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Supplement to “An Equilibrium Model of Learning, Search and Wages”

by Francisco Gonzalez and Shouyong Shi

This supplementary appendix provides complete proofs of the lemmas and theorems

presented in the paper.

A. Proofs of Theorem 3.1 and Two Lemmas

Proof of Theorem 3.1:

First, we prove existence of the equilibrium. The analysis leading to Theorem 3.1 has

proven that if V obeys (3.7), then V and the optimal choices G(μ) exist. In Section 6 we

characterize the steady state distribution of workers. Thus, for existence of an equilibrium

it suffices to show that Assumption 2 is sufficient for all matches to be accepted, in which

case V indeed obeys (3.7).

Consider a worker with beliefs μ ∈ M who obtains a match in submarket x ∈ X. Ac-

cepting the match yields the present value, Je(φ(μ),W (x)), and rejecting the match yields

V (φ(μ)). The worker strictly prefers to accept the match if and only if Je(φ(μ),W (x)) >

V (φ(μ)). Using (3.5), we can rewrite the latter condition asW (x) > (r+σ)V (φ(μ)). Since

W 0(x) < 0 and φ(μ) ≤ aH , a sufficient condition for this requirement for this condition to

hold for all x and μ is

W (a−1H ) > (r + σ)V (aH).

Substituting V (aH) from (A.1) in Lemma A.1 below, we rewrite the condition as

(y − b)/c > [A+ aHxH ]λ
0(x∗)− aHλ(xH),

where x∗ is defined by λ0(x∗) = aHλ(a
−1
H ), and xH = g(aH). Since the right-hand side of

the inequality is maximized at xH = x∗, Assumption 2 is sufficient for the inequality to
hold and, hence, for all matches to be accepted.

Second, we prove that g(μ) > 0 for all g(μ) ∈ G(μ) and all μ ∈ M . Let μ ∈ M be

arbitrary beliefs and g(μ) an arbitrary selection from the set of optimal choices, G(μ).

Suppose that g(μ) = 0, contrary to theorem. In this case, (3.6) and (3.7) yield: R(0, μ) =

V (μ) = b/(r + σ). Consider a choice x > 0. Because it is always feasible for the worker to

choose x0 = 0 in the future, the future value function satisfies: V (μ0) ≥ b/(r + σ) for all

posterior beliefs μ0. Thus, for all μ, the choice x yields at least the following payoff:

R̃(x, μ) =
xμ

A

∙
W (x)

1− σ
+

δb

r + σ

¸
+ (1− xμ)

b

r + σ
.
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Note that R̃(x, μ) is differentiable and strictly concave in x. SubstitutingW (.) from (3.10),

we can verify that R̃1(0, μ) > 0 if and only if (y−b)/c > Aλ0(0). Since the latter condition is
satisfied (see Remark 1), then maxx R̃(x, μ) > R̃(0, μ) = b/(r+σ). This is a contradiction.

Therefore, g(μ) > 0 for all μ.

Third, we prove that V is strictly increasing. Let TV (μ) denote the right-hand side of

(3.7). Since T is a contraction mapping on the space of continuous functions on M (with

the sup norm), it suffices to prove that T maps continuous and increasing functions on M

into continuous and strictly increasing functions on M (see Stokey et al., 1989). Namely,

we prove that TV (μa) > TV (μb) for any continuous and increasing function V on M and

for arbitrary μa, μb ∈ M , with μa > μb. Denote gi = g(μi) ∈ G(μi), where i ∈ {a, b}. We
have:

R(ga, μa)−R(gb, μb) ≥ R(gb, μa)−R(gb, μb)

≥ gb(μa − μb)
n

W (gb)
A(1−σ) +

δ
A
V (φ(μb))− V (H(gb, μb))

o
> gb(μa − μb) [V (φ(μb))− V (H(gb, μb))] ≥ 0.

The first inequality comes from the fact that gi ∈ argmaxxR(x, μi) and the second one
from V (H(gb, μa)) ≥ V (H(gb, μb)). The strict inequality uses the fact that gb > 0 and that

Assumption 2 implies W (x) > (r + σ)V (φ(μ)) for all x and μ (see above proof). The last

inequality comes from φ(μb) ≥ H(gb, μb). Hence, TV (μa) > TV (μb).

Finally, (weak) convexity of V follows from standard arguments (e.g., Nyarko, 1994,

Proposition 3.2). Because a convex function is almost everywhere differentiable (see Roy-

den, 1988, pp. 113-114), V is almost everywhere differentiable. Q.E.D.

The following lemmas are used in the proofs of other results:

Lemma A.1. Denote xi = g(ai), where i ∈ {H,L}. The following results hold: (i) The
optimal choice xi is unique and satisfies R1(xi, ai) ≥ 0, with strictly inequality only if

xi = 1/aH . The value function satisfies:

V (ai) =
Ab+ aixiW (xi)

(r + σ) [A+ aixi]
. (A.1)

(ii) Condition (4.2) is necessary and sufficient for xH < 1/aH . Also, xL ≥ xH , with strict

inequality if xH < 1/aH . (iii) δ/A < V 0(a+L)/V
0(a−H) for all δ ≤ δ̄, where δ̄ is the smallest

positive solution to Ω(δ) = 0 and Ω is defined as

Ω(δ) =
r + σ

1− σ

µ
r + σ

1− σ
+ δ

¶2
− δ

∙µ
1 +

aL
aH

¶µ
r + σ

1− σ
+ δ

¶
+

aL
aH

¸
. (A.2)
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Proof of Lemma A.1:

Part (i): Since the proofs are similar for the cases i = H and i = L, we only give the

proof for i = H. Noting that φ(aH) = H(x, aH) = aH for all x, we get:

R(x, aH) =
xaH
A

∙
W (x)

1− σ
+ δV (aH)

¸
+ (1− xaH)V (aH),

and (1 + r)V (aH) = b + (1 − σ)maxxR(x, aH). Condition (iii) in (3.11) implies that

R(x, aH) is strictly concave in x, and so the optimal choice, xH , is unique. Since R(x, aH)

is differentiable with respect to x, and since xH > 0 by Theorem 3.1, then xH satisfies

the condition, R1(xH , aH) ≥ 0, with strictly inequality only if xH = 1/aH . The Bellman
equation, (1 + r)V (aH) = b+ (1− σ)R(xH , aH), yields (A.1) for i = H.

Part (ii): From part (i), it is clear that xH < 1/aH if and only if R1(a
−1
H , aH) < 0, which

can be rewritten as

W (a−1H ) + a−1H W 0(a−1H ) < (r + σ)V (aH). (A.3)

Substituting V (aH) from (A.1) and W (x) from (3.10), we find that (A.3) is equivalent to

(y − b)/c < [A+ aHxH ]λ
0(a−1H )− aHλ(xH).

The right-hand side is an increasing function of xH , and its value at xH = 1/aH is equal to

the right-hand side of (4.2). Since xH ≤ 1/aH , (4.2) is necessary for the above condition
and, hence, necessary for xH < 1/aH . On the other hand, if xH = 1/aH , thenR1(a

−1
H , aH) ≥

0, and V (aH) is given by (A.1) with i = H and xH = 1/aH . Substituting this value of

V (aH), we find that the condition R1(a
−1
H , aH) ≥ 0 violates (4.2). Thus, (4.2) is also

sufficient for xH < 1/aH .

The condition, R1(xi, ai) ≥ 0, holds for both i = H and L. Inspecting this condition

and using strict monotonicity of the value function, we can deduce that xL ≥ xH , where

the inequality is strict if xH < 1/aH .

Part (iii): First, we derive an upper bound on V 0(a−H) and a lower bound on V 0(a+L).
These one-sided derivatives exist because V is continuous and convex (see Royden, 1988,

pp. 113-114). Let ε > 0 be a sufficiently small number. For V 0(a−H), we can compute
1+r
1−σ [V (aH)− V (aH − ε)] = R(xH , aH)−R(g(aH − ε), aH − ε)

≤ R(xH , aH)−R(xH , aH − ε).

Dividing by ε and taking the limit ε ↓ 0, we obtain (1 + r)V 0(a−H) ≤ (1 − σ)R2(xH , a
−
H).

Using the facts φ(aH) = aH = H (xH , aH), φ
0(aH) = aL/aH , and H2(xH , aH) = (1 −

xHaL)/(1− xHaH), we can compute:

R2(xH , a
−
H) =

xH
(1− σ)A

£
W (xH)− (r + σ)V (a−H)

¤
+

∙
1− (r + σ)xHaL

(1− σ)A

¸
V 0(a−H).
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Substituting V (aH) from (A.1) and substituting the result into the inequality, (1+r)V
0(a−H) ≤

(1− σ)R2(xH , a
−
H), we get:

V 0(a−H) ≤
AxH [W (xH)− b]

(r + σ)[A+ xHaL] [A+ aHxH ]
.

Similarly, we can derive the following lower bound:

V 0(a+L) ≥
AxL [W (xL)− b]

(r + σ)[A+ xLaH ] [A+ aLxL]
.

Next, we prove that δ/A < V 0(a+L)/V
0(a−H) for all δ ≤ δ̄. Substituting the above bounds

on V 0(a−H) and V 0(a+L), we find that

V 0(a+L)
V 0(a−H)

≥ xL [W (xL)− b] [A+ xHaL] [A+ aHxH ]

xH [W (xH)− b] [A+ xLaH ] [A+ aLxL]
.

Recall that xi satisfies R1(xi, ai) ≥ 0 for i ∈ {H,L} and the value function satisfies V (ai) >
b/(r+ σ). Using these results, we can verify that x[W (x)− b] is strictly increasing in x for

x ∈ [xH , xL]. Because xL ≥ xH (see the proof above), xL [W (xL)− b] ≥ xH [W (xH) − b].

Substituting this result and the facts that xH > 0 and xL ≤ 1/aH , we conclude that
V 0(a+L)
V 0(a−H)

>
A2

[A+ 1]
h
A+ aL

aH

i .
Substituting this bound, we find that a sufficient condition for δ/A < V 0(a+L)/V

0(a−H) is
Ω(δ) ≥ 0, where Ω(δ) is defined in (A.2). The function Ω(δ) is quadratic and involves only

the parameters of the model. Because Ω(0) > 0, there exists δ̄ > 0 such that Ω(δ) ≥ 0 for
all δ ∈ [0, δ̄]. Thus, δ/A < V 0(a+L)/V

0(a−H) for all δ ∈ [0, δ̄]. Q.E.D.

Lemma A.2. For any given z, the functions μV (φ(μ)) and (1+zμ)V (H(−z, μ)) are convex
in μ if V (.) is convex, and strictly convex in μ if V (.) is strictly convex.

Proof of Lemma A.2:

Assume that V is convex. Take arbitrary μa and μb in M , with μa > μb. Let γ

be an arbitrary number in (0, 1), and define μγ = γμa + (1 − γ)μb. We first prove that

μγV (φ(μγ)) ≤ γμaV (φ(μa))+ (1− γ)μbV (φ(μb)), which establishes convexity of μV (φ(μ)).

Shorten the notation φ(μi) to φi, where i ∈ {a, b, γ}. Denote κ = (φγ − φb)/(φa − φb).

Clearly, κ ∈ [0, 1], and φγ = κφa + (1− κ)φb. Moreover, since μφ(μ) is a linear function of

μ, we can verify that κμγ = γμa and (1− κ)μγ = (1− γ)μb. Thus,

μγV (φγ) = μγV (κφa + (1− κ)φb)
≤ μγ [κV (φa) + (1− κ)V (φb)] = γμaV (φa) + (1− γ)μbV (φb).
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The inequality comes from convexity of V and the fact that μγ > 0. The last equality

comes from the facts that κμγ = γμa and (1 − κ)μγ = (1 − γ)μb. If V is strictly convex,

then the above inequality is strict, in which case μV (φ(μ)) is strictly convex.

Note that the function (1 + zμ)H(−z, μ) is also linear in μ for any given z. A similar

proof as the above establishes that this function is convex if V is convex, and strictly

convex if V is strictly convex. Q.E.D.

B. Proof of Theorem 4.1

First, we prove that R̂(z, μ) is strictly supermodular. Take arbitrary za, zb ∈ −X and

arbitrary μa, μb ∈M , with za > zb and μa > μb. Denote:

D =
h
R̂(za, μa)− R̂(za, μb)

i
−
h
R̂(zb, μa)− R̂(zb, μb)

i
.

We need to show D > 0. Temporarily denote φj = φ(μj), Hij = H(−zi, μj) and Vij =

V (Hij), where i, j ∈ {a, b}. Computing D, we have:

D = D1 − δ

A
[V (φa)− V (φb)](za − zb),

where

D1 = (za + μ−1a )Vaa − (zb + μ−1a )Vba − (za + μ−1b )Vab + (zb + μ−1b )Vbb.

Denote H̃ = min{Hba,Hab}. Because H(−z, μ) is a strictly increasing function of z and μ

for all μ ∈ (aL, aH), then Haa > H̃ ≥ Hbb. Because V is convex, we have:

min

½
Vaa − Vba
Haa −Hba

,
Vaa − Vab
Haa −Hab

¾
≥ Vaa − V (H̃)

Haa − H̃
≥ Vaa − Vbb

Haa −Hbb
.

Substituting Vba, Vab and Vbb from these inequalities, and substituting H, we have:

D1 ≥ Vaa−V (H̃)
Haa−H̃

n
1
μa
[(1 + zaμa)Haa − (1 + zbμa)Hba]

− 1
μb
[(1 + zaμb)Hab − (1 + zbμb)Hbb]

o
= Vaa−V (H̃)

Haa−H̃ (za − zb)(φa − φb).

Thus, D > 0 if

δ

A
<

"
Vaa − V (H̃)

Haa − H̃

#Á∙
V (φa)− V (φb)

φa − φb

¸
.

Because V is convex, then

Vaa − V (H̃)

Haa − H̃
≥ V 0(a+L);

V (φa)− V (φb)

φa − φb
≤ V 0(a−H),
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where V 0(μ+) is the right derivative, and V 0(μ−) the left derivative, of V at μ. Hence, a

sufficient condition for D > 0 is δ/A < V 0(a+L)/V
0(a−H), which is implied by Assumption 3

(see Lemma A.1).

Thus, the function R̂(z, μ) is strictly supermodular. Because −X is a lattice, the

monotone selection theorem in Topkis (1998, Theorem 2.8.4, p. 79) implies that every

selection from Z(μ) is increasing. As a result, every selection g(μ) from G(μ) is decreasing,

and w(μ) =W (g(μ)) is increasing.

Finally, we establish that the five statements (i) - (v) in Theorem 4.1 are equivalent.

(i) ⇐⇒ (ii): Optimal learning has the following standard property (see Nyarko, 1994,

Proposition 4.1): The value function is strictly convex in beliefs if and only if there do not

exist μa and μb inM , with μa > μb, and a choice z0 such that z0 ∈ Z(μ) for all μ ∈ [μb, μa].
Since z(μ) is an increasing function, as proven above, the standard property implies that

V is strictly convex if and only if every selection z(μ) is strictly increasing for all μ.

(ii) =⇒ (iii): Suppose {−a−1H } ∈ Z(μa) for some μa > aL so that (iii) is violated.

Because every selection z(μ) is increasing, Z(μ) contains only the singleton {−a−1H } for all
μ < μa. In this case, (ii) does not hold for μ ≤ μa. Note that since z(μ) < 0 by Theorem

3.1, the result {−a−1H } /∈ Z(μ) implies that Z(μ) is interior.

(iii) =⇒ (iv): This follows from aH > aL.

(iv) ⇐⇒ (v): See part (ii) of Lemma A.1 in Appendix A.

(iv) =⇒ (i): We prove that a violation of (i) implies that {−a−1H } ∈ Z(aH), which

violates (iv). Suppose that V is not strictly convex. Proposition 4.1 in Nyarko (1994)

implies that there exist μa and μb in M , with μa > μb, and a choice z0 such that z0 ∈ Z(μ)

and V (μ) is linear for all μ ∈ [μb, μa]. Since μa > μb, let μb > aL and μa < aH without loss of

generality. (If μa or μb is at the boundary, we can find μ
0
a and μ

0
b, with μa > μ0a > μ0b > μb.)

We deduce that V (μ) is linear for all μ ∈ [φ(μb), φ(μa)]: If V (μ) were strictly convex in
any subinterval of [φ(μb), φ(μa)], Lemma A.2 above would imply that R(−z0, μ) is strictly
convex μ in some subinterval of [μb, μa]. Similarly, V (μ) is linear for all μ ∈ [Hb, Ha], where

Hi denotes H(−z0, μi) for i ∈ {a, b}. Denote the slope of V as V 0(φb) for μ ∈ [φ(μb), φ(μa)]
and V 0(Hb) for μ ∈ [Hb,Hb]. For all μ ∈ [μb, μa], we have

R̂(z, μ) = −zW (−z)
(1−σ)A − δz

A
{V (φ(μb)) + V 0(φb)[φ(μ)− φ(μb)]}

+ 1
μ
(1 + zμ){V (Hb) + V 0(Hb)[H(−z, μ)−Hb]}.

Because (1 + zμ)H(−z, μ) is linear in z, the last two terms in the above expression are

linear in z. In this case, part (iii) in (3.11) implies that R̂(z, μ) is strictly concave in z and

twice continuously differentiable in z and μ for all μ ∈ [μb, μa]. Thus, the optimal choice
z(μ) is unique. By the supposition, this optimal choice is z(μ) = z0 for all μ ∈ [μb, μa].
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Using these results and the fact that z0 < 0 (see Theorem 3.1), we conclude that that z0

satisfies the complementary slackness condition, R̂1(z0, μ) ≤ 0 and z0 ≥ −1/aH . Moreover,
in this case, strict supermodularity of R̂ implies R̂12(z, μ) > 0 and strictly concavity of R̂

in z implies R̂11(z, μ) < 0 for all μ ∈ [μb, μa]. If z0 > −1/aH , then R̂1(z0, μ) = 0, which

implies dz0/dμ = −R̂12/R̂11 > 0. This contradicts the supposition that z0 is constant for

all μ ∈ [μb, μa]. Thus, z0 = −1/aH .
Repeat the above argument for all μ ∈ [φi(μb), φi(μa)], where φi(μ) = φ(φi−1(μ)) and

i = 1, 2, .... For such μ, V is linear and Z(μ) is the singleton {−a−1H }.
Take an arbitrary μc ∈ (μb, μa). Since Z(φi(μc)) = {−a−1H } for all positive integers i,

then limi→∞Z(φi(μc)) = {−a−1H }. From the definition of φ(μ), it is clear that φ(aH) = aH ,

φ(aL) = aL, and φ(μ) > μ for all μ ∈ (aL, aH). Thus, limi→∞ φi(μ) = aH for every

μ ∈ (aL, aH) and, particularly, for μ = μc. Because Z is upper hemi-continuous, we

conclude that {−a−1H } ∈ Z(aH). Q.E.D.

B.1. The relationship between single-crossing and supermodularity

The original objective function of a worker’s maximization problem is:

R(−z, μ) = −zμ
A

∙
W (−z)
1− σ

+ δV (φ(μ))

¸
+ (zμ+ 1)V (H(−z, μ)).

The transformed function is R̂(z, μ) = 1
μ
R(−z, μ). Consider arbitrary za, zb ∈ −X and

arbitrary μa, μb ∈ M , with za > zb and μa > μb. The original function R has strict single

crossing in (z, μ) if

R(−za, μb) ≥ R(−zb, μb) =⇒ R(−za, μa) > R(−zb, μa).

The transformed function R̂ is strictly supermodular in (z, μ) if

D ≡ [R̂(za, μa)− R̂(zb, μa)]− [R̂(za, μb)− R̂(zb, μb)] > 0.

Claim 1. Strict supermodularity of R̂ (z, μ) is sufficient but not necessary for strict single

crossing of R (−z, μ).

Proof. Consider arbitrary za, zb, μa and μb in the above definitions. Substituting

R̂ = R/μ into the definition of D and re-arranging terms, we have:

R(−za, μa)−R(−zb, μa) = μaD +
μa
μb
[R(−za, μb)−R(−zb, μb)].
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Suppose that R̂ (z, μ) is strictly supermodular in (z, μ), i.e., D > 0. If R(−za, μb) ≥
R(−zb, μb), then the above equation clearly implies R(−za, μa) > R(−zb, μa), which estab-
lishes strict single crossing of R. The converse is not true. If R has strict single crossing,

then μa
μb
[R(−za, μb)−R(−zb, μb)] ≥ 0 implies [R(−za, μa)−R(−za, μa)] > 0. However, the

first difference can be greater than the second difference, in which case D < 0. Q.E.D.

In practice, verifying strict supermodularity of R̂ is the operational way to verify strict

single crossing of R, although the former is not necessary for the latter. To see why,

suppose that R(−za, μb) ≥ R(−zb, μb). To verify that R has strict single crossing, we

need to verify that R(−za, μa) − R(−zb, μa) > 0. The latter difference involves the term

[zaW (−za) − zbW (−zb)]. For arbitrary (za, zb), this term is unrelated to (μa, μb), and it

can be either positive or negative (because the function zW (−z) is not monotone). The
operational way to verify strict single crossing of R is to use the hypothesis in strict single

crossing to substitute the above term. That is, rewrite the hypothesis, R(−za, μb) ≥
R(−zb, μb), as

zaW (−za)−zbW (−zb)
A(1−σ)

≤ δV (φ(μb))
A

[za − zb] +
h³

za +
1
μb

´
V (H(−za, μb))− (zb + 1

μb
)V (H (−zb, μb))

i
.

Using this inequality to substitute [zaW (−za)− zbW (−zb)], we obtain:

R(−za, μa)−R(−zb, μa) ≥ μaD.

Working on the above inequality to verify R(−za, μa) > R(−zb, μa) amounts to proving
the sufficient condition, D > 0, which is strict supermodularity of R̂.

C. Proof of Theorem 5.1

Fix μ ∈ (aL, aH) and use the notation h(μ) = H(−z(μ), μ).
Part (i): BecauseH(−z, μ) is increasing in z,H(−z+(μ), μ) = h+(μ) andH(−z−(μ), μ) =

h−(μ). Note that the convex function V has left and right derivatives. Because W (−z) is
continuous, V is continuous and convex, and H is continuously differentiable, then

R̂1(z
+(μ), μ) = z(μ)W 0(−z(μ))−W (−z(μ))

A(1−σ) − δ
A
V (φ(μ))

+V (h(μ))− (μ−1 + z(μ))V 0(h+(μ))H1(−z(μ), μ).

R̂1(z
−(μ), μ) is given similarly with h−(μ) replacing h+(μ). Recall that H1 denotes the

derivative of H (−z, μ) with respect to −z, rather than to z. Since H1 < 0 and V is con-

vex, we can deduce that R̂1(z
+(μ), μ) ≥ R̂1(z

−(μ), μ). However, because z(μ) is optimal,
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R̂1(z
+(μ), μ) ≤ 0 ≤ R̂1(z

−(μ), μ). It must be true that R̂1(z−(μ), μ) = R̂1(z
+(μ), μ) = 0,

which requires that V 0(h−(μ)) = V 0(h+(μ)) = V 0(h(μ)).

Part (ii): Let {μi} be a sequence with μi → μ and μi ≥ μi+1 ≥ μ for all i. Because

z̄(μ) is an increasing function, {z̄(μi)} is a decreasing sequence, and z̄(μi) ≥ z̄(μ) for all

i. Thus, z̄(μi) ↓ zc for some zc ≥ z̄(μ). On the other hand, the Theorem of the Maximum

implies that the correspondence Z(μ) is upper hemi-continuous (uhc) (see Stokey et al.,

1989, p. 62). Because μi → μ, and z̄(μi) ∈ Z(μi) for each i, uhc of Z implies that there is

a subsequence of {z̄(μi)} that converges to an element in Z(μ). This element must be zc,

because all convergent subsequences of a convergent sequence must have the same limit.

Thus, zc ∈ Z(μ), and so zc ≤ maxZ(μ) = z̄(μ). Therefore, z̄(μi) ↓ zc = z̄(μ), which shows

that z̄(μ) is right-continuous. Similarly, by examining the sequence {μi} with μi → μ and

μ ≥ μi+1 ≥ μi for all i, we can show that z is left-continuous.

Part (iii): Let μa be another arbitrary value in the interior of (aL, aH). Because z̄(μ)

maximizes R(−z, μ) for each given μ, then

(1 + r)V (μa) = b+ (1− σ)R(−z̄(μa), μa) ≥ b+ (1− σ)R(−z̄(μ), μa)
(1 + r)V (μ) = b+ (1− σ)R(−z̄(μ), μ) ≥ b+ (1− σ)R(−z̄(μa), μ).

For μa > μ, we have:

R(−z̄(μ), μa)−R(−z̄(μ), μ)
(1 + r)(μa − μ)

≤ V (μa)− V (μ)

(1− σ)(μa − μ)
≤ R (−z̄(μa), μa)−R(−z̄(μa), μ)

(1 + r)(μa − μ)
.

Take the limit μa ↓ μ. Under (4.2), V 0(H(−z̄(μa), μa)) exists for each μa (see part (i)). Be-
cause z̄(μa) is right-continuous, limμa↓μ z̄(μa) = z̄(μ). Thus, all three ratios above converge

to the same limit, 1
1−σV

0(μ+) = 1
1+r

R2(−z̄(μ), μ+), where

R2(−z̄(μ), μ+) = z̄(μ)
h
−W (−z̄(μ))

(1−σ)A − δ
A
V (φ(μ)) + V (H(−z̄(μ), μ))

i
−μz̄(μ)δ

A
V 0(φ+(μ))φ0(μ) + [μz̄(μ) + 1]V 0(H(−z̄(μ), μ))H2(−z̄(μ), μ).

Now conduct the above exercise with z replacing z̄. For μa < μ, we have:

R (−z(μa), μa)−R(−z(μa), μ)
μa − μ

≤ (1 + r)[V (μa)− V (μ)]

(1− σ)(μa − μ)
≤ R(−z(μ), μa)−R(−z(μ), μ)

μa − μ
.

Taking the limit μa ↑ μ, and using left-continuity of z(μa), we have (1 + r)V 0(μ−) =
(1− σ)R2(−z(μ), μ−).
Part (iv): Convexity of V implies that V 0(μ+) ≥ V 0(μ−). To find the conditions for V

to be differentiable at μ, use the definition R(−z, μ) = μR̂(z, μ) to compute:

R2(−z(μ), μ) = R̂(z(μ), μ) + μR̂2(z(μ), μ).
9



Note the following features. First, because R̂(z, μ) is strictly supermodular, R̂2(z̄(μ), μ) ≥
R̂2(z(μ), μ), where the inequality is strict if and only if z̄(μ) > z(μ). Second, μ+ appears in

the expression for R2(−z(μ), μ+) only through the term V 0(φ+(μ)), and μ− appears in the
expression for R2(−z(μ), μ−) only through the term V 0(φ−(μ)). Since V is strictly convex

(and z, z̄ < 0), we have R2(−z(μ), μ+) ≥ R2(−z(μ), μ−) for all z(μ) ∈ Z(μ), where the

inequality is strict if and only if V 0(φ+(μ)) > V 0(φ−(μ)). Third, R̂(z̄(μ), μ) = R̂(z(μ), μ),

since both z̄(μ) and z(μ) maximize R̂(z, μ). These features imply:

R2(−z̄(μ), μ+) ≥ R2(−z̄(μ), μ−)
≥ R̂(z(μ), μ−) + μR̂2(z(μ), μ

−) = R2(−z(μ), μ−).
The first inequality comes from strict convexity of V , and it is strict if and only if

V 0(φ+(μ)) > V 0(φ−(μ)). The second inequality comes from strict supermodularity of

R̂ (z, μ), and it is strict if and only if z̄(μ) > z(μ). Therefore, V 0(μ+) = V 0(μ−) if and only
if V 0(φ(μ)) exists and z̄(μ) = z(μ).

Part (v): Assume that V 0(μa) exists for a particular (interior) μa, such as μa = h(μ)

for any arbitrary interior μ. By part (iv), z(μa) is unique and V
0(φ(μa)) exists. Recall that

V 0(h(μa)) always exists, by part (i). Since V is now differentiable at all posterior beliefs

reached from μa under the optimal choice, we can take each of these subsequent nodes and

repeat the argument. This shows that the optimal choice is unique and the value function

is differentiable at all nodes on the tree generated from μa in the equilibrium. Q.E.D.
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