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Abstract

A committee decides by unanimity whether to accept the current alterna-
tive, or to continue costly search. Alternatives are described by several distinct
attributes. Each committee member privately assesses the quality of one at-
tribute (her “specialty”). Preferences are heterogeneous and interdependent:
each specialist values all attributes, but puts a higher weight on her specialty
(partisanship). We study how acceptance standards, members’ welfare and
expected search duration vary with the amount of conflict within the commit-
tee. We compare decisions made by specialist committees to decisions made by
committees of generalists who can each assess all information available, and to
one-person decision making.
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1 Introduction

Leonardo da Vinci was a painter, sculptor, architect, musician, mathematician, en-

gineer, inventor, anatomist, geologist, cartographer and botanist. Isaac Newton was

(merely) a physicist, mathematician, astronomer, natural philosopher, alchemist,

master of the mint and theologian. Benjamin Franklin was an author, printer, polit-

ical theorist, postmaster, scientist, inventor, statesman, and diplomat.

These giants had probably little use for committees. But most complex decisions

in modern public or private organizations are taken by committees: Parliamentary

committees prepare and often control legislative outcomes through their superior

information; Hiring decisions for high-profile jobs that require multiple skills are made

or prepared by search committees, e.g., for a CEO, public administrator or university

professor; Investment decisions about various available projects are made by a board

of directors, or by a partnership of venture capitalists; Funding decisions for (possibly

interdisciplinary) research proposals are made by ad-hoc expert committees assembled

within science agencies; Technological standards are set by committees where various

experts represent firms within an industry, various industries on the producer or

consumer side, or several countries; Monetary policy is set by a board instead of a

sole governor in practically all important central banks.

Another ubiquitous feature of modern industrialized societies is the compartmen-

talization of knowledge. Just to give an example, medical specialization only started

around 1830 in the great Paris hospitals, while the past half century has seen a tremen-

dous increase in the number of medical specialties, along with the near disappearance

of the general practitioner.1

The causality relation between the above two phenomena seems obvious enough:

The trend towards more specialization – which implies that no single individual has

access to the entire necessary information – creates the necessity of delegating complex

choices among multi-dimensional alternatives to committees of “specialists”, each

possessing information about some partial aspect of the problem at hand.2

But the possession of information that is not easily accessible to others creates

incentives for strategic manipulation. The lack of efficient information transmission

among specialized scientists was metaphorically bemoaned by Robert Oppenheimer

in 1954: “The specialization of science is an inevitable accompaniment of progress;

1For a history of specialization in the medical science see Weisz [2006].
2A lively debate takes place in the medical literature about the merits of specialists versus gen-

eralists. For example, Lowe et al [2000] study admission decisions for cardiac patients performed
by doctors with different trainings. The decision problem is multi-dimensional since many of these
patients suffer from comorbidity – the presence of several serious other conditions.
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yet it is full of dangers, and it is cruelly wasteful since so much that is beautiful and

enlighted is cut off from most of the world.”

The danger perceived by Oppenheimer would be less severe if the experts/specialists

in a committee would all rank the various feasible alternatives in the same way. But

it is often the case that specialization also leads to a form of “bias” or “partisanship”

– the view that one own’s information/speciality is more important than others. For

example, Hardy [1940], p.66 advises that: “It is one of the first duties of a professor,

for example, in any subject, to exaggerate a little both the importance of his subject

and his own importance in it.” Surely all learned readers of this article can offer some

empirical evidence to the effect that Hardy’s advice is widely followed.

Differences in the weighting of various attributes may be intrinsic or psychological

(“Anyone who defends his subject will find that he is defending himself,” Hardy

[1940], p. 144), or due to the fact that the decision makers are accountable to different

constituencies and are better informed about the effects of the decision on their own

constituency. One important example of the second type is offered by the monetary

policy board of the European Central Bank. Gruener and Kiel [2004] argue that

national central banks care about a policy that accommodates macroeconomic shocks

in their own country, but, due to demand spillover effects, shocks in one country

affect the desired policy in other participating countries. Moreover, they argue that

national central bankers have some private information about their own national

macroeconomic conditions (e.g., Greece during the last banking crisis). Another

example is offered by international decisions about environmental policy where the

nation states are interested in achieving less pollution in their own country, and

presumably possess private information about the national amount of emissions, the

costs to reduce emissions, or the economic consequences of a reduction. But it is

obvious that the environmental situation in one member state is co-determined by

the emissions in neighboring countries, and hence policy needs to be coordinated at

international conferences (e.g., the Kyoto or Copenhagen conferences).

If strong enough, the degree of partisanship within a committee implies that each

member will insist on a particularly high standard in his own speciality, leaving little

room for trade-offs among the various attributes of each alternative. Such behavior

leads to delay in reaching decisions. Here is, for example, what Farell and Saloner

[1988] write in their influential study of standard setting committees:

“More than a hundred thousand people meet regularly in committees with

the goal of reaching agreement on product and interface compatibility

standards. The resources devoted to this formal standardization activ-

ity have roughly doubled in the last decade. But these committees too
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are imperfect coordinators. Often, by the time a committee is convened,

participants have vested interests in incompatible positions, and the com-

mittee must resolve this conflict. Since the “consensus principle” which is

generally accepted in voluntary standard setting, requires committees to

seek a stronger consensus than a simple majority vote (though not nec-

essarily unanimity), there may be a battle of wills in committee, while

users wait. Such waiting is costly, whether simply because of delay or

because eventually the participants can no longer wait, and the chance

for coordination has been missed.”

In order to study the interaction among specialization, private information, and

partisanship in a dynamic framework where measuring delay is meaningful, we intro-

duce a novel model whose main ingredients are:

1. A stream of alternatives (or projects, or candidates) is presented to a commit-

tee who has to decide whether to accept the current alternative, or to continue

costly search (which can be seen as preserving a given status-quo). Thus, the

environment is dynamic and the current alternative is compared to an endoge-

nously determined continuation value rather than to a fixed, exogenously given

outside option. This is a multi-person generalization of a classical one-person

optimal stopping or search problem (see Chow, Robbins and Siegmund [1971]

for a classical exposition).

2. Each alternative is described by a multi-dimensional bundle of several distinct

attributes. Each committee member is able to privately assess the quality of

one attribute (her “speciality”), but has only statistical knowledge about the

distribution of other relevant attributes. Thus, the game our agents play is one

with incomplete information.

3. Abstracting from informational issues (see also below), we follow here the ap-

proach of the so called “multi-attribute utility theory”, a standard tool in deci-

sion analysis. The additive form of the utility function is the simplest, yet most

widely used form: it states that the utility of an alternative is the weighted sum

of the conditional utilities of the alternative’s attributes, where the weights add

up to one (For a classical exposition, see Keeney and Raiffa [1976]).

4. The members’ preferences are interdependent (i.e., there are both private and

common components) since the utility of each member is given by a convex

combination of his own private signal and the private signals of other members.
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We assume that committee members care most about the attribute about which

they are also privately informed, but other cases can be also treated.

In our present technical treatment we focus on unanimity decisions in a committee

with two members, but similar analyses for committees with more members who

employ other decision rules (e.g., voting by majority) can be performed using the same

tools. In particular, when alternatives are two-dimensional, a multi-person committee

with a unanimity acceptance rule will be controlled by at most two members: those

with the most stringent acceptance standard in each dimension, respectively.

Our main results study how acceptance standards, members’ welfare and search

duration vary with the amount of partisanship (or conflict), and compare the multi-

person committee decision under specialization to two benchmarks: (i) committees

without specialization, where all members are generalists and have access to all the

available information (thus there is complete information); (ii) one-person committees

(dictatorship).

It is important to point out that with extreme divergence of opinions, which cor-

responds here to the private values case (i.e., when each committee member puts all

the weight on the attribute corresponding to her own speciality) it makes no differ-

ence whether the committee members have private information or not. The reason

is that acceptance by member B (who votes based on information about her own

speciality) conveys no additional information directly affecting member A’s utility.

Thus, whether A observes the attribute evaluated by B or not is inconsequential.

The situation dramatically changes when a member values attributes other than

her speciality, i.e., when there is less conflict and values are interdependent. Then,

under complete information, a committee member accepts candidates whose weighted

combination of all observed attributes are above an optimal cutoff. In the dynamic

search equilibrium, this cutoff is precisely equal to the continuation value obtained

by not accepting the current candidate and continuing search.

Under incomplete information, behavior can be conditioned only on the single

observed attribute (the member’s speciality), and member A imprecisely infers from

an acceptance by member B that the attribute monitored by B – which now directly

matters for A – is of relatively high quality. The continuation value is now given

by a convex combination of the acceptance cutoff in A’s speciality and the inferred

expected quality in the other dimension.

An interesting consequence of this difference is that increased partisanship or

conflict leads to a more lenient acceptance rule under complete information, but to a

more stringent rule under incomplete information! In particular, there are balanced

but not exceptional candidates who are accepted by the specialized committee, but
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rejected by the nonspecialized one. On the other hand, the specialized committee

rejects candidates who are excellent in just one dimension that would be accepted by

the generalist committee.

Although acceptance standards move in opposite directions, members’ welfare in

both settings behave similarly. Roughly speaking, welfare in committees increases

with the covariance of the members’ random utilities, where an increase in covariance

can stem either from an increase in the variance of the underlying attributes (an

effect that is shown to be beneficial in one-person decisions), or from a decrease in

the degree of conflict within the committee. In particular, when conflict decreases

the members’ random utilities become more associated, where “more association” is

a measure of positive dependence among random variables. Under specialization we

can also show that the search duration increases as the degree of conflict increases.

It is obvious that a generalist dictator who possess information about all relevant

attributes cannot gain by forming a committee where power has to be shared with

others (unless the search costs can be passed to others). In contrast, when search

costs are not too high, we show that a specialist dictator always prefers to share

power and invite other specialists to the committee rather than take a partially un-

informed decision by himself. Moreover, the invited specialist is better off by joining

the committee rather than staying out and bearing the consequences of the dictator’s

decision. This Pareto improvement holds provided that there is a minimal congruence

of interests among potential members, and is achieved in spite of a necessarily longer

search duration in the committee problem. We also show that a specialist committee

Pareto-dominates a generalist committee if the cost of assessing several dimensions

of the decision problem is “convex enough” in the number of dimensions. Thus, our

model yields intuitive explanations for the emergence of committees as a consequence

of specialization.

The paper is organized as follows. In the next subsection we review some related

literature. In Section 2 we present the basic committee decision model. In Section

3 we focus on the complete information/generalist benchmark. In Subsection 3.1 we

analyze a one-person decision problem. Proposition 1 shows that the dictator’s ac-

ceptance cutoff and utility increase if his preferences become more biased towards one

attribute. In Subsection 3.2 we analyze the committee problem under unanimity and

complete information. We prove the existence of a unique stationary and symmetric

equilibrium, and we show that both acceptance cutoff and utility go down when the

members’ preferences become more divergent, which corresponds to an increase in

the degree of conflict within the committee (Proposition 2). Moreover, the cutoff

under unanimity is always lower than the cutoff under dictatorship. The final result
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in this Section, Proposition 3, relates a decrease in conflict (and hence an increase in

welfare) to a precise mathematical notion of positive dependence among random vari-

ables. The analysis in this Section uses insights from majorization theory. Section 4

is devoted to the incomplete information (or specialization) case. Proposition 4 looks

at the one-person decision problem where the dictator is informed only about one

attribute, and shows that the acceptance cutoff, utility and search duration all go up

when the dictator’s preference become more biased towards one attribute. Section 4.2

is devoted to the study of unanimity decisions under incomplete information. Propo-

sition 5 proves existence and uniqueness of a stationary equilibrium in a general (not

necessarily symmetric) setting if the attributes’ distributions have a strict decreasing

mean residual life (DMRL). Under the DMRL assumption, Propositions 6 analyzes

the effects of more extreme preferences on acceptance cutoffs and search duration in

possibly asymmetric committees. In particular, equilibrium search duration increases

when at least one committee member becomes more biased. Proposition 7 focuses

on symmetric settings: it proves the existence of an unique symmetric equilibrium,

and shows that both the acceptance cutoff and expected search duration go up while

utility goes down when the degree of conflict within the committee increases. It also

gives an upper bound on the increase of the search duration. Propositions 8 and 9

study the effects of stochastic increases in the attributes’ distributions within, and

across committees, respectively. In Section 5 we first compare the performance of

committees of specialists to that of committees of generalists. The analysis focuses

on the ratio between the cost of assessing several dimensions of the decision problem

and the cost of assessing a single dimension. Proposition 10 gives a simple bound

on this ratio ensuring that a specialist committee Pareto-dominates a generalist one.

Proposition 11 in Subsection 5.1 shows that forming a committee of specialized, par-

tially informed members also offers a Pareto improvement when compared to the

partially informed dictator case, despite the fact that the committee takes longer

to reach a decision. Section 6 concludes. In Appendix A we prove a partial result

about search duration under unanimity for a committee with generalists. Appendix

B contains several technical proofs omitted from the main text.

1.1 Related Literature

Decision making in committees is the subject of much scholarly work. A large majority

of the existing papers study static cases where the committee makes a decision just

once. We refer the reader to the survey by Li and Suen [2009] for a discussion of some

of the main topics addressed, and focus below on papers that incorporate committee

decisions within a formal search model.
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A small literature, originating during the mid 70’s-80’s in Statistics/Operations

Research, analyzes multi-person stopping games: a committee is presented with alter-

natives that arrive sequentially, and its members vote whether to accept the current

alternative or to continue search. Each alternative is characterized by a set of at-

tributes, and each committee member only cares about one attribute. This basic

framework with two players where stopping requires unanimous consent has been

first analyzed by Sakaguchi [1973]. Kurano, Yasuda and Nakagami [1980] and Ya-

suda, Nakagami and Kurano [1982] establish equilibrium existence for environments

with more than two players and with more flexible voting rules, e.g. majority. Fergu-

son [2005] points out that the voting games analyzed by these authors typically have

many non-trivial stationary equilibria, and offers conditions on the distribution of the

alternatives’ attributes ensuring the existence of a unique stationary equilibrium for

the case of unanimous consent.

There is a more recent interest in collective search games in Economics. Wilson

[2001] and Compte and Jehiel [2010a] take a bargaining perspective: they study

environments where proposals are presented randomly and sequentially to a set of

bargainers who can accept or not. These authors relate the bargaining outcome when

players are very patient to the Nash Bargaining Solution. Compte and Jehiel also

analyze who has more (if any) effect on the decision, how search duration is affected by

the majority rule, and the impact of dimensionality on the size of the acceptance set.

Albrecht, Anderson and Vroman [2010] derive the existence of a unique symmetric and

stationary equilibrium for symmetric settings and general majority rules, and study

how the committee size and voting rules affect the search outcome. Compte and

Jehiel [2010b] compare majority rules with unanimity for large committees of very

patient agents. Alpern and Gal [2009] and Alpern, Gal and Solan [2010] consider

augmented voting games where the committee members can also veto candidates,

but have a restricted number of vetoes.

Lizzeri and Yariv [2010] consider a committee that decides every period whether to

continue deliberation (costly information gathering) or stop and make a final decision

by voting. Under certain conditions, these authors show that voting rules are irrel-

evant while deliberation rules are critical for the determination of the duration and

accuracy of final decisions. This theoretical finding is consistent with the experimen-

tal results documented in Goeree and Yariv [2010]. Strulovici [2010] studies a model

of collective experimentation by voting, and shows that collective decision making

often leads to an inefficient level of experimentation. In his model a time-dependent

voting rule can restore efficiency.

Although various aspects of aggregation of private information is a significant
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topic in the static literature on decision making in committees (see for example Gilli-

gan and Krehbiel [1989], and Li, Rosen and Suen [2001]), all papers mentioned above

(that discuss dynamic settings) conduct a complete information analysis. The com-

bination of dynamic search, private information, multidimensional alternatives and

interdependent values is a distinctive feature of the present paper.

Damiano, Li and Suen [2009] study the role of delay for information aggregation

in a dynamic model of committee decision where committee members possess private

information and have conflicting preferences. In their model members repeatedly vote

on a decision – which is taken only once – until an agreement is reached.

Several static models of decision making in committees allow for interdependent

values. For example, Gruener and Kiel [2004] consider direct revelation mechanisms in

a static committee decision model with private information, interdependent values and

a one-dimensional set of alternatives. Caillaud and Tirole [2007] focus on strategies for

consensus building within a group and define a measure of internal congruence among

committee members in order to capture the correlation among the members benefits.

Mathematically, this is connected to our notion of degree of conflict or partisanship

since both are related to measures of positive dependence among random variables.

We wish to mention here that several important tools in establishing both the

uniqueness of stationary Bayes-Nash equilibria in the incomplete information case,

and many of our comparative statics results revolve around the concept of mean

residual life of a random variable, which is borrowed from reliability theory (see

Shaked and Shanthikumar [2007], Chapter 2). Another important set of concepts

and tools is borrowed from (stochastic) majorization theory (see the classical treatise

by Marshall and Olkin [1979]).

2 The Model

We choose to present the model in a specific and familiar setting of a recruiting

committee. As mentioned in the introduction, our analysis applies more broadly to

other committee decision frameworks.

A hiring committee is in charge of filling an open position. Candidates are

evaluated one at a time. In each period t the current candidate is evaluated on the

basis of two attributes Xt and Yt, where Xt and Yt are non-negative random variables

(say theoretical skills and empirical skills in an Economics department). These two

attributes are drawn independently of each other, and independently across periods

from commonly known distributions F and G, respectively. Both F and G have finite

second moments and continuous densities, with a common support
[
0, θ
]
, where θ ≤
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+∞.3

The committee consists of two members, A and B. Member A (B) is specialized

in evaluating attribute X (Y ), and privately observes the realization of this random

variable.

The committee members view the value of a candidate in possibly different ways:

each member is biased towards hiring a candidate that is strong in his own respective

field of specialization. This is captured here by assuming that, net of search costs,

the payoff for member A from hiring a candidate (x, y) is given by αx + (1− α) y

with α ≥ 1/2. Net of search costs, the payoff of member B from hiring a candidate

(x, y) is given by βx + (1− β) y with β ≤ 1/2. That is, member A puts relatively

more weight on attribute x and member B puts relatively more weight on attribute

y. Higher values of α and 1− β represent here a higher degree of conflict within the

committee, or more partisanship.

After each assessment, members simultaneously cast votes of “yes” or “no”.4 A

candidate is hired and search stops if both members vote “yes”, otherwise search

continues. In the latter case, member A incurs cost cA and member B incurs a cost

cB, and the process repeats itself5. Once rejected, a candidate cannot be recalled. In

the sequel we always focus on equilibria where search ends in finite time, in order to

avoid the trivial equilibria where one agent never votes “yes”.

3 Complete Information: Generalist Committees

We start our analysis with a discussion of the setting where the decision makers

observe and can assess the current realizations of both attributes (but are uncer-

tain about the future candidates). Thus, there is complete information, and agents

are generalists. Roughly speaking, the analysis is more complex in the generalist

case because the committee members need to condition their behavior on the sum

(convolution) of two random variables corresponding to the two attributes instead of

conditioning on the single attribute corresponding to their own speciality.

3.1 One-person Committees (Dictatorship)

Suppose first that member A alone controls the decision. We assume that this “dic-

tator” incurs a search cost cD and observes both realizations xt and yt. Letting

Z = Zt = αXt+ (1− α)Yt, we obtain an instance of the classical search problem first

3The assumption of common support is just for convenience of notation.
4Under the unanimity rule, simultaneity does not matter.
5These can be thought of as time costs, evaluation costs, etc....
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analyzed in Chow and Robbins [1960], where the decision maker directly observes the

realization of Z, which also gives the dictator’s period utility in case of stopping. It

is well known that the optimal policy is determined by a cutoff zD that is constant

over time: in any period, the dictator accepts the current candidate if and only if

Z ≥ zD.6 Let vD denote the continuation payoff of the dictator when he chooses the

cutoff zD optimally. We have then

vD = −cD + E [Z | Z ≥ zD] Pr (Z ≥ zD) + [1− Pr (Z ≥ zD)] vD.

It also follows from optimality that vD = zD. Therefore, the equilibrium condition

for the cutoff zD is given by:

E [Z − zD | Z ≥ zD] Pr (Z ≥ zD) = cD. (1)

The left hand side of the above equation is decreasing in zD, and hence the solution

is unique. In order to analyze how the optimal cutoff/dictator’s utility varies with

the degree of bias α, we introduce a few concepts from majorization theory.

Definition 1 Let a(1) ≤ a(2) ≤ ... ≤ a(n) and b(1) ≤ b(2) ≤ ... ≤ b(n) denote the in-

creasing arrangement of vector a = (a1, a2, ..., an) and b = (b1, b2, ..., bn), respectively.

The vector a majorizes vector b, denoted by a � b, if
∑n

i=1 a(i) =
∑n

i=1 b(i) and

j∑
i=1

a(i) ≤
j∑
i=1

b(i) for all j = 1, ..., n− 1.

Definition 2 A function f : Rn → R is Schur-convex (concave) if for a,b ∈ Rn,

a � b⇒f (a) ≥ (≤) f (b) .

A symmetric and convex (concave) function is Schur-convex (concave). Note (also

for further reference) that for a = (1− α1, α1) and b = (1− α2, α2) where α1 ≥ 1
2

and

α2 ≥ 1
2
, the assertion a � b is equivalent to α1 ≥ α2. We also need the following

result, which is a special case of a theorem due to Marshall and Proschan [1965] (see

also Result B.2.c. in page 288 of Marshall and Olkin [1979]).

Theorem 1 (Marshall and Proschan [1965]) If X1, ..., Xn are exchangeable ran-

dom variables, and if g is a continuous convex function, then the function

φ(a1, a2, ...an) = Eg(
∑

aiXi)

is symmetric and convex, and hence Schur-convex.

6Note that recall is never optimal in such a setting.
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We are now ready to prove:

Proposition 1 Assume that F = G. Then the dictator’s cutoff (or utility) zD is

increasing in α.

Proof. For a fixed zD, let g(t) = (t − zD) · 1{t≥zD} where 1{·} denotes the indicator

function. Then g is clearly continuous and convex. The random variables X and Y

are exchangeable since they are I.I.D. By the above Theorem, we obtain that

φ(a1, a2) = Eg(a1X + a2Y ) = E[(a1X + a2Y − zD) · 1{a1X+a2Y≥zD}]

is Schur convex. Hence, by the remark before the Theorem, the function ψ(α) =

Eg(αX + (1 − α)Y ) is increasing in α for α ≥ 1
2
. The left hand side of equation

(1), E [Z − zD|Z ≥ zD] Pr (Z ≥ zD), viewed as a function of α is precisely equal to

ψ. It is also clear that the same expression, viewed as a function of zD, is decreasing.

Therefore, the equilibrium cutoff zD satisfying equation (1) must be increasing in α.

Remark 1 Marshall and Proschan’s Theorem can also be invoked to show that
∑
aiXi

is second-order stochastically dominated by
∑
biXi whenever a � b.7 Thus, a change

in preferences, corresponding to an increase in α, has here the same beneficial effect

on utility as an increase in the variability of the candidate’s attribute in a standard

one-dimensional search model.

Another important issue is how a change in α affects the search duration, which

is inversely related to the acceptance probability. An increase in α has two effects

on the acceptance probability. First, an increase in α directly affects the acceptance

probability for a fixed cutoff zD. This effect is ambiguous and depends on the distri-

bution. Second, as α increases, the optimal cutoff zD increases, leading to a reduction

of the acceptance probability. The overall effect of an increase in α on search duration

is ambiguous, as illustrated in the following examples.

Example 1 Suppose that both F and G are uniform on the interval [0, 1]. The search

cost cD is assumed to be small, so that the equilibrium cutoff satisfies zD ≥ α, and

thus zD
1−α ≥

zD
α
≥ 1. Condition (1) becomes

cD =

∫ 1

[zD−(1−α)]/α

∫ 1

(zD−αx)/(1−α)

(αx+ (1− α) y − zD) dydx

=
1

6α (1− α)
(1− zD)3

7The proof uses the same reasoning as above, but for an arbitrary convex function g instead of
g(t) = (t − zD) · 1{t≥zD}. This is Theorem 3.A.35 in Shaked and Shanthikumar [2007], but their
proof is somewhat less transparent.
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Therefore, the equilibrium cutoff is zD = 1 − 3
√

6α (1− α) cD, which increases in α.

The probability of acceptance∫ 1

[zD−(1−α)]/α

∫ 1

(zD−αx)/(1−α)

dydx = 3

√
9

2α (1− α)
3

√
c2D

is increasing in α, and thus the expected search duration decreases in α.

Example 2 Suppose F (s) = G (s) = 1− e−s for s ∈ [0,∞). Equation (1) becomes

cD = 1− zD −
∫ zD/α

0

∫ (zD−αx)/(1−α)

0

(αx+ (1− α) y − zD) e−ydye−xdx

=
α2

2α− 1
e−zD/α − (1− α)2

2α− 1
e−zD/(1−α).

Fix cD = 0.01 (note that this is quite small compared to the mean of the distribution).

As α increases from 0.6 to 0.8, the optimal cutoff zD increases from 3.1 to 3.7, while

the search duration increases from 61 to 80.

3.2 Unanimity among Generalists

Suppose now that the decision is controlled by a committee with two members.

At time t each member observes both realizations xt and yt of the current candi-

date/alternative’s attributes, and a decision is taken by unanimity. Define a sequence

of I.I.D. random variables {Zt}∞t=1 where Zt = (ZAt, ZBt) is given by:

ZAt = αXt + (1− α)Yt,

ZBt = βXt + (1− β)Yt.

With this transformation, the setting is similar to the one where the committee mem-

bers observe ZAt and ZBt directly (see Ferguson [2005]), except that we explicitly spell

out the interdependence in the preferences. In principle, a member’s voting strategy

may depend on the whole history of the game. We focus however on stationary equi-

libria that employ cutoff strategies: each member votes “yes” if and only if his/her

evaluation of the candidate’s worth exceeds a cutoff that does not change over time.

Since the realizations of both attributes are public, members A and B will impose

cutoffs on ZAt and ZBt, respectively. If we denote by zA and zB the equilibrium cutoffs

employed by members A and B, respectively, then member A (B) votes “yes” if and

only if zAt ≥ zA (zBt ≥ zB).

Let vA denote the continuation value of member A when member A follows his/her

optimal strategy given the equilibrium strategy of member B. The continuation value
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vB of member B is defined analogously. As in the previous one-person case, it must

hold that vA = zA and vB = zB. It also follows from the definition of vA that

vA = −cA + E [ZA | ZA ≥ zA, ZB ≥ zB] Pr (ZA ≥ zA, ZB ≥ zB)

+ [1− Pr (ZA ≥ zA, ZB ≥ zB)] vA.

By substituting zA for vA we obtain our first equilibrium condition:

E [ZA − zA | ZA ≥ zA, ZB ≥ zB] Pr {ZA ≥ zA, ZB ≥ zB} = cA. (2)

Following the same procedure, we obtain our second equilibrium condition:

E [ZB − zB | ZA ≥ zA, ZB ≥ zB] Pr {ZA ≥ zA, ZB ≥ zB} = cB. (3)

If (zA, zB) is an equilibrium with Pr {ZA ≥ zA, ZB ≥ zB} > 0, then (zA, zB) must

satisfy the above two equilibrium conditions. Equilibrium existence is established by

Yasuda, Nakagami and Kurano [1982]. The equilibrium may not be unique, as illus-

trated by examples in Ferguson [2005]. But we show below that a unique symmetric

equilibrium exists if the setting is symmetric, i.e., if F = G, α = 1− β and cA = cB.

How do the recruiting standard and welfare vary with respect to α, the degree of

conflict within the committee in this equilibrium? The answer may seem ambiguous

since α has two opposite effects: on the one hand, an increase in α increases variability

which is beneficial, as shown under dictatorship (see Remark 1); on the other hand,

an increase in α shrinks the acceptance region. The key insight for the next result

is to look instead at the sum of the members’ utilities which equals Xt + Yt for any

candidate, and is therefore independent of α. We show below that the acceptance

cutoff always goes down when α increases, contrasting the result in the one-person

decision problem.

Proposition 2 Suppose that F = G, α = 1−β , and cA = cB = c. Then there exists

a unique symmetric equilibrium (z, z) that is characterized by

E [ZA − z | ZA ≥ z, ZB ≥ z] Pr (ZA ≥ z, ZB ≥ z) = c. (4)

The equilibrium cutoff z (and thus each member’s payoff) is decreasing in α. More-

over, z ≤ zD, the dictator’s optimal cutoff under the same F, α, and c.

Proof. The equilibrium condition (4) is obtained from (2) by setting zA = zB = z.

The existence and uniqueness follow from the observation that the left hand side of

(4) is strictly decreasing in z.
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Since in the symmetric setting X = Xt and Y = Yt are I.I.D., we obtain:

E [ZA − z | ZA ≥ z, ZB ≥ z] Pr (ZA ≥ z, ZB ≥ z)

= E
[
(αX + (1− α)Y − z) · 1{αX+(1−α)Y≥z,(1−α)X+αY≥z}

]
=

1

2
E
[
(αX + (1− α)Y − z) · 1{αX+(1−α)Y≥z,(1−α)X+αY≥z}

]
+

1

2
E
[
(αY + (1− α)X − z) · 1{αX+(1−α)Y≥z,(1−α)X+αY≥z}

]
=

1

2
E
[
(X + Y − 2z) · 1{αX+(1−α)Y≥z,(1−α)X+αY≥z}

]
Thus, the equilibrium condition (4) can be re-written as:

E

[(
1

2
X +

1

2
Y − z

)
· 1{αX+(1−α)Y≥z,(1−α)X+αY≥z}

]
= c (5)

Observe that function on the right hand side is Schur-concave in (α, 1 − α) because

the indicator function is Schur-concave, and because the function 1
2
X + 1

2
Y − z does

not depend on α, and is positive whenever the indicator function is not equal to zero.

Thus, the right hand side decreases with α. Since it also obviously decreases with z,

we obtain that the equilibrium cutoff decreases in α.

For the last assertion, note that zD(1
2
) = z(1

2
), since the equilibrium conditions

under unanimity and dictatorship coincide in this case:

E

[(
1

2
X +

1

2
Y − z

)
· 1{ 1

2
X+ 1

2
Y ≥ z}

]
= c

By Proposition 4 we know that zD(α) increases in α. The result follows because z (α)

decreases with α, as shown above.

The intuition for the above result is as follows. For a fixed acceptance cutoff z,

the acceptance area under unanimity is given by

{(x, y) : αx+ (1− α) y ≥ z, (1− α)x+ αy ≥ z} .

When α, the degree of conflict within the committee, increases from 1/2 to 1, the

15



acceptance region shrinks, as shown in the figure below:

(1a)x+ay=z

0 thetabar

thetabar

ax+(1a)y=z

(z,z)

a=½

a=1

Figure 1

As a result, a successful search takes more periods, which means that both members

have to incur higher expected search costs if they keep the same standard. To counter

this effect, both members lower their acceptance standard and settle on less desirable

candidates, striking a balance between candidate quality and search costs.

Example 3 Suppose that both F and G are uniform on the interval [0, 1], and that

α = 1 − β and cA = cB = c. Assume also that the cost c is small enough so

the symmetric equilibrium cutoff satisfies z ≥ 1 − α. The equilibrium condition (4)

becomes

c =

∫ 1

z

∫ y

1
α

(z−(1−α)y)

(αx+ (1− α) y − z) dxdy

+

∫ 1

z

∫ x

1
α

(z−(1−α)x)

(αx+ (1− α) y − z) dydx

=
1

6α2
(4α− 1) (1− z)3 .

Therefore, the equilibrium cutoff is

z = 1− 3

√
6α2c

4α− 1
.

The probability of acceptance given by∫ 1

z

∫ y

1
α

(z−(1−α)y)

dxdy +

∫ 1

z

∫ x

1
α

(z−(1−α)x)

dydx =
1

α

(
3

√
6α2c

4α− 1

)2
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is decreasing in α, which implies that the expected search duration increases in α in

this example.

Remark 2 Recall that an increase in the degree of conflict α leads to a decrease in

the second order stochastic dominance order of the random utility αX+(1−α)Y (and

hence to an increase in its variance), which was shown to be beneficial for dictators.

But we also showed that the members’ payoffs in committees decrease in α, which

seems puzzling. But what is the benefit for member A of an increased variance if

member B says ”no” to the better candidates? What A really needs is that the expected

value of B’s utility, conditional on A’s utility being high, is also high. Only then search

stops in a committee. Note that the covariance of the members’ random utilities

Cov[αX + (1− α)Y, αY + (1− α)X] = 2α(1− α)V ar (X)

is increasing in the variance of the underlying attributes, but is decreasing in the

degree of conflict α on [1
2
, 1]. Thus, our results show that the consensus effect is

dominant in committees. This observation about the role of the covariance suggests a

deeper mathematical connection: indeed, when conflict decreases, the members’ ran-

dom utilities become more associated, where “more association” is a well known

measure of positive dependence among random variables, due to Schriever [1987].8

Incidentally, in his original paper, Schriever has proven the following:

Proposition 3 (Schriever [1987]): Consider a pair of random variables (X, Y ),

and let Hα denote the joint distribution function of the linear transform Tα(X, Y ) =

(αX+(1−α)Y, (1−α)X+αY ), where α ∈ [1
2
, 1]. Then α ≥ α′ implies Hα �assoc Hα′.

9

4 Incomplete Information: Specialist Committees

In this section we come back to our original model where the committee members are

specialized and are able to privately assess the quality of the alternative/candidate

in only one dimension. We start with a brief discussion of the very simple one-person

problem.

8See also Chapter 9 in Shaked and Shanthikumar [2007] for the relations between this order and
other notions such as positive quadrant dependency, or the supermodular order. In general, more
positive dependence implies a higher covariance.

9The proof follows directly from the definition of the association order by observing that each Tα
is monotonically increasing in each coordinate, and that the determinant of the Jacobian of Tα′(T−1

α )
is non-negative.
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4.1 One-person Committees (Dictatorship)

The dictator (member A) incurs a search cost cA and only observes the realization of

Xt. Let xD denote the cutoff employed by the dictator. Then we have the Bellman

equation

vD = −cA + max
xD
{E [αX + (1− α)Y | X ≥ xD] Pr (X ≥ xD) + [1− Pr (X ≥ xD)] vD}

= −cA + max
xD

{∫ θ

0

∫ θ

xD

[αx+ (1− α) y] dF (x) dG (y) + F (xD) vD

}

The first-order condition for xD implies that

vD = αxD + (1− α)E [Y ] .

Note that here the equilibrium cutoff and the equilibrium utility do not coincide,

a fact with numerous consequences in the multi-person committee decisions prob-

lem analyzed below. From the Bellman equation we obtain the following equilibrium

condition for xD:

αE [X − xD | X ≥ xD] [1− F (xD)] = cA. (6)

Proposition 4 There is a unique equilibrium acceptance cutoff xD. This cutoff, the

dictator’s utility vD and the expected search duration are all strictly increasing in α.

Proof. The implications follow immediately from the fact the left hand side of

equation (6) is strictly increasing in α and strictly decreasing in xD. Note that the

acceptance probability is 1−F (xD), which is decreasing in α. Therefore, the expected

search duration also increases in α.

4.2 Unanimity among Specialists

We now turn to committee decisions with specialized, privately informed members.

Given a candidate with attributes (xt, yt), member A privately observes xt and mem-

ber B privately observes yt. Acceptance is by unanimity. We focus on stationary

equilibria that employ cutoff strategies. Each member casts her vote based on her

own information only. Specifically, if we let x∗ and y∗ denote the cutoffs used by

member A and B, respectively, then member A votes “yes” if and only if xt ≥ x∗,

and member B votes “yes” if and only if yt ≥ y∗.
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4.2.1 Equilibrium Characterization

With some abuse of notation, let vA denote the continuation value member A derives

by following his optimal strategy given the equilibrium strategy of member B. The

continuation value vB of member B is defined similarly. Then the Bellman equation

for member A becomes

vA = −cA + max
x∗

{
E [αX + (1− α)Y | X ≥ x∗, Y ≥ y∗] Pr (X ≥ x∗, y ≥ y∗)

+ [1− Pr (X ≥ x∗, Y ≥ y∗)] vA

}

= −cA + max
x∗

{ ∫ θ
x∗

∫ θ
y∗

[αx+ (1− α) y] dG (y) dF (x)

+ [1− (1− F (x∗)) (1−G (y∗))] vA

}
(7)

By looking at the necessary first-order condition for x∗ in the Bellman equations

above, one immediately obtains the relations between cutoffs and utilities, as stated

in the following Lemma.

Lemma 1 The relationships between the continuation values vA, vB and the optimal

cutoff x∗, y∗ are given by

vA = αx∗ + (1− α)E[Y | Y ≥ y∗], (8)

vB = βE [X|X ≥ x∗] + (1− β) y∗. (9)

Intuitively, conditional on being pivotal (i.e., Y ≥ y∗), member A is indifferent

between accepting the marginal candidate with X = x∗ and continuing costly search.

Therefore, the continuation value vA must be equal to the expected payoff from hiring

the marginal candidate, which is αx∗ + (1− α)E[Y | Y ≥ y∗]. In contrast to the

complete information setting, here the equilibrium cutoff and the equilibrium utility

do not coincide: the opponent’s cutoff y∗ affects not only the probability of acceptance,

but also the expected worth of the marginal candidate.

Since X and Y are independent, the Bellman equation can be re-written as

vA = αE[X | X ≥ x∗] + (1− α)E[Y | Y ≥ y∗]− cA
(1− F (x∗)) (1−G (y∗))

. (10)

That is, the expected payoff for member A is equal to the expected value of the chosen

alternative minus the expected search costs. Using the first-order condition (8), we

obtain our first equilibrium condition:

1

(1− F (x∗)) (1−G (y∗))
=

α

cA
E[X − x∗|X ≥ x∗]. (11)

The second equilibrium condition can be obtained similarly:

1

(1− F (x∗)) (1−G (y∗))
=

1− β
cB

E[Y − y∗|Y ≥ y∗]. (12)

19



The two conditions (11) and (12) characterize the stationary equilibrium cutoffs

(x∗, y∗).

Remark 3 There is an important formal link between the analysis of complete in-

formation with private values and the analysis of incomplete information

with interdependent values. In the complete information case with α = 1−β = 1,

we have private values with ZA = X and ZB = Y , and the equilibrium cutoffs (zA, zB)

are given by

1

cA
E [X − zA|X ≥ zA] =

1

cB
E [Y − zB|Y ≥ zB] =

1

[1− F (zA)] [1−G (zB)]
.

In the incomplete information case with any α and β, the equilibrium cutoffs (x∗, y∗)

are given by

α

cA
E [X − x∗|X ≥ x∗] =

1− β
cB

E [Y − y∗|Y ≥ y∗] =
1

[1− F (x∗)] [1−G (y∗)]

If we define κA = cA/α and κB = cB/ (1− β) as the “pseudo-cost” in the incomplete

information case, then the sets of cutoff equilibrium conditions coincide. Therefore,

while the welfare analysis is different, properties of the acceptance cutoffs in a complete

information framework with private values can be directly applied to a setting with

incomplete information and interdependent values. Note that when α = 1 and β = 0,

the pseudo costs are equal to the usual costs. Therefore, in the private values setting,

whether members’ information is private or not does not affect the equilibrium.

Before discussing the existence and uniqueness of the equilibrium, we first intro-

duce an important concept used in the theory of reliability.

Definition 3 The mean residual life (MRL) of a random variable X ∈
[
0, θ
]

is

defined as

m (x) =

{
E [X − x|X ≥ x] if x < θ

0 if x = θ

If we let X denote the life-time of a component, then m (x) measures the ex-

pected remaining life of a component that has survived until time x. The MRL

function is closely related to the more familiar hazard rate (or failure rate) λ (x) =

f (x) / [1− F (x)] which measures the instantaneous failure probability conditional on

survival up to time x.10 Both measures are conditional concepts (and uniquely deter-

mine the underlying distribution), but they are conceptually different: the hazard rate

10The mathematical relation between the two is m (x) =
∫ θ
x

exp
{
−
∫ t
x
λ (u) du

}
dt for x < θ.
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λ (x) only takes into account the instantaneous present, while the mean residual life

m (x) takes into account the complete future (see Guess and Proschan [1988]). The

exponential distribution is the only distribution that has a constant mean residual

life, and it is also the only distribution that has a constant hazard rate.

Definition 4 1. A random variable X satisfies the (strict) DMRL (decreasing

mean residual life) property if m (x) is (strictly) decreasing in x.

2. A random variable X satisfies the IFR (increasing failure rate) property if λ (x)

is increasing in x.

The IFR assumption is commonly made in the economics literature. DMRL is a

weaker property, and it is implied by IFR. We are now ready to state the first main

result of this section.

Proposition 5 Suppose that the random variables X and Y satisfy the strict DMRL

property. Then the unanimity game among specialists has a unique cutoff equilibrium.

Proof. See Appendix B.

The assumption of strict DMRL is critical for the uniqueness result. If this as-

sumption fails, then multiple equilibria are possible, as illustrated in the following

example.

Example 4 Suppose F (s) = G (s) = 1 − e−s for s ∈ [0,∞), α = 1 − β and cA =

cB = c. Then both X and Y have a constant MRL equal to 1. The two equilibrium

conditions reduce to

x∗ + y∗ = lnα− ln c.

Any two non-negative numbers (x∗, y∗) satisfying the above condition form an equi-

librium. There is a unique symmetric equilibrium given by

x∗ = y∗ =
1

2
(lnα− ln c)

4.2.2 Comparative Statics

How do the equilibrium acceptance cutoffs vary with respect to the degree of conflict

within the committee when its members are specialized and have private information?

Using the DMRL condition we can show for any (possibly asymmetric) setting that

when just one member becomes more extreme, he raises his own acceptance stan-

dard, while the other member responds by lowering her standard. Intuitively, a more

extreme position should also lead to a longer search duration.
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Proposition 6 Suppose that both X and Y satisfy the strict DMRL condition, and

consider the unique equilibrium for given cA, cB and α. Keeping β constant, member

A’s equilibrium cutoff x∗ and the expected search duration increase in α , while member

B’s equilibrium cutoff y∗ decreases in α.

Proof. Suppose α < α′ and let (x∗, y∗) and (x′, y′) denote the cutoffs corresponding

to α and α′, respectively. We need to show x′ > x∗ and y′ < y∗. Suppose first x′ ≤ x∗

and y′ < y∗. Then it follows from the equilibrium condition and the DMRL property

that

1

(1− F (x∗)) (1−G (y∗))
=

α

cA
E[X − x∗|X ≥ x∗]

<
α′

cA
E[X − x∗|X ≥ x∗]

≤ α′

cA
E[X − x′|X ≥ x′]

=
1

(1− F (x′)) (1−G (y′))
,

which is impossible. Next suppose x′ ≤ x∗ and y′ ≥ y∗. Again, we have

α′

cA
E[X − x′|X ≥ x′] >

α

cA
E[X − x′|X ≥ x′]

≥ α

cA
E[X − x∗|X ≥ x∗]

=
1− β
cB

E[Y − y∗|Y ≥ y∗]

≥ 1− β
cB

E[Y − y′|Y ≥ y′]

which violates the equilibrium conditions for (x′, y′). Finally, suppose x′ > x∗ and

y′ ≥ y∗. Then we have

1

(1− F (x∗)) (1−G (y∗))
=

1− β
cB

E[Y − y∗|Y ≥ y∗]

≥ 1− β
cB

E[Y − y′|Y ≥ y′]

=
1

(1− F (x′)) (1−G (y′))

a contradiction of x′ > x∗ and y′ > y∗. Therefore, we must have x′ > x∗ and y′ < y∗.

The equilibrium expected search duration is given by

1

Pr {X ≥ x∗, Y ≥ y∗}
=

α

cA
E [X − x∗|X ≥ x∗] =

1− β
cB

E [Y − y∗|Y ≥ y∗] .
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It is not a priori clear from the equilibrium condition for x∗ (the first equality) whether

search duration increases or not. But, we also know that y∗ decreases in α. Therefore,

from the second equality we obtain that the expected search duration necessarily

increases if X and Y have the DMRL property.

We next look at a symmetric setting. Although the members’ utilities decrease

when there is more conflict – as was also the case under complete information/no

specialization – the equilibrium acceptance cutoff goes up with the degree of conflict,

in sharp contrast to the unanimity decision in the complete information/no special-

ization case!

Proposition 7 Suppose that F = G, α = 1−β , and cA = cB = c. Then there exists

a unique symmetric cutoff equilibrium (x∗, x∗)11. Both the cutoff x∗ and expected

search duration S are strictly increasing in α, but the members’ utilities are strictly

decreasing in α. Moreover, if X and Y have the DMRL property, then for any

α, α′ ∈ [1
2
, 1], α ≤ α′ it holds that

1

2
≤ α

α′
≤ S(α)

S(α′)
≤ 1

Proof. The uniqueness of the symmetric equilibrium follows by the same argument as

that in the case of generalist committees (see Proposition 2). Since in the symmetric

setting X and Y are I.I.D., we obtain:

αE [X − x∗ | X ≥ x∗, Y ≥ x∗] Pr (X ≥ x∗, Y ≥ x∗)

= αE
[
(X − x∗) · 1{X≥x∗,Y≥x∗}

]
=

1

2
αE
[
(X − x∗) · 1{X≥x∗,Y≥x∗}

]
+

1

2
αE
[
(Y − x∗) · 1{X≥x∗,Y≥x∗}

]
= αE

[(
1

2
X +

1

2
Y − x∗

)
· 1{X≥x∗,Y≥x∗}

]
Therefore, in the symmetric case the equilibrium condition 11 can be re-written as:

αE

[(
1

2
X +

1

2
Y − x∗

)
· 1{X≥x∗,Y≥x∗}

]
= c (13)

Observe that function on the left hand side is strictly increasing in α because the

function 1
2
X + 1

2
Y − x∗ is positive whenever the indicator function is not equal to

zero. Since the left hand side strictly decreases in x∗, we obtain that the equilibrium

cutoff must strictly increase in α. As a consequence, the expected search duration,

11Recall that under the strict DMRL assumption this is also the overall unique equilibrium.
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which is given by 1/[1−F (x∗)]2 is also strictly increasing in α. For α ≤ α′ , we obtain

under DMRL that

S(α) =
α

c
E [X − x∗(α))|X ≥ x∗(α)] ≥ α

c
E [X − x∗(α′))|X ≥ x∗(α′)] =

α

α′
S(α′) ≥ 1

2
S(α′)

To prove the result about utilities, we adapt equation (10) to the symmetric setting

and obtain

vA = αE [X|X ≥ x∗] + (1− α)E [X|X ≥ x∗]− c

[1− F (x∗)]2

= E [X|X ≥ x∗]− c

[1− F (x∗)]2

=
[1− F (x∗)]

∫ θ
x∗
sf (s) ds− c

[1− F (x∗)]2
.

Therefore, vA can be written as vA (x∗), a function of x∗ only. Since x∗ strictly

increases in α, in order to show that vA is strictly decreasing in α, it is sufficient to

show that vA (x∗) is strictly decreasing in x∗. Note that

dvA (x∗)

dx∗
=

f (x∗)

[1− F (x∗)]3

{
[1− F (x∗)]

∫ θ

x∗
sf (s) ds− x∗ [1− F (x∗)]2 − 2c

}

=
f (x∗)

1− F (x∗)

{
E [X − x∗|X ≥ x∗]− 2c

[1− F (x∗)]2

}
=

f (x∗)

1− F (x∗)
(1− 2α)E [X − x∗|X ≥ x∗]

< 0

for all α > 1/2. Therefore, members’ utilities are strictly decreasing in α.

It is instructive to compare the equilibrium condition derived above (equation 13),

αE

[(
1

2
X +

1

2
Y − x∗

)
· 1{X≥x∗,Y≥x∗}

]
= c,

with the equilibrium condition for the symmetric, complete information case (equation

5):

E

[(
1

2
X +

1

2
Y − z

)
· 1{αX+(1−α)Y≥z,(1−α)X+αY≥z}

]
= c.

In the game among specialists, raising the degree of conflict while keeping the ac-

ceptance cutoff fixed raises the stakes controlled by each member without affecting

the acceptance area. Thus, committee members respond by raising the cutoff. In

contrast, in the game among generalists raising the degree of conflict while keep-

ing the acceptance cutoff fixed has no effect on the controlled stake, but decreases
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the acceptance area. Thus, committee members respond by lowering the acceptance

cutoff.

Alternatively, we can get the intuition for the specialization case by focusing on

the search cost c. An important observation stemming from Remark 3 is that with

incomplete information the degrees of conflict (α or β) and the search costs (cA or

cB) affect equilibrium play only through the “pseudo-costs”, κA and κB. Moreover,

a higher α has exactly the same effect on the equilibrium cutoffs as a lower search

cost cA. It is intuitive that a decrease in search cost c leads to an increase in the

equilibrium cutoffs, so we can again conclude that the equilibrium cutoffs must be

increasing in α.

Analogous to the complete information case, individual payoffs decrease when

the degree of conflict increases. As we pointed out earlier, with incomplete infor-

mation the continuation payoffs are different from equilibrium cutoffs. This obser-

vation holds the key to understand why members’ utilities decrease although the

equilibrium cutoff increases in α. In particular, member A’s payoff is given by

vA = αx∗ + (1− α)E [Y |Y ≥ y∗]. In the symmetric setting, it holds that x∗ = y∗

and x∗ < E [Y |Y ≥ y∗]. Therefore, an increase in α has two effects on vA: a higher α

leads to a higher cutoff and thus to an increase of both terms in vA, while a higher α

also shifts weight from the larger term E [Y |Y ≥ y∗] to the smaller term x∗ and thus

lowers vA. It turns out the second effect dominates, and thus vA is decreasing in α.

Finally, we investigate how the equilibrium varies when we change the distribution

of the candidate’s attributes. We first need to introduce several stochastic orders,

which, intuitively, should be connected to the mean residual life, or to its close cousin,

the hazard rate.

Definition 5 1. Let m and l denote the mean residual life function of random

variables X and Y , respectively. Then X is said to be smaller than Y in the

mean residual life order, denoted by X ≤MRL Y , if m (t) ≤ l (t) for all t ∈
[
0, θ
]
.

2. Let r and q denote the hazard rate function of random variables X and Y ,

respectively. Then X is said to be smaller than Y in the hazard rate order,

denoted by X ≤HR Y , if r (t) ≥ q (t) for all t ∈
[
0, θ
]
.

The MRL order is independent of the usual stochastic order (denoted by≤ST ), and

neither implies the other. The hazard rate order ≤HR implies both ≤MRL and ≤ST ,

and X̃ ≤HR X if and only if [X̃|X̃ ≥ t] ≤ST [X | X ≥ t] for all t ∈
[
0, θ
]
. Moreover,

if X̃ ≤MRL X and EX̃ = EX, then X̃ second-order stochastically dominates X, and

hence X̃ has a lower variance than X (see Shaked and Shanthikumar [2007] for all

these results).
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Our first result shows that, within a given committee, the member who observes

a stochastically higher attribute in the MRL sense imposes a higher equilibrium ac-

ceptance standard, and is better off.

Proposition 8 Suppose that both X and Y satisfy the strict DMRL condition, β =

1 − α, and cA = cB = c. If X ≤MRL Y , then in the unique equilibrium it holds that

x∗ ≤ y∗ and vA ≤ vB.
12

Proof. See Appendix B.

Our second result looks across committees, and shows the members’ acceptance

standards and utilities go up given a stochastic improvement in the privately observed

attributes. Here we need the improvement to be in the sense of the stronger hazard

rate order.

Proposition 9 Consider a symmetric committee C1 where attributes are governed

by I.I.D random variables X and Y , and another symmetric committee C2 where

attributes are governed by I.I.D. random variables X̃ and Ỹ . Suppose that X satisfies

the DMRL property, and that X̃ ≤HR X. Then, for any α = 1− β and c, the accep-

tance cutoff and the members’ utilities in the respective unique symmetric equilibrium

are higher in committee C1 than in C2.
13

Proof. See Appendix B.

.

5 The Relative Performance of Specialist Commit-

tees

In this section we first compare the performance of committees of specialists to that

of committees of generalists. The analysis focuses on the cost of assessing several

dimensions of the decision problem. We next discuss the incentives of a specialist

“dictator” (who is only informed about one dimension of the problem) to involve in

the decision making process a specialist on a different dimension: there is a trade-off

between sharing power and gaining valuable information.

12Thomas Watson, the founder of IBM is said to have advised: “If you want to be more successful,
increase your failure rate.” Our result shows that increasing mean residual life is sufficient, at least
in committee interactions.

13Recall that these are the overall unique equilibria if X and X̃ satisfy the strict DMRL condition.
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5.1 Specialist Committees versus Generalist Committees

We focus here on the symmetric setting with F = G, α = 1 − β and cA = cB and

compare the performances of specialist versus generalist committees. Their relative

performance certainly depends on ratio of respective search costs. Let cg denote the

search cost incurred by a generalist to evaluate both attributes, and let cs denote the

search cost incurred by each specialist to evaluate the single attribute in her specialty.

We can rewrite the equilibrium condition for a generalist committee (equation 5) as

E

[(
1

2
X +

1

2
Y − z

)
· 1{αX+(1−α)Y≥z,(1−α)X+αY≥z}

]
= cg, (14)

and the equilibrium condition (equation 13) for a specialist committee as

αE

[(
1

2
X +

1

2
Y − x∗

)
· 1{X≥x∗,Y≥x∗}

]
= cs. (15)

Let us first consider the benchmark case where a generalist enjoys a very strong

return to scope in knowledge, so that cg = cs. When α = 1 the above two equilibrium

conditions coincide and we have z = x∗. As shown in Propositions 2 and 7, the optimal

cutoffs move in opposite directions for lower degrees of conflict. This immediately

implies that for any α, the equilibrium cutoff z under complete information is always

higher than the equilibrium cutoff x∗ under incomplete information. It is intuitive that

a specialized committee rejects candidates who are excellent in just one dimension

(candidates in area A and B) that would be accepted by generalists. But, we also

obtain that there are always balanced candidates with attributes above and close

to (x∗, x∗) (candidates in area C in the figure) who are accepted by the specialized

committee while being rejected by the generalist one. The acceptance areas in these

two cases are illustrated in the following figure:

(1a)x+ay=z

0 thetabar

thetabar

ax+(1a)y=z

z

zx*

x*

A

B
C

Figure 2
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In practice, however, a generalist who is able to assess several dimensions of a

complex problem may have less precise information about each than a specialist.

Alternatively, in order to obtain the same quality of information as several specialists

(one for each dimension), a generalist may face a cost function that is convex in the

number of assessed dimensions, i.e. the cost incurred by a generalist for assessing

an additional dimension is higher than the cost incurred by a specialist who only

assesses that particular dimension. Under a simple condition on the distribution of

attributes, our next Proposition shows that a specialist committee outperforms a

generalist committee if the generalist cost is convex enough, i.e. if the cost ratio cg/cs

is high enough14.

Proposition 10 Suppose that F = G and that F is convex15. Consider a generalist

committee where each member faces cost cg, and a specialist committee where each

member faces cost cs such that cg/cs ≥ 4. Then for any α = 1− β ∈ [1/2, 1] , hiring

standards and members’ utilities are higher in the specialist committee than in the

generalist committee.

Proof. From Lemma 2 in Appendix B we obtain that

E

[(
1

2
X +

1

2
Y − z

)
· 1{ 1

2
X+ 1

2
Y≥z}\{X≥z,Y≥z}

]
< E

[(
1

2
X +

1

2
Y − z

)
· 1{X≥z,Y≥z}

]
which implies

E

[(
1

2
X +

1

2
Y − z

)
· 1{ 1

2
X+ 1

2
Y≥z}

]
< 2E

[(
1

2
X +

1

2
Y − z

)
· 1{X≥z,Y≥z}

]
.

For α = 1/2, it follows from equilibrium conditions (14) and (15) and from the last

inequality above that

1

2
E

[(
1

2
X +

1

2
Y − x∗

)
· 1{X≥x∗,Y≥x∗}

]
= cs ≤

1

4
cg

=
1

4
E

[(
1

2
X +

1

2
Y − z

)
· 1{ 1

2
X+ 1

2
Y≥z}

]
<

1

2
E

[(
1

2
X +

1

2
Y − z

)
· 1{X≥z,Y≥z}

]
14Related conditions on the cost ratio are also sufficient for a specialist committee to dominate a

generalist dictator.
15We conjecture that a similar result is true for the larger class of distributions who have an

increasing hazard rate.
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Because E
[(

1
2
X + 1

2
Y − z

)
· 1{X≥z,Y≥z}

]
is strictly decreasing in z, we have x∗

(
1
2

)
>

z
(

1
2

)
where x∗ are the optimal cutoffs in the specialist and generalist committees,

respectively.

We know from Propositions 2 and 7 that x∗(α) is increasing in α and that z(α)

is decreasing in α. Therefore, x∗
(

1
2

)
> z

(
1
2

)
implies x∗ (α) > z (α) for all α ∈

[1/2, 1]. Furthermore, a member’s utility in the specialist committee is given by

αx∗(α) + (1− α)E [Y |Y ≥ x∗(α)] > x∗ (α) > z (α) for all α. Therefore, a member’s

utility is higher in a specialist committee than in a generalist committee.

The above condition cg/cs ≥ 4 is a lower bound that works for many distributions.

For specific distributions sharper results can be obtained. The next example shows

that cg/cs ≥ 2 (i.e., a cost function that is linear in the number of assessed dimensions)

is sufficient for the specialist committee to dominate the generalist committee if the

distribution of attributes is uniform.

Example 5 (Uniform) Assume that both F and G are uniform on [0, 1]. Suppose

that cg = 2cs. Then the equilibrium cutoffs are given by

z (α) = 1− 3

√
6α2cg
4α− 1

= 1− 3

√
12α2cs
4α− 1

x∗ (α) = 1− 3

√
2cs
α

A member’s utility in a specialist committee is given by

v(α) = αx∗ + (1− α)E [Y |Y ≥ x∗] = 1− (1 + α) 3

√
cs
4α

while a member’s utility in a generalist committee coincides with the cutoff z (α) . It

is easy to verify that v (α) > z (α) for all α ∈ [1/2, 1].

5.2 The Emergence of Committees and Their Management

Whenever there are conflicts of interests, a completely informed, generalist dictator

(say member A) obviously stands to lose if he invites member B to form a committee

and share the power of choosing the suitable course of action. Thus, whenever deci-

sion power is asymmetrically distributed, a lack of specialization suggests that most

decisions will be made by the authority person who is in power.

As we remarked in the introduction, modern technological societies seem to pursue

an inexorable path towards more specialization. It is intuitive, and we show it below,

that under specialization, a potential dictator A who is well informed only about

one dimension of the problem at hand stands to gain by forming a committee with
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another member B who is informed about another dimension. Moreover, informed

members who were excluded from decision making also gain by affecting the decision

within a committee, even when the extra search cost is taken into account. In spite

of the fact that the expected search duration in a committee is higher than under

dictatorship, this conclusion holds even for large degrees of conflict between A and B

if the search costs are sufficiently small.

In other words, a late informed decision is better than an early uninformed one.

Thus, the trend to more specialization offers a natural explanation for the observed

increased frequency of decisions by committees, and for the often bemoaned increase

in delay of reaching those decisions.

To make the above argument precise, consider then the specialized dictator’s prob-

lem: member A is the dictator who incurs a search cost cA and observes the real-

izations of X only. If member A dictates the decision, his continuation payoff vDA is

given by

vDA = αxD + (1− α)E [X] ,

where the acceptance cutoff xD is determined by

αE [X − xD|X ≥ xD] [1− F (xD)] = cA. (16)

Consider now for simplicity the symmetric setting where F = G,α = 1 − β and

cA = cB = c. Member B’s payoff is given by:

vB = αE [X] + (1− α)E [X|X ≥ xD]

The above expression assumes that member B can free ride on A’s decision without

paying any search cost. Our conclusion about the value of forming committees under

specialization gains extra support if B also incurs some extra cost (of waiting, say)

while being outside the committee.

If A invites member B to join a committee that employs the unanimity rule, then

their payoffs in this symmetric setting are given by

vUA = vUB = αx∗ + (1− α)E [X|X ≥ x∗] ,

where the cutoff x∗ is determined by

αE [X − x∗|X ≥ x∗] [1− F (x∗)]2 = c. (17)

Proposition 11 Suppose that F = G, α = 1 − β ∈ (1/2, 1) , cA = cB = c. Assume

that F has strict DMRL and bounded support with upper bound θ < ∞. Then the

acceptance standard goes down while the expected search duration goes up in the tran-

sition from specialized dictatorship to specialized unanimity. As long as the search

cost c is sufficiently small, both members gain by forming a committee.

30



Proof. The fact that xD > x∗ follows immediately from the two equilibrium condi-

tions (16 and 17), the DMRL property, and the fact that 1
1−F (x)

≤ 1
(1−F (x))2

. Concern-

ing search duration we have

1

1− F (xD)
=
α

c
E [X − xD|X ≥ xD] <

α

c
E [X − x∗|X ≥ x∗] =

1

[1− F (x∗)]2

where the inequality follows from our DMRL assumption and xD > x∗.

For the second part, observe that the difference (xD − x∗) tends to zero as c goes

to zero since both tend to the upper boundary of the attributes’ support. As c tends

to zero, the dictator’s expected gain from forming a committee is

lim
c→0

(vUA − vDA ) = lim
c→0

[(1− α) (E [X|X ≥ x∗]− E [X])− α (xD − x∗)]

= (1− α) lim
c→0

(E [X|X ≥ x∗]− E [X])

= (1− α) (θ − E[X]) > 0

Similarly, member’s B expected gain from joining the committee is

lim
c→0

(vB − vDB ) = lim
c→0

(αx∗ + (1− α)E [X|X ≥ x∗]− αE [X]− (1− α)E [X|X ≥ xD])

= lim
c→0

(α (x∗ − E [X]) + (1− α) (E [X|X ≥ x∗]− E [X|X ≥ xD]))

= α
(
θ − E [X]

)
> 0

Therefore, as c → 0, both members gain from forming a committee. It is clear

by the above expressions, and by continuity, that both benefits are positive for any

sufficiently small c.

The above proof also offers a glimpse into the distribution of gains from forming

a committee. When the degree of conflict is small (α close to 1
2
), the gains are more

evenly divided, whereas member B stands to gain more when the degree of conflict

is relatively high (α close to 1). This is intuitive since a dictator that is informed

about the only dimension that is of interest to him (i.e., private values) has obviously

nothing to gain by forming a committee, while with private values member B gains

control of the dimension that is of interest to him by joining the committee, whereas

he had none before.

In this context, it is interesting to note that a more flexible communication struc-

ture within a committee allows both an increase in the dictator’s payoff and sometimes

a Pareto-improvement over unanimity. Consider the above setting, and suppose that

dictator A can consult with member B before making a decision, without giving B

veto power. For simplicity, let us assume that member B can send either a “yes” or

a “no” message to member A, and let yB denote member B’s cutoff for sending the
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message “yes”. Member A then uses two cutoffs: x1
A when member B says “yes” and

x0
A when member B says “no”. Member A can implement the outcome of unanimity

by setting x1
A = x∗ (his equilibrium cutoff under unanimity) and x0

A = θ (the upper

bound of the attribute’s support), because the best response for member B is then

to set yB = y∗, his own equilibrium cutoff under unanimity. Therefore, by optimizing

the two cutoffs x1
A and x0

A, the dictator A can do even better.16 Depending on the

parameters, even member B can be made better off.

We now offer two last comments on committee management. In symmetric set-

tings, we have shown above that members’ utilities decrease in α, the degree of

conflict, with both complete or incomplete information. Without symmetry, it is not

necessarily true that a dictator is always better off by inviting a more moderate mem-

ber. The reason is that a member with more extreme preferences is more motivated to

maintain a high acceptance standard despite a high search cost. This can sometimes

be beneficial through the higher quality of the taken decision. Here is an example

under specialization.

Example 6 Suppose that the dictator A with preference αx + (1− α) y, α ≥ 1/2,

invites member B with preference βx + (1− β) y, β ≤ 1/2, to join the committee.

Suppose that both F and G are uniform on [0, 1], and that cB = 8cA = 8c. The

equilibrium cutoffs x∗ and y∗ are given by

x∗ = 1− 1

2α
3
√

2α (1− β) c, y∗ = 1− 4

1− β
3
√

2α (1− β) c

Member A’s payoff is

vA = 1−
(

1

2
+

2 (1− α)

1− β

)
3
√

2α (1− β) c,

which is strictly decreasing in β, as long as 8 (1− α) > (1− β). Note that β ≤ 1/2,

and that member B is more extreme when β is lower. Therefore, as long as the

dictator’s preference is not too extreme, he is better off by inviting a more extreme

member B.

Similarly, it is not always better to invite agents with low search cost to join the

committee. Suppose member A has the option to choose his committee colleague

among several candidates. Suppose also that all candidates to join him have the

same preference with β = 1− α, but have different search cost cB. Should A choose

a colleague with a high or low search cost? A general rule is that the cost has to

16This seems to be the modus operandi of most scientific journals: experts are consulted but the
decision is taken by an editor.
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be moderate. If it is too high, then member B may set a too low standard. If it is

too low, then member B may set a too high standard and hold member A up. A

precise answer to this question is distribution-specific. For example, in the exponential

distribution case, it is never optimal for member A to choose anyone with a higher

cost than himself, because then member B will become the dictator. It is also not

useful for A to choose a member B with a cost lower than himself, because then the

choice of member B does not matter, since A is the dictator. Thus, if it is optimal

for a dictator to form a committee, he should choose someone with the same search

cost as his own.

6 Concluding Remarks

We have introduced a fairly rich model for the analysis of committee search conducted

by generalists or by specialized, privately informed members with heterogenous pref-

erences defined on a multi-dimensional alternative space. The model generates a

wealth of implications that could, in principle, be tested in the field or in the labora-

tory. We have also provided an array of helpful technical tools that seem well suited

for the problem at hand.

The following table summarizes our main findings about the various effects of

increases in the degree of conflict within committees (for unanimity the implications

shown are for symmetric settings).

acceptance standard individual payoff search duration

unanimity with complete info. ↘ ↘ ?17

unanimity with incomplete info. ↗ ↘ ↗
dictatorship with complete info. ↗ ↗ ambiguous

dictatorship with incomplete info. ↗ ↗ ↗

We see several avenues for future research: 1) Consider committees with more

members (some specialized, some generalists), and the interplay between the number

of members and the dimension of the space of alternatives; 2) Consider different

aggregation rules, e.g., decisions by qualified majority; 3) Endogenize the choice of

information acquisition/specialization.

17We suspect that search duration may be increasing in α under stronger conditions than DMRL,
but we have not been able to prove this assertion so far. In Appendix A we prove a partial result in
this direction.
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7 Appendix A

The analysis of the expected equilibrium search duration in the complete information,

unanimity case is somewhat complex. We prove the following partial result:

Proposition 12 Consider the symmetric, complete information case under unanim-

ity, where F = G, α = 1 − β , and cA = cB = c. Assume that X, Y have IFR,

and assume that 1
2
X + 1

2
Y ≤MRL X. Then the expected search duration for α = 1

2
is

less than the expected search duration for α = 1. Moreover, if the dictator’s expected

search duration increases in α, the expected search duration under unanimity cannot

decrease.18

Proof. Let z(1
2
) ≥ z(1) be the optimal cutoffs under unanimity for α = 1

2
and α = 1

respectively. The inequality follows by Proposition 2. For α = 1
2

the equilibrium

condition is:

E

[
1

2
X +

1

2
Y − z(

1

2
) | 1

2
X +

1

2
Y ≥ z(

1

2
)

]
Pr

{
1

2
X +

1

2
Y ≥ z(

1

2
)

}
= c.

For α = 1 , the equilibrium condition is

E [X − z(1) | X ≥ z(1)] (Pr {X ≥ z(1)})2 = c.

We obtain then for search durations that:

c

Pr
{

1
2
X + 1

2
Y ≥ z(1

2
)
} = E

[
1

2
X +

1

2
Y − z(

1

2
) | 1

2
X +

1

2
Y ≥ z(

1

2
)

]
≤ E

[
1

2
X +

1

2
Y − z(1) | 1

2
X +

1

2
Y ≥ z(1)

]
≤ E [X − z(1) | X ≥ z(1)]

=
c

(Pr {X ≥ z(1)})2

The first inequality follows because 1
2
X + 1

2
Y has the DMRL property, as shown in

Corollary 2.A.24 in Shaked and Shanthikumar [2007] – this is the reason why we need

the stronger IFR condition on the random variables X, Y. The second inequality holds

because we assumed 1
2
X + 1

2
Y ≤MRL X.

For the second part, note that the dictator’s cutoff and the symmetric unanimity

cutoff are the same for α = 1
2

under complete information. The same applies for

the expected search duration, since the equilibrium conditions are then the same.

18Recall that our examples show that the behavior of the expected search duration under dicta-
torship with complete information is ambiguous.
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By Proposition 2 we also know that the dictator’s cutoff is always higher than the

unanimity cutoff. Under DMLR (which is implied by the IFR condition) this yields

that the search duration for α = 1 is higher under unanimity than under dictatorship.

The condition 1
2
X + 1

2
Y ≤MRL X will be satisfied whenever the mean residual life

function of a weighted convolution of random variables is monotone in some measure

of the dispersion of the weights (e.g., Schur-convexity), but such results are not easy

to establish for some general class of distributions. A small literature proves such

results for particular distributions, e.g., Zhao and Balakrishnan [2009] who look at

convolutions of exponentials.

8 Appendix B

Proof of Proposition 5. By the analogy exposed in Remark 3, it is enough to

establish the existence and uniqueness of the solution for the system of two equations

determining the optimal cutoffs in the complete information case with private values,

i.e., α = 1− β = 1. This has been shown in Ferguson [2005]. For completeness, and

in order to explain the role of DMRL, we reproduce the simple proof below.

Let us define

ρ ≡ max

{
α

cA
E [X] ,

1− β
cB

E [Y ]

}
and

ρ = min

{
α

cA
lim
x→θ

E[X − x | X ≥ x],
1− β
cB

lim
y→θ

E[Y − y | Y ≥ y]

}
.

Note that all threshold equilibria must satisfy the two equilibrium conditions (11) and

(12). If ρ ≤ 1, then by the DMRL assumption, we must have x∗ ≤ 0 and y∗ ≤ 0. This

means we have a corner solution where the committee accepts any candidate, which

is indeed an equilibrium and essentially unique. From now on, we assume ρ > 1. The

two equilibrium conditions imply that

α

cA
E[X − x∗ | X ≥ x∗] =

1− β
cB

E[Y − y∗ | Y ≥ y∗].

Since F and G have strict DMRL, we can find, for each ξ ∈ (ρ, ρ), a unique pair

(x∗ (ξ) , y∗ (ξ)) (one of them could be negative) such that

α

cA
E[X − x∗ (ξ) | X ≥ x∗ (ξ)] =

1− β
cB

E[Y − y∗ (ξ) | Y ≥ y∗ (ξ)] = ξ.

As ξ increases, both x∗ (ξ) and y∗ (ξ) decrease strictly and continuously, until one or

both of them reach the upper bound θ. At the same time, when ξ increases, and

35



x∗ (ξ) and y∗ (ξ) decrease, the function

1

P (ξ)
≡ 1

(1− F (x∗ (ξ))) (1−G (y∗ (ξ)))

decreases strictly and continuously. Note that when ξ = ρ,

1

P
(
ρ
) =

1(
1− F

(
θ
)) (

1−G
(
θ
)) → +∞ > ρ,

and when ξ = ρ,
1

P (ρ)
= 1 < ρ.

Therefore, there exists a unique value ξ0 ∈ (ρ, ρ) such that ξ0 = 1/P (ξ0). Since each

ξ corresponds to an essentially unique pair of (x∗ (ξ) , y∗ (ξ)), a cutoff equilibrium

exists and is unique.

Proof of Proposition 8. We know that

1

(1− F (x∗)) (1−G (y∗))
=
α

c
E[X − x∗ | X ≥ x∗] =

α

c
E[Y − y∗ | Y ≥ y∗]

By X ≤MRL Y we obtain that

∀x, E[X − x|X ≥ x] ≤ E[Y − x|Y ≥ x]

Together with DMRL, this implies x∗ ≤ y∗. On the one hand, from (8) and (9) we

have

vB − vA = α(y∗ − x∗) + (1− α) (E[X | X ≥ x∗]− E[Y | Y ≥ y∗])

On the other hand, from (10) we also have

vB − vA = (1− α)E[X | X ≥ x∗] + αE[Y | Y ≥ y∗]− c

(1− F (x∗)) (1−G (y∗))

−
(
αE[X|X ≥ x∗] + (1− α)E[Y |Y ≥ y∗]− c

(1− F (x∗)) (1−G (y∗))

)
= (1− 2α) (E[X | X ≥ x∗]− E[Y | Y ≥ y∗])

From the two representations above, and from y∗ ≥ x∗ we obtain:

E[X | X ≥ x∗]− E[Y | Y ≥ y∗] = −(y∗ − x∗) ≤ 0.

Because α ≥ 1
2
, we obtain

vB − vA = (1− 2α) (E[X | X ≥ x∗]− E[Y | Y ≥ y∗]) ≥ 0

as desired.
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Proof of Proposition 9. Recall that X̃ ≤HR X implies both X̃ ≤MRL X and

X̃ ≤ST X. Let F (F̃ ) denote the distribution of X and Y ( X̃ and Ỹ ). We first show

that x∗ ≥ x̃∗. Suppose the opposite (x∗ < x̃∗) is true. Then from the equilibrium

conditions we have

1

(1− F (x∗))2 =
α

c
E[X − x∗ | X ≥ x∗]

≥ α

c
E[X − x̃∗ | X ≥ x̃∗]

≥ α

c
E[X̃ − x̃∗ | X̃ ≥ x̃∗]

=
1

(1− F̃ (x̃∗))2

The two inequalities follow from DMRL assumption ofX and the assumption X̃ ≤MRL

X, respectively. Therefore, we must have F (x∗) ≥ F̃ (x̃∗). Since X̃ ≤ST X, we also

have F (x∗) ≥ F̃ (x̃∗) ≥ F (x̃∗), which implies that x∗ ≥ x̃∗, a contradiction.

In equilibrium we also have

vA = αx∗ + (1− α)E[X|X ≥ x∗]

≥ αx̃∗ + (1− α)E[X|X ≥ x̃∗]

≥ αx̃∗ + (1− α)E[X̃|X̃ ≥ x̃∗] = ṽA

The first inequality follows because vA is increasing in x∗, while the second inequality

follows by recalling that X̃ ≤HR X implies [X̃| X̃ ≥ x̃∗] ≤ST [X | X ≥ x̃∗] .

The following technical Lemma is used in the proof of Proposition 10.

Lemma 2 Suppose that F = G is convex. Then for all z,

Φ (z)

≡ E

[(
1

2
X +

1

2
Y − z

)
· 1{X≥z,Y≥z}

]
− E

[(
1

2
X +

1

2
Y − z

)
· 1{ 1

2
X+ 1

2
Y≥z}\{X≥z,Y≥z}

]
> 0.

Proof. Since F is convex we have[(
1

2
x+

1

2
y − z

)
f (x)

]′
=

1

2
f (x) +

(
1

2
x+

1

2
y − z

)
f ′ (x) > 0

for all (x, y) ∈
{

(x, y) : 1
2
x+ 1

2
y ≥ z

}
. If z ≥ θ/2, we can apply the symmetry of X
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and Y to obtain

1

2
Φ (z)

=

∫ θ

z

∫ y

z

(
1

2
x+

1

2
y − z

)
f (x) f (y) dxdy −

∫ θ

z

∫ z

2z−y

(
1

2
x+

1

2
y − z

)
f (x) f (y) dxdy

>

∫ θ

z

(
1

2
z +

1

2
y − z

)
(y − z) f (z) f(y)dy −

∫ θ

z

(
1

2
z +

1

2
y − z

)
f (z) (y − z) f (y) dy

= 0

where the inequality follows from the monotonicity of
(

1
2
x+ 1

2
y − z

)
f (x). The case

of z < θ/2 can be proved analogously. Therefore, we have Φ (z) ≥ 0 for all z.
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