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Abstract

This paper introduces a broad family of tests for the hypothesis of lin-
earity in parameters of functions that are identified by conditional quan-
tile restrictions involving instrumental variables. These tests are tantamount
to assessments of lack of fit for quantile regression models involving en-
dogenous conditioning variables, and may be applied to assess the validity
of post-estimation inferences regarding the counterfactual effect of endoge-
nous treatments on the distribution of outcomes. We show that the use of an
orthogonal projection on the tangent space of nuisance parameters at each
quantile index improves power performance and facilitates the simulation of
critical values via the application of simple multiplier-type bootstrap proce-
dures. Monte Carlo evidence is included, along with an application to an
empirical analysis of the structure of demand for a particular subsegment of
the market for anti-bacterial drugs in India.

JEL Classification: C12, C31, C52
KEYWORDS: Quantile regression, instrumental variables, structural models

2



1 Introduction
Let Y be a random variable, and let X and Z be d- and k-dimensional random
vectors, respectively, where k ≥ d. Consider the continuum of conditional proba-
bility restrictions given by

P
[
Y ≤X⊤β0(α)

∣∣Z] = α, α ∈ (0, 1), (1)

where β0(·) is measurable unknown function from [0, 1] to a compact subset of
Rd. As such, (1) denotes a continuum of linear-in-parameters quantile-regression
models in which the covariate vector X is possibly endogenous and Z is the
corresponding vector of instruments. The identifiability of the interest parameter
β0(·) in the context of (1) was shown by Chernozhukov and Hansen (2005) un-
der a conditional rank invariance condition applied to Y − X⊤β0(α) for each
α ∈ (0, 1).1 Estimators of β0(α) in the context of (1) have been developed
by Amemiya (1982); Powell (1983); Chen and Portnoy (1996); Honoré and Hu
(2004); Chernozhukov and Hansen (2006); Ma and Koenker (2006); Lee (2007)
and Sakata (2007), amongst other authors. The “structural quantile-regression”
model denoted by (1) has become increasingly popular in applied econometric
analysis over the past decade. Recent applications can be found in the papers of
Chernozhukov and Hansen (2004); Machado and Mata (2005); Forbes (2008) and
Chernozhukov et al. (2009).

This paper develops tests for the linearity in parameters of the structural quan-
tile function X⊤β0(·) in (1) over (0, 1).2 As such, the hypothesis is that the con-
tinuum of conditional moment restrictions implied by (1) holds with probability
one for some β0(·) in the corresponding parameter space, while the alternative
is that there is at least one quantile α′ ∈ (0, 1) such that for almost every z in
the support of Z, the relation given above in (1) does not hold for any vector
β0(α

′) ∈ Rd. Such tests are important in applications because the conclusions
of any post-estimation inferences based on estimates of β0(·) will be sensitive
to the implicit assumption that the structural quantile function in (1) is linear in
parameters for all quantiles α ∈ (0, 1).3

1In particular, for each quantile index α ∈ (0, 1), Y −X⊤β0(α) needs to be at least distribu-
tionally invariant across different realizations of Z.

2Although the analysis presented in this paper assumes that the hypothesis is that the relation
given above in (1) holds for all quantiles α ∈ (0, 1), the same testing procedures derived below
can be modified mutatis mutandis to accommodate a hypothesis to the effect that (1) holds only
for all α in some proper subset of (0, 1).

3The analysis of wage distributions via models of their conditional quantiles (e.g., Machado
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While tests of the validity of a linear-in-parameters conditional quantile func-
tion against unspecified alternatives have already been developed in a number of
different papers, the analysis to the best of our knowledge has to date been limited
to a single quantile, generally taken without loss of generality to be the median.4

The present paper extends and complements the existing literature by considering
specification analysis for linearity in parameters over a continuum of quantiles.5

The specification tests proposed in this paper involve functionals of weighted
empirical processes corresponding to the family of conditional moment restric-
tions implied by the relation given above in (1). A novel feature of our tests
is the explicit acknowledgment of the fact that deviations from a hypothesized
conditional-quantile model in the direction of the score cannot be distinguished
from deviations that are still consistent with the null. In other words, testing pro-
cedures of the sort proposed in this paper inherently run the risk of incorrectly
rejecting the null because of the existence under the null of a nuisance parameter
β0(α) at each fixed quantile α ∈ (0, 1). As such, it is always possible that devia-
tions from a given model consistent with the null are caused by deviations within
the parameter space of β0(α) for some fixed quantile α rather than by deviations
that would properly lead to rejection of the null. This notion is incorporated in our
proposed tests by adjusting the empirical-process weighting function to incorpo-
rate an orthogonal projection on the tangent space of nuisance parameters at each
quantile α ∈ (0, 1). The result is a test with improved power properties whose

and Mata, 2005) is an especially natural domain of application for the diagnostic tests proposed
in this paper. In particular, wage distributions typically exhibit heaping or flat areas over certain
ranges of quantiles—e.g., in ranges of quantiles in the immediate vicinity of that corresponding
to a legislated minimum wage. These nonregular features of wage distributions make the fitting
of linear models to wage quantiles in ranges of particular interest for policy purposes problematic.
(We are grateful to Thomas Lemieux for pointing this out.)

4e.g., see the papers of Zheng (1998); Bierens and Ginther (2001); Horowitz and Spokoiny
(2002); Whang (2006a) and Whang (2006b) for the case where X contains no endogenous co-
variates. Horowitz and Lee (2009) develop a specification test for the more general case whereX
is possibly endogenous and the single-quantile restriction holds conditional on a vector of instru-
ments.

5To the best of our knowledge, the only proposal for specification tests of the functional form
of a conditional quantile model over a continuum of quantiles is given in Escanciano and Velasco
(2006). These authors considered tests of possibly nonlinear dynamic quantile models imple-
mented using subsampling. The methodology in the present paper differs from that considered in
Escanciano and Velasco (2006) in several respects, most notably in the focus on iid data in the
present paper. By way of contrast, Escanciano and Velasco (2006) study the time-series setting
and propose test statistics that are not functionals of the same sort of weighted empirical process
used to deliver feasible test statistics in the present paper.
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asymptotic distribution is also amenable to a simple multiplier-type bootstrap ap-
proximation. This feature greatly simplifies the derivation of critical values in
applications and is notably not shared by tests that are also based on weighted
empirical processes corresponding to the conditional moment restrictions implied
by (1) but whose weights are not adjusted by the orthogonal projection technique
that we develop below. Although the use of the orthogonal projection that we
propose here is motivated by the desire to improve the power properties of the re-
sulting tests, the end result also involves the attractive feature of a family of tests
having critical values that are convenient to simulate in practice.

The remainder of this paper is organized as follows. In Section 2 we introduce
the weighted empirical processes that constitute the basis upon which the new
testing procedure for the continuum of conditional probability restrictions in (1)
is developed. We study the asymptotic distribution of the proposed tests under the
null as well as under fixed and local alternatives in Section 3. Section 4 discusses
the use of a multiplier-bootstrap technique to approximate the asymptotic distribu-
tions of test statistics under the null as well as associated issues of implementation.
Section 5 summarizes the results of Monte Carlo experiments designed to assess
the finite-sample performance of our proposed testing procedures. Section 6 il-
lustrates the applicability of the tests proposed here in the context of an empirical
analysis of the structure of demand within a particular subsegment of the market
for anti-bacterial drugs in India using data originally analyzed by Chaudhuri et al.
(2006). Section 7 concludes. Proofs and detailed tables relevant to the empirical
example are deferred to the appendix. Throughout this paper the symbol C is a
generic constant that may change from one expression to another.

2 The Test Statistics and their Asymptotic Null Dis-
tribution

Let W ≡ (X⊤, Y )⊤ where X is d-variate, and let Θ denote a compact subset
of Rd. We consider testing the specification of the linear-in-parameters structural
quantile model given above in (1). As such, the null hypothesis H0 is given by

E [ψα(W ,β0)|Z] = 0

almost surely for some β0 ∈ F and for all α ∈ (0, 1), where F is a family of
uniformly bounded functions from (0, 1) to F ⊂ Rd, and where

ψα(W ,β0) ≡ α− 1
{
Y −X⊤β0(α) ≤ 0

}
. (2)

5



The alternative H1 is that

P [E [ψα′(W ,β0)|Z]] > 0

for some α′ ∈ (0, 1) and all β0(·) ∈ F .
Let G denote a class of measurable weighting functions. An implication of H0

is the uncountable number of unconditional moment restrictions

E[ψα(W ,β0)g(Z)] = 0 (3)

for all g(·) ∈ G, some β0(·) ∈ F and all α ∈ (0, 1). For consistency purposes, a
relatively large class G is recommended. Recalling that the instrument vector Z
is taken to be k-dimensional, where k ≥ d, popular choices of weighting function
are the indicator class G = {z → 1(z ≤ u) : u ∈ Rk} (Stute (1997) or Andrews
(1997)) or the class of exponential functions used by Escanciano and Velasco
(2006). Further examples are discussed in Bierens and Ploberger (1997) and in
Stinchcombe and White (1998). In a given sample, the event {Z ≤ z} is unlikely
to occur for z lying in a large subset of Rk, and as such we follow Escanciano
(2007) in recommending the choice g(Z) = 1

{
γ⊤Z ≤ u

}
for γ ∈ Rk with

∥γ∥ = 1 and u ∈ R. Our theory covers all of these possible mentioned choices of
weighting function as special cases and also applies to other classes of weighting
function such as nonparametric families; see the discussion after the assumptions.

Given a random sample {(Z⊤
i ,X

⊤
i , Yi)

⊤}ni=1 of size n, it seems natural to
construct test statistics based on the quantile error-weighted empirical process
indexed by g ∈ G and α ∈ (0, 1), i.e., on

Sn(g, α) ≡ n−1/2

n∑
i=1

ψα(Wi, β̂n)g(Zi), (4)

where β̂n(α) is a
√
n−consistent estimator of β0(α).6 The null hypothesis is

likely to hold when the process Sn(g, α) is “close” in an appropriate sense to zero
for almost all (g, α) ∈ G × (0, 1). This approach was used by Escanciano and
Velasco (2006) and has the appealing property of delivering consistent tests. It
does not acknowledge, however, that β0(α) is a nuisance parameter in the testing
procedure for each α ∈ (0, 1). The situation here is similar in spirit to the one
addressed by Neyman (1959) in a fully parametric case. Since β0(·) ∈ F is

6The IVQR estimator of Chernozhukov and Hansen (2006) is an obvious candidate for β̂n(α)
when the number of endogenous elements inX is small.
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unknown, deviations from the assumed data-generating process under the null in
the direction of the score function cannot be distinguished from deviations within
the parametric model, i.e. from local deviations in β0(·) that are nevertheless
consistent with the null. A simple way to incorporate this information in the test
statistic is to construct a test that does not waste power in the direction of the score.
More precisely, instead of the process Sn(g, α) we consider a feasible version of
the “projected” quantile-weighted empirical process

Rn(g, α)

≡ 1√
n

n∑
i=1

ψα(Wi, β̂n)

·
{
g(Zi)−D⊤(g, β̂n(α))∆

−1(α)δ(Zi,Xi, β̂n(α))
}
, (5)

where
δ(Zi,Xi,β(α)) ≡ f

(
X⊤

i β(α)
∣∣Zi

)
Xi

is a d× 1 vector of scores,

D(g,β(α)) ≡ E [δ (Z,X,β(α)) g(Z)]

and
∆(α) ≡ E

[
δ (Z,X,β0(α)) δ

⊤ (Z,X,β0(α))
]
.

Unlike Sn, Rn is asymptotically free of the effect of working with an estimate β̂n

of the nuisance parameter β0. In particular, under some regularity conditions,7 we
have for any compact subset A of [0, 1] that

sup
g∈G

sup
α∈A

|Rn(g, α)−Rn0(g, α)| = op(1), (6)

where Rn0 is defined as Rn but with β0 replacing β̂n, i.e.,

Rn0(g, α)

≡ 1√
n

n∑
i=1

ψα(Wi,β0)

·
{
g(Zi)−D⊤(g,β0(α))∆

−1(α)δ(Zi,Xi,β0(α))
}
. (7)

7In particular, see the statement of Theorem 1 below.
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Property (6) is critical in the derivation of the simple bootstrap approximation de-
veloped later. It should be noted that the process Rn is not the only one satisfying
this property; any empirical process of the form n−1/2

∑n
i=1 ψα(Wi,βn(α))g(Zi)

with g(·) orthogonal to the score δ (·, ·,β0) satisfies (6).8

A prominent example of a process that does not satisfy this orthogonality prop-
erty but is nevertheless unaffected asymptotically by the effects of an estimated
null nuisance parameter is that associated with the transformation of Khmaladze
(1981).9 The transformation of Khmaladze (1981) is essentially motivated by the
goal of providing a test statistic with a limiting variance that is free of the effect
of having to estimate a null nuisance parameter. The focus on Rn in the present
paper is primarily motivated by power considerations, although the resulting test
statistics have the attractive feature of being asymptotically distribution free and
also of being amenable to the convenient multiplier bootstrap scheme discussed
below in Section 4.

Our test statistics will be continuous functionals of the feasible analogue of
the projected process given above in (5), namely,

R̂n(g, α)

≡ 1√
n

n∑
i=1

ψα(Wi, β̂n)

·
{
g(Zi)− D̂⊤

n (g, β̂n(α))∆̂
−1
n (α)δ̂n(Zi,Xi, β̂n(α))

}
, (8)

where

D̂n(g,β(α)) ≡ 1

n

n∑
i=1

δ̂n(Zi,Xi,β(α))g(Zi);

∆̂n(α) ≡ 1

n

n∑
i=1

δ̂n

(
Zi,Xi, β̂n(α)

)
δ̂⊤n

(
Zi,Xi, β̂n(α)

)
;

δ̂n(Zi,Xi, β̂n(α)) ≡ f̂hm

(
X⊤

i β̂n(α)
∣∣∣Zi

)
Xi,

and where

f̂hm (u|Zi) ≡
1

mhm

m∑
j=1

K

(
u−X⊤

i β̂n(αj)

hm

)
. (9)

8i.e., the requirement is that E[g(Z)δ(Z,X,β0)] = 0 for all α ∈ (0, 1).
9In particular, see Koenker and Xiao (2002).
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In the context of (9), K(·) denotes a smoothing kernel, {αj}mj=1 is a discrete
grid of evenly spaced points in (0, 1) that becomes dense in [0, 1] as m → ∞,
and {hm} is a sequence of bandwidths converging to zero at a suitable rate as
m → ∞. The artificial sample size m will be made to depend on n in our the-
ory. The conditional density estimator in (9), whose form is directly motivated by
the restrictions imposed by the null hypothesis, has a critical advantage over the
generic conditional density estimator (Rosenblatt, 1956; Parzen, 1962) in which
the Rosenblatt-Parzen multivariate kernel density estimator appears in the numer-
ator. In particular, the rate of convergence of f̂hm ( ·|Zi) corresponds to that of
the Rosenblatt-Parzen estimator with univariate regressors, regardless of the di-
mension of Z. One can also consider other estimators of the conditional density
in the theory given here provided, of course, that they satisfy a suitable uniform
convergence property.

In the final analysis we propose a test statistic that is a continuous functional
of R̂n. A prominent example of such a function involving an indicator weighting
function is a statistic of the Cramer-von Mises (CvM) type, i.e.,

CvMn ≡
∫
Rd×A

∣∣∣R̂n(1(· ≤ z), α)
∣∣∣2 dFn,Z(z)dα, (10)

where Fn,Z is the empirical distribution function of {Zi}ni=1 and A denotes either
[0, 1] or a compact subset of (0, 1) according to the researcher’s interest in mod-
elling certain ranges of conditional quantiles. Computation of the functional given
above in (10) is discussed in Section 5. In particular, CvMn is chosen over alter-
native functionals in the simulation experiments discussed below for its relative
simplicity of computation.

Despite what might be suggested by the uniform convegence in (6), we shall
prove that, as is the case with the process Sn given above in (4), the limiting
distribution of functionals of R̂n such as CvMn in (10) above will still depend on
the underlying data-generating process and the null nuisance parameter β0(·). The
crucial difference between the limiting distribution of functionals of R̂n and the
limiting distribution of functionals of Sn is that the distribution of functionals of
R̂n will not depend in the limit on the estimator β̂n. This feature suffices to admit
the existence of the simple bootstrap approximation discussed below in Section 4.

2.1 Asymptotic null distribution
In what follows we establish the limiting distribution of the quantile-weighted
empirical process R̂n given above in (8) under the null hypothesis H0. The lim-

9



iting null distributions of the tests are the limit distributions of continuous func-
tionals of R̂n under H0. To derive asymptotic results we consider the following
notation and assumptions. Throughout the paper the family F in which the pa-
rameter β0(·) is assumed to take values is endowed with the supremum norm,
i.e., ∥β∥F ≡ supα∈(0,1) |β(α)|. We study the weak convergence of R̂n and re-
lated processes as elements of l∞(Π), the space of all real-valued functions that
are uniformly bounded on Π, where Π ≡ G × (0, 1). The space l∞(Π) is fur-
nished with the supremum norm, say ∥·∥∞; let Bd∞ denote the corresponding
Borel σ-algebra. Let ⇒ denote weak convergence on (l∞(Π),Bd∞) in the sense
of Hoffmann-Jørgensen.10 Note that ⇒ denotes weak convergence on compacta.
Let N[·](δ,H, ∥·∥) denote the δ-bracketing number of a class of functions H with
respect to a norm ∥·∥, i.e., the smallest number r such that there exist f1, ..., fr and
∆1, ...,∆r with max1≤i≤r ∥∆i∥ < δ and ∥f − fi∥ < ∆i for some i ∈ {1, . . . , r}
for all f ∈ H.11 For a class H of measurable functions define the envelope func-
tion H(X) as a measurable function satisfying |h(X)| < H(X) for all h ∈ H.
Throughout the proofs denote by ∥·∥p,P the Lp-norm with respect to P , i.e.,

∥f∥p,P =

(∫
|f(x)|p dP (x)

)1/p

.

When P is the underlying probability measure we write ∥·∥p ≡ ∥·∥p,P for simplic-
ity. Furthermore, when p = 2, write ∥·∥ ≡ ∥·∥2. Henceforth, weak convergence
and almost sure convergence of nonmeasurable maps is understood, as usual, in
the sense of outer almost sure convergence.12

Regularity conditions underlying the derivation of the asymptotic distribution
of our proposed test statistics under the null are given as follows.

Assumption 1 (Data-generating process). 1.

{Wi}ni=1 =
{
(Z⊤

i ,X
⊤
i , Yi)

⊤ : i = 1, . . . , n
}

is a sequence of iid random (k + d+ 1)-variates, where k ≥ d.

2. For each realization x ofX ,

Y = Yx = q(x, Ux),

where Ux is uniformly distributed on (0, 1), and and q(x, α) is strictly in-
creasing for all α ∈ (0, 1).

10e.g., Dudley (1999, p. 94) or van der Vaart and Wellner (1996, Definition 1.3.3).
11See van der Vaart and Wellner (1996, Definition 2.1.6).
12See van der Vaart and Wellner (1996) for definitions. We omit a discussion here.
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3. For each realiation x ofX , Ux is independent of Z.

4. For each pair of realizations x and x′ ofX , we either have

Ux = Ux′

almost surely, or
Ux ∼ Ux′ ,

where ∼ denotes distributional equivalence.

5. For all δ ∈ (0, 1] and all α1 ∈ (0, 1),

sup
α2:|α1−α2|<δ

∥β0(α1)− β0(α2)∥2 < Cδ.

6. The family of conditional distribution functions{
F (u| z) : x ∈ Rk

}
has corresponding densities with respect to Lebesgue measure given by{

f (u| z) : z ∈ Rk
}

that are uniformly bounded with uniformly bounded derivatives to fourth
order with respect to u ∈ R.

7. For all α ∈ (0, 1), ∆(α) ≡ E
[
δ(Z,X,β(α))δ⊤(Z,X,β(α))

]
is nonsin-

gular in a neighbourhood of β(α) = β0(α).

8. E
[
∥X∥4

]
<∞.

Assumption 2 (Estimator of the structural parameter under the null). The estima-
tor β̂n(·) of β0(·) satisfies the following under the restrictions of the null hypoth-
esis:

1. β̂n ∈ F with probability tending to one;

2.
∥∥∥β̂n − β0

∥∥∥
F
= Op(n

−1/2).
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Assumption 3 (Weighting functions). The class of functions G has envelope G
satisfying ∥G∥p < ∞ for some p ≥ 4 and is endowed with a norm ∥·∥G that
satisfies for all δ ∈ (0, 1]

E

[
sup

∥g1−g2∥G
|g1 − g2|2

]
< Cδ

and ∫ ∞

0

(
logN(δ2,G, ∥·∥G)

)1/2
dδ <∞.

Assumption 4 (Kernel and bandwidth). 1. K(u) satisfies the following condi-
tions:

(a) K = Ψ1 − Ψ2, where Ψ1 and Ψ2 are bounded, non-decreasing and
right-continuous functions.

(b) ∥K∥∞ ≡ supu |K(u)| = κ for some κ ∈ (0,∞).

(c)
∫∞
−∞K(u)du = 1.

(d) K satisfies a Lipschitz condition on R.

(e) K is of second order, i.e.,
∫∞
−∞ uK(u) = 0,

∫∞
−∞ u2K(u) = µ2K for

some µ2K ∈ (0,∞) and
∫∞
−∞ [K(u)]2 du = B for some B ∈ (0,∞).

2. hm ∈
[
c
(
logm
m

)1−ζ
, c−1

(
logm
m

)1−ζ
]

for some c, ζ ∈ (0, 1).

As was shown by Chernozhukov and Hansen (2005), the first three conditions
of Assumption 1 are sufficient for the basic restriction

P [Y ≤ q(X, α)|Z] = α

to hold with probability one for all α ∈ (0, 1), and enables the existence of es-
timators of structural parameters satisfying the conditions of Assumption 2. The
conditions of Assumption 2 are notably satisfied by the IVQR procedure of Cher-
nozhukov and Hansen (2006), although of course any estimator of the null nui-
sance parameter β0(·) can be incorporated in the test proposed below. Conditions
sufficient for the entropy requirement of Assumption 3 can be found in van der
Vaart and Wellner (1996). All popular parametric choices mentioned earlier for
the weighting function class G satisfy this assumption. For example, the indicator
family satisfies the requirements of Assumption 3 with ∥·∥G = ∥ · ∥2 under a mild
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continuity condition on the conditional distribution function ofX .13 Other exam-
ples of function classes satisfying the conditions of Assumption 3 are spaces of
smooth functions including those associated with the names of Sobolev, Hölder
and Besov. For these classes, the covering number condition in Assumption 3 can
be found in many books and articles on approximation theory.14 Finally, we note
that Assumption 4 allows for the use of the most popular smoothing kernels in
empirical practice, including in particular the Gaussian kernel.

We are ready now to establish the asymptotic distribution of R̂n. The proof,
which is given in Appendix A.2, proceeds in two steps. The first step involves
showing that R̂n is asymptotically equivalent under the null and n− 1

2 -local alter-
natives to the process Rn0 given above in (7). In the second step we analyze the
weak convergence of the process Rn0.

Theorem 1. Suppose the conditions of Assumptions 1–4 hold. Also assume the
validity of the hypothesis

E [ψα(W ,β0)|Z] = 0

almost surely for some β0 ∈ F and for all α ∈ (0, 1), where F denotes a family
of uniformly bounded functions from (0, 1) to F ⊂ Rd, and where

ψα(W ,β0) ≡ α− 1
{
Y −X⊤β0(α) ≤ 0

}
.

Then for any compact set A ⊂ [0, 1], the following convergence holds:

sup
g∈G

sup
α∈A

∣∣∣R̂n(g, α)−Rn0(g, α)
∣∣∣ = op(1).

Proof. See Appendix A.2.
13See van der Vaart and Wellner (1996, p. 85) for further details.
14To give an example, define for any vector (a1, . . . , ak) of k integers the differential operator

Da ≡ ∂|a|

∂z
a1
1 ···∂zak

q
, where |a| =

∑k
i=1 ai. Let R be a bounded, convex subset of Rk with a

nonempty interior. For any smooth function h : R ⊂ Rk → R and some η > 0, let ⌊η⌋ be the
largest integer smaller than η, and define

∥h∥∞,η ≡ max
|a|≤⌊η⌋

sup
x

|Dah(x)|+ max
|a|=⌊η⌋

sup
x1 ̸=x2

|Dah(x1)−Dah(x2)|
∥x1 − x2∥η−⌊η⌋ .

Furthermore, let Cη
c (R) be the set of all continuous functions h : R ⊂ Rk → [0, 1]k with

∥h∥∞,η ≤ c. If G = Cη
c (R), then G satisfies Assumption 2 with ∥·∥G = ∥·∥∞,η provided that

η > 2k; see van der Vaart and Wellner (1996, Theorem 2.7.1).
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Theorem 1 indicates that R̂n behaves like Rn0 in large samples; in particular,
the limiting behaviour of R̂n may be approximated by that of Rn0, as indicated by
the following result.

Corollary 1. Under the conditions of Theorem 1 we have

R̂n ⇒ R∞,

where R∞ denotes a Gaussian process with mean zero and covariance function

V (g1, g2, α1, α2) ≡ (min{α1, α2} − α1α2)E
[
g⊥1 (Z,X, α1)g

⊥
2 (Z,X, α2)

]
,

where for j = 1, 2,

g⊥j (Z,X, αj) ≡ gj(Z)−D⊤(gj,β0(αj))∆
−1(αj)δ(Z,X,β0(αj)).

.

Proof. See Appendix A.3.

It follows from Corollary 1, the continuous mapping theorem and the Glivenko-
Cantelli Theorem that the asymptotic distribution ofCvMn is characterized by the
convergence

CvMn ⇒ CvM∞ ≡
∫
Rd×A

|R∞(1 {· ≤ z} , α)|2 dFZ(z)dα.

Power properties of tests based on the process R̂n are the subject of the next sec-
tion of the paper.

3 Asymptotic Power Properties of the Proposed Test
In this section we study the consistency properties of tests based on continuous
functionals T (R̂n) of the process given in (8) above. We first focus on the asymp-
totic distribution of R̂n under a certain sequence of local alternatives converging
to null at a parametric rate n− 1

2 . We consider the data-generating process for the
sequence of local alternatives given by

H1,n(a) : E
[
ψα

(
Y −X⊤β0(α)

)∣∣Z] = a(Z,X, α)√
n

(11)
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almost surely for some β0 ∈ F and all α ∈ A, where as before A denotes ei-
ther the interval [0, 1] or some compact subset of (0, 1). We require the function
a(·, ·, α) : Rk+d → R to satisfy the conditions of the following assumption. In
particular, a(·, ·, α) is required to be orthogonal to the score.15

Assumption 5 (Local alternatives). The following holds for A either equal to
[0, 1] or to some compact subset of (0, 1):

1. a(·, ·, α) is such that

E

[
sup
α∈A

|a(Z,X, α)|
]
<∞.

2. There exists a random variable b(Z,X) with E [b2(Z,X)] <∞, such that
for all α1, α2 ∈ A,

|a(Z,X, α1)− a(Z,X, α2)| ≤ b(Z,X) |α1 − α2|

almost surely.

3. For all α ∈ A we have

E [δ(Z,X,β0(α))a(Z,X, α)] = 0. (12)

The “non-centrality parameter” under sequences of local alternatives given by
H1,n(a) in (11) above takes the form

Da(g, α) ≡ E [a(Z,X, α)g(Z)] , (13)

as is indicated by the following result.

Theorem 2. Under the conditions of Assumptions 1–5 and under the sequence of
local alternatives given by (11), we have

R̂n ⇒ R∞ +Da,

where R∞ is as given above in the statement of Corollary 1, and where Da is as
given above in (13).

15This does not entail any loss of generality. See in particular Escanciano (2009) and the re-
marks at the end of this section.
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Proof. See Appendix A.4.

Several conclusions emerge from the convergence in Theorem 2. First, our
tests are able to detect any Pitman local alternative satisfying the orthogonality
condition in (12). Second, suppose instead of R̂n one entertains a classical test
based on the weighted process Sn given in (4) above. Under the standard assump-
tion that β̂n(α) is asymptotically linear under H1,n(a) for all α ∈ A, i.e.,

√
n
(
β̂n(α)− β0(α)

)
= ξ(a)+

1√
n

n∑
i=1

Λ−1(α)k(Zi,Xi,β0)ψα(Wi,β0)+op(1),

where

ξ(a) ≡ E [k(Z,X,β0(α))g(Z)] ,

Λ(α) ≡ E
[
k(Z,X,β0(α))δ

⊤(Z,X,β0(α))
]

and k(Z,X,β0(α)) is a measurable (d × 1)-valued function, it can be similarly
proved that under the same sequence of local alternatives H1,n(a) that

Sn(g, ·) ⇒ S∞(g, ·) +Da. (14)

Here S∞(g, α) is a zero-mean Gaussian process with covariance function

Ṽ (g̃1, g̃2, α1, α2) ≡ (α1 ∧ α2 − α1α2)E [g̃1(α1)g̃2(α2)] ,

where for j = 1, 2,

g̃j(αj) ≡ gj(Z)−D⊤(gj,β0(αj))Λ
−1(αj)k(Z,X,β0(αj)).

Note that the same shift function Da appears in both the statement of Theo-
rem 2 and (14). It follows from standard properties of orthogonal projections that
for all g ∈ G and all α ∈ A,

V (g, g, α, α) ≤ Ṽ (g, g, α, α),

where V (g, g, α, α) is as given above in the statement of Corollary 1. In other
words, the process R∞(g, ·) is of “smaller” magnitude than S∞(g, ·). As a conse-
quence of this, one can prove that tests based on R̂n(g, ·) will have better power
properties than tests based on Sn(g, ·).
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With respect to the global power properties of tests based on R̂n, let

g⊥(Z,X, α) ≡ g(Z)−D⊤(g,β0(α))∆
−1(α)δ(Z,X,β0(α)).

We have from the proof of Theorem 1 that under any alternative,

n− 1
2 R̂n(g, α) ⇒ E

[
g⊥(Z,X, α)ψα(Wi,β0)

]
(15)

uniformly for g ∈ G and α ∈ A. It follows that our proposed test is consistent
against all alternatives not collinear with the score, that is, against alternatives
characterized by measurable functions m such that

E
[
g⊥(Z,X, α)m (Z,X,β0)

∣∣Z] ̸= 0

with probability one over a set with positive F ( ·|Z)-measure. Note that this is
not an important limitation—in particular, all tests based on integrated conditional
moment restrictions have trivial local power against those directions.16 As a result
of this, the global power of all tests in the direction of the score will be also low.17

4 Bootstrap Approximation to the Asymptotic Dis-
tribution of the Test

The foregoing sections of this paper have shown that the asymptotic null distri-
bution of continuous functionals of R̂n is liable to depend in a complex way on
the underlying data-generating process and the correctness of the model specifi-
cation under the null hypothesis. It follows from this that critical values for test
statistics based on continuous functionals of R̂n cannot in general be tabulated for
more than a few special cases. In this section we overcome this problem with the
assistance of a multiplier-type bootstrap.

The literature on inference in the context of conditional-quantile models con-
tains many proposals involving resampling.18 The methods described in these
proposals all require the computation of the parameter estimates β̂n(α) at each

16See Escanciano (2009).
17See Strasser (1985).
18e.g., Hahn (1995), Horowitz (1998), Bilias et al. (2000), Sakov and Bickel (2000) or He and

Hu (2002), among others.
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bootstrap replication. Approaches based on subsampling19 have also proven pop-
ular.20 Approaches based on subsampling have the disadvantage, however, of
relying crucially on the subjective choice of subsample size, which is known to
have occasionally dramatic effects on the outcome of any resulting inferences. In
particular, two researchers using the same data and working with the same model
can reach different conclusions simply by virtue of having chosen different tuning
parameters. This undesirable property is shared by a number of other inference
methodologies, including the block bootstrap.

In this paper we consider a multiplier-type bootstrap that avoids the two dis-
advantages of existing methods cited above. In particular, the bootstrap method
proposed here avoids the need to compute parameter estimates at each bootstrap
replication. The new approach also does not involve the need to select tuning pa-
rameters and appears to be superior to other competing methods in terms of the
finite-sample accuracy of the distributional approximation.21

The method advocated in this section involves approximating the asymptotic
distribution of a smooth functional ϕ

(
R̂n

)
with that of ϕ

(
R̂∗

n

)
, where R̂∗

n is a

simple multiplier-bootstrap approximation of R̂n given by

R̂∗
n(g, α)

≡ 1√
n

n∑
i=1

ψα(Wi, β̂n(α))

·
{
g(Zi)− D̂⊤

n (g, β̂n(α))∆̂
−1
n (α)δ̂n(Zi,Xi, β̂n(α))

}
Vi,

where {Vi} is a sequence of iid random variables with zero mean, unit variance,
bounded support and also independent of the sequence {Wi}. An example of a
possible multiplier sequence {Vi} involves iid Bernoulli variates with

P

[
Vi =

1

2

(
1−

√
5
)]

= b; (16)

P

[
Vi =

1

2

(
1 +

√
5
)]

= 1− b, (17)

19i.e., resampling fewer observations than exist in the original sample without replacement.
20e.g., Chernozhukov and Fernández-Val (2005), Whang (2006a) or Escanciano and Velasco

(2006), among others.
21Section 5 presents some Monte Carlo evidence in support of this assertion.
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where b = 1+
√
5

2
√
5

. Another example also involves iid Bernoulli variates, but with

P [Vi = 1] =
1

2
;

P [Vi = −1] =
1

2
;

see Wu (1986). The theoretical justification of this bootstrap approximation does
not require any assumptions in addition to those already given above.

The consistency of the proposed bootstrap method involves the concept of
convergence in distribution with probability one.22 The unknown limiting distri-
bution of ϕ

(
R̂n

)
under the null, i.e., the distribution of ϕ (R∞), is approximated

by the bootstrap distribution of ϕ
(
R̂∗

n

)
. In other words, the bootstrap empirical

distribution

F̂ ∗
n

(
x| {(Z⊤

i ,X
⊤
i , Yi)}ni=1

)
= P

[
ϕ
(
R̂∗

n

)
≤ x

∣∣∣ {(Z⊤
i ,X

⊤
i , Yi)

}n
i=1

]
is taken to be a consistent estimate of the asymptotic null distribution function

F∞ (x) = P [ϕ (R∞) ≤ x] .

In this case, the null hypothesis will be rejected at the τ -level of significance when

ϕ
(
R̂n

)
≥ c∗n,τ ,

where c∗n,τ is such that

F̂ ∗
n

(
c∗n,τ
∣∣ {Wi}ni=1

)
= 1− τ.

It is also possible to use bootstrap p-values in this context. For example, the null
could be rejected whenever p∗n < τ , where

p∗n ≡ P
[
ϕ
(
R̂∗

n

)
≥ ϕ

(
R̂n

)∣∣∣ {(Z⊤
i ,X

⊤
i , Yi)

}n
i=1

]
.

This bootstrap-based test is clearly valid if F̂ ∗
n is a consistent estimator of

F∞ at each continuity point of F∞. In the case of almost-sure consistency, an
equivalent condition for validity is that ϕ

(
R̂∗

n

)
d→ ϕ (R∞) almost surely.23

22A less restrictive concept is convergence in distribution in probability; see Giné and Zinn
(1990).

23Further details are available in Giné and Zinn (1991) or van der Vaart and Wellner (1996).
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Theorem 3. Suppose the conditions of Assumptions 1 and 3 hold. Then for any
continuous functional ϕ(·),

ϕ
(
R̂∗

n

)
d→ ϕ (R∞)

almost surely.

Proof. See Appendix A.5.

It is straightforward to show that Theorem 3 implies the consistency of our
multiplier-bootstrap test against all alternatives not collinear to the score, provided
that ϕ is such that ϕ(f) = 0 ⇔ f = 0 a.s.-P [ ·|Z]. Moreover, it can be proved
that our bootstrap-based test preserves the asymptotic local power properties of
ϕ
(
R̂n

)
, including its asymptotic admissibility. Details have been omitted in order

to economize on space.

5 Numerical Evidence
This section presents the result of a Monte Carlo experiment designed to evaluate
the finite-sample performance of our proposed tests relative to more immediately
familiar tests based on subsampling. For simplicity, the focus in this section is
on the “non-structural” special case of the structural quantile model where the
covariate vector X does not contain any endogenous components, and where as
such the instrument vector satisfies Z =X .

In this connection, we considered two data-generating processes for our sim-
ulations. The first (DGP1) is given by

DGP1 : Yi = X1i +X2i + cσ
3
2
i + ui, i = 1, . . . , n; (18)

while the second (DGP2) is given by

DGP2 : Yi = X1i +X2i +
(
1 + cσ

3
2
i

)
ui, i = 1, . . . , n; (19)

where
σi ≡ X2

1i +X2
2i +X1iX2i.

X1i, X2i and ui are taken to be iid N(0, 1) and mutually independent. Let

Xi ≡ (X1i, X2i)
⊤.

20



In the context of DGP1 and DGP2, the hypothesis given above in (1) corre-
sponds to the location-shift model with c = 0, so the model for the conditional
quantile function under the null is simply the quantile-regression model given by

F−1
Yi|Xi

(α) = X̃⊤
i β0(α)

for each α ∈ (0, 1), where X̃i = ( 1 X1i X2i )
⊤ and β0(α) = (Φ−1(α), 1, 1)⊤.

Here we let Φ−1(α) denote the quantile function of a standard normal random
variable. Note that for this model the score vector satisfies

δ(Xi,Xi,β(α)) = ϕ
(
Φ−1(α)

)
Xi,

where ϕ(·) is the standard normal density function. Throughout the simulations
the estimator β̂n(α) of the null parameter vector will be taken to be the regression
α-quantile of Koenker and Bassett (1978).24

We considered two sample sizes n = 100 and n = 300 and a subinterval of
quantiles given by A = [0.1, 0.9]. The number of Monte Carlo replications was
set to 1000. In order to economize on space we only report results for simulations
with n = 100, as the results for n = 300 were qualitatively similar. We consider
an approximation of the Cramér-von Mises test defined in (10) over a grid of
m = 30 evenly spaced points in the interval [ϵ, 1 − ϵ] ≡ [0.1, 0.9]. Denote by
{αj}mj=1 the points in the grid, with ϵ = α1 < · · · < αm = 1 − ϵ. Two versions
of the Cramér-von Mises test were considered. One version is infeasible in the
sense that the score vector δ is assumed to be known, which in the case of the
model under consideration corresponds to the assumption that the researcher has
knowledge both of the existence of the location-shift effect of the covariates on
the distribution of the outcome variable and of the actual distribution of the latent
disturbances in the model. The second version of the CvM test considered here
is empirically feasible and involves the preliminary estimate of the conditional
density f (u|Z) given above in (9) with a bandwidth hm = m− 1

5 . After some
simple algebra, the empirically infeasible test statistic can be computed as

CvMn0 ≡
1

m

m∑
j=1

1

n2
ψ⊤

j PjP
⊤
j ψj, (20)

where for j = 1, . . . ,m,

ψj ≡ (ψαj
(W1,β0), . . . , ψαj

(Wn,β0))
⊤

24The asymptotic properties of the regression quantile estimator have been extensively investi-
gated. In particular, it is known to satisfy the conditions of Assumption 2; see e.g., Gutenbrunner
and Jurečková (1992, Theorem 1).
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and
Pj ≡HjG,

where Hj ≡ In − δj(δ⊤j δj)−1δ⊤j , In denotes the n × n identity matrix, δj is the
n× 3 matrix whose ith row is denoted by

δ(Xi,Xi,β0(αj))
⊤ = f

(
X⊤

i β0(αj)
∣∣Xi

)
X⊤

i

andG is the n× n matrix with elements gij ≡ 1 (Xi ≤Xj).
We denote by CvM∗

n0 the bootstrapped analogue of CvMn0, which is com-
puted as

CvM∗
n0 ≡

1

m

m∑
j=1

1

n2
ψ∗⊤

j PjP
⊤
j ψ

∗
j ,

where
ψ∗

j ≡ (V1ψαj
(W1,β0(αj)), . . . , Vnψαj

(Wn,β0(αj)))
⊤

and {Vi}ni=1 are iid Bernoulli random variates generated in accordance with the
scheme given above in (16)–(17). These expressions indicate the computational
simplicity of the proposed bootstrap procedure, as only the Bernoulli weights {Vi}
changes with each bootstrap replication.

The empirically feasible test statistic ĈvMn is computed in similar fashion to
CvMn0 but with the parameter estimate β̂n(·) replacing the true parameter vector
β0(·) in the appropriate locations. In addition, the projection matrix Hj is re-
placed by Ĥj ≡ In − δ̂nj(δ̂⊤nj δ̂nj)−1δ̂⊤nj , where δ̂nj is an n × 3 matrix with ith
row denoted by

δ̂nj(Xi,Xi, β̂n(αj))
⊤ = f̂hm

(
X⊤

i β̂n(αj)
∣∣∣Zi

)
X⊤

i .

The bootstrap approximation to ĈvMn is mutatis mutandis the same as its infea-
sible counterpart CvM∗

n0.
We compare our methods with subsampling-based tests (Chernozhukov and

Fernández-Val, 2005, e.g.,) based on the non-projected empirical process given
by Sn in (4) above.25 The non-projected Cramér-von Mises test is given by

CvMnb0 ≡
1

m

m∑
j=1

1

n2
ψ⊤

j X̃X̃
⊤ψj, (21)

25A comparison with a Cramér-von Mises test based on the Khmaladze (1981) transformation
applied to Sn could also have been sensibly conducted in this context. It should also be noted that
it is not possible to apply the multiplier bootstrap technique proposed in Section 4 to the simulation
of critical values for tests based on continuous functionals of Sn. This is due to the presence of
an additional Op(1) term in the asymptotic representation for Sn under the null that arises from
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where X̃ is the n× 3 matrix with ith row given by X̃⊤
i = ( 1 X1i X2i ).

Note that CvMnb0 differs only from the infeasible test statistic CvMn0 given
above in (20) in the form of the matrix of the quadratic form in the summand.
In particular, the true value of the parameter β0 is embedded in the test statistic
as opposed to its estimate. We follow the suggestion of Sakov and Bickel (2000)
applied to the m-out-of-n bootstrap and set the subsample size to b =

⌊
λn

2
5

⌋
,

where λ > 0. We experiment with a number of different settings for the leading
constant λ and report the results for the setting of λ leading to the most accurately
sized test, which for n = 100 yields an optimal subsample size of b = 72.26 For
simplicity, only subsamples consisting of blocks of consecutive observations in
the original dataset were used in our simulations.

Table 1 displays rejection probabilities of the three tests considered under the
data-generating process denoted byDGP1 in (18) above. The nominal sizes were
set to 10%, 5% and 1%, while the values of the shift parameter c were taken to
range from -.3 to .3, inclusive, in increments of .1. When c = 0, the results show
that the size performance of our feasible test is accurate. The new bootstrap ex-
hibits good size accuracy, uniformly across each of the nominal sizes considered,
and for a sample size as small as n = 100. The distributional performance of the
test based on ĈvMn is clearly superior to the test based on the conventional test
based on subsampling. In particular, the subsampling-based test appears to per-
form especially poorly at controlling empirical sizes at a nominal level of 1%. In
addition, the results of simulations not reported here indicate that the performance
of the subsampling-based procedure is particularly sensitive to the choice of the
subsample size b.

When c ̸= 0, the results displayed in Table 1 indicate the power performance
of the three tests considered. As one might expect, larger values of c lead to higher
power for each of the tests. The tests based on multiplier-bootstrap approxima-
tions to CvMn0 and ĈvMn exhibit power much higher than the conventional test
based on subsampling CvMnb0. The infeasible and feasible tests appear to have
similar power performance for n = 100, which indicates that little power is lost

the need to insert an estimate, rather than the true value, of the nuisance parameter β0(·) in the
specification for Sn. This additional non-negligible term is not captured asymptotically when one
attempts to apply the multiplier bootstrap technique described above to Sn. In this connection, see
Theorem 5 below. This is a special case of the so-called “Durbin problem” (Durbin, 1973). Note
by contrast the conclusion of Corollary 1—the orthogonal adjustment involved in the specification
of R̂n induces its weak convergence to a distribution-free mean-zero Gaussian process.

26Choosing the subsampling size optimally in this way is of course empirically infeasible as the
true data-generating process is unknown.
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when one replaces the true score with an estimate. This is striking given that only
m = 30 observations are used to construct the nonparametric conditional density
estimate given above in (9).

Table 1: Empirical rejection probabilities under DGP1
n = 100 CvMn0 ĈvMn CvMnb0

c 10% 5% 1% 10% 5% 1% 10% 5% 1%
-.3 .997 .993 .950 .998 .992 .954 .671 .621 .531
-.2 .982 .949 .792 .979 .949 .778 .516 .456 .394
-.1 .739 .617 .349 .733 .620 .348 .301 .256 .204
0.0 .104 .051 .012 .104 .055 .012 .065 .044 .032
.1 .667 .519 .256 .670 .507 .247 .278 .245 .184
.2 .961 .913 .740 .956 .907 .719 .498 .443 .371
.3 .998 .987 .928 .995 .987 .928 .671 .628 .560

Table 2 displays empirical rejection probabilities for the three tests considered
under DGP2 as given above in (19). The overall picture that emerges is quali-
tatively similar to that which emerges from Table 1. In particular, our proposed
multiplier bootstrap-based tests exhibit more accurate empirical sizes and higher
power than the conventional test based on subsampling.

Table 2: Empirical rejection probabilities under DGP2
n = 100 CvMn0 ĈvMn CvMnb0

c 10% 5% 1% 10% 5% 1% 10% 5% 1%
-1.0 .640 .455 .146 .606 .409 .105 .223 .185 .132
-.5 .288 .164 .026 .263 .146 .021 .116 .087 .057
0.0 .090 .057 .008 .092 .055 .010 .074 .050 .032
.5 .517 .339 .092 .483 .295 .084 .181 .140 .101
1.0 .722 .524 .180 .691 .493 .174 .272 .229 .164

The simulations presented here have indicated that our proposals for multiplier
bootstrap-based tests perform favourably when compared to more conventional
specification tests based on subsampling. In particular, the results presented in
Tables 1–2 indicate a substantial improvement in power associated with our pro-
posals when compared with a specification test based on subsampling the statistic
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given above in (21). Given the popularity of subsampling for inference involving
the quantile regression process,27 the results presented here suggest the possibil-
ity of less computationally demanding inference methodologies for the quantile
regression process involving some form of multiplier bootstrap.

6 Empirical Example: Import Substitution in the
Indian Pharmaceuticals Market

The desirability of patent enforcement on pharmaceuticals developed in high-
income countries is often contentious when one considers its effect on consumer
welfare in lower-income countries. This issue is bound up with the desirability of
providing life-saving medicines to patients in developing countries at low cost—
indeed, a typical argument made by governments of lower-income countries is that
the enforcement of patents on essential medicines developed in rich countries will
lead patients in poor countries to pay significantly more for these drugs than would
otherwise be the case, leading in turn to adverse effects on the health and well-
being of patients in lower-income countries. The other side of the debate typically
involves the claim by multinational pharmaceutical firms that the enforcement of
product patents is unlikely to have significant effects on prices due to the typical
existence of lower-cost therapeutic substitutes for most patented drugs. A further
claim is that the absence of effective patent protection in lower-income countries
serves as a disincentive to basic research on diseases that have a disproportionate
impact on patients in those countries. In other words, the enforcement of pharma-
ceutical product patents serves as a stimulus to product innovation.

In what follows we consider the structure of demand for a particular subseg-
ment of the market for systemic anti-bacterial drugs (i.e., “antibiotics”) in India.
We make use of data originally analyzed by Chaudhuri et al. (2006) on sales in-
volving antibiotics containing fluoroquinolone molecules. Chaudhuri et al. (2006)
note that the Indian market for pharmaceutical products in the period between
1972 and 2005 provides an ideal setting for the study of the effects of global
patent enforcement on consumer welfare in low-income countries. This is due
on the one hand to the Indian government’s non-recognition during this period of
patents on phamaceutical products and on the other hand to the existence of a large
domestic pharmaceutical industry with the capacity for producing and marketing

27e.g., Chernozhukov and Fernández-Val (2005).
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drugs domestically that are under patent elsewhere.28 The structure of demand
in the Indian market is also similar to that of many other low-income countries
because of the existence of a high proportion of uninsured households that are
required to meet all expenses for drugs on an out-of-pocket basis. In addition,
Chaudhuri et al. (2006) observe that the Indian pharmaceuticals market is typical
of that of many lower-income countries due to the disproportionate importance of
anti-infective drugs, which at 23 percent is the second-largest category in terms of
overall market share.29

Chaudhuri et al. (2006) analyze a dataset that consists of monthly observa-
tions on sales of systemic antibiotic drugs in India over the period January 1999–
December 2000.30 The data are further disaggregated by geographical region,
pharmaceutical product group and national origin (i.e., Indian or non-Indian), re-
sulting in a total of 672 observations. Chaudhuri et al. (2006) focus on the particu-
lar market segment involving fluoroquinolone molecules, which denote a category
of active pharmaceutical ingredients in treatments for a large number of different
bacterial infections. 31 The fluoroquinolones segment is one of the largest in the
Indian market for systemic antibiotics, accounting as it does for 20 percent of sales
within this market. This segment is also characterized by the simultaneous avail-
ability in India during the sample period of antibiotic treatments that are protected
by United States patents as well as of generic substitutes produced by domestic
firms. The existence during the sample period of several close substitutes within
the fluoroquinolones segment with different countries of origin enables the empir-
ical evaluation of the claim that patent enforcement on foreign drugs raises prices
in the domestic market. In particular, this claim is not credible if there exist sig-
nificant substitution effects between patented and nonpatented drugs containing
the same active pharmaceutical ingredient.

28Chaudhuri et al. (2006) note that pharmaceutical product patents were not recognized under
Indian law between April 1972 and March 2005. They also note that the Indian pharmaceutical
sector is now the world’s largest producer, by volume, of generic formulations destined to be
consumed by patients.

29Anti-infectives include both antibiotic and anti-viral drugs. This category is much more im-
portant in lower-income countries than in the overall world market for pharmaceuticals. In partic-
ular, anti-infectives account for only 9 percent of the worldwide market for pharmaceuticals.

30The actual dataset along with detailed information on each variable may be downloaded from
http://www.princeton.edu/˜pennykg\TRIPS_Data&Programs.zip.

31Chaudhuri et al. (2006, p. 1509).
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6.1 The model
The empirical illustration presented here involves the estimation of a variant of the
almost ideal demand system (AIDS) of Deaton and Muellbauer (1980b) involving
two stages of expenditure allocation amongst categories of different pharmaceu-
tical products.32 The first stage involves a model of the optimal allocation of ex-
penditures to various categories of systemic anti-bacterial drugs, including those
containing fluoroquinolone molecules as active pharmaceutical ingredients. The
second stage involves the optimal allocation of expenditures to the various product
groups within the fluoroquinolones segment. In this connection, a fluoroquinolone
“product group” is taken to refer to groups of pharmaceutical formulations pro-
duced by firms having the same national origin and containing the same active
pharmaceutical ingredient within the fluoroquinolone category. The national ori-
gin of a pharmaceutical firm is taken to be one of two types, namely “domestic”
if Indian or “foreign” if non-Indian, while the active pharmaceutical ingredient
refers to a specific molecule within the fluoroquinolone family. This results in
seven different fluoroquinolone product groups, to wit:

1. foreign ciprofloxacin

2. foreign norfloxacin

3. foreign ofloxacin

4. domestic ciprofloxacin

5. domestic norfloxacin

6. domestic ofloxacin

7. domestic sparfloxacin

The monthly data on prices and expenditures across each of these fluoroquinolone
product groups are also disaggregated by geographical region, namely, “northern”,
“eastern”, “western” or “southern”.

In what follows, we focus specifically on an AIDS model for expenditure al-
location amongst the first six of the seven product categories just listed. In par-
ticular, we examine the extent to which Indian consumers in the period January
1999–December 2000 engaged in behaviour consistent with substitution between
foreign and domestic formulations containing the same fluoroquinolone molecule.

32See Deaton and Muellbauer (1980a, p. 131–132).
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For a given fluoroquinolone product group, let

D01 ≡


the set of all other fluoroquinolone product groups with

different active pharmaceutical ingredients but
produced by firms of the same national origin

D00 ≡


the set of all other fluoroquinolone product groups with

different active pharmaceutical ingredients and
produced by firms of different national origins

For a given product group i within the fluoroquinolones category observed in ge-
ographical region r, let

pir ≡ (pir,11, pir,10,p
⊤
ir,01,p

⊤
ir,00)

⊤

be the relevant vector of prices, where

pir,11 =
{

the own price

pir,10 =


the price of the product group in the same region

having the same active pharmaceutical ingredient but
produced by firms of a different national origin.

Also let

pir,01 ≡ (pjr,01 : j ∈ D01)⊤

pir,00 ≡ (pjr,00 : j ∈ D00)⊤

denote subvectors of prices for product groups in D01 and D00, respectively.
The basic AIDS model we consider has the form

logωirpir
= τir(Uir) + γi,11(Uir) log pir,11 + γi,10(Uir) log pir,10

+γi,01(Uir)
∑
j∈D01

log pjr,01 + γi,00(Uir)
∑
j∈D00

log pjr,00

+βi(Uir) log

(
XQr

PQr

)
, (22)

where ωirpir
is the expenditure share for product group i in region r when the

vector of relevant prices is pir, XQr is the overall expenditure in region r on flu-
oroquinolones, and PQr is the corresponding Stone price index. Uir denotes an
unobservable Uniform(0, 1) disturbance affecting expenditure shares of product
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groups in each region, and τir(Uir) is a constant term that captures product group-
specific regional effects when the unobserved disturbance term is Uir. Similarly,
the parameters γi,11(Uir), γi,10(Uir), γi,01(Uir), γi,00(Uir) and βi(Uir) denote re-
spectively the product group-specific own-price, cross-price and expenditure elas-
ticities when the unobserved disturbance takes a value equal to Uir. As such, a
distinguishing characteristic of the AIDS specification (22) we consider for ex-
penditure allocation within the fluoroquinolones category is that the price and
expenditure elasticities are permitted to depend on the share of expenditures al-
located to each product group. This allows for heterogeneity in the structure of
demand for the various product groups according to their relative popularity in
each region. In particular, patterns of substitutability between foreign and domes-
tic formulations containing the same fluoroquinolone molecules are permitted to
depend on the corresponding expenditure shares of the product groups in question.

By way of contrast, Chaudhuri et al. (2006, eq. (8)) consider a special case of
the demand system given above in (22). In particular, they consider the location-
shift variant of the general model given above in (22). Here the price and expen-
diture elasticities are constrained to be invariant across the distribution of expen-
diture shares.33

Time-series observations of the price vector pir for each product group i ac-
tually consist of price indices constructed in the manner described in Chaudhuri
et al. (2006, p. 1492). The price index for each product group in the fluoro-
quinolones category involves weighting by the revenue share for each individ-
ual product, or “stock-keeping unit” (SKU) classified as belonging to the product
group in question. These SKU revenue shares will generally depend on the overall
product group revenue shares ωirpir

in (22), and as such will be correlated with
the disturbance term Uir. Here we follow Chaudhuri et al. (2006) in using instru-
mental variables to deal with the likely correlation of the price indices appearing
in (22) with Uir. In particular, the list of instrumental variables includes the num-
ber of SKUs in each product group, the prices of the five largest SKUs in each
group according to revenue share and the natural logarithm of total expenditure
on systemic anti-bacterial drugs for the time and region in question deflated using
a Stone price index.34

33i.e., for each product group i, γi,11(Uir), γi,10(Uir), γi,00(Uir) and βi(Uir) are assumed not
to depend on Uir.

34Further details on the instruments used appear in Chaudhuri et al. (2006, pp. 1492–1493).
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6.2 Interpretation of the estimated cross-price elasticities
We focus on estimates of the parameter γi,10(·) appearing above in (22) for in-
dices i corresponding to foreign ciprofloxacin, norfloxacin and ofloxacin on the
one hand, and domestic ciprofloxacin, norfloxacin and ofloxacin on the other. In
other words, we examine the substitutability of foreign and domestically produced
formulations containing the same active pharmaceutical ingredient. Estimates of
the cross-price elasticity parameters γi,10 for quantile indices in the range [.05, .95]
are plotted in Figure 1, along with the corresponding pointwise 95% confidence
bands. These estimates along with their associated standard errors were imple-
mented using the procedure of Blundell and Powell (2007) for censored regres-
sion quantiles with endogenous regressors, but with obvious simplifications made
in the case of the present illustration to account for the lack of a censored depen-
dent variable.35

The three graphs in the left-hand column of Figure 1 show the estimates of
γi,10 for index i referring to the foreign product groups, while the three graphs
in the right-hand column plot the corresponding parameter estimates for the do-
mestic product groups. Figure 1 suggests a pattern of segmentation in the fluo-
roquinolones market between foreign and domestic formulations containing the
same active pharmaceutical ingredient. In particular, expenditure shares for the
three domestic product groups considered appear to exhibit uniformly little re-
sponse across quantiles in [.05, .95] to changes in the price levels of the foreign
product groups containing the same active pharmaceutical ingredients. This char-
acteristic appears to hold uniformly for all quantiles in the range considered, al-
though the magnitude of the pointwise standard errors for domestic ciprofloxacin
and norfloxacin indicate that any number of scenarios involving quantile depen-
dence cannot be ruled out. The plots appearing in the right-hand column of Fig-
ure 1 suggest that if patent enforcement has any effect on the domestic prices of
foreign anti-infective drugs, then that price effect has little impact on the market
share of comparable domestic anti-infectives. This is a pattern that is most marked
in the cases of domestic ciprofloxacin and ofloxacin. In summary, the right-hand
column of Figure 1 suggests that one cannot rule out the possibility of patent en-
forcement on foreign antibiotic drugs leading to a higher overall price level in the

35A variant of the procedure of Blundell and Powell (2007) was adopted here instead of the
better-known IVQR procedure of Chernozhukov and Hansen (2006) for reasons of practicality. In
particular, the IVQR procedure is virtually infeasible with the number of endogenous covariates
involved in the demand system described above. Further details and code are available from the
authors on request.
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Indian domestic market for antibiotics.
In contrast, the pattern that emerges down the left-hand column of Figure 1

suggests that domstic product groups exert at least a limited degree of price com-
petition on foreign-produced formulations containing the same fluoroquinolone
molecules. This is especially true for spending on foreign ciprofloxacin at quan-
tiles below α = .8 and for foreign norfloxacin at quantiles above α = .5.

Finally, the apparently significant deviation from horizontality of most of the
lines plotted in Figure 1 suggests that the location-shift variant of the basic AIDS
model considered by Chaudhuri et al. (2006) may not be generally supported by
the data available.

6.3 Tests of the AIDS model and of its location-shift specializa-
tion

In what follows, we report the results of two sets of diagnostic tests intended to
evaluate the validity of the results reported above in the previous section. The first
set of tests is more fundamental in nature and is intended to verify the functional
form of the demand system given above in (22) for each of the product groups
for which the cross-price elasticity estimates appear in Figure 1. In particular, if
the assumed linearity in the relationship between log expenditure shares and the
vector of log prices at all quantiles in (0, 1) is not supported by the data, then the
patterns of substitutability summarized in Figure 1 between foreign and domestic
pharmaceutical alternatives containing the same active pharmaceutical ingredient
cannot be reliably claimed as valid. In this connection, we verify the existence
of a linear relationship between log expenditure shares and log prices using the
methodology developed in the foregoing sections of this paper. In particular, we
apply the same implementation of the empirically feasible Cramér-von Mises test
described above in Section 5 to the data on each of the six product groups ap-
pearing in Figure 1. For each product group considered, the same variant of the
Blundell and Powell (2007) technique described above was used to construct the
estimates of the various demand-system parameters appearing in (22) when im-
plementing the testing procedure. For each of the six product groups considered,
the test was implemented in the same way and considered the hypothesis of lin-
earity in parameters over quantiles in the range [.05, .95]. The results of the tests
for each product group are indicated below in Table 3. These results indicate that
the functional form of the demand system in (22) is supported overall by the data
for each of the six product groups considered.
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Table 3: Tests of linearity of structural quantile functions over the range [.05, .95]

Product group p-value
Foreign ciprofloxacin .5323
Foreign norfloxacin .3682
Foreign ofloxacin .5174
Domestic ciprofloxacin .9950
Domestic norfloxacin .9950
Domestic ofloxacin .9950

The second set of tests is directed specifically at the validity of the model
considered in the original paper of Chaudhuri et al. (2006). In particular, having
accepted the validity of the general linear-in-parameters specification for the de-
mand system given above in (22), we consider if the special case of the model
characterized by constant price and expenditure elasticities over the range (0, 1)
is supported by the data at hand. In this connection, for each product group i, let

θi(Uir) ≡ (γi,11(Uir), γi,10(Uir), γi,00(Uir), βi(Uir))
⊤,

where γi,11, γi,10, γi,00 and βi are as given above in (22). We consider a test of the
hypothesis

θi(α) ≡ θi
for each i and each quantile α in the range A = [.05, .95]. Several different
approaches have already been proposed in the literature for testing this hypothesis,
including the use of a Khmaladze martingale transformation (Bai, 2003; Koenker
and Xiao, 2002) and subsampling (Chernozhukov and Fernández-Val, 2005). In
what follows, we propose a variant of the approach suggested by Chernozhukov
and Hansen (2006, Section 4).

For i corresponding to each of the six product groups considered, let θ̂ni(α)
denote the corresponding estimator of θi(α) obtained using the same variant of
the procedure of Blundell and Powell (2007) described above. Note that under
the location-shift (i.e., constant coefficients) hypothesis, θ̂ni(α) should converge
to the same value regardless of the quantile index α. Let j = 1, . . . , ni denote the
indices of the various observations for product group i; let Wji denote the vector
containing the log-expenditure share Yji, relevant prices and log expenditure on
fluoroquinolones corresponding to the jth observation for product group i. Simi-
larly, let Xji denote the vector containing the relevant prices and log expenditure
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on fluoroquinolones corresponding to the jth observation, and letZji be the corre-
sponding vector of instruments. Finally, let θ̃ni denote the two-stage least squares
estimator of θi. In this connection, define the matrices

Xi ≡

 X⊤
1i

...
X⊤

nii

 ,

Zi ≡

 Z⊤
1i
...
Z⊤

nii


and

X̂i ≡
(
X⊤

i Xi

)−1
X⊤

i Zi.

We exploit the asymptotic behaviour of a weighted empirical process correspond-
ing to the Bahadur representation of

√
n
(
θ̂ni(α)− θ̃ni

)
that would obtain in the

case where θi(α) is constant over α ∈ (0, 1). In particular, consider the process
given by

Ẑni(g, α)

≡ 1√
n

n∑
j=1

[
ψα(Wji, θ̂ni)

·
{
g (Zji)− D̂⊤

n (g, θ̂ni(α))∆̂
−1
n (α)δ̂n(Zji,Xji, θ̂ni(α))

}
−
(
Yji −X⊤

ji θ̃ni

)
· g (Zji)

{
1− X̂⊤

i

(
X̂⊤

i X̂i

)−1

X̂i

}]
, (23)

where ψα(·, ·) is as given above in (2), δ̂n and ∆̂n are as given above in (8), and
where in this case g denotes the indicator weighting function. As such, Ẑni is
asymptotically free of the effects of estimating the nuisance parameter θi. Critical
values for tests involving functionals of the form ϕ

(
Ẑni(g, ·)

)
are simulated using

the same multiplier bootstrap scheme described above in Section 4; in particular,
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we make use of Monte Carlo approximations to the behaviour of the process

Ẑ∗
ni(g, α)

≡ 1√
n

n∑
j=1

[
ψα(Wji, θ̂ni)

·
{
g (Zji)− D̂⊤

n (g, θ̂ni(α))∆̂
−1
n (α)δ̂n(Zji,Xji, θ̂ni(α))

}
−
(
Yji −X⊤

ji θ̃ni

)
· g (Zji)

{
1− X̂⊤

i

(
X̂⊤

i X̂i

)−1

X̂i

}]
Vj,

where {Vj} is a sequence of iid random variables with zero mean, unit vari-
ance, bounded support and also independent of each of the sequences {Wji},
i = 1, . . . , 6. This allows for approximate critical values of tests based on func-
tionals ϕ

(
Ẑni(g, ·)

)
to be taken as appropriate empirical quantiles of simulated

realizations of ϕ
(
Ẑ∗

ni(g, ·)
)

.

Table 4: Tests for constant coefficients for quantiles over the range [.05, .95]

Product group p-value
Foreign ciprofloxacin .5075
Foreign norfloxacin .0398
Foreign ofloxacin .1965
Domestic ciprofloxacin .0100
Domestic norfloxacin .0050
Domestic ofloxacin .0149

Table 4 reports the results of tests of hypotheses of constant price and expen-
diture elasticities over the range of quantiles [.05, .95] for each of the six fluoro-
quinolone product groups considered in Figure 1. Each of the rows in the table
corresponds to implementations of Cramér-von Mises tests based on the process
given above in (23) for a given product group implemented with simulated se-
quences of bootstrap multipliers {Vj} generated according to the scheme given
above in (16)–(17). Each of these product group-specific tests was implemented
in the same way. In particular, for each row of Table 4, the integrals characteriz-
ing the Cramér-von Mises statistics were approximated by averages of quadratic
forms taken over grids of thirty evenly spaced quantiles in the range [.05, .95].
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This was done in the same manner described above for the simulation experiments
reported in Section 5. The conditional density estimates embedded in the expres-
sions for δ̂n and ∆̂n in (23) were also constructed in the same manner described
above for the simulation experiments reported in Section 5.

The tests reported in Table 4 indicate that for most of the product groups con-
sidered, the location-shift specialization of the basic demand system given above
in (22) is not supported by the data at hand. In particular, the demand systems cor-
responding to the three domestic product groups considered are not well described
by linear-in-parameters models with constant coefficients. This conclusion under-
scores the extent to which a consideration of the more flexible demand system
specification given above in (22) can provide a more complete picture of the na-
ture of price competition in a system of related goods than the more common
specification with constant coefficients adopted by Chaudhuri et al. (2006).

7 Conclusion
This paper has proposed a class of tests for the hypothesis of linearity in parame-
ters of measurable functions that are identified by conditional quantile restrictions
involving instrumental variables. We have argued that these tests provide a po-
tentially useful diagnostic tool for empirical researchers interested in the effect of
possibly endogenous conditioning variables on the distribution of some outcome
variable of interest. We exploit various results from empirical process theory to
derive the asymptotic behaviour of our proposed test procedures. In a manner
analogous to approaches taken by Neyman (1959) and Bickel et al. (2006) to
problems that are qualitatively similar to ours, we have also shown how the use
of an orthogonal projection on the tangent space of nuisance parameters at each
quantile improves power performance while at the same time serving to facilitate
the simulation of critical values via the application of a simple multiplier bootstrap
procedure. Simulation evidence and an empirical example involving the structure
of demand for anti-bacterial drugs in India illustrate the feasibility of our approach
in datasets of moderate size.
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Giné, E., and J. Zinn (1990) ‘Bootstrapping general empirical measures.’ Annals of Probability
18, 851–869

(1991) ‘Gaussian characterization of uniform Donsker classes of functions.’ Annals of Proba-
bility 19, 758–782
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A Appendix

A.1 Preliminary results
We begin with an important result of Chen et al. (2003) that allows for the bounding of entropy
numbers and the verification of stochastic equicontinuity for processes indexed by both Euclidean
and function-valued parameters. In this connection, define a generic function class

H = {t→ m(t,θ, g) : θ ∈ Θ, g ∈ G},

where Θ and G are generic Banach spaces with associated norms ∥·∥Θ and ∥·∥G , respectively.
Recall that the covering number N (ϵ,Θ, ∥ · ∥Θ) of Θ is the minimal number N for which there
exist ϵ-neighbourhoods {{θ : ∥θ − θj∥Θ ≤ ϵ} , ∥θj∥Θ <∞, j = 1, . . . , N} covering Θ. The
covering number with bracketing N[] (ϵ,Θ, ∥ · ∥Θ) is the minimal number N for which there exist
ϵ-brackets {(lj ,uj) : ∥lj − uj∥Θ ≤ ϵ, ∥lj∥Θ, ∥uj∥Θ <∞, j = 1, . . . , N} covering Θ. In par-
ticular, the idea here is that for each θ ∈ Θ, there is a j = jθ ∈ {1, . . . , N} such that lj ≤ θ ≤ uj .
Other definitions of concepts from empirical process theory may be found in e.g., van der Vaart
and Wellner (1996).

Lemma 1 (Chen, Linton & van Keilegom (2003, Theorem 3)). 1. Assume that

|m(t,θ1, g1)−m(t,θ2, g2)| ≤ b(t)
{
∥θ1 − θ2∥s1Θ + ∥g1 − g2∥s2G

}
(24)

for some constants s1, s2 ∈ (0, 1] and for some measurable function b with ∥b∥r,P < ∞,
where r ≥ 2. Then for any ϵ > 0, thhe covering number with bracketing of the class H
satisfies

N[·](ϵ,H, ∥·∥r,P ) ≤ N

[ ϵ

4 ∥b∥r,P

] 1
s1

,Θ, ∥·∥Θ

×N

[ ϵ

4 ∥b∥r,P

] 1
s2

,G, ∥·∥G

 .

2. Assume that

E

[
sup

θ2: ∥θ1−θ2∥Θ<δ

sup
g2: ∥g1−g2∥G<δ

|m(t,θ1, g1)−m(t,θ2, g2)|r
]
≤ Kδrs1 (25)
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for some constant s1 ∈ (0, 1] and for some r ≥ 2. Then for any ϵ > 0,

N[·](ϵ,H, ∥·∥r,P ) ≤ N

([ ϵ

2K

] 1
s1
,Θ, ∥·∥Θ

)
×N

([ ϵ

2K

] 1
s1
,G, ∥·∥G

)
.

Suppose that conditions (24) and (25) both hold. Then if Θ is a compact subset of Rk for
some k, and if ∫ ∞

0

√
logN

(
ϵ

1
sj ,G, ∥ · ∥G

)
dϵ <∞

for j = 1, . . . , l, the empirical process
{
Mn(θ, g) ≡ 1

n

∑n
i=1m (Ti,θ, g) : θ ∈ Θ, g ∈ G

}
is

asymptotically stochastically equicontinuous, i.e., for any sequence of positive constants δn =
o(1),

sup
∥θ1−θ2∥Θ≤δn, ∥g1−g2∥G≤δn

∥Mn(θ1, g1)−Mn(θ2, g2)−M(θ1, g1)∥ = op(n
− 1

2 ),

where M(θ1, g1) ≡ E [m(Ti,θ1, g1)].

We now state a weak convergence theorem that is useful in dealing with estimation effects in
test functionals involving the non-smooth summands ψα(Wi, β̂n). This result is of independent
interest. Define the function-weighted empirical process

Vn(β, α, g) ≡
1√
n

n∑
i=1

(ψα(Wi,β)− E [ψα(Wi,β)|Zi]) g(Zi),

which is indexed by γ ≡ (β, α, g) ∈ F × A × G, where F is the class of measurable Rd-valued
functions of (0, 1) to which β is assumed to belong, A is either [0, 1] or a compact subset of (0, 1)
and G is taken to be a class of measurable functions with a measurable envelope G(Z).

Theorem 4. Under the conditions of Assumptions 1–2, the process Vn(γ) is stochastically equicon-
tinuous with respect to ∥·∥2,P .

Proof. We shall apply van der Vaart and Wellner (1996, Theorem 2.11.23). For γ ≡ (β, α, g) and
w ≡ (x⊤, y)⊤, define the function class H ≡ {w → h(w, γ)}, where

h(w, γ) ≡ (ψα(w,β)− E [ψα(W ,β)|Z = z]) g(z).

Fix γ1 ≡ (β1, α1, g1) ∈ F × A × G. Let δ be a constant in (0, 1) and define ι to be the vector
(1, 1, ..., 1)⊤ ∈ Rd. By the triangle inequality and recalling Assumption 2, we have

E

[
sup

β: ∥β1−β∥F<δ

sup
α: |α1−α|<δ

sup
g2: ∥g1−g2∥G<δ

|h(W , γ1)− h(W , γ2)|2
]

≤ CE

[
sup

α: |α1−α|<δ

sup
β: ∥β1−β∥F<δ

|E [ψα1 (W ,β1)|Z]− E [ψα (W ,β)|Z]|2
]
+ Cδ

1
2

≤ CE

[
sup
α1∈A

(
F
(
X⊤β1(α1) +X

⊤ιδ
∣∣Z)− F

(
X⊤β1(α1)−X⊤ιδ)

∣∣Z))2]+ Cδ
1
2

≤ Cδ.
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Apply Lemma 1. The desired conclusion follows from van der Vaart and Wellner (1996, Theorem
2.11.23).

Next, consider the asymptotic behaviour under H0 of the process

Sn(g, α) = n−1/2
n∑

i=1

ψα(Wi, β̂n)g(Zi)

as defined earlier in (4) above. We have the following result, which follows immediately from the
conclusion of Theorem 4.

Theorem 5. The following representation holds uniformly for (β, α, g) ∈ F × A × G under the
conditions of Assumptions 1–3:

Sn(g, α) =
1√
n

n∑
i=1

ψα(Wi,β0)g(Zi)

+
1√
n

n∑
i=1

(
F
(
X⊤

i β̂n(α)
∣∣∣Zi

)
− F

(
X⊤

i β0(α)
∣∣Zi

))
g(Zi) + op(1).

Proof. Apply Theorem 4 and conclude that

sup
(α,g)∈A×G

∣∣∣Vn(β̂n, α, g)− Vn(β0, α, g)
∣∣∣ = op(1),

which is equivalent to

sup
(α,g)∈A×G

∣∣∣∣∣Sn(g, α)−
1√
n

n∑
i=1

ψα(Wi,β0)g(Zi)

+
1√
n

n∑
i=1

(
E [ψα(Wi,β0)|Zi]− E

[
ψα(Wi, β̂n)

∣∣∣Zi

])
g(Zi)

∣∣∣∣∣ = op(1).

This in turn may be rewritten as the desired conclusion.

In what follows we make use of a general result for uniform convergence of a kernel estimator
over classes of functions and bandwidths restricted to lie in suitable bounded intervals. In this
connection, a preliminary result is needed. Let Ψ(·) be a bounded non-decreasing and right-
continuous function. Consider a class of real-valued measurable functions T on Rd × [0, 1], and
define the function class

H ≡
{
Ψ

(
u− τ(·)

h

)
: h ∈ (0, 1], u ∈ R, τ ∈ T

}
.

We have the following.

Lemma 2. Suppose that the linear span of T is a finite-dimensional set of functions. Then H is a
VC-subgraph class.
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Proof. For any bounded non-decreasing right-continuous function Ψ, define for t ∈ R the left-
continuous inverse of Ψ as

Ψ−1(t) ≡ inf {v : Ψ(v) ≥ t} ,

where the convention inf ∅ ≡ ∞ is observed. Since Ψ(·) is non-decreasing and right-continuous
we have for any t ∈ R

Ψ(v) < t ⇔ v < Ψ−1(t). (26)

For fixed constants h ∈ (0, 1] and u ∈ R, define the class of subgraphs

Su,h ≡
{
(x⊤, α, t)⊤ : Ψ

(
u− τ(x, α)

h

)
< t : Ψ ∈ H

}
.

We need to show that each Su,h is a VC-class.36 By virtue of (26), we have

Su,h =

{
(x⊤, α, t)⊤ :

u− τ(x, α)

h
< Ψ−1(t)

}
=

{
(x⊤, α, t)⊤ : τ(x, α)− u+ hΨ−1(t) > 0

}
. (27)

Let t+ ≡ inf
{
t : Ψ−1(t) = ∞

}
, and t− ≡ sup

{
t : Ψ−1(t) = −∞

}
. We note that Ψ−1(t) is

finite iff t ∈ (t−, t+). Let ϕ denote the restriction of Ψ−1 to (t−, t+). Let F be the linear span of
T ∪ {1, ϕ(·)}. Each function f ∈ F is defined on Rd × [0, 1]× (t−, t+) and has the form

f(x, α, t) = c1τ(x, α) + c2 + c3ϕ(t)

for (x⊤, α, t)⊤ ∈ Rd × [0, 1]× (t−, t+), t ∈ T and c1, c2, c3 ∈ R.
Since the linear span of T is finite dimensional, it follows that F is also finite dimensional. It

follows from van der Vaart and Wellner (1996, Lemma 2.6.15) that F is a VC-subgraph class.
Note that for every τ ∈ T , u ∈ R and h > 0,{

(x⊤, α, t)⊤ : τ(x, α) + u+ hΨ−1(t) > 0
}

=
{
(x⊤, α, t)⊤ : τ(x, α) + u+ hϕ(t) > 0, t ∈ (t−, t+)

}
∪ Rd × [t+,∞).

It follows from (27) that

Su,h ⊂
{{

(x⊤, α, t)⊤ : f(x, α, t) > 0
}
∪ Rd × [t+,∞) : f ∈ F

}
≡ D. (28)

Note that Rd × [t+,∞) is trivially a VC-class. In addition, we have by van der Vaart and Wellner
(1996, Lemma 2.6.18(iii)) that the class{{

(x⊤, α, t)⊤ : f(x, α, t) > 0
}
: f ∈ F

}
is also VC. Then by van der Vaart and Wellner (1996, Lemma 2.6.17(iii)) we have that D is VC,
which by the inclusion in (28) implies that H is a VC class.

36Cf. e.g., van der Vaart and Wellner (1996, p. 141).
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Now consider the class of functions

G ≡
{
K

(
u− τ(·)

h

)
: h ∈ (0, 1], u ∈ R, τ ∈ T

}
,

whereK(·) satisfies the conditions of Assumption 4 and τ the corresponding condition of Lemma 2.
Under the conditions of Assumption 4, we have the following slight modification of the uniform-
in-bandwidth consistency result for a kernel density estimator given in Einmahl and Mason (2005,
Theorem 1):

Lemma 3. SupposeK(·) satisfies the conditions of Assumption 4, while τ(·) is as in the statement
of Lemma 2 above. Then for any sequence {(am, bm) : m = 1, 2, . . .} satisfying

0 < am < bm ≤ 1

with bm → 0, mam

logm → ∞ as m→ ∞, we have

sup
am≤h≤bm

sup
u∈R

sup
τ∈T

∣∣∣∣∣∣ 1

mh

m∑
j=1

K

(
u− τ(X, Uj)

h

)
− 1

h
E

[
K

(
u− τ(X, U)

h

)]∣∣∣∣∣∣
= O


√√√√ log

(
1
am

)
∨ log logm

mam


almost surely as m→ ∞.

Proof. We note from Lemma 2 that

Hi ≡
{
Ψi

(
u− τ(·)

h

)
: h ∈ (0, 1], u ∈ R, τ ∈ T

}
is a VC-subgraph class for i = 1, 2. By van der Vaart and Wellner (1996, Theorem 2.6.7), it
follows that for each i ∈ {1, 2}, there exists Ci > 0 and ν > 0 such that

N(ϵ,Hi) ≤ Ciϵ
νi

for ϵ ∈ (0, 1) and each i ∈ {1, 2}. From this it follows that for some C > 0 and ν > 0,

N(ϵ,G) ≤ Cϵν .

By virtue of the right-continuity of K assumed in Assumption 4, we have that G is pointwise
measurable, i.e., there is a countable subclass G0 of G such that for every g ∈ G, there exists a
sequence of functions {gm} ⊂ G0 such that for each u ∈ R,

gm(u) → g(u).

The desired conclusion follows from the conditions of Assumption 4 and the proof of Einmahl and
Mason (2005, Theorem 1).
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Lemma 3 is exploited to yield the following uniform consistency result for the conditional
density estimator given above in (9).

Lemma 4. Let A denote a compact subset of [0, 1]. Under the conditions of Assumptions 1–4 and
Lemma 3 we have

sup
am≤h≤bm

sup
z∈Rk

sup
x∈Rd

sup
α∈A

∣∣∣f̂h (x⊤β̂n(α)
∣∣∣ z)− f

(
x⊤β0(α)

∣∣ z)∣∣∣
= Op

 1

a2m
√
n
+

√√√√ log
(

1
am

)
∨ log logm

mam
+ b2m


as m,n→ ∞.

Proof. Invoke the conclusion of Lemma 3 and the Lipschitz condition on K assumed in Assump-
tion 4 to deduce the following bound holding uniformly for β ∈ F as m→ ∞:∣∣∣∣∣∣ 1

mh

m∑
j=1

(
K

(
u−X⊤β(Uj)

h

)
−K

(
u−X⊤β0(Uj)

h

))∣∣∣∣∣∣ ≤ M0 ∥X∥ ∥β − β0∥
h2

(29)

almost surely for some M0 > 0.
Combining the conclusion of Lemma 3, (29) and the condition of Assumption 3 we have

sup
am≤h≤bm

sup
u∈R

∣∣∣∣∣∣ 1

mh

m∑
j=1

K

(
u−X⊤β̂n(Uj)

h

)
− 1

h
E

[
K

(
u−X⊤β0(U)

h

)]∣∣∣∣∣∣
≤ sup

am≤h≤bm

sup
u∈R

∣∣∣∣∣∣ 1

mh

m∑
j=1

(
K

(
u−X⊤β̂n(Uj)

h

)
−K

(
u−X⊤β0(Uj)

h

))∣∣∣∣∣∣
+ sup

am≤h≤bm

sup
u∈R

sup
τ∈T

∣∣∣∣∣∣ 1

mh

m∑
j=1

K

(
u− τ(X, Uj)

h

)
− 1

h
E

[
K

(
u− τ(X, U)

h

)]∣∣∣∣∣∣
≤ Op

(
1

a2m
√
n

)
+Op


√√√√ log

(
1
am

)
∨ log logm

mam

 . (30)

Now fix z ∈ Rk and x ∈ Rd. Let Wx ≡ x⊤β0(U). We recall the assumption that K(·) is
of second order, and that f (u| z) has uniformly bounded derivatives with respect to u existing to
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fourth order. These conditions yield

1

h
E

[
K

(
u− x⊤β0(U)

h

)]
=

1

h
E

[
K

(
u−Wx

h

)]
=

1

h

∫
K

(
u− w

h

)
f (w| z) dw

=

∫
K(t)f (u− ht|z) dt

= f (u| z) + h2

2
f ′′ (u| z)

∫
s2K(s)ds+O

(
h4
)
. (31)

Combining (30) and (31) we get

sup
am≤h≤bm

sup
z∈Rk

sup
x∈Rd

sup
α∈A

∣∣∣f̂h (x⊤β̂n(α)
∣∣∣ z)− f

(
x⊤β0(α)

∣∣ z)∣∣∣
≤ sup

am≤h≤bm

sup
z∈Rk

sup
x∈Rd

sup
α∈A

∣∣∣∣∣f̂h (x⊤β̂n(α)
∣∣∣ z)− 1

h
E

[
K

(
x⊤β̂n(α)− x⊤β0(U)

h

)]∣∣∣∣∣
+ sup

am≤h≤bm

sup
z∈Rk

sup
x∈Rd

sup
α∈A

∣∣∣∣∣ 1hE
[
K

(
x⊤β̂n(α)− x⊤β0(U)

h

)]
− f

(
x⊤β0(U)

∣∣ z)∣∣∣∣∣
≤ sup

am≤h≤bm

sup
u∈R

∣∣∣∣∣∣ 1

mh

m∑
j=1

K

(
u− x⊤β̂n(Uj)

h

)
− 1

h
E

[
K

(
u− x⊤β0(U)

h

)]∣∣∣∣∣∣
+ sup

am≤h≤bm

sup
u∈R

∣∣∣∣ 1hE
[
K

(
u− x⊤β0(U)

h

)]
− f (u| z)

∣∣∣∣
= Op

 1

a2m
√
n
+

√√√√ log
(

1
am

)
∨ log logm

mam

+O
(
b2m
)

as m,n→ ∞.

The conclusion of Lemma 4 is exploited to demonstrate the uniform convergence of the quan-
tities D̂n(g, β̂n(α)) and ∆̂−1

n (α) embedded in the expression for the test statistic R̂n(g, α) given
in (8) above. In particular, we have the following:

Lemma 5. Under the conditions of Assumptions 1–4, the following hold as m,n→ ∞:

1. supα∈A supg∈G

∥∥∥D̂n(g, β̂n(α))−D(g,β0(α))
∥∥∥ = op(1);

2. supα

∥∥∥∆̂−1
n (α)−∆−1(α)

∥∥∥ = op(1);

where A is a compact subset of [0, 1] and G is as described in Assumption 2.
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Proof. We consider each part of the lemma in turn.

1. Consider
∥∥∥D̂n(g, β̂n(α))− 1

n

∑n
i=1 δ(Zi,Xi,β0(α))g(Zi)

∥∥∥. By the Cauchy-Schwarz
inequality, we have∥∥∥∥∥D̂n(g, β̂n(α))−

1

n

n∑
i=1

δ(Zi,Xi,β0(α))g(Zi)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

(
f̂hm

(
X⊤

i β̂n(α)
∣∣∣Zi

)
− f

(
X⊤

i β0(α)
∣∣Zi

))2
· 1
n

n∑
i=1

∥Xi∥4

· 1
n

n∑
i=1

g4(Zi)

which is uniformly op(1) as m,n → ∞ for α ∈ A and g ∈ G by Lemma 4 and Assump-
tions 1 and 3.
Now consider the asymptotic behaviour of

sup
α∈A

sup
g∈G

∥∥∥∥∥ 1n
n∑

i=1

δ(Zi,Xi,β0(α))g(Zi)−D(g,β0(α))

∥∥∥∥∥ (32)

as m,n → ∞. We argue that the quantity in (32) is op(1) via an appeal to Lemma 1. In
this connection, fix α1 ∈ A and g1 ∈ G. An application of the triangle inequality allows
us to deduce that

E

 sup
α : |α− α1| < δ,
g : ∥g − g1∥G < δ

∥∥f (X⊤
i β0(α)

∣∣Zi

)
Xig(Zi)

−f
(
X⊤

i β0(α)
∣∣Zi

)
Xig1(Zi)

∥∥2]
≤ CE

[
|g1(Z1)|2 sup

α: |α−α1|<δ

∣∣f (X⊤
i β0(α)

∣∣Zi

)
− f

(
X⊤

i β0(α1)
∣∣Zi

)∣∣2 · ∥Xi∥2
]

+CE

[
sup

g: ∥g−g1∥G<δ

|g(Zi)− g1(Zi)|2
]

≤ Cδ

by Assumptions 1 and 3. Combining the conditions of Assumptions 1 and 3 with the
compactness of A, we have via Lemma 1 that the quantity in (32) is indeed op(1) as
m,n→ ∞ uniformly over α ∈ A and g ∈ G, as desired.
A final application of the triangle inequality yields the desired conclusion.

2. An appeal to Assumption 1 and Lemma 4 shows that

sup
α∈A

∥∥∥∥∥∥∆̂−1
n (α)−

(
1

n

n∑
i=1

δ(Zi,Xi,β0(α))δ
⊤(Zi,Xi,β0(α))

)−1
∥∥∥∥∥∥ = op(1)
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as m,n→ ∞. In addition,

sup
α∈A

∥∥∥∥∥∥
(
1

n

n∑
i=1

δ(Zi,Xi,β0(α))δ
⊤(Zi,Xi,β0(α))

)−1

−∆−1(α)

∥∥∥∥∥∥ = op(1)

as n→ ∞ by Assumption 1, the compactness of A, a uniform law of large numbers and a
continuous mapping theorem. Apply the triangle inequality and the desired conclusion is
immediate.

A.2 Proof of Theorem 1
We have

R̂n(g, α)

=
1√
n

n∑
i=1

ψα(Wi, β̂n)
(
g(Zi)− D̂n(g, β̂n(α))

⊤∆̂−1
n (α)δ̂n(Zi,Xi, β̂n(α))

)
= Sn(g, α)− D̂n(g, β̂n(α))

⊤∆̂−1
n (α) · 1√

n

n∑
i=1

ψα(Wi, β̂n)δ̂n(Zi,Xi, β̂n(α))

= Sn(g, α)− D̂n(g, β̂n(α))
⊤∆̂−1

n (α) · Sn

(
δ̂n(·, ·, β̂n(α)), α

)
.

By Theorem 5 we have

sup
α∈A

sup
g∈G

∣∣∣∣∣Sn(g, α)−
1√
n

n∑
i=1

ψα(Wi,β0)g(Zi)−D⊤(g,β0(α))
√
n
(
β̂n(α)− β0(α)

)∣∣∣∣∣
= op(1). (33)

Theorem 5 also allows us to write

sup
α∈A

∣∣∣∣∣Sn

(
δ̂n

(
·, ·, β̂n(α)

)
, α
)
− 1√

n

n∑
i=1

ψα(Wi,β0)δ̂n(Zi,Xi, β̂n(α))

− 1√
n

n∑
i=1

(
F
(
X⊤

i β̂n(α)
∣∣∣Zi

)
− F

(
X⊤

i β0(α)
∣∣Zi

))
· δ̂n

(
Zi,Xi, β̂n(α)

)∣∣∣∣∣
= op(1),

which by Lemma 4 is equivalent to

sup
α∈A

∣∣∣∣∣Sn

(
δ̂n

(
·, ·, β̂n(α)

)
, α
)
− 1√

n

n∑
i=1

ψα(Wi,β0)δ(Zi,Xi,β0(α))

−∆(α)
√
n
(
β̂n(α)− β0(α)

)∣∣∣
= op(1). (34)
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Combining (33) and (34) we have that uniformly in α ∈ A and g ∈ G:

R̂n(g, α)

=
1√
n

n∑
i=1

ψα(Wi,β0)g(Zi) +D
⊤(g,β0(α))

√
n
(
β̂n(α)− β0(α)

)
−D̂n(g, β̂n(α))

⊤∆̂−1
n (α) · 1√

n

n∑
i=1

ψα(Wi,β0)δ(Zi,Xi,β0(α))

−D̂n(g, β̂n(α))
⊤∆̂−1

n (α) ·∆(α) ·
√
n
(
β̂n(α)− β0(α)

)
+ op(1)

=
1√
n

n∑
i=1

ψα(Wi,β0)
(
g(Zi)−D(g,β0(α))

⊤∆−1(α)δ(Zi,Xi,β0(α))
)
+ op(1)

= Rn0(g, α) + op(1),

where we have made appropriate use of Lemma 4.

A.3 Proof of Corollary 1
Note that

Rn0(g, α) =
1√
n

n∑
i=1

ψα(Wi,β0)
(
g(Zi)−D(g,β0(α))

⊤∆−1(α)δ(Zi,Xi,β0(α))
)
.

The weak convergence of Rn0(g, α) follows from the joint weak convergence of

1√
n

n∑
i=1

ψα(Wi,β0)g(Zi)

and of
1√
n

n∑
i=1

ψα(Wi,β0)δ(Zi,Xi,β0(α))

since D⊤(g,β0(α)) is uniformly continuous in G × A, as guaranteed by the conditions of As-
sumptions 1 and 3. The joint asymptotic equicontinuity follows from that of the marginals.
A standard multivariate central limit theorem implies the convergence of the finite-dimensional
distributions. To prove the asymptotic equicontinuity of 1√

n

∑n
i=1 ψα(Wi,β0)g(Zi), define for

γ ≡ (g, α) ∈ G ×A
g1i(γ) ≡ ψα(Wi,β0(α))g(Zi)

and define the class of functions G1 = {g1·(γ) : γ ∈ G ×A}. Fix γ1 = (g1, α1) ∈ G ×A. By the
triangle inequality, provided that δ ∈ (0, 1) we have

E

[
sup

g2: ∥g1−g2∥G<δ

sup
α2: |α1−α2|<δ

|g1i(γ1)− g1i(γ2)|2
]

≤ CE
[{
F
(
X⊤β0(α1 + δ)

∣∣Z)− F
(
X⊤β1(α1 − δ)

∣∣Z)}]+ Cδ

≤ Cδ.
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To prove the asymptotic equicontinuity of 1√
n

∑n
i=1 ψα(Wi,β0)δ(Zi,Xi,β0(α)), define for α ∈

A
g2i(α) = ψα(Wi,β0(α))δ(Zi,Xi,β0(α)),

and define the class of functions H1 = {g2·(α) : α ∈ A}. Fix α1 ∈ A. By the triangle inequality,
provided that δ ∈ (0, 1), we have

E

[
sup

α2: |α1−α2|<δ

|g2i(α1)− g2i(α2)|2
]

≤ CE
[{
F
(
X⊤β0(α1 + δ)

∣∣Z)− F
(
X⊤β1(α1 − δ)

∣∣Z)}]
+CE

[
sup

α2: |α1−α2|<δ

∣∣f (X⊤β0(α1)
∣∣Z)− f

(
X⊤β0(α2)

∣∣Z)∣∣2 ∥X∥2
]

≤ Cδ.

The desired conclusion follows.

A.4 Proof of Theorem 2
The proof of Theorem 2 parallels that of Theorem 1. In particular, we have

R̂n(g, α) = Sn(g, α)−D⊤(g,β0(α))∆
−1(α)Sn

(
δ̂n(·, ·, β̂n(α)), α

)
+ op(1).

Applying Theorem 5 yields

sup
α∈A

sup
g∈G

∣∣∣∣∣Sn(g, α)−
1√
n

n∑
i=1

ψα(Wi,β0)g(Zi)− E [a(Z,X, α)g(Z)]

−D⊤(g,β0(α))
√
n
(
β̂n(α)− β0(α)

)∣∣∣
= op(1),

which by the orthogonality restriction E [δ(Z,X,β0(α))a(Z,X, α)] = 0 is equivalent to

sup
α∈A

sup
g∈G

∣∣∣∣∣Sn

(
δ̂n

(
·, ·, β̂n(α)

)
, α
)
− 1√

n

n∑
i=1

ψα(Wi,β0)δ(Zi,Xi,β0(α))

−∆−1(α)
√
n
(
β̂n(α)− β0(α)

)∣∣∣
= op(1).
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As such, we have the following convergence holding uniformly for g ∈ G and α ∈ A under the
sequence of local alternatives given in (11):

R̂n(g, α)

=
1√
n

n∑
i=1

ψα(Wi,β0)g(Zi) + E [a(Z,X, α)g(Z)] +D⊤(g,β0)
√
n
(
β̂n(α)− β0(α)

)
−D⊤(g,β0(α))∆

−1(α) · 1√
n

n∑
i=1

ψα(Wi,β0)δ(Zi,Xi,β0(α))

−D⊤(g,β0(α))∆
−1(α) ·∆(α) ·

√
n
(
β̂n(α)− β0(α)

)
+ op(1)

=
1√
n

n∑
i=1

ψα(Wi,β0)
(
g(Zi)−D⊤(g,β0(α))∆

−1(α)δ(Zi,Xi,β0(α))
)

+E [a(Z,X, α)g(Z)] + op(1),

which completes the proof.

A.5 Proof of Theorem 3
The theorem follows from the multiplier central limit theorem; see van der Vaart and Wellner
(1996, Theorem 2.9.2, p. 179).
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Figure 1: Estimated cross-price elasticities of demand
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Note: The region between the dashed lines on each graph indicate 95-percent confidence regions.

51


