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Abstract

Economic and social welfare is inherently multidimensional. However, choosing a mea-

sure which combines several indicators is difficult and may have unintendend and unde-

sirable effects on the incentives of policy makers. We develop a nonparametric empirical

method for deriving welfare rankings based on data envelopment, which avoids the need

to specify a weighting scheme. The results are valid for all possible social welfare func-

tions which share certain canonical properties. We apply this method to data on Human

Development.
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1 Introduction

Sen and many others have consistently and persuasively argued that aspects of well-being,

be it inequality, deprivation or polarization, are intrinsically many-dimensioned things (for

example Sen (1995), Anand and Sen (1997), Atkinson (2003), Bourguignon and Chakravarty

(2003), Kolm (1977), Maasoumi (1986) and the essays in Grusky and Kanbur (2006)). An

individual’s functionings and capabilities are bounded by many sensibilities, the extent of their

freedoms, limitations afforded by their health, knowledge and skill set and ultimately their

capacity to buy goods and leisure. Evaluation of these various aspects of societal wellbeing

demands recognition of its multi-dimensional nature.

Whilst the argument that well-being is multi-dimensional is well taken it is often still ex-

tremely useful to be able to order and to compare states characterized in many dimensions.

Policy makers, for example, frequently require some means of comparison that is complete.
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Thus beyond the difficulties surrounding measurement of these many sensibilities, an evalu-

ation of overall well-being calls for some means of aggregating across them. Therein lies the

difficulty, for while there may be general agreement on an aggregation method, the specific

weights to be attached to each sensibility are a matter of some dispute. The choice of any

particular weighting scheme is somewhat arbitrary, and unfortunately once made it rules out

other equally plausible but no less arbitrary weighting schemes.

A good example of this problem is the United Nations Human Development Index (HDI)

which aims to provide a single summary measure of the relative development status of different

countries. Based upon indices of three dimensions, education (a combination of literacy and

school enrolment rates), life expectancy and GDP per capita, it simply adds the three indices

up and divides by three, attaching equal weight to each sensibility. The implication is a one

percent increase in any one of the factors will have an effect on ‘development’ identical to that

of a corresponding change in any other, and this will be the case whatever the levels of the indi-

vidual factors. This has obvious implications for policy design, since a policy maker’s attention

will be directed to those factors which have the greatest weight in the aggregation scheme.

Whether or not this is desirable should be a matter of conscious and careful consideration,

rather than as the unintended consequence of the choice of a mathematical function.

This paper offers a constructive approach to the aggregation problem. We consider the

situation in which we have data recording various aspects of well-being for a cross section

of observations (life-expectancy, income and education, for example, for a cross section of

countries as is the case for the UN HDI data). We show how two-sided bounds can be

placed on a welfare index for each observation using only the assumptions that well-being is

non-decreasing and weakly quasi-concave with respect to these indicators. Our approach is

applied directly to the data and is fully nonparametric in the sense that it does not require

us to make any further assumptions on the functional form of the welfare function, nor does

it require us to estimate any functions of the data. Indeed the method we are suggesting can

be applied to very small datasets (as well as to large ones) where statistical techniques - and

especially nonparametric statistical techniques - could not be relied upon. A useful feature of

our approach is that, since it is nonparametric and nonstochastic, the methodology is easily

replicable requiring nothing more complex than standard linear programming techniques. We

illustrate the method using the most recent UN HDI data. We show that it is indeed possible to

recover informative two-sided bounds on the welfare index. Because the bounds encompass the

entire set of welfare indices consistent with monotonicity and quasi-concavity, these bounds

can be used as a computationally convenient robustness check on parametric methods. In
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other words researchers do not have to go through the unending tasking of computing all of

the alternative measures, but instead simply have to compute the bounds. The approach set

out in this paper also suggests a potential research program which might extend the work

described in a number of ways.

The plan of the paper is as follows. Section 2 sets out the basic theory relating to our

approach, describes the calculation of the bounds and provides two key propositions concerning

them. Section 3 provides an empirical illustration which uses the UN HDI data and describes

our experience with applying the methodology. Section 4 concludes and considers the shape

of future work in this area.

2 Theory

2.1 The distance function

Suppose that there are  variables recording different aspects of social and economic wel-

fare for each of  observations in a dataset (this dataset may be composed of individuals,

communities or countries and is indexed  = 1  ). In what follows we assume either that

these variables are non-negative, or are transformed to be such. Let x ∈ R
+ denote the ’th

observation. Let X be the (× ) matrix of all of the  observations. Let  : R
+ → R

denote a function which aggregates the variables associated with an observation into a single

scalar measure. We can think of  as representing a welfare/well-being function so that

 (x) measures the welfare of ’th observation. We will make the following two assumptions

regarding the welfare function.

A1. Monotonicity:  (x) ≥ (y) if x ≥ y.
A2. Quasi-concavity:  (x) = (y) ≤ (x+ (1− )y) ∀ ∈ [0 1]

Monotonicity means that the well-being does not fall with an increase in the measured vari-

ables. Quasi-concavity means that for a given distribution of x welfare is (weakly) increased

by any inequality reducing reallocation between observations.

In this paper we focus, not on the primal welfare function, but on a dual representation

of it called the distance function1. The distance function measures the amount by which one

has to scale the variable vector of an observation so that it achieves some reference welfare

1See, for example, Deaton (1979) and Deaton and Muellbauer (1980). The term is from the economics

literature (Shephard (1953) for example). In the mathematics literature the same object is known as a gauge

function (see Rockafellar (1970), for example.)
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level. It is defined as follows

 (x ) = min
≥0

{ : (x) ≥} (1)

The distance function is decreasing in x increasing in  and homogeneous of degree one in

x. The distance index can thought of as a (Malmquist) quantity index number measuring the

"size" of x relative to the reference welfare level  2. To illustrate consider Figure 1 which

shows the general idea behind this index. There are two variables
©
1 2

ª
, one measured on

each axis and a single observation (x). The curve  represents all of the combinations of the

two variables which can produce a reference level of welfare. This curve is downward-sloping

and convex to the origin thanks to the two assumptions above. The value of the distance

function is given by the scalar value . This is the smallest number by which x can be

scaled such that the bundle x lies on or above  . In this case  ≈ 1
2
which means that an

equi-proportional reduction of about 50% in all of the variables would place the observation

at the required reference welfare. Lower (respectively higher) values of  indicate higher

(lower) welfare compared to  . That distance functions in general depend on the location

of x the welfare function and the reference welfare level is clearly illustrated by the figure

by considering how the construction would vary with these factors. Another feature which is

implicit in the figure is that knowing the distance function is as good as knowing the welfare

function itself (you can identify the curve by knowing the value of  for all possible locations

of x and connecting up the set of points such that  = 1).

Figure 1: The distance function

2This is a standard method in the index number literature. See Malmquist (1953).
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Since the distance function is a dual representation of the welfare function we could choose a

formula for either and proceed to apply them a dataset in order to investigate welfare rankings.

However, given the forgoing discussion about the difficulties involved in agreeing on a specific

welfare aggregator, the challenge is to try to develop methods which are nonparametric; that

is, which do not depend upon the functional form of a specific aggregator. In the next section

we show that it is possible to recover bounds on the distance function which are valid for

all possible choices of aggregator which satisfy monotonicity and quasi-concavity given an

appropriate choice of the reference observation.

2.2 Bounding the Distance Function

Consider the following reference welfare level

 ∗ = min

{ (x) : x ∈ X  satisfies A1 and A2}

That is, the reference welfare level is the welfare associated the worst off observation where the

welfare measure is required to satisfy monotonicity and quasi-concavity. Given this reference

welfare curve it is possible to recover two-sided bounds on the distance index for each observa-

tion in the data without making further parametric assumptions about the welfare function.

The formal result is stated next.

Proposition 1.  (x
∗) ∈ £ 

¤
for  ∗ = min{ (x) : x ∈ X  satisfies A.1 and

A.2} where

 = min


½
min


½




¾
for  = 1  

¾
 = argmin

≥0≥0

£
00 1

¤ ∙ λ



¸
such that

∙
X −x
10 0

¸ ∙
λ



¸ ≤
=

∙
0
1

¸
Proof. See Appendix. ¥

The proof of the proposition can be found in the Appendix. However the general intuition

for the result can be seen graphically Figure 2. Figure 2a illustrates a situation in which we

have three observations {xx x}.
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Figure 2a: Two -sided bounds on the distance function

Our aim is to place bounds on the distance function referenced on the worst-off observation.

The first question therefore is: which is the reference observation? Clearly (by monotonicity)

it cannot be observation . But it can, given an appropriate choice of be either  or  so we

will have to consider both options. Begin with observation . The downward-sloping dashed

curve in the left hand panel of Figure 2B illustrates a potential reference welfare curve with

the required properties such that  is the worst off observation. Any such curve is admissible

as a reference curve as long as it remains between the two shaded areas. If it crossed these

bounds it would violate either monotonicity or quasiconcavity (or both). The right hand panel

in Figure 2B shows a similar bound on the welfare curve through observation  in the case

that observation  is the worst off.

Figure 2b: Two -sided bounds on the distance function
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The last Figure (2C) combines the bounds in the cases that either  or  are the worst off

observations. The shaded areas in Figure 2C represent the intersection of the corresponding

areas in Figure 2B and are upper and lower bounds on all possible reference welfare curves

which are consistent with monotonic and quasiconcave welfare functions and the restriction

that they are referenced on the worst off observation. Since we now have bounds on the

reference welfare curve we can immediately recover bounds on the distance function. Figure

2C also overlays these bounds. The distance measure for observation  must be such that the

deflated variable vector x lies somewhere on the line between the points x and x.

Figure 2c: Two -sided bounds on the distance function

Using the result in Proposition 1 we can compute two-sided bounds on the distance index

for each multivariate observation in a given dataset. It is worth noting in passing that these

bounds are invariant to changes in units.

Proposition 2. Invariance to changes in units. If  (x
∗) ∈ £ 

¤
then  (kx

∗) ∈£
 

¤
where k is a (× 1) vector of positive constants3.

Proof. See appendix¥

To summarise; we are proposing a method which provides bounds on the set of all distance

measure-based welfare indices which are consistent with the class of welfare aggregators which

are monotonic and quasiconcave. These measures can be used to rank multivariate observa-

tions in a way which is invariant to choice of units. The use of the distance function as a tool

with which to investigate welfare aggregation issues has been used before (for example, Lovell

3Note that kx denotes the element-by-element multiplication (Hadamard product) of the two vectors.
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et al (1994), Deutsch et al (2003) and Ramos and Silber (2005)) by authors who estimate

the distance function using a translog specification linking a reference variable to the other

dimensions. The problems with this general approach are well known and centre on the pos-

sibility of econometric misspecification conditional on the assumed functional form. In this

paper we have put forward a nonparametric alternative similar in spirit to data envelopment

and revealed preference approaches. The main difference from data envelopment analysis is

that whilst in a standard envelopment problem both inputs and outputs are observed, we only

observe inputs. We use restrictions on the class of admissible welfare functions (monotonicity

and quasiconcavity) and a particular choice of reference observation (the worst off) to allow

us to get around this problem. The main weakness of this type of approach is similar to

the problems of standard envelopment problems: the results are data-dependent and so can

sometimes be influenced by outliers and may consequently be determined by relatively few,

extreme (low) observations.

3 An Empirical Illustration: International Development

We focus on a now well-established measure of international development produced by the

United Nations, the Human Development Index (HDI). Data was taken from the UNDP

(2009) Human Development Report 2009, which measures information for the year 2007 on 182

nations4. There are three indicators of well-being - life expectancy at birth in years, education

(measured as a combination of indicators of adult literacy and the combined enrolment rate

in all levels of education), and GDP per capita, measured in US dollars at purchasing power

parity. The HDI is calculated by comparing the value of each indicator to benchmark upper

and lower levels. This produces three indices between zero and one which represent the extent

to which a country has moved towards the upper benchmark. For example, the life expectancy

benchmarks are 25 years and 85 years. A country with a life expectancy of 25 years or lower

would get an index of zero; a country with a life expectancy of 85 years or more receives an

index of one. In 2007, the UK’s life expectancy was 79.3 years which gave it a life expectancy

index of 793−25
85−25 = 0906. The overall HDI is a simple average of the life expectancy, education

and GDP indices. Our distance measures are calculated from the three component indices.

As discussed in the introduction, the HDI is an existing example of attempts to combine

multiple indicators of well-being into a single index and highlights clearly many of the issues

in doing so. Even assuming that the indicators are measured reliably and comparably across

4Source data is available from http://hdr.undp.org/en/media/HDR_2009_Tables.xls.
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countries, and each index is meaningful in itself (capping the maximum possible life expectancy

at 85 means, for example, that a country with a life expectancy of 100 would be no more

‘developed’ than one with a life expectancy of 855), assigning equal weight to each is clearly

arbitrary. Analysis from the 2008 update of the HDI figures (UNDP, 2008) suggested that "...

70 percent of all possible country-pair comparisons are fully robust, meaning that the rankings

would not be reversed at any non-negative weights that sum to 1." This, of course, reflects all

possible pairwise comparisons and it is hard to imagine that countries at the top of the index

would ever fall below those at the bottom on any re-weighting of the data. We may expect

much more fluctuation in the ranks of countries close to one another. The report does point

out that "... at some parts of the distribution, including among the top ten countries ... the

rankings are sensitive to changes in the weights of the underlying components."

Figure 3. Welfare bounds

We took the data published in the Human Development Report 2009 and computed, for

each country, bounds on the distance index as described in the previous section. Figure 3 shows

the countries ordered from worst-off to best-off according to the mid-point of their distance

bounds, along with the lower and upper bounds. Recall that higher values of the distance

measure represent lower welfare. For ease of exposition, we have subtracted the bounds from

1 such that higher values reflect higher welfare. The results indicate that the bounds on the

distance measure are informative about welfare comparisons across countries: the bounds do

not span the entire interval [0 1] and on average across all countries, the gap between upper

5For the income index, the upper limit is set at $40,000 per capita at PPP. Thirteen of the 182 countries

studied had incomes above this value meaning that Liechtenstein, with an income of $85,382 per capita, has

the same GDP index as Switzerland despite the latter’s income per capita being half as much ($40,658 per

capita).

9



and lower bound is 0246. Using the mid-point of the bound to rank countries, the best-off

nation is Norway, which has an interval [0637 0818]. Of the 182 nations in the HDI, 38 have

bounds that do not overlap the Norwegian bounds at all. Similarly, ranking by the mid-point

the worst-off country is Niger, with bounds [0000 0407]. In total, 132 countries have bounds

that do not overlap those of Niger.

In general, the size of the interval of the bounds is decreasing in overall welfare. Particularly

noticeable is that the bounds are typically narrowest for better-off nations. Of the 68 countries

with a mid-point below 0.6, the average width of the bounds is 0330 whilst the 114 countries

with a mid-point in excess of 0.6 have an average width of 0196. The largest interval is

Swaziland ([0086 0718]) and the narrowest interval is Vietnam ([0507 0665]). Conceptually,

both the overall magnitude of the welfare inputs and their variability may be important

determinants of the width of the bound. The correlation coefficient between the interval width

and the mean of the life expectancy, education and GDP indices is −0801 which mirrors the
result from figure 3 that better-off nations have tighter bounds. The correlation coefficient

between the interval width and the standard deviation of the indices is +0401, suggesting

countries with more variable inputs tend to have wider bounds.

The Human Development Report classifies countries with an HDI in excess of 0.9 as "very

high human development", countries with an HDI between 0.8 and 0.9 as "high human de-

velopment", countries with an HDI between 0.5 and 0.8 as "medium human development"

and countries with an HDI below 0.5 as "low human development". Figure 4 re-orders coun-

tries according to their HDI (worst-off on the left), demarcating these different development

rankings, and shows the distance bounds as above.

Figure 4. Distance measures by HDI development classification
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Clearly there is a close relationship between HDI and the distance measures suggesting

the particular choice of aggregation method in the HDI is quite robust. The variation in the

bounds for countries classed as ‘very high development’ is particularly small. However it is

clear that there is some overlap between the groups. Taking the mid-point of the bounds

as a welfare measure, 4 of the 38 countries ranked ‘very high development’ by the HDI have

mid-points below that of Bahrain which is the best-ranked (by mid-point) of those countries

grouped ‘high development’. Similarly, 9 of the 24 nations classified as ‘low’ development have

mid-points that would rank them higher than Lesotho, the ‘medium’ development country with

the lowest mid-point. There is, however, no overlap of the mid-points across two development

categories - no ‘medium’ development nation has a mid-point higher than that of any ‘very

high’ development nation, and similarly for the ‘low’ and ‘high’ development groups.

Since the lower bound of 1 − (corresponding to the upper bound of ) is the lowest

value a monotonic quasi-concave welfare index could take on for agent (country) “”, changes

in these bounds across a group of agents are of interest in their own right since they are changes

in the worst case scenario. Furthermore, those countries for whom 1-Di = 0 are potentially

the poorest in the population, what we have referred to elsewhere as the “Rawlsian Set”

(Anderson et al (2006)), membership of this set over a span of time contradicts the “Rawlsian

Improvement” criteria. Pooling data for the 172 countries for which data was available for

years 1999 and 2008 yields the following distributions of upper and lower bounds for 1−.

Figure 5: Size Distributions of Upper and Lower Bounds
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Table 1: Dominance results
Decile 1999 2008 ∆ std err

1 0.2982 0.1047 0.0930 0.0116 0.0322

2 0.4414 0.2093 0.1860 0.0233 0.0429

3 0.5274 0.3197 0.2791 0.0407 0.0493

4 0.5820 0.4419 0.3546 0.0872 0.0526

5 0.6197 0.5640 0.4360 0.1279 0.0535

6 0.6387 0.6802 0.5174 0.1628 0.0521

7 0.6654 0.7733 0.6221 0.1511 0.0488

8 0.6881 0.8547 0.7442 0.1105 0.0428

9 0.7069 0.9477 0.8488 0.0988 0.0322

10 0.7257 1 1

Table 1reports the first order dominance test statistics (Davidson and Duclos (2000)) for

the distribution of lower bounds which clearly fail to reject the hypothesis that the 2008

distribution first order dominates the 1999 distribution and rejects the hypothesis that the

1999 distribution dominates the 2008 distribution. The membership of the “Rawlsian Set” is

four in number, Burkino Faso, Niger and Sierra Leone in 1999 and Democratic republic of the

Congo in 2008 suggesting that that country actually went backwards over the period. Since

the “Rawlsian Set” did not uniquely contain 1999 observations it is not possible to conclude

that a Rawlsian welfare improvement has occurred over the period.

4 Conclusions

Measuring the relative social and economic welfare of individuals, households and countries is

difficult, especially when welfare is characterized by a potentially large number of dimensions.

Nevertheless, it is important to try to do so if we want to understand phenomena like social

exclusion, poverty etc., and the effects of policy and environmental changes on them. The key

problem is, perhaps, one of aggregation: we often have a fairly good idea of the sorts of factors

which relate to overall welfare, but not how to aggregate these various dimensions into a single,

useful index of relative welfare. This paper has offered a constructive approach to this problem.

We show how two-sided bounds can be placed on a welfare indices using weak assumptions

on the properties of the welfare function and a suitable choice of reference observation. Our

approach is fully nonparametric and straightforward to apply to any multi-dimensional dataset

as it only requires standard linear programming techniques. We illustrated the method using

the UN HDI data and obtained informative two-sided bounds on the welfare index which

could be used both to make welfare comparisons and also to check the robustness of the

HDI methodology. The approach described in this paper also suggests a potential research
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program which might extend this method in two ways. The first is the investigation of the

effects of further assumptions on the class of admissible welfare functions. Since we only use

two rather weak assumptions there is considerable potential scope for tightening the bounds

by adding further assumptions - two obvious candidates might be, for example, a separable

or even additive structure for the welfare function. The second avenue for further research is

to allow for the effects of sampling variation on the bounds. In this paper we assume that the

constituent welfare indicators are measured correctly, but this may well not be the case and

it would be important to extend the work here to consider the issue of statistical inference.

Finally, it may be possible to use numerical values of the welfare inputs to further tighten

the bounds or make comparative welfare comparisons across countries - this method does not

rule out the possibility that an observation with high values of all inputs will have bounds

that overlap with those of another observation with lower values of all inputs, but clearly

monotonicity alone allows us to say the welfare of the former exceeds that of the latter.
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Proofs

Proof of Proposition 1.

Consider the upper bound Let λ and  denote the solutions to the linear programme

given in the definition of . Now suppose that  (x
∗)  . Since λ ≥ 0, 10λ = 1

and x = Xλ, we have 
¡
x

¢
=  (Xλ) ≥  ∗ = min{ (x) : x ∈ X} for all

aggregators satisfying A→ and A2. Therefore, if  (x
∗)   then  ( (x

∗)x) 


¡
x

¢
which implies that  (x

∗) min≥0 { :  (x) ≥  ∗} which contradicts
the definition of the distance function. Now consider the lower bound and suppose that

   (x
∗). This implies that min { (x ∗) }  min{min

n


o
for  = 1  }

where

min{min

n


o
for  = 1  } =  ∗ for the Leontief aggregator function (which sat-

isfies A1 and A2) and hence that  ( (x
∗)x)   ∗ which contradicts the definition of

the distance function. ¥

Proof of Proposition 2.

Consider the lower bound and note that  

 =  

 so invariance follows

immediately. Now consider the upper bound and suppose that  solves the linear program

described in Theorem 1. Then x = Xλ and hence  also satisfies  [kx] = [kX]λ. ¥
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