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Abstract
We study the effect of stochastically delayed communication on common knowledge

acquisition (common learning). If messages do not report dispatch times, communica-
tion prevents common learning under general conditions even if common knowledge is
acquired without communication. If messages report dispatch times, communication
can destroy common learning under more restrictive conditions. The failure of common
learning in the two cases is based on different infection arguments. Communication
can destroy common learning even if it ends in finite time, or if agents communicate
all of their information. We also identify conditions under which common learning is
preserved in the presence of communication.

1 Introduction

It is well known that common knowledge can be a crucial determinant of equilibrium
behavior in settings ranging from coordination games to repeated games with imperfect
monitoring (see, e.g., Lewis (1969), Rubinstein (1989), and Mailath and Morris (1998)).
When players learn prior to or during the play of the game, whether common learning of a
parameter occurs—that is, approximate common knowledge of the parameter is acquired—
depends on the nature of the learning process (Cripps, Ely, Mailath, and Samuelson (2008);
henceforth CEMS). We focus on the role of private communication in common learning. In
a simple setting where players commonly learn in the absence of communication, we find
general conditions under which communication destroys or preserves common learning as
a result of randomness in timing.
∗We thank Aviad Heifetz, George Mailath, Friederike Mengel, Stephen Morris, József Sákovics, Larry
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Communicated messages can have a direct influence on the evolution of higher order
beliefs. Furthermore, if communication is expected, even not receiving a message can have
profound effects on higher order beliefs. A key feature of many forms of communication
is that the sender of a message does not observe the exact time at which the message is
received. This feature generates asymmetric information that can lead to persistent higher
order uncertainty.

We consider two agents learning the value of some parameter θ. Agent 2 observes θ at
time 0, but agent 1 observes θ at a randomly determined time. Without communication,
the agents commonly learn θ. We study the effect of communication according to protocols
in which agent 1 sends a message to agent 2 upon observing θ. This message is received
after a stochastic delay. Depending on the protocol, communication can consist of a single
message, or it may continue with an exchange of confirmation messages, all subject to
delay.

If messages act only as confirmations and carry no additional information, communi-
cation destroys common learning whenever communication is not too slow relative to the
speed at which agent 1 learns θ (in a sense made precise below). Even if each message
reports all of the sender’s information at the time of sending, communication that never
ceases can destroy common learning for some delay distributions. However, when mes-
sages report the date at which they are sent, communication preserves common learning if
it almost surely ends in finite time.

Our negative results are based on two different infection arguments, corresponding to
distinct channels through which communication can generate higher order uncertainty.
First, even if messages contain all of the sender’s information and many confirmation
messages are sent, higher order uncertainty can arise from a persistent belief that the last
message has not yet been received (along the lines of Rubinstein (1989)). Second, when
messages are undated, higher order uncertainty can arise much more generally from beliefs
that a message was delayed. This latter effect is powerful enough to destroy common
learning even if a single message is sent that is almost surely received within two periods
(see Section 2). The effect persists indefinitely after all communication has ended.

Our negative results also apply in a stronger form to a setting in which, as in the
Rubinstein email game, agent 2 only learns the value of θ from agent 1’s first message (with
the structure and timing otherwise identical). Communication is essential for common
learning in this setting since agent 2 trivially fails to learn θ without communication. If
the agents communicate using undated messages, they fail to commonly learn θ even with
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a fixed finite number of messages that are never lost. In this case, persistent uncertainty
about the timing of agent 1’s observation of θ renders common learning of θ impossible.

In order to focus on the effects of timing, we take communication as exogenous and
ignore agents’ incentives. In light of our negative results, one may wonder why agents
would choose to communicate in settings where doing so destroys common learning. There
are several possible reasons. First, it may that at least one agent prefers that common
knowledge not be acquired (see footnote 3 below for an example). Second, it is not the
choice to communicate that destroys common learning but rather agents’ expectations
of communication. The fact that one agent expects to receive a message can destroy
common learning regardless of whether that message is sent. Moreover, in some settings,
communication can occur in every equilibrium even if it destroys common learning and
common knowledge makes agents strictly better off (see Steiner and Stewart (2009) for
an example in which this feature arises because communication accelerates acquisition of
finite orders of belief which makes each agent better off).1

The Rubinstein (1989) email game showed that communication can have a double-
edged effect on common knowledge acquisition. In the email game, agent 1 observes a
parameter, sends a message informing agent 2 of the parameter, agent 2 sends a confirma-
tion message, and so on. Communication terminates at each step with some small fixed
probability. On the one hand, communication enhances knowledge acquisition; without
communication, agent 2 never learns the value of the parameter. Furthermore, if commu-
nication is restricted to a fixed number of messages, beliefs approach common knowledge
with high probability as the likelihood of delivery failure vanishes. On the other hand, when
the number of messages is unbounded, approximate common knowledge of the parameter
is never acquired. Our framework differs from that of the email game in two significant
respects. First, we focus on a setting in which common knowledge is obtained without
communication, and identify conditions under which communication only hinders common
learning. Second, we model timing of communication explicitly, and show that it plays a
crucial role in common knowledge acquisition. Unlike in the email game, communicating
with a fixed finite number of messages does not guarantee (approximate) common learning,
and protocols in which messages are lost with positive probability do not destroy common
learning even with an unbounded number of messages.

A number of earlier papers have considered common knowledge acquisition when learn-
1See Morris (2002) for analysis and discussion of voluntary communication in Rubinstein’s email game.
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ing occurs only through communication (except for information that agents possess ini-
tially). Geanakoplos and Polemarchakis (1982) show that alternate communication of
posterior beliefs according to a deterministic protocol leads to common knowledge. Based
on an observation of Parikh and Krasucki (1990), Heifetz (1996) shows that communica-
tion according to a stochastic protocol may fail to generate common knowledge. Using
an infection argument similar to that underlying the email game of Rubinstein (1989),
Koessler (2001) generalizes this result to show that full common knowledge of an event is
never attained under any noisy and non-public communication protocol unless the event
was common knowledge initially.2 Morris (2002) proves that common knowledge is not
acquired in a variant of the email game in which, as in our model, messages are delivered
at stochastic times.

The explicit inclusion of time in our model has two distinct consequences. On the
one hand, timing opens a new infection channel based on asymmetric information about
delivery times. This infection channel can lead to the failure of common learning even if
only one message is sent. On the other hand, including information about timing in the
messages can lead to positive results. Under some conditions, even with infinitely many
messages, common learning occurs if agents report the dispatch date in each message they
send.

CEMS study a model in which each agent learns about an underlying parameter through
an infinite sequence of signals. They prove that if signal spaces are finite, individual learning
of the parameter implies common learning regardless of how signals are correlated across
agents. Our model of communication does not fit into their framework since they assume
independence of signal profiles across time conditional on the parameter. Communication
naturally generates correlation of signals across time (and across agents) since messages
received by an agent generally depend on the information possessed by the sender at the
time the message was sent. This correlation across time can lead to a failure of common
learning even with finite signal and message spaces. Since receipt of messages is positively
associated with past learning by another agent, delays in communication can generate
persistent higher-order uncertainty (even when communication does not influence first-
order beliefs). While correlations across agents in the CEMS framework allow signals to
influence interactive beliefs based on contemporaneous information, our negative results
are driven by intertemporal effects that are precluded by their temporal independence

2See also Halpern and Moses (1990), who obtain a similar result when messages have unbounded delivery
times.
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Figure 1: Payoffs in an investment game, with p ∈
(

1
2 , 1
)
.

assumption.

2 Example

The following example, loosely based on an example from CEMS, illustrates how rational-
izable behavior can depend crucially on common knowledge.

Two agents share a uniform prior belief about the parameter θ ∈ {θ1, θ2}. Agent 1
perfectly observes the value of θ at a stochastic time t0 ∈ N distributed geometrically, and
otherwise receives no additional information. Agent 2 perfectly observes θ at time 0. At
some (possibly random) time t, the two agents play the simultaneous move game depicted
in Figure 1. Note that the profile (I, I) is payoff-dominant when θ = θ2, but each agent
prefers to choose action N if either θ = θ1 or the other agent chooses N .

Consider whether coordination on the payoff-dominant outcome at θ2 is rationalizable.
Mutual knowledge that θ = θ2 is insufficient for coordination on I. Action I is a best
response only for a type that p-believes—that is, assigns probability at least p to—the
joint event that θ = θ2 and the other agent chooses I. Therefore, letting St denote the set
of histories at time t after which the agents coordinate on I, both agents must p-believe St
at every history in St; in other words, St must be p-evident. In addition, both agents must
p-believe θ2 on St. These two conditions imply that θ2 is common p-belief on St. Thus
common p-belief of θ2 is a necessary condition for coordination on (I, I). Conversely, there
exists a Nash equilibrium specifying (I, I) at precisely those histories where θ2 is common
p-belief since common p-belief of θ2 is a p-evident event, and both agents know θ when it
occurs.3

Now consider whether approximate common knowledge of θ is acquired. Suppose first
that the agents do not communicate. If t is sufficiently large, it is common knowledge

3Note that, in general, common knowledge does not necessarily make agents better off. For instance,
if the payoffs to (N,N) in state θ2 are replaced with (1, 1), then, by a similar argument, it may be that
players coordinate on the inefficient profile (I, I) in state θ2 only if θ2 is approximate common knowledge.
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that agent 2 assigns high probability to agent 1 having observed θ, and hence approximate
common knowledge of θ is attained with high probability.

Suppose now that agent 1 sends a message to agent 2 at time t0 indicating that she
has observed θ. Agent 2 receives the message either one or two periods later, with equal
probability. No other messages are sent. In this setup, common learning fails uniformly
across all histories; that is, there exists some p ∈ (0, 1) such that common p-belief of θ is
not attained at any finite history. Note that this failure occurs even though approximate
common knowledge is eventually acquired in the absence of communication. The failure
of common learning follows from an infection argument based on asymmetric information
about the timing of the message.

The infection begins from finite histories at which agent 1 has not observed θ, that is,
t0 > t. At any such history, agent 1 assigns probability 1/2 to each value of θ. First consider
histories at time t such that agent 2 has not received the first message, that is, t1 > t.
There exists some q ∈ (0, 1) such that, at any such history h, agent 2 q-believes that agent 1
has not yet observed θ. In particular, θ is not common p-belief at h for p > 1−min{q, 1/2}.
Now consider histories at time t such that t1 ≤ t. There exists some q′ ∈ (0, 1) such that,
at any such history, agent 2 q′-believes that t0 = t1 − 1, that is, that agent 1 observed
θ just one period before agent 2 received the message. Agent 1, on the other hand, 1/2-
believes that t1 = t0 + 2, that is, that agent 2 received the message two periods after it
was sent. Regardless of whether the message is delivered in one period or two, one of the
agents assigns significant probability to the other agent receiving information later than
she actually did. Iterating these beliefs leads to higher order beliefs in histories in which
agent 1 observes θ later and later, and ultimately to histories in which agent 1 has not
observed θ by time t. Therefore, θ is not common p-belief for p > 1−min{q, q′, 1/2}.

3 Model

Two agents, 1 and 2, learn about a parameter θ in periods t = 0, 1, . . .. The parameter θ is
drawn before period 0 from the set Θ = {θ1, θ2} according to the common prior distribution
Pr(θ1) = Pr(θ2) = 1/2, and remains fixed over time. In the baseline learning process each
agent i in each period t receives a signal zit ∈ Zi = {θ1, θ2, u}. Conditional on the parameter
θ, agent 1 receives the signal θ at a random time t distributed according to a distribution
G(·) with full support on N. She receives the signal u in all other periods. Note that after
receiving the signal z1

t = θk, agent 1 knows that the parameter is θ = θk. If z1
t = θ for
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some t ≤ T , we will say that agent 1 has observed θ by T . Also note that the signal u
carries no information about the value of θ, and hence, absent communication, agent 1’s
belief about θ remains equal to her prior beliefs until she observes θ. Agent 2 receives the
signal θ in each period and hence she observes θ at time 0. The distribution of agent 2’s
signals is not important for the results; it matters only that agent 2 eventually learns the
value of the parameter and that the timing is independent of agent 1’s signals.

In addition to direct signals about θ, the agents communicate according to a protocol
characterized by three elements: the number of messages N ∈ N+ ∪ {∞} that the agents
exchange, the distribution F (·) of delay times, and the selection of each message. The
protocol is known to both agents. We describe message selection below; first we focus on
timing.

In addition to the signals zit, in each period t, each agent i privately observes a commu-
nication signal mi

t from a setMi containing at least 2 elements, including s (for “silence”),
which is interpreted as not receiving a message from the other agent. The signals mi

t are
determined by the following stochastic process. As soon as agent 1 first observes θ in some
period t0, she sends a message in M2 \ {s} to agent 2 that may depend on θ and t0. This
message is received by agent 2 at some date t1 > t0 with the delay t1 − t0 distributed
according to F (·) with support on N+. We allow for F (·) to be defective so that messages
may be “lost”.4 If N = 1 or t1 =∞, there is no further communication; each agent receives
s in every period except t1. Otherwise, at time t1, agent 2 sends a message in M1 \ {s}
which is received by agent 1 at some time t2 > t1 with the delay t2 − t1 distributed ac-
cording to F (·). The agents continue alternately sending messages in this way at each tk

with k < N (or until tk = ∞ for some k). Delay times are independent across messages.
In every period t 6= tn for some odd n, agent 2 receives s, and similarly agent 1 receives s
in every period t 6= tn for any even n ≥ 2.

Letting M = M1 ×M2 and Z = Z1 × Z2, the set of states is given by Ω = Θ ×
Z∞ ×M∞.5 The information of agent i at time t is captured by the natural projection of
Θ×Z∞×M∞ onto Zt+1

i ×Mt+1
i . We write hit(ω) ∈ Zt+1

i ×Mt+1
i for the private history

of agent i at time t in state ω, and ht(ω) =
(
h1
t (ω), h2

t (ω)
)

for the t-history at ω. We abuse
notation by writing θ for the event {θ} × Z∞ ×M∞.

4A distribution F (·) over N+ is defective if limn→∞ F (n) < 1.
5Note that Ω contains many states with 0 probability finite histories. For example, receiving mi

t 6= s in
two consecutive periods happens with 0 probability. When there is no risk of confusion, we ignore finite
histories that occur with probability 0.
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Let H i
t denote the set of private histories hit(ω) for agent i at time t and H i = ∪tH i

t .
Message selection is determined according to a pair of selection rules

µi : H i −→Mj \ {s}

for i, j ∈ {1, 2}, i 6= j. The selection rules determine which messages are sent at each time
tk described above. Given the selection rules µi, the communication signal mi

tk
is equal to

µj

(
hjtk−1

)
.

We write t0(ω) for the realized time at which agent 1 first observes the parameter.
For n ≥ 1, we write tn(ω) for the realized time at which the nth confirmation message is
received. The realizations tn(ω) satisfy t0 = min{t | z1

t = θ} and for n ≥ 1, recursively,
tn = min{t > tn−1 | mi

t 6= s for i = 1 or 2}.
Let f(·) and g(·) denote the densities of F (·) and G(·) respectively. We assume that

0 < f(1) < 1, and in addition that f(·) and g(·) satisfy the regularity condition that
limt→∞

g(t−1)
f∗g(t) exists or equals ∞, where f ∗ g(·) denotes the density of the convolution

of F (·) and G(·). For example, this condition holds for any F (·) if G(·) is a geometric
distribution.

4 Preliminaries

For convenience, we review the definitions of p-belief, common p-belief, and p-evident events
due to Monderer and Samet (1989). Let Σ denote the Borel σ-algebra of Ω endowed with
the product topology. For E ∈ Σ and p ∈ [0, 1], let

Bi,t
p (E) =

{
ω | Pr

(
E | hit(ω)

)
≥ p
}
.

If ω ∈ Bi,t
p (E) then we say that agent i p-believes E at time t in state ω. We say that agent

i knows E if she 1-believes E. An event E ∈ Σ is p-evident at time t if E ⊆
⋂
i=1,2B

i,t
p (E),

that is, if both agents p-believe E at time t in every state in E. An event E is common
p-belief at time t at ω if and only if there exists an event F such that F is p-evident at
time t, ω ∈ F , and F ⊆

⋂
i=1,2B

i,t
p (E).6 We denote by Ctp(E) the set of all states at which

E is common p-belief at time t.

6By Monderer and Samet (1989), this definition is equivalent to the usual definition of common p-belief
based on intersections of higher order p-beliefs.
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Definition 1. 1. (CEMS) Agents commonly learn Θ if, for each θ ∈ Θ and q ∈ (0, 1),
there exists some T such that for all t > T ,

Pr
(
Ctq(θ) | θ

)
> q.

2. Common learning of Θ uniformly fails if there is some q < 1 such that

Pr
(
Ctq(θ) | θ

)
= 0.

for every t.7

Uniform failure of common learning is stronger than the negation of common learning
insofar as approximate common knowledge may be acquired with positive probability that
does not approach 1.

It is easy to see that, in the absence of communication, agents commonly learn Θ in
our setting. Consider the event F tk that θ = θk and agent 1 has observed θ by time t. At
any state in F tk, each agent assigns probability at least G(t) at time t to F tk (in fact, agent
1 knows F tk). Hence whenever q < G(t), F tk is q-evident at t. Moreover, F tk implies that
both agents know θ = θk, and thus θk is common q-belief at t on F tk. Conditional on θk,
the event F tk occurs with probability G(t). Therefore, for sufficiently large t, θk is common
q-belief with probability at least q.

The following definition captures a distinction that plays an important role in deter-
mining whether communication can generate higher order uncertainty that persists over
time.

Definition 2. Communication is fast (relative to learning) if

lim sup
t

Pr(t0 ≤ t|t1 > t) < 1.

Communication is slow (relative to learning) if

lim
t

Pr(t0 ≤ t|t1 > t) = 1.

To understand the terminology, consider geometric distributions. Suppose g(t) = λ(1−
7The term “uniformly” refers to the requirement that q is uniform across all finite histories that occur

with positive probability.
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λ)t and f(t) = δ(1− δ)t−1 with supports N and N+, respectively. Suppose that agent 2 has
not received the first message after many periods. Agent 2 knows that either agent 1 did
not observe θ for many periods, or the message from agent 1 was delayed for many periods.
The faster communication is relative to learning, the greater the probability agent 2 assigns
to the first explanation; indeed, limt Pr(t0 ≤ t|t1 > t) = λ

δ < 1 when communication is
relatively fast (δ > λ) and limt Pr(t0 ≤ t|t1 > t) = 1 when communication is relatively slow
(δ ≤ λ).

Before identifying conditions under which communication destroys common learning,
we note that slow communication trivially preserves common learning.

Proposition 1. If communication is slow then the agents commonly learn Θ.

All proofs are in the appendix. The proof is based on the observation that with slow
communication, regardless of her private history, agent 2 eventually assigns high probability
to the event that agent 1 has observed θ. Hence agent 1’s uncertainty about agent 2’s
information becomes irrelevant as t grows large. This implies that the event that agent 1
has observed θ is eventually approximately evident.

Any delay distribution that assigns positive probability to messages being lost—that
is, for which F (·) is defective—is slow according to the definition 2 and thus does not
destroy common learning. In particular, communication by a protocol similar to that of
Rubinstein’s email game in which each message is either delivered in one period or never
delivered preserves common learning.

5 Main Results

In this section we identify general conditions on the communication protocol under which
communication does or does not cause common learning to fail. We begin with two negative
results, each based on a different infection argument.

The first negative result generalizes the example from Section 2. We say that com-
munication is undated if Mi = Θ ∪ {s} and µi(hit(ω)) ≡ θ(ω) for each i. We say that
communication is dated if Mi = (Θ× N) ∪ {s} and µi(hit(ω)) ≡ (θ(ω), t) for each i. Note
that, since agents learn only about timing after the initial observation of θ, any selection
rules satisfying µi(hit) 6= µi(hit′) whenever t 6= t′ generate the same beliefs as dated com-
munication. In particular, dated communication is equivalent to message selection rules
given by µi(hit) ≡ hit that report the sender’s entire private history.
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Proposition 2. If communication is fast and undated then common learning uniformly
fails.

Asymmetric information about the dispatch and the delivery times of messages leads
to a general infection of beliefs along the lines of that described in Section 2. This infection
is very powerful: for fast, undated communication, it destroys common learning across all
histories. At any finite history in which agent 1 has observed θ, at least one agent believes
that the other sent a message later than she actually did. Iterating this belief, both agents
have higher order beliefs that no message has been sent, and hence that agent 1 has not
observed θ, in which case agent 1 assigns probability 1/2 to each value of θ. It follows that
θ is not approximate common knowledge.

The following lemma, which is used in the proofs of Propositions 2 and 3, formalizes
the infection argument based on a given ordering of histories at each time t. Different
orderings correspond to different forms of infection. Let Ht ⊆ H1

t ×H2
t denote the set of

all t-histories that occur with positive probability, and let ht ∈ Ht be the t-history in which
agent 1 has not observed θ, i.e. t0 > t.8

Lemma 1 (Infection lemma). Suppose that there exist p > 0 and, for each t, a strict
partial order ≺t on Ht such that, for each ht ∈ Ht \ {ht},

Pr
(
{h′ | h′ ≺t ht}

∣∣hit) ≥ p (1)

for some i ∈ {1, 2}. Then common learning uniformly fails.

The conditions of the Infection Lemma capture the key feature underlying standard
infection arguments. For example, in the email game (Rubinstein 1989), states may be
identified with the number of sent messages. If states are ordered in the natural way, with
more messages corresponding to a higher place in the ordering, then approximate common
knowledge fails to be acquired because the analogue of (1) holds: at each state, one agent
assigns nonvanishing probability to lower states.

The proof of Proposition 2 applies the Infection Lemma using an ordering of histories
based on the timing of messages rather than on the number of messages. For h ∈ Ht, let
m(h) denote the number of messages received at h (i.e. m(h) = max{k | tk ≤ t}), with
the convention that m(h) = −1 if t0 > t. For s ≤ m(h), let ts(h) denote the delivery time

8That is, ht is the t-history in which, for each τ ≤ t, mi
τ = s for each i = 1, 2 and z1

τ = u.
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ts(ω) in every extension ω of h. We define the lexicographic ordering ≺Lt by

h ≺Lt h′ if
m(h)∑
s=0

2−ts(h) <
m(h′)∑
s=0

2−ts(h
′)

for h, h′ ∈ Ht. As its name suggests, this ordering corresponds to a lexicographic ordering
by delivery times, first considering t0, then t1, and so on. When the conditions of the
Infection Lemma hold for the lexicographic ordering, we say that there is infection across
delivery times.

To illustrate the infection across delivery times, consider the example from Section 2
in which communication consists of one undated message delivered at time t0 + 1 or t0 + 2
with equal probability. Any history h ∈ Ht \ {ht} falls into one of the following three
categories:

(i) t1(h) = t0(h) + 2 ≤ t, (ii) t1(h) = t0(h) + 1 ≤ t , or (iii) t0(h) ≤ t < t1(h).

For any history h in category (i), fast communication implies that there exists some q ∈
(0, 1) such that agent 2 q-believes that t0 = t0(h)+1, which corresponds to a history below
h under the lexicographic ordering. For any history h in category (ii), agent 1 1/2-believes
that t1 = t0(h) + 2, and therefore that t1 = t1(h) + 1. Given t0, this again corresponds to
belief of a history below h under the lexicographic ordering. Finally, at any history h in
category (iii), fast communication implies that there exists some q′ ∈ (0, 1) such that agent
2 q′-believes that t0 > t ≥ t0(h), that is, q′-believes the history ht. Therefore, for each t,
the lexicographic ordering satisfies (1) with p = min{q, 1/2, q′}.

Communication being undated is not necessary to destroy common learning. Depending
on the other features of the communication protocol, common learning may fail under any
message selection rule, even if agents communicate all of their information in each message
(for example, when µi(hit) ≡ hit for each i).

The following definitions identify asymptotic properties of delay distributions that are
important for common learning with arbitrary message selection rules.

Definition 3. Following Shimura and Watanabe (2005), we say that a distribution F is
O-subexponential if

lim inf
x

1− F (x)
1− F ∗ F (x)

> 0.
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A distribution F is not heavy-tailed if

lim
x

1− F (x)
1− F ∗ F (x)

= 0.

The class of O-subexponential distributions generalizes the class of subexponential
distributions. This class includes common heavy-tailed distributions such as log-normal,
Pareto, and Lévy distributions. Exponential distributions are an example of distributions
that are not heavy-tailed. In our setting, if the delay distribution is O-subexponential, then
an agent who has not received a confirmation message after many periods doubts that the
last message she sent has been received. If, on the other hand, F is not heavy-tailed, then
each agent eventually assigns high probability to her last message having been delivered
even if she has not received a confirmation message.

Proposition 3. If communication is fast, the delay distribution F is O-subexponential, and
the number N of messages is infinite, then common learning uniformly fails (regardless of
the message selection rule).

Proposition 3 follows from an infection argument based on the number of delivered mes-
sages similar to that underlying Rubinstein’s email game. If communication is fast, agent 2
doubts that agent 1 has observed θ until the first message is delivered. O-subexponentiality
implies that each agent doubts that the last message she sent has been received until she
receives confirmation. If the number of messages in the protocol is infinite, these doubts
generate persistent higher order beliefs that agent 1 has not observed θ.

To make this intuition precise, define for each t the message-based ordering ≺Mt by

ht ≺Mt h′t if m(ht) < m(h′t).

When the conditions of the Infection Lemma hold for the message-based ordering, we say
that there is infection across messages. The proof of Proposition 3 shows that infection
across messages occurs under the conditions of the proposition.

Propositions 2 and 3 identify communication protocols that destroy common learning
even though common learning arises in the absence of communication. The results naturally
extend to a related setting in which only agent 1 observes θ directly. Consider a model iden-
tical to the one above except that z2

t = u for every t and µ1

(
hit0(ω)(ω)

)
6= µ1

(
hit0(ω′)(ω

′)
)

whenever θ(ω) 6= θ(ω′). The latter condition implies that agent 2 learns the value of θ
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when she receives the first message from agent 1. The negative results of Propositions 2
and 3 extend to this setting in a stronger form: they hold even without the assumption that
communication is fast. Whether or not agent 2 observes θ directly, the infection arguments
underlying the negative results are essentially the same. The only difference is that, in this
case, it suffices for there to be a higher order belief that agent 2 has not received the first
message, not that agent 1 has not observed θ.

The following proposition identifies conditions (in addition to those of Proposition 1)
under which dated communication preserves common learning.

Proposition 4. Suppose that F is not defective. If messages are dated and

1. the number N of messages is finite, or

2. F is not heavy-tailed,

then the agents commonly learn Θ.

In terms of the two infection channels described above, dating messages prevents infec-
tion across delivery times. The number of messages being finite or F not being heavy-tailed
prevents infection across messages.

The idea behind the proof of Proposition 4 is simple. Consider the case of finitely
many messages (the proof for the second case is similar). Once the last message has been
sent, the sender does not expect to receive a confirmation. Once enough time has elapsed,
she becomes confident that the message has been delivered. Since the messages are dated,
once this message is delivered, the recipient knows how much time has elapsed since the
message was sent, and therefore knows the sender’s belief. It follows that approximate
common knowledge is eventually acquired. Note that dating of messages is essential for
the second part of the argument. If the recipient does not learn when the message was
sent, she may doubt the confidence of the sender, causing common learning to unravel (as
in Proposition 2).

Proposition 4 extends to the alternative setting in which agent 2 does not observe θ
directly. Common learning arises some time after the first message has been delivered, in
which case agent 2 knows θ; whether or not she observes θ before receiving the message is
irrelevant.

Proposition 4 also extends to settings in which delays are not i.i.d. across messages.
Whenever communication is dated and almost surely ends in finite time, agents commonly
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learn Θ. Since communication eventually breaks down, there must be a first message
that the recipient assigns positive probability to not receiving. Even if this message (or
some subsequent message) is never delivered, the recipient eventually believes that all
previous messages were delivered and that agent 1 observed θ. Because of this, higher
order uncertainty about θ cannot persist and common learning occurs.

6 Discussion and conclusion

There exist distributions such that communication is neither fast nor slow, that is, such
that lim supt Pr(t0 ≤ t|t1 > t) = 1 and lim inft Pr(t0 ≤ t|t1 > t) < 1. For such distributions,
common learning may fail but not uniformly: for a given p ∈ (0, 1), common p-belief may
be acquired in some periods but not others even as t grows large.

In order to emphasize the role of communication and timing, our results focus on a
setting with very simple direct learning of the parameter: each agent perfectly observes the
parameter at some time. In a more general setting with gradual learning, we conjecture
that our results hold if the first message is sent once one agent reaches a set of private
histories that is necessary for p-belief of the parameter (for some fixed p ∈ (1/2, 1)).

Our results indicate that timing plays a crucial role in determining whether common
learning occurs in the presence of communication. Two features of timing are particularly
important: the distributions of delays in learning and communication, and the extent to
which time is reported in messages. If messages are undated, communication destroys
common learning unless communication is sufficiently slow. With dated messages, commu-
nication can destroy common learning only under much more stringent conditions on the
timing of communication.

A Appendix: Proofs

Proof of Proposition 1. Let Dt = {ω | t0(ω) ≤ t} be the event that agent 1 has observed
θ by time t. Since Pr(Dt) = G(t), for each q ∈ (0, 1) there exists T ′ such that Pr(Dt) > q

for all t > T ′. Since communication is slow, for each q ∈ (0, 1) there exists T ′′ such that
Pr(Dt|t1 > t) > q for all t > T ′′.

We claim that the event Dt is q-evident at every t > T ′′. At every state in Dt, agent
1 knows Dt at time t. Agent 2 knows Dt at time t whenever t1 ≤ t, and q-believes Dt at
time t whenever t1 > t, proving the claim.
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Note that both agents know θ at time t on Dt. Since Dt is q-evident, θ is common
q-belief at time t on Dt for t > T ′′.

Letting T = max{T ′, T ′′}, we have

Pr(Ctq(θ) | θ) > q,

for all t > T , as needed.

Proof of Lemma 1 (Infection Lemma). Recall that strict partial orders are transitive and
irreflexive.

Choose any q ∈
(

1
2 , 1
)

such that q > 1 − p. Suppose for contradiction that common
q-belief of θ occurs with positive probability at time t. Then there exists a subset S ⊆ Ht

such that, at time t, S is q-evident and both agents q-believe θ on S.
We will show that S contains ht. Following ht, agent 1 assigns probability 1/2 to the

event θ′ for θ′ 6= θ. Since q > 1/2, these beliefs violate the hypothesis that both agents
q-believe θ on S at time t, giving the desired contradiction.

Let ĥt be a minimal element of S with respect to ≺t; that is, let ĥt ∈ S be such
that there does not exist h ∈ S satisfying h ≺t ĥt. A minimal element exists since ≺t is
transitive and S is finite.

We show that ĥt = ht. Suppose for contradiction that ht 6= ĥt. By assumption, we
have

Pr
(
{h′t | h′t ≺t ĥt}

∣∣∣ ĥit) ≥ p
for some i. Since S is q-evident at time t, we also have

Pr
(
S|ĥit

)
≥ q.

By the choice of q, p+ q > 1 and hence {h′t | h′t ≺t ĥt} ∩ S 6= ∅. Thus there exists h′t ∈ S
such that h′t ≺t ĥt. Since ≺t is irreflexive, h′t 6= ĥt, contradicting that ĥt is a minimal
element of S. Therefore, ĥt = ht and ht ∈ S.

Proof of Proposition 2. By the Infection Lemma, it suffices to show that there exists p ∈
(0, 1) such that, for each t, the lexicographic ordering ≺Lt satisfies (1).

We claim that if communication is fast then there exists q ∈ (0, 1) such that

Pr (t0 = t− 1|t1 = t) > q (2)
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for all t ∈ N+, and
Pr(t0 > t|t1 > t) ≥ q (3)

for every t ∈ N. Inequality (3) immediately follows from the definition of fast communica-
tion.

To prove (2), we need to show that fast communication implies that there exists q ∈
(0, 1) such that

f(1)g(t− 1)
f ∗ g(t)

≥ q

for every t ≥ 1. Since f(1) is positive, the claim follows if lim inft
g(t−1)
f∗g(t) > 0. By the

regularity assumption, it suffices to show that limt
g(t−1)
f∗g(t) 6= 0. Suppose for contradiction

that limt
g(t−1)
f∗g(t) = 0. Since communication is fast, we have

lim inf
t

1−G(t)
1− F ∗G(t)

> 0.

Hence there exists some δ > 0 such that 1−G(t)
1−F∗G(t) ≥ δ for every t ≥ 1. Since limt

g(t−1)
f∗g(t) = 0,

there exists some T such that
g(t− 1) < δf ∗ g(t)

for all t ≥ T . By summing over t ≥ T , the last inequality implies that

1−G(t− 1) < δ(1− F ∗G(t)),

contradicting the definition of δ (since 1−G(t) ≤ 1−G(t− 1)).
We now prove that (1) holds for p = min{q/2, q(1− f(1))}. We distinguish three cases.
First consider any h 6= ht for which there is some k ≥ 0 such that

t ≥ tk+1(h) > tk(h) + 1. (4)

Let k∗ be the smallest k satisfying this condition and let i be the agent who receives
message k∗ + 1. We claim that following h, agent i p-believes {h′ | h′ ≺Lt h}. Since, in
this case, both agents know the realizations of t1, . . . , tk∗−1, it suffices to show that agent
i p-believes the joint event that t0 ≥ t0(h) and tk∗ > tk∗(h). Suppose that i = 2 (the proof
for i = 1 is similar only simpler). If k∗ = 0, then agent 2 q-believes that t0 = t1(h)− 1, as
needed. If k∗ > 0, then agent 2 assigns independent probabilities of q to t0 being equal to
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t1(h)− 1 and

1− f(1)
f(tk∗+1(h)− tk∗−1(h)− 1)∑tk∗+1(h)−tk∗−1(h)−1

s=1 f(s)f(tk∗+1(h)− tk∗−1(h)− s)
(5)

to the event that tk∗ > tk∗−1(h) + 1. Since, by assumption, tk∗+1(h) − tk∗−1(h) − 1 > 1,
the denominator of (5) contains two terms equal to the numerator, and hence the entire
expression is at least 1/2. Therefore, agent 2 q/2-believes {h′ | h′ ≺Lt h}, as needed.

Second, consider any t-history h 6= ht with m(h) > 0 for which there is no k satisfying
(4). Let i denote the agent who receives message m(h)− 1. Again, both agents know the
realizations of t1, . . . , tk∗−1, and thus it suffices to show that agent i p-believes the joint
event that t0 = t0(h) and tm(h) > tm(h)(h). Suppose that i = 2 (once again, the argument is
simpler if i = 1). Let ∆1 = tm(h)−tm(h)−1 and ∆2 = tm(h)+1−tm(h). Since, by assumption,
tm(h)(h) = tm(h)−1(h) + 1, agent 2 assigns probability

1− f(1)
Pr
(
∆1 > t− tm(h)−1 − 1

)
Pr
(
∆1 + ∆2 > t− tm(h)−1

)
to the event that tm(h) > tm(h)(h). This last expression is at least 1− f(1) since

Pr(∆1 ≥ d− 1) ≤ Pr(∆1 + ∆2 ≥ d)

for any d because ∆2 has support on N+. Since agent 2 assigns independent probability q
to t0 = t1(h)− 1, she q(1− f(1))-believes that t0 = t0(h) and tm(h) > tm(h)(h), as needed.

Finally, at any history h such that m(h) = 0, agent 2 q-believes ht.

Proof of Proposition 3. By the Infection Lemma, it suffices to show that there exists p ∈
(0, 1) such that, for each t, the message-based ordering ≺Mt satisfies (1).

First, because communication is fast, there exists q < 1 such that at any history ht

with m(ht) = 0, agent 2 q-believes ht. Second, consider a history ht with m(ht) > 0, and
let i be the agent who receives message m(ht) + 1. Since agent i has not received message
m(ht) + 1 by t, we have

Pr(tm(ht) > t|hit) =
1− F (t− tm(ht)−1)

1− F ∗ F (t− tm(ht)−1)
.

Since F is O-subexponential, the right-hand side of this equation is bounded below by
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some q′ > 0 uniformly across all values of t − tm(ht)−1. In particular, agent i q′-believes
{h′t | h′t ≺Mt ht}. Letting p = min{q, q′} establishes the required inequality.

Proof of Proposition 4. For each case, we construct a system of events Dt,t′ such that (i)
limt′ limt Pr(Dt,t′) = 1; (ii) for each q ∈ (0, 1) and each t′, Dt,t′ is q-evident at t whenever
t is sufficiently large; and (iii) both agents know θ at t on Dt,t′ . The existence of such a
system implies common learning of Θ. To see this, fix q ∈ (0, 1). Note first that (i) implies
that there exist t′ and T such that Pr(Dt,t′) > q whenever t > T . By (ii), there exists T ′

such that Dt,t′ is q-evident whenever t > T ′. Letting T ′′ = max{T, T ′}, (iii) implies that
Pr(Ctq(θ)|θ) > q whenever t > T ′′, as needed.

For case 1 (finite N), let

Dt,t′ = {ω | tN−1(ω) ≤ t′ and tN (ω) ≤ t}.

Properties (i) and (iii) are immediate. All that remains is to prove that property (ii) holds.
Since messages are dated, the agent who receives the Nth message knows Dt,t′ at t on
Dt,t′ . The other agent knows tN−1(ω) and assigns probability at least F (t− t′) to tN being
at most t. Since F is not defective, this probability exceeds q when t is sufficiently large
(given t′).

For case 2, let
Dt,t′ = {ω | t1(ω) ≤ t′ and t2(ω) ≤ t}.

Properties (i) and (iii) are again immediate. For property (ii), note that, since messages
are dated, agent 1 knows Dt,t′ at t on Dt,t′ . If t3(ω) ≤ t then agent 2 knows Dt,t′ at t.
Otherwise, she assigns probability at least F (t−t′)

1−F∗F (t−t′) to t2 being at most t. Since F is not
heavy-tailed, this probability exceeds q when t is sufficiently large (given t′).
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