor, U : R+ → R is the utility of consumption of good i, and h : [0, 1] → R
is the disutility of labor. We assume that U is strictly increasing, strictly concave and twice

continuously differentiable, with the boundary properties: U (0) = 0, U 0(∞) = 0, and U 0 (0) is

sufficiently large. Similarly, we assume that h is strictly increasing, strictly convex and twice

continuously differentiable, with the boundary properties: h(0) = 0 and h0(1) =∞.
The economy is also populated by I types of firms. Each type i consists of a large number of

firms that are specialized in the production and distribution of good i. A type i firm operates a

technology of constant returns to scale that transforms each unit of labor supplied by individuals

of type i−1 (modulo I) into one unit of good i.2 Moreover, a type i firm can open a trading post
in the market for good i using k > 0 units of labor supplied by individuals of type i− 1 (modulo
I). Firms are owned by the individuals through a balanced mutual fund.

In addition to consumption goods, there is an object called fiat money which is intrinsically

worthless, perfectly divisible and costlessly storable. In this paper, we focus on the case in which

the supply of fiat money per capita,M , is constant over time. To simplify the notation, we choose

labor, instead of goods or money, as the numeraire in this model.

1As in Lagos and Wright (2005), the three papers assume that each decentralized market is followed by a
centralized market where preferences are quasi-linear over a homogeneous good. As a result, any non-degenerate
distribution of money holdings induced by the decentralized market becomes degenerate immediately in the ensuing
centralized market.

2The assumption that the cost of production is linear is made without loss of generality. Because the disutility
function of labor supply, h(.), is assumed to be strictly convex, the disutility of producing goods is strictly convex
in the quantity of production.
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In every period, a labor market and a product market open. Firms can participate in both

markets in the same period. In contrast, individuals can participate in either the labor market

or the product market. That is, in a given period, individuals must choose whether to become

workers or buyers. Before making this choice, individuals can play a fair lottery. Even though

individuals are risk averse, a lottery can be desirable because the value function without the

lottery can be non-concave at particular money balances. One cause of non-concavity is the

discrete nature of the decision on which market to enter. Another cause is the tradeoff between

the matching probability and the surplus of trade in the product market, to be described later.

The labor market is centralized and frictionless. Each firm chooses how much labor to demand

taking as given the nominal wage rate. Similarly, each worker chooses how much labor to supply

taking as given the nominal wage rate. In equilibrium, the nominal wage rate, ωM , equates total

demand for labor by all firms to the supply of labor by all workers. We will simply refer to ω as

the nominal wage rate. Workers are paid in money instead of goods because they do not want

to consume the good produced by the firm in which they work and because goods are perishable

between periods. Moreover, a firm cannot pay its employees with an IOU because firms are better

off exiting the market than honoring their IOUs.

The product market is decentralized and characterized by search frictions. Buyers and trading

posts meet in pairs and there is no record keeping of their actions once they exit a trade. More

specifically, the market for each type i good is organized in a continuum of submarkets indexed

by the terms of trade (x, q) ∈ R+ × R+, to be explained below. Each buyer chooses which

submarket to visit in order to find a seller and each firm chooses how many trading posts to open

in each submarket in order to meet some buyers. The buyers who visit a submarket and the

trading posts in that submarket are brought into contact by a frictional matching process. When

a buyer chooses which submarket to visit and a firm chooses how many trading posts to create in

a submarket, they take into account the fact that matching probabilities vary with the terms of

trade across the submarkets. Hence, the search process is directed as in Moen (1997), Acemoglu

and Shimer (1999), Burdett et al. (2001) and Delacroix and Shi (2006).

It is clear that type i buyers will choose to participate only in the submarkets where trading

posts are created by type i firms. A buyer in submarket (x, q) finds a trading post with probability

b = λ(θ(x, q)). The function λ : R+ → [0, 1] is a strictly increasing function with boundary

conditions λ(0) = 0 and λ(∞) = 1. The function θ : R+ ×R+ → R+ is the ratio of trading posts
to buyers in submarket (x, q) which we refer to as the tightness of the submarket. Similarly, a

trading post located in submarket (x, q) is visited by a buyer with probability s = ρ(θ(x, q)), where

ρ : R+ → [0, 1] is a strictly decreasing function such that ρ(θ) = λ(θ)/θ, ρ(0) = 1 and ρ(∞) = 0.
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Since b and s are both functions of θ, we can express a trading post’s matching probability as

a function of a buyer’s matching probability; that is, s = μ(b) ≡ ρ(λ−1(b)). Clearly, μ(b) is a

decreasing function. We assume that 1/μ(b) is strictly convex in b.

When a buyer and a seller meet in submarket (x, q), they exchange q units of the consumption

good for xωM units of fiat money.3 The buyer must pay the seller with money because neither

barter nor credit is feasible. The buyer cannot pay the seller with goods because goods are

perishable and there is no double coincidence of wants in goods between the buyer and the seller.

Moreover, the buyer cannot pay the seller with an IOU because individuals are anonymous; once

they exit a trade, they can renege on their IOUs without fear of retribution. Thus, the amount

of money that a buyer can spend in a trade is bounded above by the balance he carries into the

trade. Note that x is the traded amount of money measured in units of labor, which we refer to

as the real balance traded in a match.

2.2. An individual’s decisions

Let V (m) denote the lifetime utility of an individual who starts a period with mωM units of

money, where m is the individual’s real balance (in units of labor). We refer to V as the individ-

ual’s ex-ante value function, since it is measured before the individual chooses whether to play a

lottery and whether to be a worker or a buyer in the period. Let B(m) denote the lifetime utility

of an individual who enters the product market with the real balance m. Similarly, let W (m)

denote the lifetime utility of an individual that enters the labor market with the real balance m.

We will refer to B as the buyer’s value function and W as the worker’s value function.

A worker chooses labor supply, , where the disutility of labor is h( ). The wage income is

units of real balances. In addition to the wage, the individual also owns a diversified portfolio

of the firms. However, the return to this ownership is zero since all firms earn zero profit in the

equilibrium. Thus, a worker who enters the labor market with a real balance m will have a real

balance m+ at the end of the period. The discounted value of this balance is βV (m+ ). The

value function of the worker, W (m), obeys:

W (m) = max
∈[0,1]

[βV (m+ )− h( )] . (2.1)

Denote the optimal choice of as ∗(m) and the implied real balance at the end of the period as

y∗(m) = m+ ∗(m). We refer to ∗(.) and y∗(.) as a worker’s policy functions.
3The price of goods in a submarket alone is an inadequate description of a submarket because a buyer may not

spend all the money in a trade.
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A buyer chooses which submarket (x, q) to enter. Once in submarket (x, q), the buyer will

meet a trading post with probability λ(θ(x, q)). In the match, the buyer will trade away a real

balance x for q units of goods. The lifetime utility will be U(q) + βV (m − x), which consists

of the utility of consumption and the discounted value of the residual balance (m − x). With

probability 1− λ(θ(x, q)), the buyer will not have a match and will hold onto the real balance m

which will yield βV (m) as the lifetime utility. Because the buyer’s choice of x is feasible if and

only if x ∈ [0,m], the value function of the buyer, B(m), obeys:

B(m) = max
(x,q)

{λ(θ(x, q)) [U(q) + βV (m− x)] + [1− λ(θ(x, q))]βV (m)}
s.t. x ∈ [0,m], q ≥ 0.

(2.2)

The buyer’s optimal choices are represented by the policy functions (x∗(m), q∗(m)).

An individual chooses whether to be a worker or a buyer in the period. The value function

induced by this choice is:

Ṽ (m) = max{W (m), B(m)}. (2.3)

Notice that Ṽ may not be concave over some intervals of the real balance, even when W and

B are concave functions. Thus, there is a potential gain to the individual from playing fair

lotteries before making the above choice on whether to be a worker or a buyer. Denote a lottery

as (zj , πj)j=1,2. With probability π1 the low prize of the lottery, z1, is realized, in which case

the individual’s lifetime utility is Ṽ (z1). With probability π2 the high prize of the lottery, z2, is

realized, in which case the individual’s lifetime utility is Ṽ (z2). Thus, the individual’s ex ante

value function induced by the lottery choice is:

V (m) = max
(z1,z2,π1,π2)

h
π1Ṽ (z1) + π2Ṽ (z2)

i
(2.4)

s.t. π1z1 + π2 z2 = m, π1 + π2 = 1, z2 ≥ z1,
πj ∈ [0, 1] and zj ≥ 0 for j = 1, 2.

Let (z∗j (m), π∗j (m))j=1,2 denote the individual’s optimal choice of a lottery.4

2.3. A firm’s decisions

A firm chooses how many trading posts to create in each submarket and how much labor to

employ. The firm’s demand for labor is equal to the sum of labor required for producing goods

and creating trading posts. For the decision on the creation of trading posts, consider submarket

4For any given m, we choose (z1(m), z2(m)) as the tighest lottery at m to simplify the analysis. That is, z1(m)
is the largest prize smaller than or equal to m, and z2(m) is the smallest prize greater than or equal to m.
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(x, q). The cost of creating a trading post is k units of labor. A trading post in submarket

(x, q) will be visited by a buyer with probability ρ(θ(x, q)), in which case the firm uses q units of

labor to produce q units of goods and exchanges them for a real balance x. Thus, the expected

benefit of creating a trading post in submarket (x, q) is ρ(θ(x, q))(x − q) units of labor. If

ρ(θ(x, q))(x − q) < k, it is optimal for the firm not to create any trading post in submarket

(x, q). If ρ(θ(x, q))(x − q) > k, it is optimal for the firm to create infinitely many trading posts

in submarket (x, q). If ρ(θ(x, q))(x − q) = k, the firm is indifferent between creating different

numbers of trading posts in submarket (x, q).

Notice that the case ρ(θ(x, q))(x− q) > k never occurs, because the case implies θ(x, q) =∞
and, hence, ρ(θ(x, q)) = 0, which violates the condition for the case. Thus, in any submarket

(x, q) that is visited by a positive number of buyers, the tightness θ(x, q) is consistent with the

firm’s incentive to create trading posts if and only if

ρ(θ(x, q))(x− q) ≤ k and θ(x, q) ≥ 0, (2.5)

where the two inequalities hold with complementary slackness. In any submarket (x, q) that

is not visited by buyers, the tightness can be arbitrary if k is greater than ρ(θ(x, q))(x − q).

However, following Shi (2009), Menzio and Shi (2008, 2010) and Gonzalez and Shi (2010), we

restrict attention to equilibria in which (2.5) also holds for such submarkets.5 Note that (2.5)

implies that the firm earns zero profit.

2.4. Equilibrium definition and block recursivity

We define a monetary steady state as follows:

Definition 2.1. A monetary steady state consists of value functions, (V,W,B), policy functions,

( ∗, x∗, q∗, z∗, π∗), market tightness function θ, a wage rate ω, and a distribution of individuals

over real balances G that satisfy the following requirements:

(i) W satisfies (2.1) with ∗ as the associated policy function;

(ii) B satisfies (2.2) with (x∗, q∗) as the associated policy functions;

(iii) V satisfies (2.4) with (z∗, π∗) as the associated policy functions;

(iv) θ satisfies (2.5) for all (x, q) ∈ R2+;
5This restriction on the beliefs out of the equilibrium “completes” the market in the following sense: A submarket

is inactive only if, given that some buyers are present in the submarket, the expected benefit to a lone trading post
in the submarket is still lower than the cost of the trading post. This restriction can be justified by a “trembling-
hand” argument that a small measure of buyers appear in every submarket exogenously. Similar restrictions are
common in the literature on directed search, e.g., Moen (1997) and Acemoglu and Shimer (1999).
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(v) G is the ergodic distribution generated by ( ∗, x∗, q∗, z∗, π∗, θ);

(vi) ω is such that ω <∞ and
R
m dG(m) = 1/ω.

Requirements (i)-(iv) are explained by previous subsections. Requirement (v) asks the distrib-

ution of individuals over real balances to be stationary and consistent with the flows of individuals

induced by optimal choices. Requirement (vi) asks that money should have a positive value and

that all money should be held by the individuals. Specifically, the sum of real balances across

individuals is the integral of m according to the distribution G. The total real balance available

in the economy is 1/ω, which is the nominal balance M divided by the monetary wage rate ωM .

Notice that we did not specify the labor market clearing condition in the above definition, because

such a condition is implied by requirement (vi) in a closed economy.

Equilibrium objects and requirements in Definition 2.1 can be grouped into two blocks. The

first block consists of the value functions, the policy functions and the market tightness function,

which are determined by requirements (i) - (iv). The second block consists of the distribution of

individuals over money balances and the wage rate, which are determined by requirements (v) and

(vi). The second block depends on the objects in the first block, but the first block is self-enclosed

and not affected by the second block. That is, the value functions, the policy functions and the

market tightness function are independent of the distribution and the wage rate. We refer to this

property of the equilibrium as block recursivity, following the usage in recent literature on labor

search (Shi, 2009, Menzio and Shi, 2008, 2010, and Gonzalez and Shi, 2010). Clearly, even when

an equilibrium is block recursive, the distribution still affects the aggregate activity.

Block recursivity is an attractive property of our model because it allows us to solve for

equilibrium value functions, policy functions and the market tightness function without having

to solve for the entire distribution of individuals over money balances. After obtaining these

objects in the first block, we can compute the distribution of individuals over money balances by

simply equating the flows of individuals into and out of each level of money balance. In contrast,

when the steady state is not block recursive, the distribution is an aggregate state variable that

appears in individuals’ policy and value functions. In this case, one must compute the objects

in the two blocks simultaneously and, since the distribution is endogenous and potentially has a

large dimension, the computation of an equilibrium is complicated. In fact, it is to circumvent this

complexity that monetary models have imposed assumptions on the model environment to make

the distribution degenerate (e.g., Shi, 1997, Lagos and Wright, 2005). With block recursivity, the

steady state is tractable even when the distribution of real balances is non-degenerate.
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It is easy to understand why the equilibrium in our model is block recursive. As formulated

in subsection 2.2, individuals’ value and policy functions satisfy three functional equations that

are independent of the distribution G and the wage rate ω. These decision problems are related

to the general equilibrium of the economy only through the market tightness function θ. In

particular, the tightness function provides all the relevant information needed for a buyer to

optimally choose which submarket to visit. In making this decision, the buyer faces a tradeoff

between the terms of trade in a submarket (x, q) and the matching probability in the submarket,

λ(θ(x, q)). Because the matching technology has constant returns to scale, the buyer’s matching

probability in a submarket is only a function of the tightness in the submarket. If the market

tightness function is independent of G and ω, then so are the buyer’s optimal choices and value

function. The market tightness function is indeed independent of G and ω. In each submarket

(x, q), the tightness θ(x, q) must be consistent with a firm’s incentive to create trading posts. If

a firm chooses to create a trading post in submarket (x, q), the firm’s net profit from the trading

post must be zero; that is, the expected benefit from the trading post must be equal to the cost

of the trading post. The cost of creating a trading post is a constant, k. The expected benefit is

the firm’s gain from a trade, (x− q), multiplied by the post’s matching probability, ρ(θ). Thus,

the zero-profit condition pins down the tightness of each submarket as a function of the terms of

trade in the submarket, independently of G and ω.

The assumption of directed search is necessary for the steady state to be block recursive. To

see why, consider an alternative environment of the model in which search is random in the sense

that buyers cannot direct their search toward sellers who offer particular terms of trade. If the

terms of trade are posted before a meeting takes place, whether they generate a non-negative

surplus to a randomly met buyer depends on money holdings of the particular buyer. In this

case, the probability that a meeting will result in trade depends on the distribution of buyers over

money balances. If the terms of trade are instead bargained after a meeting takes place, they will

depend on money holdings of the buyer in the match. In this case, the seller’s surplus from a trade

will depend on the distribution of buyers over money balances. In both cases, the distribution

of individuals over money balances, G, affects individuals’ value functions and a firm’s expected

benefit of a trading post. Because the tightness of the market is such that the expected benefit

of a trading post is equal to the cost of creating the trading post, the tightness is also a function

of the distribution G when search is undirected.

11



3. Equilibrium Policy and Value Functions

In this section we establish existence, uniqueness and other features of equilibrium value and

policy functions. A center piece of this analysis is subsection 3.2 on a buyer’s value and policy

functions. In particular, we prove that a buyer’s policy functions (x∗(m), q∗(m)) are monotonically

increasing, which implies that buyers choose to sort themselves out according to money holdings.

That is, a buyer with more money chooses to search in a submarket where the buyer can spend

a larger balance and get a higher quantity of goods. In such a submarket the buyer also has a

higher matching probability. Sorting leads to a stylized pattern of purchases over time by a buyer

and a straightforward characterization of the equilibrium in section 4.

Monotonicity of policy functions is also critical for us to prove that the standard conditions of

optimization, such as the first-order conditions and the envelope conditions, hold in our model.

The characterization of a buyer’s problem is technically challenging because the problem is not

well-behaved. In fact, a buyer’s objective function is not concave in the choice and state variables

jointly. For this reason, we cannot use standard arguments (e.g., Stokey et al., 1989) to establish

monotonicity of the policy functions and differentiability of the value function and, in turn, to

establish the validity of the envelope and first-order conditions. Instead, we develop an alterative

set of arguments that first prove monotonicity of the policy functions, then differentiability of the

value function and finally the validity of the first-order and envelope conditions. These arguments

are of independent interest because they are likely to apply to a variety of dynamic models that

involve both discrete and continuous choices.

A map of the analysis in this section is as follows. First, we assume that individuals’ money

holdings are bounded above by an arbitrary but large m̄ <∞, an assumption we will validate later
in Theorem 3.5. Let C[0, m̄] denote the set of continuous and increasing functions on [0, m̄], and
let V[0, m̄] denote the subset of C[0, m̄] that contains all concave functions. Taking an arbitrary
ex ante value function V ∈ V[0, m̄], we use subsection 3.1 to characterize a worker’s problem.
Second, with the same function V ∈ V[0, m̄], we use subsection 3.2 to characterize a buyer’s
problem. Third, in subsection 3.3, we characterize an individual’s lottery choice and obtain an

update of the ex ante value function, denoted as TV . We prove that T is a monotone contraction

mapping on V[0, m̄], and so there is a unique fixed point for the ex ante value function. Finally,
we verify that individuals’ money holdings are indeed bounded above by m̄ <∞.
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3.1. A worker’s value and policy functions

Let m̄ be a sufficiently large upper bound on individuals’ money holdings and V any arbitrary

function in V[0, m̄]. Given V , the worker’s problem, (2.1), generates the worker’s value function

W (m), the policy function of labor supply ∗(m), and the policy function of the end-of-period

balance y∗(m) = m+ ∗(m). We have the following lemma (see Appendix A for a proof):

Lemma 3.1. For any m ∈ [0, m̄] and V ∈ V[0, m̄], the following properties hold:
(i) W ∈ V[0, m̄]; i.e., W is continuous, increasing and concave on [0, m̄];

(ii) ∗(m) is unique, continuous and decreasing in m, and y∗(m) is unique, continuous and strictly

increasing in m;

(iii) For all m such that ∗(m) > 0, W 0(m) and V 0(y∗(m)) exist and satisfy:

W 0(m) = βV 0(m+ ∗(m)) = h0( ∗(m)). (3.1)

The first equality is the envelope condition and the second equality the first-order condition.

In part (i) of Lemma 3.1, the value function of a worker is continuous and increasing in the

worker’s money holdings because the ex ante value function has these properties. A worker’s

value function is also concave because the ex ante value function is concave and the disutility

function of labor supply is convex, which make the worker’s objective function concave jointly in

the choice and the state variable m. Part (ii) of Lemma 3.1 states existence, uniqueness and

monotonicity of a worker’s policy functions. These properties are intuitive. By supplying higher

labor, a worker obtains a higher balance which increases the ex ante value function next period.

Since the ex ante value function is concave, the marginal benefit of labor supply is decreasing.

In contrast, the marginal disutility of labor supply is strictly increasing. Thus, for any given

balance, a worker’s optimal labor supply is unique. Such uniqueness implies that the policy

function of labor supply is continuous in the worker’s money holdings. Moreover, since the gain

from working is smaller when a worker already has a relatively high balance, the policy function

of labor supply is decreasing in the worker’s money holdings. Similarly, a worker’s policy function

of the end-of-period money holdings is unique and continuous. This function is strictly increasing

in m because a higher balance has a strictly positive marginal benefit to a worker.

Part (iii) of Lemma 3.1 states that if a worker’s optimal labor supply is strictly positive,

then the worker’s value and policy functions satisfy the envelope condition and the first-order

condition. Notice that the choice = 1 is never optimal, because the marginal disutility of labor

supply at this choice is h0(1) = ∞. Hence, a worker’s optimal labor supply is interior if it is
13



strictly positive. An interior choice is a common requirement for the first-order and the envelope

conditions to apply, and the requirement is not binding in the equilibrium.6 Let us draw attention

to the fact that part (iii) uses the derivative V 0(y∗(m)). Although we have not assumed that V

is differentiable everywhere, we have assumed that V is concave. Concavity of V implies that V

is differentiable almost everywhere, and the one-sided derivatives of V exist (see Royden, 1988,

pp113-114). Part (iii) of Lemma 3.1 implies that a worker’s optimal labor supply always generates

an end-of-period balance y∗(m) at which the ex ante value function is differentiable.

To establish Lemma 3.1 and especially part (iii), we augment the standard approach in dy-

namic programming (see Stokey et al., 1989, p85). To do so, we transform a worker’s problem

(2.1) into one where the choice is the end-of-period balance y instead of labor supply:

W (m) = max
y≥m

[βV (y)− h(y −m)] . (3.2)

The standard approach in dynamic programming is applied as follows. First, with any concave

V , the objective function in (3.2) is concave in (y,m) jointly. This feature ensures not only

that the optimal choice y∗(m) is unique for each m, but also that W (m) is concave. Second,

with concavity of W and the objective function, the result in Benveniste and Scheinkman (1979)

applies here. That is, for any balance m at which the optimal choice is interior (i.e., y∗(m) > m),

the derivative W 0(m) exists and satisfies the envelope condition, W 0(m) = h0(y∗(m)−m). Third,
rewriting this envelope condition as W 0(m) = h0( ∗(m)), we use concavity of W and convexity of

h to deduce that the policy function ∗(m) is decreasing.

The derivative W 0(m) exists because the marginal disutility of labor, h0( ), is continuous and

strictly increasing. To elaborate, suppose that W 0(m) does not exist at a particular m where the

optimal choice ∗(m) is interior. Since W is concave, then the marginal value of money balance

to a worker is strictly greater on the left-hand side of m than on the right-hand side of m. This

outcome is inconsistent with a worker’s choice of the end-of-period balance. To a worker, the

marginal benefit of having a higher balance before going to work is that the worker can reduce

labor supply needed to achieve any given end-of-period balance. This benefit is captured by

h0(y∗(m)−m), which is continuous in m. Thus, W 0(m) must exist.

We augment the standard approach above with a proof that V 0(y∗(m)) exists and satisfies

(3.1). The proof is a generalized envelope argument which compares two ways of calculating

the marginal value of money to a worker. One way is to compute W 0(m). For an alternative

way, let us go back to the original formulation of a worker’s problem, (2.1), where a worker’s

6If an individual’s balance is so high that optimal labor supply is zero at such a balance, then it is optimal for
the individual to choose to enter the goods market as a buyer rather than the labor market as a worker.
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choice is . Because the objective function in (2.1) is concave in ( ,m) jointly, we can derive

a generalized version of the envelope theorem that involves one-sided derivatives of V and W .

That is, the left-hand derivative, βV 0(y∗−(m)), is equal toW 0(m−), and the right-hand derivative,

βV 0(y∗+(m)), is equal to W 0(m+). Because W 0(m) exists, then the derivative βV 0(y∗(m)) must

exist and be equal to W 0(m). This is the envelope condition of W given by the first equality

in (3.1). The first-order condition of ∗(m) given by the second equality in (3.1) comes from

substituting W 0(m) = h0( ∗(m)).

The above lemma holds for all m ≥ 0. Of particular interest is the case m = 0. For a worker

with m = 0, denote the optimal end-of-period balance as m̂ = y∗(0) = ∗(0). This worker’s value

function is W (0) = βV (m̂)− h(m̂). Lemma 3.1 implies that

V 0(m̂) =
1

β
h0(m̂) =

1

β
W 0(0). (3.3)

3.2. A buyer’s value and policy functions

We now analyze a buyer’s problem (2.2), given any arbitrary ex ante value function V ∈ V[0, m̄].
In subsection 3.2.1, we reformulate the buyer’s problem, describe the difficulty in analyzing the

problem, outline our approach, and present the main results in Theorem 3.2. In subsections 3.2.2

and 3.2.3, we establish two lemmas which together constitute a proof of Theorem 3.2.

3.2.1. Descriptions of the difficulty, our approach and main results

For convenience, we express a buyer’s choices as (x, b) instead of (x, q), where b is the buyer’s

matching probability in a submarket, and express q as a function of (x, b). Recall that b =

λ(θ(x, q)), that a trading post’s matching probability is s = ρ(θ(x, q)), and that s = μ(b) ≡
ρ(λ−1(b)). Thus, the market tightness condition (2.5) can be equivalently written as

s = μ(b) =

½ k
x−q , if k ≤ x− q

1, otherwise.
(3.4)

In any submarket with x − q ≤ k, the tightness is 0, and a buyer’s matching probability is

b = μ−1(1) = 0. In any submarket with x− q > k, the tightness is strictly positive, and a buyer’s

matching probability is b = μ−1( k
x−q ) > 0. Thus, in any submarket (x, q) with positive tightness,

we can express the quantity of goods traded in a match as

q = Q(x, b) ≡ x− k

μ (b)
. (3.5)
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Note that if a buyer has a balance m ≤ k, the only submarkets that the buyer can afford to visit

have x − q ≤ m ≤ k and, hence, have zero tightness. For such a buyer, the optimal choice is

b∗(m) = 0, and the value function is B(m) = βV (m).

Let us focus on the non-trivial case m > k. In this case, the buyer’s problem (2.2) can be

transformed into the following one in which the choices are (x, b):

B(m) = max
(x,b)

{βV (m) + b [u(x, b) + βV (m− x)− βV (m)]}
s.t. x ∈ [0,m] , b ∈ [0, 1] ,

(3.6)

where u(x, b) = U(Q(x, b)).7 Let (x∗(m), b∗(m)) denote the buyer’s policy functions of (x, b) and

let φ(m) denote the policy function of the residual balance (x−m). Then,

q∗(m) ≡ Q (x∗(m), b∗(m)) , φ(m) ≡ m− x∗(m). (3.7)

The objective function in (3.6) is not concave jointly in the choices (x, b) and the state variable

m. The objective function involves the product of the buyer’s trading probability, b, and the

buyer’s surplus of trade. Even if these terms are concave separately, the product of the two may

not be concave in (x, b,m) jointly. The lack of concavity presents a major difficulty in using the

standard approach in dynamic programming to analyze policy and value functions, because the

approach starts with the requirement that the objective function be concave jointly in the choice

and state variables (see Stokey et al., 1989, and the analysis of a worker’s problem in subsection

3.1). Attempts to make a buyer’s objective function concave entail additional restrictions on the

endogenous function V that are difficult to be verified as the outcomes of (2.4).

To analyze a buyer’s problem, we use lattice-theoretic techniques (see Topkis, 1998). The

procedure almost reverses the steps of the standard approach. First, we establish monotonicity

of the policy functions using lattice-theoretic techniques. Second, using monotonicity of the

policy functions, we prove that the value functions B(m) and V (m) are differentiable along the

equilibrium path, i.e., at money balances induced by optimal choices. This result allows us to

characterize the policy functions with the first-order conditions and envelope conditions. Finally,

we prove that the ex ante value function is differentiable at all money balances. This procedure

is natural in the sense that monotonicity of the policy functions is a basic property that does not

necessarily require differentiability of the value functions.8

7Note that for q ≥ 0, the buyer’s choices must satisfy x ≥ k/μ(b). However, there is no need to add this
constraint to the problem (3.6) because it is not binding in any realized trade. For any choices (x, b) such that
x < k/μ(b) and x > 0, the quantity of goods is q < 0 and the utility of consumption is u(x, b) < U(0) = 0. In
this case, the buyer’s surplus from trade is u(x, b) + βV (m − x) − βV (m) < 0. The buyer can avoid this loss by
choosing b = 0.

8There are other approaches that establish differentiability of the value function in the presence of a non-concave
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Recall that C[0, m̄] denotes the set of continuous and increasing functions on [0, m̄], and V[0, m̄]
denotes the subset of C[0, m̄] that contains all concave functions. The following theorem states

the main result of our procedure:

Theorem 3.2. Take any arbitrary V ∈ V[0, m̄]. Then, B ∈ C[0, m̄]. If m ≤ k, then b∗(m) = 0

and B(m) = βV (m); if m > k, then B(m) satisfies (3.6). Consider any m ∈ [k, m̄] such that
b∗(m) > 0. The results (i)-(iii) below hold:

(i) For each m, the optimal choices (x∗(m), b∗(m)) and the implied quantities (q∗(m), φ(m)) are

unique. The policy functions x∗(m), b∗(m), q∗(m) and φ(m) are continuous and increasing.

(ii) The optimal choice b∗(m) satisfies the first-order condition:

u(x, b) + b u2(x, b) = β [V (m)− V (m− x)] . (3.8)

For all m such that φ(m) > 0, φ(m) satisfies the first-order condition:9

V 0 (φ(m)) =
1

β
u1 (x

∗(m), b∗(m)) . (3.9)

(iii) B0(m) exists if and only if V 0(m) exists, and B is strictly increasing.

Consider any m < m̄ such that b∗(m) > 0. If B(m) = V (m) and if there exists a neighborhood

O surrounding m such that B(m0) ≤ V (m0) for all m0 ∈ O, then (iv) and (v) below hold. These

two parts also hold for m = m̄ if B0(m̄) = V 0(m̄):

(iv) The derivatives B0(m) and V 0(m) exist and satisfy:

V 0(m) =
b∗(m)

1− β [1− b∗(m)]
u1 (x

∗(m), b∗(m)) = B0(m). (3.10)

(v) If φ(m) > 0, then b∗ and φ are strictly increasing at m, and V is strictly concave at φ(m),

with V 0(φ(m)) > V 0(m).

Parts (ii)-(iv) of this theorem assure that one can use the standard apparatus of optimization

to analyze a buyer’s optimal decisions and value function. We will establish Lemmas 3.3 and 3.4

which together prove Theorem 3.2. A reader who is eager to see the implications of the above

theorem may want to go directly to subsection 3.3.

objective function. However, these approaches do not prove monotonicity of the policy functions. Moreover, they
are not applicable in our model. Specifically, these approaches assume the objective function to be equi-differentiable
(Milgrom and Segal, 2002) or differentiable with respect to the state variable (Clausen and Strub, 2010). In our
model, the objective function in (2.2) contains both V (m) and V (m − x), where x is a choice and m a state
variable. For this objective function to satisfy either of the aforementioned assumptions, the value function V must
be differentiable, which is a result to be proven.

9If φ(m) = 0, then (3.9) is replaced with V 0 (0) ≤ 1
βu1 (m, b∗ (m)) .
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3.2.2. A buyer’s policy functions and monotonicity

To apply lattice-theoretic techniques (Topkis, 1998) to (3.6), we investigate whether the objective

function in (3.6) is supermodular in the choice variables (x, b) and the state variable m, i.e.,

whether the objective function has increasing differences in (x, b), (x,m) and (b,m).10 When the

objective function has increasing differences in two variables, there is complementarity between

the two variables which intuitively leads to a monotonic relationship between the two variables.

As a preliminary step toward using the techniques and developing the intuition, we examine the

properties of the functions Q(x, b) and u(x, b). The function Q(x, b), defined in (3.5), determines

the quantity of goods sold to a buyer who has a matching probability b and spends a real balance

x in the trade in a submarket with positive tightness. For all (x, b) such that Q(x, b) > 0, it is

easy to verify that the function Q has the following properties:

Q1(x, b) > 0, Q2(x, b) < 0, Q(x, b) is (weakly) concave, and Q12 = 0. (3.11)

It is intuitive that Q strictly increases in x and strictly decreases in b. For any given matching

probability, the more a buyer is willing to pay, the higher the quantity of good he can obtain.

For any given payment, however, a buyer must accept a relatively low quantity of goods in order

to increase the matching probability. This is because the cost of production must be relatively

low in order to induce firms to set up a large number of trading posts needed to increase the

matching probability for a buyer.

It is also intuitive that Q is (weakly) concave in (x, b) jointly and its cross partial derivative

with respect to x and b is zero. The function Q is strictly concave in b because increasing

the number of trading posts has a diminishing marginal effect in increasing a buyer’s matching

probability. In order to increase a buyer’s matching probability further, the additional number of

trading posts created for a buyer must increase, and a firm must be compensated for creating the

additional posts with an increasingly larger reduction in the quantity of goods traded for a given

x. Moreover, because the amount of labor needed to produce any quantity of goods is assumed

10Consider a set S = {s = (s1, s2, ..., sn) : si ∈ Ai}, where Ai ⊆ R for each i. For any s and s0 in S, define the
binary relation “≥” by the requirement that s ≥ s0 if and only if si ≥ s0i for all i ∈ {1, 2, ..., n}. Let S be a partially
ordered set with the relation “≥”. For s and s0 in S, define s ∨ s0 = {(s001 , s002 , ..., s00n) : s00i = max{si, s0i}, all i} and
s∧s0 = {(s001 , s002 , ..., s00n) : s00i = min{si, s0i}, all i}. The set S is called a lattice if s∨s0 ∈ S and s∧s0 ∈ S for all s and
s0 in S. A function f(s) defined on S is supermodular if f(s)+f(s0) ≤ f(s∨s0)+f(s∧s0) for all s and s0 in S, and
strictly supermodular if the inequality is strict for all s 6= s0. The function f(s) has (strictly) increasing differences
in the pair (si, sj) if the difference, f(s1, ..., si, ..., sj , ...sn) − f(s1, ..., si, ..., s

0
j , ..., sn), is (strictly) increasing in si

for all sj > s0j in Aj . If Ai is a lattice for each i ∈ {1, 2, ..., n} and S has the direct product topology, then f(s) is
(strictly) supermodular if and only if f has (strictly) increasing differences in (si, sj) for all i and j in {1, 2, ..., n}
with i 6= j. In problem (3.6), s = (x, b,m). Since each of the three variables in s belongs in an interval (which is a
lattice), the direct product of these intervals forms a lattice S. Thus, the objective function in (3.6) is supermodular
in (x, b,m) if and only if it has increasing differences in the three pairs of variables.
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to be a linear function of the quantity, Q is linear in x and separable in (x, b). As a result, Q is

weakly concave in (x, b) and Q12 = 0.
11

The function Q(x, b) is used in the objective function in (3.6) to express the utility of con-

sumption as u(x, b) = U (Q(x, b)). It is easy to verify that for all (x, b) such that Q(x, b) > 0,

u1(x, b) > 0, u2(x, b) < 0, u(x, b) is strictly concave, and u12 > 0. (3.12)

The first-order properties of u directly come from the first-order properties of Q and the fact that

U is strictly increasing. The second-order properties of u are stronger than those of Q because

the utility function U is strictly concave. In particular, the property u12 > 0 says that u(x, b)

is strictly supermodular. This property is intuitive. Consider u1(x, b), the marginal increase in

utility caused by an increase in spending. In a submarket where the buyer’s matching probability

is relatively high, the quantity of goods that the buyer obtains in a trade with any given spending

is relatively low, because a firm must be compensated for creating a large number of trading posts

to deliver the high matching probability for the buyer. At such low consumption, an increase in

spending can increase the utility of consumption by a relatively large amount. Thus, u1(x, b) is

higher in a submarket with a higher b than in a submarket with a lower b.

Despite strict supermodularity of u(x, b), a buyer’s objective function in (3.6) is not super-

modular in (x, b). Thus, we cannot apply Topkis’ (1998) theorems directly to the buyer’s problem.

To get around this problem, we write the objective function in (3.6) as βV (m) + b R(x, b,m),

where R is the buyer’s surplus from trade defined as follows:

R (x, b,m) = u(x, b) + βV (m− x)− βV (m). (3.13)

We decompose the buyer’s problem into two steps. In the first step, we fix b and characterize the

optimal choice of x. For any given (b,m), the optimal choice of x maximizes R(x, b,m). Denote

x̃ (b,m) = arg max
x∈[0,m]

R(x, b,m), R̃ (b,m) = R (x̃ (b,m) , b,m) . (3.14)

In the second step, we characterize the optimal choice of b as

b∗(m) = arg max
b∈[0,1]

b R̃(b,m). (3.15)

Although Topkis’ theorems are not applicable directly to a buyer’s problem, we show that

they are applicable in each step above. In particular, to apply Topkis’ theorems in the second step

requires only that b R̃(b,m) be supermodular in (b,m), i.e., that this function be supermodular

11If the amount of labor needed to produce any quantity of goods is assumed to be a strictly convex function of
the quantity, then Q is strictly concave in (x, b) and Q12 > 0. These features of Q will strengthen our results.
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in (b,m) when spending optimally depends on (b,m) as x = x̃(b,m). This requirement is weaker

than the requirement that b R(x, b,m) be supermodular in all (x, b,m). The following lemma

states the result of this two-step procedure (see Appendix B for a proof):

Lemma 3.3. For any V ∈ V[0, m̄], B (m) ∈ C[0, m̄]. If m ≤ k, then b∗(m) = 0 and B(m) =

βV (m); if m > k, B(m) solves (3.6). Moreover, for all m ∈ [k, m̄] such that b∗(m) > 0, the policy
functions are monotone as stated in part (i) of Theorem 3.2.

The function B(m) is continuous and increasing because the ex ante value function V (m) has

these features for all m ≤ m̄. As explained in subsection 3.2.1, B has two segments. If m ≤ k,

then b∗(m) = 0 and B(m) = βV (m); if m > k, B(m) solves (3.6).

As stated in part (i) of Theorem 3.2, optimal choices (x∗(m), b∗(m)) are unique for any given

balance m, and so the policy functions are continuous. We prove this result by establishing the

feature that the logarithmic transformation of the part to be maximized in the buyer’s problem,

bR(x, b,m), is strictly concave in (x, b). This feature is intuitive. Because the matching function

has diminishing marginal returns to the number of trading posts, a buyer’s matching probability

is strictly concave in the tightness of the submarket. This implies that the marginal cost of

increasing a buyer’s matching probability is increasing, in the sense that the buyer must either

spend an increasingly larger amount of money to purchase a given quantity of goods or obtain

an increasingly smaller quantity of goods for any given spending. Thus, for any given balance,

a buyer finds a unique pair of (x, b) that offers the best trade-off between the quantity of goods

traded and the probability of the trade. That is, given his balance, a buyer chooses a unique

submarket to enter, rather than being indifferent between different submarkets.

Part (i) of Theorem 3.2 also states that the policy functions x∗(m) and b∗(m) are increasing

for all m such that b∗(m) > 0. This feature arises intuitively from the assumption that the ex

ante value function V is concave. After a trade, a buyer’s residual balance is valued with V next

period. Concavity of V implies that for the same spending, a buyer with a higher balance will

have a lower marginal value of the residual balance than will a buyer with a lower balance. This

motivates the buyer with a higher balance to enter a submarket where he has a higher matching

probability and spend more money to increase consumption.

Let us explain how we implement the two-step procedure to turn the above intuition into a

formal proof. We first establish that a buyer’s surplus R(x, b,m) defined by (3.13) is supermodular

in (x, b,m); that is, R has increasing differences in (x, b), (b,m) and (x,m). The function R has

strictly increasing differences in (x, b) because u(x, b) has this property, as explained earlier. The

function R has (weakly) increasing differences in (b,m) because b and m are separable in R. To
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see why R has increasing differences in (x,m), let us fix b at any arbitrary level in [0, 1] and

consider any x2 > x1 and m2 > m1 ≥ k, with xi ∈ [0,mi] for i = 1, 2. For any given balance m,

an increase in spending from x1 to x2 increases the buyer’s surplus by

R (x2, b,m)−R(x1, b,m) = [u(x2, b)− u(x1, b)]− β [V (m− x1)− V (m− x2)] .

This amount consists of the increase in the utility of consumption resulted from higher spending

and the reduction in the value function next period resulted from a lower residual balance after

trade. Note that for any given b, the increase in the utility of consumption is independent of the

buyer’s balance. Thus, relative to a buyer with a lower balance m1, a buyer with a higher balance

m2 can obtain the following additional surplus from increasing spending from x1 to x2:

[R (x2, b,m2)−R(x1, b,m2)]− [R (x2, b,m1)−R(x1, b,m1)]
= β [V (m1 − x1)− V (m1 − x2)]− β [V (m2 − x1)− V (m2 − x2)] .

This additional surplus is positive because V is concave, i.e., because a buyer with a higher

balance has a lower marginal value of money than does a buyer with a lower balance. Thus, R

has increasing differences in (x,m).

Next, notice that the feasibility set in the maximization problem in (3.14) is increasing in

m and independent of b. With a supermodular objective function, a feasibility set increasing

in m and a unique optimal choice x̃, we conclude that x̃ (b,m) is increasing in (b,m) and that

R̃ (b,m) is increasing and supermodular in (b,m) (see Topkis 1998, pp.70-76). Proceeding to the

second step and the problem in (3.15), we use these features of x̃(b,m) and R̃(b,m) to verify

that b R̃ (b,m) is supermodular in (b,m). Together with uniqueness of the optimal choice b∗, this

feature implies that b∗(m) and the maximized function, b∗(m)R̃ (b∗(m),m), are increasing in m.

Finally, by changing the choices from (x, b) to (x, q) and to (m− x, b), in turn, we use the

two-step procedure above to prove that q∗(m) and φ(m) are increasing. Intuitively, consumption

is a normal good in the current period and in the future. When a buyer has more money, it

is optimal for him to increase spending in the current period and also to keep a higher residual

balance to increase spending in the future.

In summary, buyers sort themselves into different submarkets according to their balance. A

buyer with more money chooses to enter a submarket where he will have a higher matching

probability and once he is matched in the submarket, he will spend a larger amount of money,

buy a larger quantity of goods, and exit the trade with a higher balance.
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3.2.3. First-order conditions, envelope theorems and value functions

The remaining parts of Theorem 3.2, (ii)-(v), describe the first-order conditions, the envelope

condition and additional properties of the value functions. They are restated in the following

lemma and proven in Appendix C:

Lemma 3.4. Consider any m ∈ [k, m̄] such that b∗(m) > 0. For any V ∈ V[0, m̄], parts (ii) and
(iii) of Theorem 3.2 hold. For any m < m̄ such that b∗(m) > 0, if B(m) = V (m) and if there

exists a neighborhood O surrounding m such that B(m0) ≤ V (m0) for all m0 ∈ O, then parts (iv)

and (v) of Theorem 3.2 hold. These two parts also hold for m = m̄ if B0(m̄) = V 0(m̄).

Part (ii) of Theorem 3.2 states that optimal choices b∗ and x∗ satisfy the first-order conditions.

In the first-order condition of b∗, (3.8), the left-hand side is the marginal benefit of increasing b,

represented by the increase in expected utility of consumption resulting from a higher matching

probability. The right-hand side of (3.8) is the buyer’s opportunity cost of a trade represented by

the reduction in the future value function resulting from a lower future balance. Thus, the first-

order condition of b requires intuitively that the optimal choice b∗ equates the marginal benefit

and the marginal cost of changing b. Similarly, the first-order condition of x∗, (3.9), requires that

the marginal cost of increasing spending, represented by the marginal value of the residual balance

φ, should be equal to the marginal utility of consumption brought about by higher spending.

The first-order condition of b∗ holds regardless of whether the ex ante value function V is

differentiable. This is because the choice b does not appear in V , which implies that the buyer’s

objective function in (3.6) is differentiable with respect to b for any given (x,m). In contrast, the

choice x appears in V through the residual balance. Thus, the first-order condition of the optimal

choice x∗, (3.9), requires the derivativeV 0(φ(m)) to exist. That is, it is optimal for a buyer to

choose spending in such a way that steers the residual balance away from any level at which

V is not differentiable. Similar to the existence of V 0(y∗(m)) in Lemma 3.1, this result comes

from a generalized envelope argument that compares two ways of calculating the marginal value

of money to a buyer. Consider the buyer’s gain from increasing the balance to m from slightly

below m. When choosing (x, b), the increase in the balance yields the gain b∗(m)βV 0(φ−(m))

+(1−b∗(m))βV 0(m−), where φ−(m) = m−−x∗(m). Alternatively, the buyer can choose (m−x, a),
where a = m− x+ q. Let (φ(m), a∗(m)) be such optimal choices and (x∗(m), b∗(m)) the implied

choices of (x, b). The marginal value of money on the left-side of m is b∗(m)u1(x∗(m), b∗(m))

+(1− b∗(m))βV 0(m−). The two ways of computing the marginal value of money to a buyer yield

βV 0(φ−(m)) = u1(x
∗(m), b∗(m)). Since a similar equation holds for βV 0(φ+(m)), then βV must

be differentiable at φ(m) and the derivative is equal to u1(x
∗(m), b∗(m)).
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Part (iii) of Theorem 3.2 ties differentiability of B to that of V and states that B is strictly

increasing. To obtain these results, we use the fact that a concave function has both left-hand and

right-hand derivatives (see Royden, 1988, pp113-114). Because V is concave, then V 0(m−) and

V 0(m+) exist for all m, with V 0(m−) ≥ V 0(m+). Using the functional equation, (3.6), and the

definitions of one-sided derivatives, we can obtain the following generalized envelope conditions:

B0
¡
m+

¢
= b∗(m)u1 (x∗(m), b∗(m)) + β (1− b∗(m))V 0

¡
m+

¢
(3.16)

B0
¡
m−

¢
= b∗(m)u1 (x∗(m), b∗(m)) + β (1− b∗(m))V 0

¡
m−

¢
. (3.17)

From these conditions it is evident that B0(m) exists if and only if V 0(m) exists. Moreover, since

V 0(m−) ≥ V 0(m+) ≥ 0 and u1 > 0, the above conditions imply that B0(m−) ≥ B0(m+) > 0 if

b∗(m) > 0; that is, B is strictly increasing for all m such that b∗(m) > 0.

Part (iv) of Theorem 3.2 is the envelope condition of a buyer’s problem. It is valid for

any m < m̄ that satisfies B(m) = V (m) and is surrounded by a neighborhood O such that

B(m0) ≤ V (m0) for all m0 ∈ O. Note that such a neighborhood O always exists if V is the

equilibrium ex ante value function, but it is required here since Theorem 3.2 states the results

under any arbitrary function V . Part (iv) states that B and V are differentiable for any m that

satisfies the hypotheses and the common derivative is equal to the discounted marginal utility

of consumption, given by the expression in the middle of (3.10). It is apparent that if V is

differentiable at a balance m, then (3.16) and (3.17) imply that B0(m) and V 0(m) are both equal

to the expression in the middle of (3.10). Thus, it suffices to explain why V is differentiable at

m with the described properties. Because B(m0) ≤ V (m0) for all m0 in the neighborhood O and

B(m) = V (m), continuity of the two functions implies B0(m+) ≤ V 0(m+) and B0(m−) ≥ V 0(m−).

Substituting B0(m+) ≤ V 0(m+) into (3.16), we conclude that V 0(m+) is greater than or equal to

the expression in the middle of (3.10). Similarly, substituting B0(m−) ≥ V 0(m−) into (3.17), we

conclude that V 0(m−) is less than or equal to the expression in the middle of (3.10) and, hence,

less than V 0(m+). However, concavity of V requires V 0(m−) ≥ V 0(m+). Therefore, V 0(m) must

exist and be equal to the expression in the middle of (3.10).

At m = m̄, part (iv) of Theorem 3.2 holds under the additional condition B0(m̄) = V 0(m̄).

So far, we have imposed m̄ exogenously as an upper bound on individuals’ money holdings and

have not characterized B and V on the right-hand side of m̄. Although we will later prove that

the finite upper bound m̄ exists and satisfies B0(m̄) = V 0(m̄), we want to prevent the circularity

in the argument by not presuming here that the neighborhood O exists for m = m̄.
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Part (v) of Theorem 3.2 describes additional properties at a balance m that satisfies the

above hypotheses and induces a strictly positive residual balance. First, note that under the

hypothesis B(m) = V (m), a buyer with the balance m does not have the need to use a lottery.

This implies that the marginal value of money is strictly decreasing at m and so, for any given

trading probability, the buyer’s surplus of trade is strictly increasing in m locally. If such a buyer

has additional money, he prefers to enter a submarket with a strictly higher trading probability

and spend more in order to capture the higher surplus of trade. That is, b∗(m) and x∗(m) are

strictly increasing at such m. Second, since future consumption is a normal good, it is optimal

for the buyer to keep part of this additional money as the residual balance. That is, φ(m) is

also strictly increasing at such m. Third, the ex ante value function must be strictly concave at

φ(m) > 0: if V is linear at φ(m), the buyer should have spent more because the marginal cost of

doing so is locally constant.

3.3. Lotteries and the ex ante value function

We have characterized a worker’s decisions and a buyer’s decisions, taking the ex ante value

function as any arbitrary V ∈ V[0, m̄], i.e., any continuous, increasing and concave function
on [0, m̄]. Part (i) of Lemma 3.1 states that a worker’s problem (2.1) defines a mapping TW :

V[0, m̄]→ V[0, m̄] that maps an ex ante value function V ∈ V[0, m̄] into a worker’s value function
W ∈ V[0, m̄]. Similarly, Theorem 3.2 implies that a buyer’s problem (2.2) defines a mapping

TB : V[0, m̄] → C[0, m̄] that maps an ex ante value function V ∈ V[0, m̄] into a buyer’s value
function B ∈ C[0, m̄]. In the equilibrium, the ex ante value function must satisfy (2.4). If we
substitute W = TWV and B = TBV into (2.3) to obtain Ṽ , then the right-hand side of (2.4) is

a mapping on V . Denote this mapping as T and write (2.4) as V (m) = TV (m). The ex ante

value function in the equilibrium is a fixed point of T . We need to show that T maps V[0, m̄]
into V[0, m̄] and that it has a fixed point. Moreover, we need to verify that there indeed exists a
finite upper bound m̄ on individuals’ money holdings in the equilibrium.

The functional equation (2.4) involves a maximization problem over the choice of lotteries.

This choice is necessary for the ex ante value function to be concave. We have used concavity

of any arbitrary function V to ensure that an individual’s optimal choices are unique. Also,

concavity of V is important for a buyer’s policy functions to be monotone, since we have used it

to ensure various components of a buyer’s objective functions to be supermodular. To preserve

these properties of the optimal choices, it is necessary that T maps the elements in V[0, m̄], which
are concave functions, back into the elements in V[0, m̄].

There are two causes of why Ṽ defined by (2.3) is not concave at all money balances. The
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first exists when the balance m satisfies B(m) > W (m) and when B is not concave at m. An

individual with such a balance prefers to be a buyer, and so Ṽ (m) = B(m). If B is not concave

near m, the individual wants to use a lottery to convexify the feasibility set of values. The second

cause of non-concavity of Ṽ occurs when money balance is low. Specifically, when m < k, the

value of going to the market as a worker is higher than the value of being a buyer, because

W (m) > βV (m) = B(m) for such m. Since B(m0) > W (m0) for sufficiently large m0, then

B crosses W from below as m increases. This feature implies that Ṽ is strictly convex in a

neighborhood of the balance at which B crosses W . Thus, to an individual with a sufficiently

low balance, there is a gain from playing a lottery. In Figure 1 we depict these two lotteries: the

lottery for low money holdings makes V the dashed line connecting points A and C, and a lottery

at higher money holdings makes V the dashed line connecting points D and E.

Let us refer to the lottery for m ∈ [0,m0] as the lottery for low money holdings. The low prize

of this lottery is z∗1 = 0, the high prize is z∗2 = m0, and the probability of winning the high prize

is π∗2(m) = m/m0. The high prize is determined as

m0 = argmax
z≥m

hm
z
Ṽ (z) +

³
1− m

z

´
Ṽ (0)

i
. (3.18)

It is clear that m0 is independent of the individual’s balance m, provided m ≤ m0.

The following theorem states existence, uniqueness and other properties of the equilibrium ex

ante value function as well as the properties of the upper bound m̄ (see Appendix D for a proof):

Theorem 3.5. (i) T is a self-map on V[0, m̄] and has a unique fixed point V .
(ii) V (m) > W (m) > 0 for all m > 0; V (0) =W (0) > 0, and W (m) ≥ B(m) for all m ∈ [0, k].
(iii) There exists m0 ∈ (k, m̄] such that an individual with m < m0 will play the lottery with the

prize m0, which satisfies V (m0) = B(m0), b
∗(m0) > 0 and φ(m0) = 0. Moreover, if m0 < m̄,

then (3.10) holds for m = m0, and V 0(m0) = B0(m0) > 0.

(iv) V 0 (m) > 0 exists for all m ∈ [0, m̄); B0(m) exists for all m ∈ [k, m̄) such that b∗(m) > 0.
(v) There exists m̄ <∞ such that individuals’ balances satisfy m ≤ m̄ in equilibrium. Moreover,

m̄ satisfies m̄ = ẑ2 = z∗2(m̂), B(m̄) = V (m̄) and B0(m̄) = V 0(m̄).

For part (i), we verify that the mappings on V defined by a worker’s problem, (2.1), and a

buyer’s problem, (2.2), are monotone and feature discounting with the factor β. As a result, T

is a monotone contraction mapping that maps continuous, increasing and concave functions into

continuous and increasing functions. In addition, since TV is generated by the optimal choice of

a two-point lottery, it is a concave function (see Lemma F.1, Menzio and Shi, 2010). Thus, T is

a monotone contraction mapping on V[0, m̄] and has a unique fixed point.
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Part (ii) of Theorem 3.5 compares V , W and B, which can be seen from Figure 1. Part

(iii) formally characterizes the lottery for low money holdings. In particular, after winning the

prize m0, an individual strictly prefers to be a buyer and he spends all of the balance m0 in one

trade. Part (iv) states that the ex ante value function is differentiable and strictly increasing

for all m < m̄ and a buyer’s value function is differentiable at all balances at which the buyer

has a positive matching probability. This result on differentiability of V is stronger than the

one in Theorem 3.2 which stated only that V is differentiable at money balances generated by

optimal choices and at m < m̄ such that B(m) = V (m). The strong result on differentiability is

not surprising, given the results we have obtained so far. The ex ante value function is clearly

differentiable at any m ∈ [0,m0), because it is a straight line in this region. If m0 < m̄, then V

is also differentiable at m0, because the high prize of the lottery is interior and B(m0) = V (m0).

Furthermore, V is differentiable in (m0, m̄): If V were not differentiable at some m ∈ (m0, m̄),

then V would be strictly concave at m and hence V (m) = B(m), in which case part (iv) of

Theorem 3.2 would imply the contradiction that V is differentiable at m.

    E

  B(m )
  D

    C
  V(m )

W (m )

   Α

  0     k  m 0       m

Figure 1. Lotteries and the ex ante value function

Finally, part (v) of Theorem 3.5 states that individuals’ money holdings are endogenously

bounded above by m̄ < ∞; in addition, m̄ is equal to the high prize of the lottery played by

an individual with the balance m̂. Moreover, m̄ has the properties B(m̄) = V (m̄) and B0(m̄) =

V 0(m̄), and so we can eliminate the qualifications “if m < m̄” and “if m0 < m̄” in various parts

of Theorems 3.2 and 3.5. It is intuitive that individuals’ money holdings are finite. Because

the marginal utility of consumption is diminishing, the marginal value of money is diminishing.

In contrast, the marginal cost of obtaining money, in terms of the disutility of labor, is strictly

increasing. Thus, if an individual has a sufficiently large balance, he strictly prefers spending some
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of rather than working to accumulate even more money. This force puts an endogenous upper

bound on individuals’ money holdings prior to the play of lotteries. Moreover, since the marginal

value of money to a buyer is diminishing, it is bounded above. This implies that if an individual

plays a lottery with any finite amount of money, the high prize of the optimal lottery must be

finite. Thus, individuals’ money holdings after the play of lotteries are also finite. Because m̄ is

equal to the high prize of the optimal lottery that may be played by an individual whose balance

is m̂ <∞, the construction of the lottery yields B(m̄) = V (m̄) and B0(m̄) = V 0(m̄).

4. Monetary Equilibrium

In this section we characterize the spending pattern, prove existence and uniqueness of the mon-

etary steady state, and examine the steady-state distribution of real balances.

4.1. Equilibrium pattern of spending

Let us begin with some features of optimal choices established in section 3. First, a worker with

no money supplies ∗(0) units of labor and obtains m̂ units of money. Second, an individual with

a balance m may play a lottery before going to the market, where the low prize of the lottery is

z∗1(m) and the high prize is z∗2(m). If m < m0, then the individual will certainly play a lottery

with z∗1(m) = 0 and z∗2(m) = m0. Third, buyers sort into different submarkets according to their

money balances. A buyer with a balance m (≥ m0) chooses to enter the submarket where he

has a matching probability b∗(m) and, after being matched, he spends an amount x∗(m) units of

money, buys q∗(m) units of goods, and exits the trade with a residual balance φ(m) = m−x∗(m).
The functions b∗(m), x∗(m), q∗(m) and φ(m) are all increasing in m.

Denote φ0(m) = m and φi+1(m) = φ(φi(m)) for i = 0, 1, 2, .... For any arbitrary balance

m ≥ m0, let n(m) be the number of purchases that a buyer with m can make before his balance

falls below m0, i.e., φ
n(m)−1(m) ≥ m0 > φn(m)(m). Also, denote n̂ = n(m̂), ẑj = z∗j (m̂) and

n̂j = n(ẑj), where j ∈ {1, 2}. We prove the following lemma in Appendix E:

Lemma 4.1. (i) If m̂ < m0, then ẑ1 = 0, ẑ2 = m0, and n̂2 = 1;

(ii) The only lottery that is possibly played in the steady state is the lottery at m̂, with ẑ1 and

ẑ2 as the prizes, and this lottery is indeed played if B(m̂) < V (m̂);

(iii) If m̂ ≥ m0, then the following properties hold for j ∈ {1, 2}: (a) b∗(φi−1(ẑj)) > 0 for all

i = 1, 2, ..., n̂j ; (b) φ
i(ẑj) ≥ m0, V (φ

i(ẑj)) = B(φi(ẑj)) and V is strictly concave at φi(ẑj) for all

i = 1, 2, ..., n̂j − 1; (c) φn̂j (ẑj) = 0.
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Part (i) of Lemma 4.1 is implied by part (iii) of Theorem 3.5 for m = m̂. If m̂ < m0, a worker

who has worked to obtain the balance m̂ will play the lottery with the prize m0 next period and,

if he wins the lottery, he will spend the entire amount m0 in one trade. We will provide a precise

condition for m̂ < m0 later in Theorem 4.3. At this point, let us relate the case to convexity

of the disutility function of labor supply, h( ). A sufficiently convex disutility function of labor

supply means that the marginal disutility increases rapidly with labor supply. In this case it is

optimal for a worker to work a small amount of time in a period, which leads to m̂ < m0. Note

that regardless of how convex h is, it is not optimal for a worker to work for consecutive periods

unless the worker does not win the prize m0 of the lottery. The use of the lottery with the prize

m0 is a better way to smooth the cost of labor than working for consecutive periods.

Even when m̂ > m0, an individual holding m̂ chooses to play a lottery if B(m̂) < V (m̂), as

stated in part (ii) of Lemma 4.1.12 Recall from subsection 3.2 that a buyer’s value function may

be convex at some m̂ > m0. If m̂ lies near such a convex region of B, then it is beneficial for

an individual to play a lottery before going to the market. In contrast to the case m̂ < m0, an

individual with m̂ > m0 will always go to the market as a buyer after playing a lottery, regardless

of whether the high or the low prize is realized. Both prizes are greater than or equal to m0 if

m̂ > m0. Part (ii) of Lemma 4.1 states further that the only possible lottery played in the steady

state is the one at m̂. If m̂ < m0, the statement is obviously true. If m̂ ≥ m0, the statement is

implied by part (iii) of Lemma 4.1, which we explain below.

Part (iii) of Lemma 4.1 describes a stylized purchasing cycle by a buyer who enters the market

with a balance ẑj , which is a prize of the lottery at m̂. Such a buyer will trade with positive

probability every period until running out of money (part (a)), his value function will be strictly

concave at the residual balance if this balance is strictly positive (part (b)), and in the last trade

in the cycle, he will spend all of his money instead of leaving a small amount to play the lottery

for low money holdings (part (c)). Because of parts (b) and (c), the buyer has no need for a

lottery at any residual balance resulted from trade. Moreover, as the buyer’s balance diminishes

with each trade, the buyer goes through a sequence of submarkets where the trading probability

is increasingly lower, the required spending in a trade is increasingly lower, the quantity of goods

traded is increasingly lower, and the residual balance after trade is increasingly lower.

Part (iii) of Lemma 4.1 comes from repeated applications of parts (iv) and (v) of Theorem

3.2. To see this, note first that a buyer’s value function at either prize ẑj of the lottery played at

m̂ ≥ m0 satisfies B(ẑj) = V (ẑj) and B
0(ẑj) = V 0(ẑj). Since ẑj ≥ m0, then b

∗(ẑj) ≥ b∗(m0) > 0. If

it is optimal for the buyer with ẑj to drive the residual balance to φ(ẑj) = 0, then the individual

12The case where a lottery is not played at m̂ > m0 can be treated as a degenerate lottery at m̂.
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will become a worker next period. If it is optimal for the buyer with ẑj to keep a strictly positive

residual balance φ(ẑj) > 0, then all the hypotheses in part (v) of Theorem 3.2 are satisfied with

m = ẑj . In this case, the ex ante value function is strictly concave at φ(ẑj). Strict concavity of

V at φ(ẑj) implies that no lottery is needed at φ(ẑj), and so B is equal to V at φ(ẑj). Then,

m = φ(ẑj) satisfies the hypotheses in part (iv) of Theorem 3.2, which implies that B and V are

differentiable at φ(ẑj) and B
0(φ(ẑj)) = V 0(φ(ẑj)). Moreover, strict concavity of V at φ(ẑj) implies

that φ(ẑj) ≥ m0, because φ(ẑj) < m0 would imply a contradiction that V is linear near φ(ẑj).

With the balance φ(ẑj) ≥ m0, the buyer will trade with a strictly positive probability and the

outcome of the trade is either φ2(ẑj) = 0 or φ2(ẑj) > 0. If φ2(ẑj) = 0, the round of purchases

ends. If φ2(ẑj) > 0, we can repeat the above argument to conclude that V is strictly concave at

φ2(ẑj), the two value functions B and V are equal to each other at φ(ẑj), and their derivatives

at φ2(ẑj) are given by (3.10) with m = φ2(ẑj). In this case, the buyer has no need for a lottery

at φ2(ẑj) and the residual balance satisfies φ
2(ẑj) ≥ m0. This pattern continues until the n̂j-th

trade, in which the buyer spends all the money.

The purchasing cycle above has some similarity to that in the inventory model of money (see

Baumol, 1952, and Tobin, 1956). However, our model has the following features that are absent

in the inventory model. First, our model has a microfoundation for money. Second, there are

matching frictions, which imply that a buyer does not always have a match. Thus, the number

of periods which a buyer spends in a purchasing cycle is larger than the number of purchases.

Third, the trading probability and the terms of trade are endogenous. As each purchase reduces

a buyer’s balance, the buyer chooses to spend a longer time to get the next trade and, when he

gets the next trade, he spends less money and obtains a smaller quantity of goods.

4.2. Equilibrium distribution of real balances

Let G(m) be the measure of individuals holding a balance less than or equal to m immediately

after the outcomes of the lotteries are realized in a period. From the previous subsection we

know that if m̂ < m0, the individuals in the market are either buyers with the balance m0 or

workers with no money. In this case, the support of G is {m0, 0}. We also know that if m̂ ≥ m0,

a worker who obtains the balance m̂ may play a lottery next period before going to the market

as a buyer. Depending on the realization of the lottery, ẑj , the individual will go through a

purchasing cycle in which the individual’s money holdings will be characterized by the sequence

{φi(ẑj)}n̂j−1i=0 . Thus, if m̂ ≥ m0, the support of G is {φi(ẑ1)}n̂1−1i=0 ∪ {φi(ẑ2)}n̂2−1i=0 ∪ {0}. Since the
distribution has a discrete support, we denote the corresponding frequency function as g.

It is straightforward to calculate the steady-state distribution of real balances. In the steady
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state, the measure of individuals who hold each balance in the support of G should be constant

over time. If m̂ ≥ m0 (i.e., n̂2 ≥ 1), we can express this requirement as follows:

0 = g (0) π̂j − b∗(ẑj)g(ẑj), j = 1, 2; (4.1)

0 = b∗(φi−1(ẑj))g(φi−1(ẑj))− b∗(φi(ẑj))g(φi(ẑj))
for 1 ≤ i ≤ n̂j − 1 and j = 1, 2;

(4.2)

g (0) =
X
j=1,2

b∗(φn̂j−1(ẑj))g(φn̂j−1(ẑj)), (4.3)

where π̂j = π∗j (m̂) for j ∈ {1, 2}. Equation (4.1) sets the change in the measure of individuals
who hold the balance ẑj to zero. The flow of individuals into the balance ẑj consists of those

workers in the current period who will win the prize ẑj of the lottery at m̂ next period. The size

of this inflow is g(0)π̂j . The outflow of individuals from the balance ẑj consists of the buyers with

the balance ẑj who successfully trade in the current period. The size of this outflow is b
∗(ẑj)g(ẑj).

Similarly, (4.2) sets the change in the measure of individuals who hold the balance φi(ẑj) to zero,

where i ∈ {1, 2, ..., n̂j−1}. The inflow of individuals into the balance φi(ẑj) consists of the buyers
with the balance φi−1(ẑj) who successfully trade in the current period, and the outflow consists

of the buyers with the balance φi(ẑj) who successfully trade in the current period. Finally, (4.3)

sets the change in the measure of individuals who hold no money to zero. In any period, the

individuals who have no money are the workers. Since every worker obtains a balance m̂ by

working for one period, the size of the outflow from the group is g(0). The inflow comes from

the buyers who are in the last period of their purchasing cycle and who successfully trade in the

current period, as given by the right-hand side of (4.3).

Equations (4.1) — (4.3) solve for the steady-state distribution as

g(φi(ẑj)) =
g(0)π̂j

b∗(φi(ẑj))
for j = 1, 2, and 0 ≤ i ≤ n̂j − 1;

g (0) =
h
1 +

P
j=1,2

Pn̂j−1
i=0

π̂j
b∗(φi(ẑj))

i−1
.

⎫⎪⎪⎬⎪⎪⎭ (4.4)

The formula (4.4) is also valid for the case m̂ < m0. In this case, ẑ1 = 0 and n̂2 = 1 in (4.4),

and so the steady-state distribution is g(m0) = 1− g(0) and g(0) = b∗(m0)/[b
∗(m0) + π∗2(m0)].

4.3. Existence and uniqueness of a monetary steady state

In section 3, we have characterized individuals’ policy and value functions, which are indepen-

dent of the nominal wage rate ω. The market tightness function θ is solved by (2.5), which is
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independent of ω. Moreover, given the policy functions, (4.4) solves the steady-state distribution

of real balances independently of ω. Thus, for a monetary steady state to exist, it suffices to solve

for ω by requirement (vi) of Definition 2.1. This requirement can be rewritten as

ω =

⎡⎣X
j=1,2

n̂j−1X
i=0

φi(ẑj)g(φ
i(ẑj))

⎤⎦−1 . (4.5)

Because all of the elements on the right-hand side of (4.5) are independent of ω, the formula

determines a unique, finite value of ω in the steady state. We summarize this result and other

properties of the steady state in the following theorem (see Appendix F for a proof):

Theorem 4.2. A unique monetary steady state exists and is block recursive. Money is neutral

in the steady state. The distribution of buyers over money balances is degenerate if β ≤ β0,

where β0 > 0 is defined in Appendix F. On the other hand, if β is sufficiently close to one, the

distribution of buyers over money balances is non-degenerate if and only if

mc > m0(mc) = q0(mc) +
k

μ(b0(mc))
, (4.6)

where mc, q0(m), and b0(m) are defined in Appendix F. Moreover, the frequency function of the

distribution satisfies g(φi(ẑj)) > g(φi−1(ẑj)) for all i = 1, 2, ..., n̂j − 1 and j = 1, 2.

Money is neutral in the sense that a one-time change in the money stock has no effect on real

variables in the steady state. This is intuitive in our model. Money holdings, m, the quantity of

money traded in a match, x∗, and the residual balance after a trade, φ(m), are all measured in

terms of labor. These real quantities are given by the policy functions that are independent of

the money stock. Similarly, a one-time change in the money stock does not affect the quantity

of goods traded, labor supply and the distribution of individuals.

The distribution of buyers over money balances may or may not be degenerate in the steady

state. If individuals are sufficiently impatient in the sense β ≤ β0, then m̂ ≤ m0 and the

distribution of buyers over money balances is degenerate. In this case, all buyers in the market

hold the same amount of money, m0. Moreover, a buyer spends all the money whenever he has a

match and an individual alternates stochastically between being a buyer with a balance m0 and a

worker with no money. Thus, when β ≤ β0, our model endogenously generates the patterns that

are assumed in earlier models with indivisible money (e.g., Shi, 1995, and Trejos and Wright,

1995). However, our model does not share the result of these models that a one-time change in

the money stock affects real activities. Instead, money is neutral in the steady state here.
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It is intuitive that the distribution of buyers over money balances is degenerate when individ-

uals are sufficiently impatient.13 Consider a buyer with the highest equilibrium balance, ẑ2. The

buyer can spend this balance in one trade or spread it over several periods in a sequence of pur-

chases. If the buyer spends the entire balance in one trade, he consumes a large amount of goods

in the period. The upside of doing so is that the utility of current consumption is not discounted.

The downside relative to spreading consumption over several periods is that the marginal utility

of large consumption is low. When the buyer is sufficiently impatient, the upside of spending all

the money at once outweighs the downside. In fact, if β ≤ β0, the highest equilibrium balance is

ẑ2 = m0. In this case, all buyers in the market hold the same balance m0.

Thus, for money distribution to be non-degenerate among buyers, a necessary condition is that

individuals are patient. However, high patience is not sufficient for a non-degenerate distribution;

even in the limit β → 1, the additional condition (4.6) is needed. In (4.6), mc is the solution for

m̂ under the supposition that ẑ2 ≤ m0. When (4.6) is satisfied, the supposition is contradicted,

in which case the equilibrium must have m̂ > m0. That is, (4.6) is a necessary condition for

the distribution of buyers over money balances to be non-degenerate. In the limit β → 1, the

condition is also sufficient for the distribution to be non-degenerate.

The condition (4.6) is complicated becausemc, q0(m) and b0(m) are defined implicitly through

some equations (see Appendix F). To illustrate the elements involved, consider:

Example: U(q) = (q+0.1)1−σ−(0.1)1−σ
1−σ , h( ) = 10[1− (1− )η], and μ(b) = 1− b. A higher value of

σ indicates stronger concavity of U , and a higher value of η (< 1) indicates less convexity of h.

For any given (σ, η), we denote K(σ, η) as the critical level of k such that (4.6) is satisfied if and

only if k < K(σ, η). Figure 2.1 depicts K(σ, 0.5) for σ ∈ [1.1, 3] and Figure 2.2 depicts K(2, η)
for η ∈ [0.1, 0.9]. The function K(σ, 0.5) is increasing in σ. This means that when the utility

function of consumption is more concave, (4.6) is more easily satisfied for any given (k, η). Also,

K(2, η) is increasing in η. This means that as the disutility function of labor supply becomes less

convex, (4.6) is more easily satisfied for any given (k, σ).

The above example indicates some elements, in addition to high patience, that are intuitively

important for a buyer to choose to run down the balance in several periods rather than in one

period. First, the cost of creating a trading post cannot be too high. If a trading post is very

costly to create, the number of trading posts in each submarket is small and, hence, the matching

probability is very low for a buyer. It is optimal to spend all the money in one trade in this

13The critical level β0 depends on other features of the model environment. In particular, β0 increases in the
degree of convexity of the disutility function of labor supply. Thus, consistent with an earlier explanation, the case
m̂ < m0 is more likely to occur if the disutility function of labor supply is more convex.
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case because, if the buyer keeps any residual balance, it will be difficult to find a match in the

future to spend it. Second, the utility function of consumption needs to be sufficiently concave.

Intuitively, a more concave utility function increases a buyer’s incentive to smooth consumption

over time by making a round of relatively small purchases rather than one large purchase. Third,

the disutility of labor supply cannot be very convex. As explained earlier, if the marginal cost of

labor supply increases very quickly, the optimal choice is to work for a relatively small amount

of money in a period, spend it all in a trade, and work again, rather than work in one period for

a large amount of money and make a sequence of purchases.14
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Theorem 4.2 also describes the shape of the steady-state distribution. To explain this shape,

consider first the case where an individual with the balance m̂ has no need for a lottery. Then,

14Another element for a non-degenerate distribution is that μ(b) should not increase very quickly with b. If μ(b)
increases very quickly with b, the amount of money required for obtaining any given quantity of goods increases
quickly with b. In this case, the benefit of acquiring a large balance and going through a sequence of purchases is
small relative to the cost of labor supply, and so a buyer will make only one purchase before working again.
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the measure of buyers increases as their money holdings strictly decrease in the purchasing cycle;

i.e., the equilibrium frequency function g is a strictly decreasing function of money holdings

among buyers. This is an intuitive consequence of buyers’ optimal choices described in Theorem

3.2. Because buyers who hold a relatively high balance choose to trade with a relatively high

probability, they exit quickly from the high balance into the lower level of money balance and,

hence, a relatively small number of buyers are left holding a high balance in the steady state.15

Next, consider the case where an individual with the balance m̂ has the need for a lottery. From

each prize of the lottery, ẑj (j = 1, 2), a buyer’s balance in a purchasing cycle goes through

the sequence {φi(ẑj)}n̂j−1i=0 . The above feature of the distribution of real balances holds true for

each of these two sequences. That is, for each j ∈ {1, 2}, the measure of buyers holding φi(ẑj)

increases with i and, hence, decreases with φi(ẑj) for all i ∈ {0, 1, ..., n̂j − 1}. However, with a
non-degenerate lottery at m̂, the overall frequency function of money holdings is not necessarily

monotone. For example, g(φi(ẑ1)) may be greater than, less than or equal to g(φi(ẑ2)) for a

particular i, and the result of the comparison between the two may vary over i.

A non-degenerate distribution of real balances has a wealth effect in the sense that a transfer

of money between two sets of buyers who hold different balances affects the sum of the values

of these buyers. Recall that a buyer’s marginal value of money increases strictly as the buyer’s

balance decreases with each purchase. That is, V 0(φi(ẑj)) > V 0(φi−1(ẑj)) for all i = 0, 1, ..., n̂j

and j = 1, 2 (see part (v) of Theorem 3.2). A transfer of money from a buyer with a relatively

high balance to a buyer with a relatively low balance reduces the gap between the two buyers’

marginal values of money. This transfer increases the sum of the values of the two buyers.

5. Concluding Remarks

In this paper, we have constructed and analyzed a tractable search model of money where the

distribution of money holdings can be non-degenerate. We modeled search as a directed process

in the sense that buyers know the terms of trade before visiting particular sellers. We showed that

the monetary steady state is block recursive in the sense that individuals’ policy functions, value

functions and the market tightness function are all independent of the distribution of individuals

over money balances, although the distribution affects the aggregate activity by itself. Using

lattice-theoretic techniques, we characterized individuals’ policy and value functions, and showed

that these functions satisfy the standard conditions of optimization. We proved that a unique

monetary steady state exists, provided conditions under which the steady-state distribution of

15This result generalizes the result of Green and Zhou (1998) from an economy where goods are indivisible and
money are in discrete units to an economy with fully divisible money and goods.
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buyers over money balances is non-degenerate, and analyzed the properties of this distribution.

We hope that our model provides a new starting point for examining both the long-run

and short-run effects of policies. Although the monetary steady state is block recursive, the

distribution of real balances does matter for the aggregate real activity and welfare. Policies that

permanently redistribute the purchasing power between individuals with different real balances,

such as inflation, affect the steady-state real activity and welfare. Even if a policy does not have

long-run effects, such as a one-time injection of money, it can still affect the real activity and

welfare in the short run. The reason is that individuals’ decisions on how much money to spend

and to work for depend on the rate of return to money, which can be expressed as ωt/ωt+1. By

affecting this rate of return in the short run, a one-time injection of money can affect individuals’

decisions temporarily. Along this line, our model is natural to use for examining how the so-

called liquidity effect of monetary policy (see Lucas, 1990) depends on the way in which money is

injected. For example, the short-run effect of a lump-sum injection is likely to be different from

that of a proportional injection, and the short-run effect of an injection of money to buyers is

likely to be different from that of an injection to firms.

Our model of directed search will be useful for simplifying this analysis of a dynamic equilib-

rium, as well as the steady state. The above discussion suggests that individuals’ value and policy

functions outside the steady state in our model do not depend on the distribution G directly;

rather, they depend on G in the short run only through the rate of return to money, ωt/ωt+1. A

common practice of many central banks is to specify a path of the nominal interest rate. Such a

policy determines the path of the rate of return to money, ωt/ωt+1. Given this path, individuals’

decisions and the market tightness are independent of the distribution G outside the steady state

as well as in the steady state. Hence, in this case, our analysis can be modified in a straight-

forward manner to study dynamics. Furthermore, even if the path of the nominal interest rate

is determined endogenously in the equilibrium rather than being specified by monetary policy,

directed search still simplifies the task of computing a dynamic equilibrium. Because the dis-

tribution can affect individuals’ decisions and market tightness only through a one-dimensional

variable, ωt/ωt+1, the dynamic equilibrium of our model can be solved using the approximation

technique of Krusell and Smith (1998). In contrast, under random search, the individuals’ value

and policy functions depend directly on G and, hence, the equilibrium of the model requires more

computationally intensive techniques (see e.g. Molico, 2006, and Chiu and Molico, 2008).
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Appendix

A. Proof of Lemma 3.1

Take any V ∈ V[0, m̄] as the ex ante value function appearing in a worker’s maximization problem,
(2.1). The objective function in (2.1) is continuous, bounded on [0, m̄] and increasing in m. Then,

the Theorem of the Maximum implies W ∈ C[0, m̄], i.e., a continuous and increasing function on
[0, m̄]. Because the objective function [βV (m+ )− h( )] is strictly concave in ( ,m) jointly, its

maximized value, W (m), is concave in m, and the optimal choice ∗ is unique. With uniqueness,

the Theorem of the Maximum implies that the policy function ∗(m) is continuous (see Stokey

et al., 1989, p62). The choice = 1 can never be optimal under the assumption h0(1) = ∞. It
may be possible that the optimal choice is ∗(m) = 0 when m is sufficiently high. In this case, it

is evident that ∗(m) = 0 is (weakly) increasing in m and y∗(m) = m is strictly increasing in m.

The remainder of this proof focuses on the case where ∗(m) > 0. In this case, y∗(m) =

m+ ∗(m) > m. Reformulate a worker’s problem as (3.2), where the choice is the end-of-period

balance y = m+ . The objective function in (3.2) is strictly concave in (y,m) jointly and h(y−m)
is continuously differentiable in (y,m). Thus, the result in Benveniste and Scheinkman (1979)

applies (see also Stokey et al., 1989, p85). That is, for all m such that the optimal choice y∗(m)

is interior, W (m) is differentiable and the derivative satisfies:

W 0(m) = h0(y∗(m)−m) = h0( ∗(m)).

In addition, using concavity of W and strict convexity of h, we can deduce from the equation

W 0(m) = h0( ∗(m)) that ∗(m) is decreasing in m.

Return to the original maximization problem of a worker, (2.1). Consider any m ∈ [0, m̄]
such that ∗(m) > 0. Because ∗(m) is continuous, there exists ε0 > 0 such that ∗(m ± ε) > 0

for all ε ∈ [0, ε0]. Moreover, we can choose sufficiently small ε0 so that for any ε ∈ [0, ε0], the
choice ∗(m− ε) is feasible to a worker who holds a balance m and the choice ∗(m) is feasible to

a worker who holds a balance m− ε. Then, for any ε ∈ [0, ε0], the optimality of ∗ implies:

W (m) = F ( ∗(m),m) ≥ F ( ∗(m− ε),m),
W (m− ε) = F ( ∗(m− ε),m− ε) ≥ F ( ∗(m),m− ε),

where F ( ,m) temporarily denotes the objective function in (2.1). Hence,

F ( ∗(m− ε),m)− F ( ∗(m− ε),m− ε)

ε
≤ W (m)−W (m− ε)

ε
≤ F ( ∗(m),m)− F ( ∗(m),m− ε)

ε
.

Since W 0(m) exists, taking the limit ε& 0 on the above relations yields βV 0(y∗−(m)) =W 0(m),

where y∗−(m) = m− + ∗(m). Note that the one-sided derivatives V 0(y∗−) and V 0(y∗+) exist
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because V is a concave function (see Royden, 1988, pp113-114). Similarly, we can prove that

βV 0(y∗+(m)) = W 0(m), where y∗+(m) = m+ + ∗(m). Therefore, V is differentiable at y∗(m)

and the derivative satisfies βV 0(y∗(m)) =W 0(m), which is the first equality in (3.1). Substituting

W 0(m) = h0( ∗(m)) yields the second equality in (3.1).

Finally, since V 0 is decreasing and h0 is strictly increasing, the first-order condition βV 0(y∗(m)) =

h0(y∗(m)−m) implies that y∗(m) is strictly increasing. QED

B. Proof of Lemma 3.3

Take any V ∈ V[0, m̄] as the ex ante value function appearing in a buyer’s maximization problem,
(2.2). Applying the Theorem of the Maximum to the problem, we conclude that B is continuous

on [0, m̄] and that a solution to the buyer’s maximization problem exists (see Stokey et al., 1989,

p62). Since V is increasing, the objective function in (2.2) is increasing in m. Since the feasibility

set in the maximization problem is also increasing in m, then B is increasing, i.e., B ∈ C[0, m̄].
As explained earlier in subsection 3.2.1, B has two segments. If m ≤ k, then b∗(m) = 0 and

B(m) = βV (m); if m > k, B(m) solves (3.6).

If b∗ = 0, the choice of x is irrelevant for the buyer because a trade does not take place.

For the remainder of the proof, we focus on the case where b∗(m) > 0. Temporarily denote

F (x, b,m) = bR (x, b,m), where the surplus function R is defined in (3.13). Optimal choices

(x∗, b∗) maximize F (x, b,m).

(1) A buyer’s optimal choices are unique and the policy functions are continuous.

If R(x, b∗,m) < 0, the optimal choice is b∗ = 0; if R(x, b∗,m) = 0, then the choice b∗ = 0 is

not dominated by other choices of b. Because we focus on b∗ > 0, it suffices to examine a buyer’s

optimal choices when R (x, b,m) > 0. With b > 0 and R (x, b,m) > 0, we can transform a buyer’s

maximization problem as

B (m) = βV (m) + exp

½
max
x,b

[ln b+ lnR (x, b,m)]

¾
.

The function (ln b) is concave. Recall that u(x, b) is strictly concave in (x, b) jointly. Since V is

concave, then V (m− x) is concave in x. Thus, R (x, b,m) defined in (3.13) is strictly concave

in (x, b) jointly. Since the logarithmic function is strictly increasing and strictly concave, the

function [ln b+ lnR (x, b,m)] is strictly concave in (x, b) jointly. The Theorem of the Maximum

implies that a buyer’s optimal choices (x∗, b∗) are unique for each m and the policy functions

(x∗(m), b∗(m)) are continuous. So are the policy functions q∗(m) and φ(m).

(2) Monotonicity of the policy functions x∗(m) and b∗(m).
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Consider any m ∈ [k, m̄] such that b∗(m) > 0. We solve a buyer’s maximization problem in

two steps: first, the optimal choice of x solves the problem in (3.14) for any given (b,m); second,

the optimal choice of b solves the problem in (3.15).

Take the first step. For any given (b,m), the optimal choice of x maximizes R(x, b,m) and is

denoted x̃ (b,m) as in (3.14). Because u(x, b) is strictly concave in x and V is concave, R(x, b,m)

is strictly concave in x, which implies that a unique x̃ exists for any given (b,m). We prove that

R(x, b,m) is supermodular. Since the choice set of x, [0,m], is increasing in m and independent

of b, supermodularity of R(x, b,m) and uniqueness of x̃ imply that the maximizer x̃ (b,m) is

an increasing function of (b,m) (see Topkis, 1998, p76) and that the maximized value of R is

supermodular in (b,m) (see Topkis, 1998, p70).

To prove that R(x, b,m) is supermodular, note that the feasibility set of (x, b,m) is {(x, b,m) :
0 ≤ x ≤ m, 0 ≤ b ≤ 1, k ≤ m ≤ m̄}. This set is a sublattice in R3+ with the usual relation
“≥”. It suffices to prove that R has increasing differences in the three pairs, (b,m), (x, b) and

(x,m) (see Topkis, 1998, p45). Take arbitrary m1, m2, x1, x2, b1 and b2 from the feasibility set,

with m2 > m1, x2 > x1, and b2 > b1. Because R is separable in b and m, it is clear that R has

(weakly) increasing differences in (b,m). For the differences in (x, b), compute:

R (x2, b,m)−R (x1, b,m) = [u (x2, b)− u (x1, b)] + β [V (m− x2)− V (m− x1)] .

Since u(x, b) is strictly supermodular in (x, b), we have:

[R (x2, b2,m)−R (x1, b2,m)]− [R (x2, b1,m)−R (x1, b1,m)]
= [u (x2, b2)− u (x1, b2)]− [u (x2, b1)− u (x1, b1)] > 0.

That is, R has strictly increasing differences in (x, b). For the differences in (x,m), we have:

[R (x2, b,m2)−R (x1, b,m2)]− [R (x2, b,m1)−R (x1, b,m1)]
= β [V (m1 − x1)− V (m1 − x2)]− β [V (m2 − x1)− V (m2 − x2)] ≥ 0.

The inequality follows from concavity of V (see Royden, 1988, p113) and the facts that m1−x1 <
m2−x1, m1−x2 < m2−x2, and (m1 − x1)− (m1 − x2) = (m2 − x1)− (m2 − x2) = x2−x1 > 0.

Thus, R (x, b,m) has increasing differences in (x,m).

Denote R̃ (b,m) = R (x̃ (b,m) , b,m) as in (3.14). From the above proof, R̃ (b,m) is super-

modular in (b,m). Because R (x, b,m) strictly decreases in b for any given (x,m), then R̃ (b,m)

is strictly decreasing in b. To examine the dependence of R̃ (b,m) on m, take arbitrary m1 and

m2 in [k, m̄], with m2 ≥ m1. We have:

R (x, b,m2)−R (x, b,m1) = β [V (m1)− V (m1 − x)]− β [V (m2)− V (m2 − x)] ≥ 0,

where the inequality follows from concavity of V . Since the above result holds for all (x, b), then

R̃ (b,m1) = R (x̃ (b,m1) , b,m1) ≤ R (x̃ (b,m1) , b,m2) ≤ R (x̃ (b,m2) , b,m2) = R̃ (b,m2) .
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Note that for the second inequality we have used the fact that x̃ (b,m1) is feasible in the problem

maxx≤m2 R (x, b,m2). Thus, R̃ (b,m) increases in m.

Now let us take the second step, i.e., to characterize the optimal choice of b. Denote the

optimal choice of b as b∗(m) = argmaxb∈[0,1] f (b,m), where

f (b,m) = F (x̃ (b,m) , b,m) = b R̃ (b,m) .

We show that f is supermodular in (b,m). Take arbitrary b1, b2 ∈ [0, 1], with b2 > b1, and

arbitrary m1,m2 ∈ [k, m̄], with m2 > m1. Compute:

[f (b2,m2)− f (b1,m2)]− [f (b2,m1)− f (b1,m1)]

= b2

h
R̃ (b2,m2)− R̃ (b1,m2) + R̃ (b1,m1)− R̃ (b2,m1)

i
+(b2 − b1)

h
R̃ (b1,m2)− R̃ (b1,m1)

i
.

Because R̃ (b,m) is supermodular in (b,m), the first difference on the right-hand side is positive.

Because R̃ (b,m) is increasing in m, the second difference on the right-hand side is also positive.

Thus, f (b,m) is supermodular in (b,m) on [0, 1] × [k, m̄]. Note also that the choice set for b,
[0, 1], is independent of m and that the optimal choice b∗ is unique. Thus, b∗(m) is increasing in

m (see Topkis, 1998, p76). Since x̃ (b,m) is increasing in (b,m), the optimal choice of x, given by

x∗(m) = x̃ (b∗(m),m), is increasing in m.

(3) q∗(m) is an increasing function.

Denote a = m− x+ q and use (q, a) as a buyer’s choices. Using (3.4), we can express:

m− x = a− q, b = μ−1
µ

k

m− a

¶
.

Because b ≥ 0, the relevant domain of a is [0,m− k]. The relevant domain of q is [0, a]. A buyer

chooses (q, a) ∈ [0, a]× [0,m− k] to solve:

max
(q,a)

μ−1
µ

k

m− a

¶
[U (q) + βV (a− q)− βV (m)] .

We can divide this problem into two steps: first solve q for any given (a,m) and then solve a.

For any given (a,m), the optimal choice of q, denoted as q̃ (a), solves:

J (a) ≡ max
0≤q≤a

[U (q) + βV (a− q)] .

Note that q and J do not depend on m for any given a. It is easy to see that the objective

function above is supermodular in (q, a). Since the choice set, [0, a], is increasing in a and q̃ is

unique, then q̃ (a) and J (a) increase in a (see Topkis, 1998, p76 and p70).
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The optimal choice of a is a∗(m) = argmax0≤a≤m−k∆ (a,m), where

∆ (a,m) = μ−1
µ

k

m− a

¶
[J (a)− βV (m)] .

Note that if J (a) < βV (m), the buyer can choose a = m − k to obtain ∆ = 0. Thus, focus

on the case where J(a) ≥ βV (m). Since μ(b) is strictly decreasing in b and 1/μ(b) is strictly

convex in b, the function μ−1( k
m−a) strictly increases in m, strictly decreases in a, and is strictly

supermodular in (a,m). Thus, for arbitrary a2 > a1 and m2 > m1 ≥ k, we have:

∆ (a2,m2)−∆ (a1,m2)−∆ (a2,m1) +∆ (a1,m1)

=
h
μ−1

³
k

m2−a2
´
− μ−1

³
k

m1−a2
´i
[J (a2)− J (a1)]

+
h
μ−1

³
k

m2−a1
´
− μ−1

³
k

m2−a2
´i
[βV (m2)− βV (m1)]

+
h
μ−1

³
k

m2−a2
´
− μ−1

³
k

m2−a1
´
− μ−1

³
k

m1−a2
´
+ μ−1

³
k

m1−a1
´i
[J (a1)− βV (m1)] .

The first term on the right-hand side is positive because J (a) increases in a and μ−1( k
m−a)

increases in m. The second term on the right-hand side is positive because μ−1( k
m−a) decreases

in a and V (m) increases in m. The third term on the right-hand side is strictly positive because

μ−1( k
m−a) is strictly supermodular in (a,m). Therefore, ∆ (a,m) is strictly supermodular. Since

the choice set [0,m− k] is also increasing in m, the solution a∗(m) increases in m (see Topkis,

1998, p76). Since q̃ (a) increases in a, then q∗(m) = q̃ (a∗(m)) increases in m.

(4) φ(m) is an increasing function.

We reformulate a buyer’s problem by letting the choices be (φ, a), where a is defined as

a = φ+ q. From the definition of a and (3.4), we can express

q = a− φ, b = μ−1
µ

k

m− a

¶
.

The relevant domain of φ is [0,min{m,a}], and of a is [0,m− k]. A buyer solves:

max
(φ,a)

μ−1
µ

k

m− a

¶
[U (a− φ) + βV (φ)− βV (m)] . (B.1)

As in the above formulation where the choices are (q, a), we can divide the maximization problem

into two steps. First, for any given a, the optimal choice of φ solves:

J (a) = max
φ≥0

[U (a− φ) + βV (φ)] . (B.2)

Note that we have written the constraint on φ as φ ≥ 0, instead of φ ∈ [0,min{m,a}]. The
optimal choice satisfies φ < m, because φ = m implies x = 0 which is not optimal (in the case
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with b > 0). Also, φ < a under the assumption that U 0 (0) is sufficiently large. Denote the

solution for φ as φ̃ (a). Second, the optimal choice of a solves

B(m)− βV (m) = max
0≤a≤m−k

μ−1
µ

k

m− a

¶
[J (a)− βV (m)] . (B.3)

Similar to the procedure used in the above formulation of the problem where the choices are

(q, a), we can prove that a∗(m) increases in m and, hence, φ∗(m) increases in m. QED

C. Proof of Lemma 3.4

Take any V ∈ V[0, m̄] as the ex ante value function appearing in a buyer’s problem and consider

any arbitrary m ∈ [k, m̄] such that b∗(m) > 0. Parts (1) - (4) below establish Lemma 3.4.
(1) The one-sided derivatives of B satisfy (3.16) and (3.17). B0(m) exists if and only if V 0(m)

exists. Moreover, B(m) is strictly increasing.

Consider the formulation of a buyer’s problem, (B.1), where the choices are φ and a = φ+ q.

Let a and a0 be arbitrary levels in [0,m− k]. Note that the constraint on the choice φ is φ ≥ 0,
which does not depend on a. Thus, the choice φ̃ (a) is feasible in the maximization problem with

a0 and the choice φ̃(a0) is feasible in the maximization problem with a. Using a proof similar to

the one in Appendix A that established the existence of V 0(y∗(m)), we can prove that J 0(a−) and

J 0(a+) both exist and are equal to

J 0 (a) = U 0 (q̃ (a)) > 0, (C.1)

where φ̃ and q̃ (a) ≡ a− φ̃ (a) are given in part (4) of the above proof of Lemma 3.3.

Next, we prove that the objective function in (B.3) is strictly concave in a and derive the

first-order condition of a. Recall that q̃ (a) is an increasing function, as shown in the above proof

of Lemma 3.3. This result and (C.1) together imply that J 0 (a) is decreasing, i.e., that J (a) is

concave. Because J (a) is increasing and concave, and μ−1( k
m−a) is strictly decreasing and strictly

concave in a, it can be verified that the objective function in (B.3) is strictly concave in a. Strict

concavity of the objective function implies that the optimal choice of a is unique. Also, because

the objective function is differentiable in a, the optimal choice of a is given by the first-order

condition. Deriving the first-order condition, substituting J 0 (a) from (C.1), and substituting

μ−1( k
m−a∗ ) = b∗(m), we obtain:

J (a∗)− βV (m) + U 0 (q̃ (a∗))
kμ0b∗(m)

μ2
≤ 0 and a∗ ≤ m− k, (C.2)

where the two inequalities hold with complementary slackness.
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Now we derive (3.16) and (3.17), which clearly imply that B0(m) exists if and only if V 0(m)

exists. Note that b∗(m) > 0 implies a∗(m) < m − k. Because a∗(m) < m − k and a∗(m) is

continuous, there exists ε > 0 such that a∗ (m+ ε) < m − k and a∗(m) < m − ε − k. Consider

the neighborhood O(m) = (m− ε,m+ ε). For any m0 ∈ O(m), the choice a∗ (m0) is feasible in

the problem where the balance is m, and the choice a∗(m) is feasible in the problem where the

balance is m0. Applying to (B.3) a proof similar to Appendix A that established the existence of

V 0(y∗(m)), we can derive the formulas of B0(m+) and B0(m−) for any m such that b∗(m) > 0.

These formulas and the first-order condition of a∗, (C.2), together yield:

B0 (m+) = b∗(m) [J 0 (a∗)− βV 0 (m+)] + βV 0 (m+) ,
B0 (m−) = b∗(m) [J 0 (a∗)− βV 0 (m−)] + βV 0 (m−) .

Again, we have used the fact that a concave function has one-sided derivatives. Substituting

J 0(a∗) from (C.1) and U 0(q∗) = u1 (x
∗, b∗) into the above equations, we obtain (3.16) and (3.17).

Finally, we prove that B is strictly increasing. Since V is concave and increasing, V 0(m−) ≥
V 0 (m+) ≥ 0. Since b∗ ≤ 1 and J 0 (a∗(m)) > 0, the above equations for B0(m+) and B0(m−)

imply that B0(m−) ≥ B0 (m+) ≥ b∗(m)J 0 (a∗) > 0, where we have used the hypothesis b∗(m) > 0.

Therefore, B(m) is strictly increasing if b∗(m) > 0.

(2) The optimal choice b∗ satisfies the first-order condition (3.8). If φ(m) > 0, then V 0 (φ(m))

exists, and the optimal choice x∗satisfies the first-order condition (3.9).

For any given (x,m), the objective function in a buyer’s problem (3.6) is differentiable with

respect to b. Thus, if the optimal choice b∗ is interior, it satisfies the first-order condition (3.8).

Now consider the optimal choice x∗ and assume φ(m) > 0 (i.e., x∗(m) < m). Since x∗(m) < m,

a procedure similar to the derivation of J 0 (a) in part (1) above but applied to (3.6) yields:

B0 (m+) = β [b∗(m)V 0 (φ+(m)) + (1− b∗(m))V 0 (m+)]
B0 (m−) = β [b∗(m)V 0 (φ−(m)) + (1− b∗(m))V 0 (m−)] ,

where φ+(m) = m+ − x∗(m) and φ−(m) = m− − x∗(m). Comparing these equations with (3.16)

and (3.17) yields that V 0 (φ+(m)) = V 0 (φ−(m)) = V 0(φ) which is given by (3.9).

(3) For any m ∈ [k, m̄) such that b∗(m) > 0, if B(m) = V (m) and if there exists a neighborhood

O 3 m such that B(m0) ≤ V (m0) for all m0 ∈ O, then B0(m) and V 0(m) exist and satisfy (3.10)

in part (iv) of Theorem 3.2. Also, (3.10) holds for m = m̄ if B0(m̄) = V 0(m̄).

Take any m ∈ [k, m̄) that satisfies the hypotheses described in this part. Because B(m0) ≤
V (m0) for all m0 ∈ O(m) and B(m) = V (m), continuity of B and V implies that B0 (m−) ≥
V 0 (m−) and B0 (m+) ≤ V 0 (m+). Substituting V 0(m−) ≤ B0(m−) into the right-hand side of
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(3.17), we get:

V 0
¡
m−

¢ ≤ B0(m−) ≤ b∗(m)
1− β [1− b∗(m)]

u1 (x
∗(m), b∗(m)) . (C.3)

Similarly, substituting V 0(m+) ≥ B0(m+) into the right-hand side of (3.16), we get:

V 0
¡
m+

¢ ≥ B0(m+) ≥ b∗(m)
1− β [1− b∗(m)]

u1 (x
∗(m), b∗(m)) . (C.4)

On the other hand, concavity of V implies V 0 (m−) ≥ V 0 (m+). Thus, V 0 (m−) = B0(m−) =

B0(m+) = V 0 (m+). Moreover, V 0(m) and B0(m) satisfy (3.10).

If m = m̄, it is still true that B0(m−) ≥ V 0(m−), and so (C.3) also holds at m = m̄. However,

since we cannot presume V 0(m̄+) ≥ B0(m̄+), we cannot conclude that (C.4) holds at this point.

If B0(m̄) = V 0(m̄), however, (3.16) and (3.17) imply that (3.10) holds at m = m̄.

(4) Consider any m ∈ [k, m̄) such that b∗(m) > 0 and φ(m) > 0. If B(m) = V (m) and if there

exists a neighborhood O surrounding m such that B(m0) ≤ V (m0) for all m0 ∈ O, then b∗ and

φ are strictly increasing at m and V is strictly concave at φ(m), with V (φ(m)) = B (φ(m)) and

V 0(φ(m)) > V 0(m). These properties also hold for m = m̄ if B0(m̄) = V 0(m̄).

Take any arbitrary m1 ∈ [k, m̄] that satisfies the hypotheses for m described in this paper.

If m1 = m̄, then add the assumption B0(m1) = V 0(m1). Shorten the notation φ(m1) as φ1 and

b∗(m1) as b
∗
1. As a preliminary step, we prove V

0(φ1) > V 0(m1) so that V must be strictly concave

in some sections of [φ1,m1]. By the construction ofm1, V
0(m1) satisfies (3.10) and V

0(φ1) satisfies

(3.9). Subtracting the two relations yields:

V 0 (φ1)− V 0 (m1) =
1− β

β [1− β (1− b∗1)]
u1(x

∗
1, b

∗
1) > 0.

Next, we prove that b∗ (.) is strictly increasing at m1. Let m2 be sufficiently close to m1

so that φ(m2) > 0 and b∗(m2) > 0 (which is feasible because φ(m) and b(m) are continuous

functions). Shorten the notation (x∗(mi), b
∗(mi), φ(mi)) to (x

∗
i , b

∗
i , φi), where x

∗
i = mi − φi and

i = 1, 2. Since the proofs of strict monotonicity of b∗(m1) at m1 are similar in the cases m2 > m1

and m2 < m1, let us consider only the case m2 > m1. By Lemma 3.3, x
∗
2 ≥ x∗1, b∗2 ≥ b∗1 and

φ2 ≥ φ1. We prove that b
∗
2 > b∗1. Because b∗i > 0, the first-order condition for b, (3.8), yields:

u(x∗i , b
∗
i ) + β[V (φi)− V (mi)] + b∗iu2(x

∗
i , b

∗
i ) = 0.

Subtracting these conditions for i = 1, 2, and re-organizing, we get:

u(x∗1, b∗1)− u(x∗1, b∗2)− b∗2u2(x∗2, b∗2) + b∗1u2(x∗1, b∗1)
= {u(x∗2, b∗2) + β[V (m2 − x∗2)− V (m2)]− u(x∗1, b∗2)− β[V (m2 − x∗1)− V (m2)]}

+β {V (m1)− V (m1 − x∗1) + V (m2 − x∗1)− V (m2)} .
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The term in the first pair of braces on the right-hand side is equal to [R (x∗2, b∗2,m2)−R (x∗1, b∗2,m2)],

where R is defined by (3.13). This term is non-negative because x∗2 maximizes R (x, b∗2,m2) and

x∗1 is a feasible choice of x in this maximization problem (as x∗1 ≤ x∗2). The term in the second pair

of braces is strictly positive because V is strictly concave in some sections of [φ1,m1] ⊂ [φ1,m2],

as proven earlier. Thus, the left-hand side of the above equation must be strictly positive. Noting

that u2 (x
∗
2, b

∗
2) ≥ u2 (x

∗
1, b

∗
2) (because u12 > 0 and x∗2 ≥ x∗1), we get:

u(x∗1, b
∗
1)− u(x∗1, b

∗
2)− b∗2u2(x

∗
2, b

∗
2) + b∗1u2(x

∗
1, b

∗
1) > 0.

The left-hand side of this inequality is a strictly increasing function of b∗2, and it is equal to 0

when b∗2 = b∗1. Thus, the inequality implies b∗2 > b∗1.

Let us complete the proof of part (4). Since (3.10) and (3.9) hold at m = m1, we can combine

the two relations to obtain:

V 0 (φ1) = V 0(m1)

∙
1− β

βb∗(m1)
+ 1

¸
.

Because b∗(m1) is strictly increasing at m1 and V is concave, the right-hand side above is strictly

decreasing in m1. Thus, the above equation requires V to be strictly concave at φ(m1) and φ to

be strictly increasing at m1. QED

D. Proof of Theorem 3.5

We prove each part of Theorem 3.5 in turn.

Part (i). Let us express the functional equation (2.1) in a worker’s problem asW (m) = TWV (m)

form ∈ [0, m̄], and express the functional equation (2.2) in a buyer’s problem as B(m) = TBV (m)

for m ∈ [0, m̄]. Substituting these expressions into (2.3) to obtain Ṽ , we can rewrite (2.4) as

V (m) = TV (m), where

TV (m) ≡ max
(z1,z2,π1,π2)

[π1max{TWV (z1), TBV (z1)}+ π2max{TWV (z2), TBV (z2)}]
(D.1)

s.t. π1z1 + π2 z2 = m, π1 + π2 = 1, z2 ≥ z1,
πj ∈ [0, 1] and zj ≥ 0 for j = 1, 2.

Lemma 3.1 proves that TW maps V[0, m̄] into V[0, m̄]; i.e., TW maps the set of continuous,

increasing and concave functions on [0, m̄] into itself. Theorem 3.2 proves that TB maps V[0, m̄]
into C[0, m̄] (but not necessarily into V[0, m̄]). Thus, the objective function in (D.1) is a continuous
function of z1 and z2. Also, the objective function is increasing in π1 and π2, and the feasibility

set in the above problem is increasing in m. These features of the maximization problem above
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imply that T maps V[0, m̄] into C[0, m̄]. Moreover, since the function max{TWV (z), TBV (z)}
is continuous in z on a closed interval [0, m̄] 3 z, the lottery in (2.4) makes TV (m) a concave

function (see Appendix F in Menzio and Shi, 2010, for a proof). Thus, T is a self-map on V[0, m̄].
It is evident from (2.1) and (2.2) that TW and TB are monotone mappings, and so T is a

monotone mapping. It is also easy to verify that TW and TB feature discounting with a factor

β ∈ (0, 1). Thus, T features discounting with a factor β. Hence, T satisfies Blackwell’s sufficient
conditions for a monotone contraction mapping, which imply that T has a unique fixed point

V ∈ V[0, m̄] (see Stokey et al., 1989).
Part (ii). For a worker with any balance m, the choice of working zero hours yields the value

βV (m). Because this choice is always feasible, W (m) ≥ βV (m) for all m. For a buyer who

holds m ≤ k, the value is B(m) = βV (m) ≤ W (m). It is clear that V (0) = Ṽ (0) = W (0).

Also, V (0) ≥ 0, because an individual without money can always choose not to trade. To prove
V (0) > 0, suppose V (0) = 0, to the contrary. In this case, 0 = V (0) ≥W (0) ≥ βV (0) = 0, and so

W (0) = V (0) = 0. Using the definition of W (0), we have βV (m̂)−h(m̂) = 0. Since this equation
has a unique solution and since m̂ = 0 satisfies the equation, then m̂ = 0. Recall that m̂ = ∗(0)

is the optimal labor supply of an individual without money and that the policy function ∗(m) is

decreasing in m. Thus, m̂ = 0 implies that ∗(m) = 0 for all m ≥ 0. In this case, no individual
will work for money, and so a monetary equilibrium does not exist. Therefore, for a monetary

equilibrium to exist, it must be the case that V (m) ≥W (m) ≥W (0) = V (0) > 0 for all m.

We now prove that V (m) > W (m) for all m > 0. For all m > 0 such that the constraint

y∗ ≥ m is binding for a worker, (3.2) yields W (m) = βV (m) < V (m). Now consider m > 0

such that the constraint y∗ ≥ m is not binding for a worker. Contrary to the result in this part,

suppose V (m̃) = W (m̃) for some m̃ > 0 such that y∗(m̃) > m̃. Since βV 0(y∗(m̃)) = W 0(m̃) by

(3.1) in Lemma 3.1, then V 0(y∗(m̃)) > 0, and concavity of V implies V 0(m̃−) > 0. In this case,

V 0
¡
m̃−

¢ ≤W 0(m̃) = βV 0(y∗(m̃)) ≤ βV 0(m̃−) < V 0(m̃−).

The first inequality follows from the hypothesis V (m̃) = W (m̃) and the fact V (m) ≥ W (m) for

all m < m̃. The equality is from (3.1). The second inequality follows from concavity of V , and

the last inequality from V 0(m̃−) > 0. Since the above result is a contradiction, we conclude that

V (m) > W (m) for all m > 0.

Part (iii). We prove first that there is some m0 ∈ (0,∞) such that B (m0) > W (m0). Suppose,

to the contrary, that B(m) ≤ W (m) for all m ∈ (0,∞). Then, Ṽ (m) = W (m) for all m. Since

W (m) is concave (see Lemma 3.1), Ṽ (.) is concave in this case, and so V (m) = Ṽ (m) = W (m)
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for all m. In this case, (3.2) yields

V (m) = max
y≥m

[βV (y)− h(y −m)] , all m > 0.

If y∗(m) = m, the above equation yields V (m) = 0, which contradicts part (ii) above. If y∗(m) >

m, (3.1) in Lemma 3.1 implies that W is differentiable at m, with W 0(m) = βV 0(y∗(m)) > 0.

Since W (m) = V (m) for all m > 0 in this case, V 0(m) = W 0(m) = βV 0(y∗(m)) ≤ βV 0(m). This

implies V 0(m) = 0 = V 0(y∗(m)), which contradicts V 0(y∗(m)) > 0.

Next, we prove that there exists m0 ∈ (k, m̄] with V (m0) = B(m0) such that an individual

with m < m0 will play the lottery with the prize m0. For an individual with a balance m ∈ (0, k),
the lottery with z1 = 0 and z2 = m0 yields a value higher than Ṽ (m), where m0 is described

above. Thus, these individuals will participate in lotteries. However, m0 may not necessarily be

the optimal prize of the lottery for these individuals. The optimal prize is m0, defined by (3.18).

Clearly, m0 > k > 0, V (m0) = Ṽ (m0) = B(m0), and V (m) ≥ Ṽ (m) for all m ∈ [0,m0].

Now we prove that b∗(m0) > 0 and φ(m0) = 0. Suppose b
∗(m0) = 0 to the contrary, and so

B(m0) = βV (m0). Since V (m0) = B(m0), as shown above, then V (m0) = 0, which contradicts

the above result in part (ii) that V (m) > 0 for all m ≥ 0. Thus, it must be true that b∗(m0) > 0.

Since V (m0) = B(m0), (C.3) holds for m = m0 which, together with b∗(m0) > 0, implies

V 0(m−0 ) < u1 (x
∗(m0), b

∗(m0)) /β. Since V (m) is linear for m ∈ [0,m0], then V 0 (φ(m0)) =

V 0(m−0 ) < u1 (x
∗(m0), b

∗(m0)) /β. If φ(m0) > 0, then (3.9) holds for m = m0, which yields the

contradiction that V 0 (φ(m0)) = u1 (x
∗(m0), b

∗(m0)) /β. Thus, it must be true that φ(m0) = 0.

Finally, since V (m0) = B(m0) and b∗(m0) > 0, m0 satisfies the hypotheses in part (iv)

of Theorem 3.2 if m0 < m̄. Thus, if m0 < m̄, then (3.10) holds for m = m0, which implies

V 0(m0) = B0(m0) > 0.

Part (iv). We first prove that V 0 (m) exists for all m ∈ [0, m̄) and B0(m) exists for all m ∈ [k, m̄)
such that b∗(m) > 0. If V 0(m) exists for all m ∈ [0, m̄), then part (iii) of Theorem 3.2 implies

that B0(m) exists for all m ∈ [k, m̄) such that b∗(m) > 0. To prove that V 0(m) exists for all

m ∈ [0, m̄), note that the lottery with the prize m0 implies that V
0(m) exists for all m ∈ [0,m0).

If m0 = m̄, then V 0(m) exists for all m ∈ [0, m̄). If m0 < m̄, then V 0(m0) also exists, as shown in

part (iii) above. What remains to be proven is that V 0(m) exists for all m ∈ (m0, m̄). Suppose to

the contrary that V 0(m̃) does not exist for some m̃ ∈ (m0, m̄). In this case, V
0(m̃−) > V 0(m̃+),

and so V is strictly concave at m̃. Because V (m) > W (m) for all m > 0, as proven in part (ii)

above, we must have V (m̃) = B(m̃). Also, b∗(m̃) ≥ b∗(m0) > 0. Thus, the hypotheses in part

(iv) of Theorem 3.2 are true for m = m̃, and so V 0(m̃) exists. This contradicts the supposition

that V 0(m̃) does not exist.
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Next, we prove that V 0(m) > 0 for all m ∈ [0, m̄). For all m ∈ [0,m0), V (m) is linear

and V 0(m) = V 0(m−0 ) > 0. If m0 = m̄, then V 0(m) > 0 for all m ∈ [0, m̄). If m0 < m̄,

then V 0(m0) = B0(m0) > 0, as proven in part (iii) above. We need to prove V 0(m) > 0 for all

m ∈ [m0, m̄). Consider any m > m0. Since b∗(m0) > 0 and b∗(m) is an increasing function

(see part (i) of Theorem 3.2), then b∗(m) > 0, which further implies that B(m) is strictly

increasing (see part (iii) of Theorem 3.2). Because Ṽ (m) = B(m) for all m ≥ m0, then Ṽ (m)

is strictly increasing over such m. Recall that V (m) is constructed with lotteries over Ṽ (m). If

V (m1) = V (m2) for some m2 > m1 > m0, contrary to the claimed result, then V (m) must be

constant for all m ∈ [m1,m2]. Extend this interval to [m
0
1,m

0
2], with m0

1 ≤ m1 and m0
2 ≥ m2, so

that V (m0
1) = Ṽ (m0

1) and V (m0
2) = Ṽ (m0

2). Then, Ṽ (m
0
2) = V (m2) = V (m1) = Ṽ (m0

1), which

contradicts strict monotonicity of Ṽ .

   C

 B (m )

   A

  0  k    γ (m 2)         m ^         m 1 m 2    m

Figure 3.1

       C

   B (m )

   A

  0     k         m ^    z2(m ^)        m

Figure 3.2

47



       B (m )

  0        z1     m ^  m 1        m

Figure 3.3

Part (v). For each exogenous upper bound on individuals’ money holdings, the policy and value

functions are characterized by the results in section 3 up to part (iv) of the current theorem. Now

we allow the upper bound to vary and prove that individuals’ money holdings in the equilibrium

are indeed bounded above by m̄ that satisfies part (v) of the current theorem. Note first that the

balance obtained by a worker is m̂ = ∗(0) ≤ 1, which is clearly bounded above. If B(m̂) = V (m̂)

and B0(m̂) = V 0(m̂), then z∗2(m̂) = ẑ2 = m̂ in which case we can set m̄ = m̂, which satisfies the

properties stated in this part. If B(m̂) < V (m̂) and z∗2(m̂) < ∞, then we can set m̄ = z∗2(m̂),

which satisfies the properties stated in this part. Thus, it suffices to show that an equilibrium

does not have the “unbounded case” where B(m̂) < V (m̂) and z∗2(m̂) =∞. To begin, note that
the unbounded case occurs if and only if there exists a finite m1 > m̂ such that the following two

conditions are satisfied:

(A) B(m) is strictly increasing and strictly convex for all m ≥ m1;

(B) for every m2 ≥ m1, there exists z1 < m̂ such that, for all m ∈ (z1,m2), B(m)

lies strictly below the line segment connecting B(z1) and B(m2).

Figure 3.1 depicts this unbounded case. If (A) is violated, as depicted in Figure 3.2, then there

must exist a finite number m1 > m̂ such that B(m) is concave for all m ≥ m1. In this case, the

high prize of the lottery at m̂ is z∗2(m̂) <∞ and so m̄ = z∗2(m̂) has the properties stated in this

part of Theorem 3.5. If (B) is violated, as depicted in Figure 3.3, then there must exist a finite

m1 > m̂ and an associated z1 < m̂ such that the low prize of the lottery at m̂ is z1 and the high

prize is m1 and that, for all m > m1, the function B(m) lies strictly below the extension of the

line connecting B(z1) and B(m1). In this case, m̄ = m1 satisfies the properties in this part of
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Theorem 3.5. Note that in the case depicted in Figure 3.3, B(m) can still be strictly increasing

and strictly convex for sufficiently large m, but such a section of B is irrelevant in the equilibrium

because an individual’s balance never goes above m1.

On the way to derive a contradiction, suppose that there exists a finite m1 > m̂ such that (A)

and (B) above are satisfied, as depicted in Figure 3.1. Consider any arbitrary m2 ≥ m1. When

individuals’ money holdings are exogenously capped by m2, the lottery at m̂ is well-defined, with

m2 as the high prize, and all characterizations of the policy and value functions that we have

obtained so far (including parts (i)-(iv) of the current Theorem 3.5) remain valid with m̄ = m2.

However, since B0(m2) > V 0(m2) in this case, we have B
0(m̄) > V 0(m̄). Denote the low prize of

the lottery at m̂ as z∗1(m̂) = γ(m2) so as to emphasize its dependence on the exogenous upper

bound m2. Without loss of generality, assume that m̂ ≥ m0, i.e., B(γ(m2)) = V (γ(m2)). (If

B(γ(m2)) < V (γ(m2)), then γ(m2) = 0, in which case the proof is still valid after replacing

V (γ(m2)) below with V (0).) Denote

α(m2) =
B(m2)− V (γ(m2))

m2 − γ(m2)
,

V̂ (m) = B(m2)− α(m2)(m2 −m), m ∈ [0,m2].

Here, α(m2) is the slope of the line connecting B(γ(m2)) and B(m2), and V̂ (m) is the extension

of this line to the domain [0,m2] (depicted in Figure 3.1 by the dashed line from point A to point

C). It is clear that V (m) ≤ V̂ (m) for m ∈ [0,m2], with equality if m ∈ [γ(m2),m2]. We have:

B(m2) = max
b∈[0,1],x∈[0,m2]

{b [u(x, b) + βV (m2 − x)] + (1− b)βV (m2)}
≤ max

b∈[0,1],x∈[0,m2]

n
b
h
u(x, b) + βV̂ (m2 − x)

i
+ (1− b)βV̂ (m2)

o
= max

b∈[0,1],x∈[0,m2]

n
b [u(x, b)− βα(m2)x] + βV̂ (m2)

o
≤ D(α(m2)) + βV̂ (m2),

where D(α(m2)) ≡ max
b∈[0,1],q≥0

b
n
U(q)− βα(m2)

h
q + k

μ(b)

io
.

The first inequality follows from the fact that V (m) ≤ V̂ (m) for all m ∈ [0,m2], and the ensuing

equality comes from the linearity of V̂ . The second inequality comes from ignoring the constraint

x ≤ m2, substituting x = q+ k
μ(b) , and solving the maximization problem with (q, b) as the choices.

By construction, B(m2) = V (m2) = V̂ (m2), and so the above result implies B(m2) ≤ D(α(m2))
1−β .

The notation D(α(m2)) emphasizes the fact that D depends on m2 only through α(m2).

Applying the envelope condition to the maximization problem that defines D(α) above, we have

D0(α) < 0. Because γ(m2) is the low prize of the lottery at m̂, we have V
0(γ(m2)

+) ≤ α(m2) ≤
V 0(γ(m2)

−). Since m1 satisfies (A), we can verify that γ(m2) decreases in m2 for all m2 ≥ m1.
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Concavity of V implies that α(m2) increases in m2. Thus, for all m2 ≥ m1, we have α(m2) ≥
α(m1) > 0 and D(α(m2)) ≤ D(α(m1)) <∞. Therefore, B(m2) ≤ D(α(m1))/(1− β) <∞ for all

m2 ≥ m1. This result contradicts the supposition that B(m) is a strictly increasing and convex

function for all m2 ≥ m1. QED

E. Proof of Lemma 4.1

Part (i) of the lemma is implied by part (iii) of Theorem 3.5, with m = m̂. Part (ii) of the lemma

is obvious if m̂ < m0 and, if m̂ ≥ m0, it is implied by part (iii) of the lemma. In particular, since

part (iii) implies that B(φi(ẑj)) = V (φj(ẑj)), B
0(φi(ẑj)) = V 0(φi(ẑj)) and V is strictly concave at

φi(ẑj) for all i in the set {0, 1, 2, ..., n̂j−1}, then φi(ẑj) ≥ m0 and a buyer with the balance φ
i(ẑj)

has no need for a lottery for any i in the aforementioned set. Thus, the only lottery possibly

played in the steady state is the one at m̂.

We use induction to prove parts (a) and (b) of part (iii) of the lemma. Assume m̂ ≥ m0, as

is required in part (iii), and take ẑj as either prize of the lottery at m̂. Start with i = 1. Because

m̂ ≥ m0, then ẑj ≥ m0, and so b∗(ẑj) ≥ b∗(m0) > 0, where the strict inequality comes from

part (iii) of Theorem 3.5. Thus, part (a) holds true for i = 1. Moreover, by the construction of

the lottery at m̂, B(ẑj) = V (ẑj) and B0(ẑ1) = V 0(ẑ1). Also, since ẑ2 = m̄, part (v) of Theorem

3.5 implies B0(ẑ2) = V 0(ẑ2). Thus, m = ẑj satisfies the hypotheses in part (v) of Theorem

3.2 which implies that, if φ(ẑj) > 0, then V is strictly concave at φ(ẑj). Strict concavity of

V at φ(ẑj) implies V (φ(ẑj)) = B(φ(ẑj)): if B (φ(ẑj)) < V (φ(ẑj)), V around φ(ẑj) would be a

linear segment generated by the lottery in (2.4), which would contradict strict concavity of V

at φ(ẑj). Thus, m = φ(ẑj) satisfies the hypotheses in part (iv) of Theorem 3.2 which implies

V 0(φ(ẑj)) = B0(φ(ẑj)). Moreover, strict concavity of V at φ(ẑj) implies that φ(ẑj) ≥ m0, because

V is linear for all m < m0. Thus, parts (b) holds true for i = 1 if φ(ẑj) > 0. If φ(ẑj) = 0, on the

other hand, part (b) is vacuous.

Suppose that parts (a) and (b) hold for an arbitrary i ∈ {1, 2, ..., n̂j − 1}, we prove that they
hold for i + 1 and, by induction, they hold for all i ∈ {1, 2, ..., n̂j − 1}. Because φi(ẑj) ≥ m0 by

the supposition, b∗(φi(ẑj)) ≥ b∗(m0) > 0, and so part (a) holds for i+ 1. If i = n̂j − 1, then part
(b) is vacuous for i + 1. If i < n̂j − 1, then φi+1(ẑj) > 0. Since V (φi(ẑj)) = B(φi(ẑj)) and V

is strictly concave at φi(ẑj), by the supposition, then m = φi(ẑj) satisfies the hypotheses in part

(v) of Theorem 3.2 which implies that V is strictly concave at φi+1(ẑj). Strict concavity of V at

φi+1(ẑj) implies V (φ
i+1(ẑj)) = B(φi+1(ẑj)) and φi+1(ẑj) ≥ m0. Thus, m = φi+1(ẑj) satisfies the

hypotheses in part (iv) of Theorem 3.2 which implies V (φi+1(ẑj)) = B(φi+1(ẑj)). Hence, part

(b) holds for i+ 1.
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If i = n̂j , part (a) follows from the same proof as above, and part (b) is vacuous.

Finally, suppose φn̂j (ẑj) > 0, contrary to part (c). Because part (b) holds for i = n̂j − 1, then
m = φn̂j−1(ẑj) satisfies all the hypotheses in part (v) of Theorem 3.2 which implies that V is

strictly concave at φn̂j (ẑj). A contradiction. QED

F. Proof of Theorem 4.2

The text preceding the theorem has established that a unique monetary steady state exists,

the steady state is block recursive, and the frequency function g is independent of ω. These

results imply that money is neutral in the steady state. Turn to the result that from either ẑj

(j = 1, 2), the frequency function, g(φi(ẑj)), is decreasing in φi(ẑj). To prove this result, note

that φi(ẑj) = φi−1(ẑj) − x∗(φi−1(ẑj)) < φi−1(ẑj) for all 1 ≤ i ≤ n̂j and j = 1, 2. By part (iii)

of Theorem 3.5, b∗(m0) > 0. For each j ∈ {1, 2}, Lemma 4.1 implies that φi(ẑj) ≥ m0 and

b∗(φi(ẑj)) > 0 for all 1 ≤ i ≤ n̂j − 1. Thus, for all 1 ≤ i ≤ n̂j − 1, φi(ẑj) satisfies part (v) of
Theorem 3.2, which implies that b∗(.) is strictly increasing at φi(ẑj) for each i and j. With this

feature, (4.4) implies that g(φi(ẑj)) > g(φi−1(ẑj)) for all i = 1, 2, ..., n̂j − 1 and j = 1, 2.

Next, we prove that there exists β0 > 0 such that if β ≤ β0, then m̂ < m0 and φ(ẑ2) = 0. Let

us shorten the notation b∗(m0) to b0 and q∗(m0) to q0. Define q̄(β) and q by

U(q)

U 0(q)
− q = k, U 0(q̄(β)) =

1

β
h0(q̄(β)) + k). (F.1)

We then define β0 as

β0 = max
β∈[0,1]

©
β : q̄(β) ≤ q

ª
. (F.2)

For any β ∈ (0, 1], the assumptions on U and h imply that q̄(β) and q are well defined. In

particular, the assumptions on U imply that [ U(q)U 0(q) − q] is a strictly increasing function of q whose
value at q = 0 is 0. Moreover, q̄(β) and q have the following features:

(a) q̄0(β) > 0 and limβ→0 q̄(β) = 0 < q: These follow from the assumptions on U and h.

(b) q < q0: To verify this feature, note that V
0(0) = V 0(m0). Since V

0(m0) satisfies part (v) of

Theorem 3.2 with m = m0, we have:

V 0(0) =
b0U

0(q0)
1− β + βb0

, (F.3)

where we have substituted u1(m0, b0) = U 0(q0). Also, the lottery in (3.18) implies V (m) =

V (0)+mV 0(0) for all m ∈ [0,m0]. Substituting V (m0) from this result and V
0(0) from (F.3) into

the Bellman equation for B(m0) (= V (m0)), we obtain:

b0
£
U(q0)−m0U

0(q0)
¤
= (1− β)V (0) . (F.4)
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Here, we have substituted u1(m0, b0) = U 0(q0) and u(m0, b0) = U(q0). Because V (0) > 0 by

part (ii) of Theorem 3.5 and b0 > 0, (F.4) implies U(q0) > m0U
0(q0). Because m0 > q0 + k (as

μ(b0) < 1), this result further implies
U(q0)
U 0(q0) − q0 > k =

U(q)

U 0(q) − q, which is equivalent to q < q0.

(c) q̄(β) > q∗(m̂) for all β ∈ (0, 1]: By the definition of q̄(β) in (F.1), q̄(β) > q∗(m̂) if and only if

U 0(q∗(m̂)) > 1
βh

0(q∗(m̂)) + k). The latter relation is verified as follows:

U 0(q∗(m̂)) ≥ U 0(q∗(ẑ2)) > V 0(ẑ2) = V 0(m̂) =
1

β
h0(m̂) >

1

β
h0(q∗(m̂)) + k).

The first inequality comes from the fact q∗(m̂) ≤ q∗(ẑ2). To obtain the second inequality, we

apply (3.10) for m = ẑ2, which yields V
0(ẑ2) =

b∗(ẑ2)U 0(q∗(ẑ2))
1−β+βb∗(ẑ2) . The first equality above comes

from the fact that V is linear between m̂ and ẑ2, and the second equality above from the definition

of m̂. The last inequality comes from m̂ = q∗(m̂) + k
μ(b∗(m̂)) and μ(b∗(m̂)) < 1.

Feature (a) implies that the set {β ∈ [0, 1] : q̄(β) ≤ q} is non-empty and that β0 > 0 is

well-defined. Moreover, q̄(β) ≤ q for all β ≤ β0. Using features (b) and (c), we conclude that if

β ≤ β0, then q
∗(m̂) < q̄(β) ≤ q < q0. Recall that q

∗(m) is an increasing function. Thus, if β ≤ β0

then m̂ < m0, in which case φ(ẑ2) = φ(m0) = 0.

As a preliminary step toward finding a condition for φ(ẑ2) > 0, we consider the limit β → 1

and characterize the optimal choices in more detail. This exercise is guided by the above result

that φ(ẑ2) = 0 if β is small. Note that although limβ→1 V (m) = ∞, the limit of (1 − β)V (m)

is strictly positive and finite for all m ∈ [0,∞). Also, the limit of [V (m) − V (0)] is finite for all

m <∞. We characterize in detail the optimal choices of a buyer with the balance m0 in the limit

β → 1. First, taking the limit β → 1 on (F.3) and (F.4) yields:

V 0(0) = U 0(q0), (F.5)

b0
£
U(q0)−m0U

0(q0)
¤
= lim

β→1
[(1− β)V (0)] . (F.6)

Second, since u2 = u1kμ
0/μ2, the first-order condition of b0 (see (3.8)) yields:

U(q0)

U 0(q0)
−m0 +

kμ0(b0)b0
[μ(b0)]2

= 0, (F.7)

where we have used (F.5) for V 0(0). Substituting b0 = μ−1( k
m0−q0 ) into (F.7), we can prove that

q0 = q∗(m0) is a strictly increasing function of m0.

We are now ready to prove that φ(ẑ2) > 0 in the limit β → 1 if and only if m0 < ẑ2. The

“only if” part of this statement is apparent, because m0 ≥ ẑ2 implies φ(ẑ2) = φ(m0) = 0. To

prove the “if” part of the statement, we verify that φ(ẑ2) = 0 implies m0 ≥ ẑ2 in the limit β → 1.
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Suppose φ(ẑ2) = 0. Using part (ii) of Theorem 3.2, we deduce that βV 0(0) ≤ U 0(q∗(ẑ2)). Taking

the limit β → 1 and using (F.5), we write this condition as q0 ≥ q∗(ẑ2). Because q∗(m) is strictly

increasing at m = m0, then m0 ≥ ẑ2.

The above procedure leads to the conclusion that when β is sufficiently close to one, φ(ẑ2) > 0

if and only if m0 < ẑ2. To characterize the condition m0 < ẑ2 explicitly, we suppose that the

opposite, m0 ≥ ẑ2, is true. After solving q0 from (F.8) as q0(m̂) and b0 from (F.9) as b0(m̂), we

will solve the number m̂ from (F.10) as mc. Because the supposition m0 ≥ ẑ2 implies m̂ ≤ m0,

the supposition leads to a contradiction if m̂ = mc satisfies m̂ > m0, i.e., if (4.6) holds. Therefore,

if (4.6) holds, then m0 < ẑ2 and φ(ẑ2) > 0 for β sufficiently close to one.

To carry out the procedure described above, we suppose m0 ≥ ẑ2 and consider the limit

β → 1. Since m0 ≥ m̂ in this case, the lottery for low money holdings implies V 0(0) = V 0(m̂).

Because the definition of m̂ in the limit β → 1 implies V 0(m̂) = h0(m̂), then V 0(0) = h0(m̂).

Substituting this result into (F.5), we solve q0 = q0(m̂) where

q0(m̂) ≡ U 0−1(h0(m̂)). (F.8)

Substituting m0 = q0 +
k

μ(b0)
and q0 = q0(m̂) into (F.7) yields:

k

μ(b0)
− kμ0(b0)b0
[μ(b0)]2

=
U(q0(m̂))

h0(m̂)
− q0(m̂). (F.9)

Since μ0(b) < 0 and 1/μ(b) is strictly convex in b, the left-hand side of (F.9) is strictly increasing

in b0. Thus, for any given m̂, (F.9) solves for a unique b0. Denote this solution as b0(m̂).

Moreover, since m̂ ≤ m0 under the supposition m0 ≥ ẑ2, the lottery for low money holdings

implies that V (m̂) is linear in m̂ and the slope of the line is V 0(m̂) = h0(m̂) in the limit β → 1.

That is, V (m̂) − V (0) = m̂h0(m̂). On the other hand, in the limit β → 1, a worker’s Bellman

equation yields V (m̂) − V (0) = h(m̂) + limβ→1 [(1− β)V (0)]. Thus, limβ→1 [(1− β)V (0)] =

m̂h0(m̂)− h(m̂). Substituting this result and b0 = b0(m̂), we rewrite (F.6) as

−kμ
0(b0)(b0)2

[μ(b0)]2

¯̄̄̄
b0=b0(m̂)

= m̂− h(m̂)

h0(m̂)
. (F.10)

The right-hand side of (F.10) is a strictly increasing function of m̂. From (F.8) and (F.9), we

can verify that q00(m̂) < 0, b00(m̂) < 0, q0(0) =∞, b0(0) = 1, q0(∞) = 0 and μ(b0(∞)) > 0. With
these properties and the maintained assumptions on the function μ(b), we can verify that the

left-hand side of (F.10) is a strictly decreasing function of m̂ and that there is a unique solution

to (F.10) for the number m̂. This solution, denoted as mc, is the one used in (4.6). QED
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