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Abstract

This paper proposes a new dynamic model of realized covariance (RCOV) matrices
based on recent work in time-varying Wishart distributions. The specifications can be
linked to returns for a joint multivariate model of returns and covariance dynamics that
is both easy to estimate and forecast. Realized covariance matrices are constructed for
5 stocks using high-frequency intraday prices based on positive semi-definite realized
kernel estimates. We extend the model to capture the strong persistence properties in
RCOV. Out-of-sample performance based on statistical and economic metrics show the
importance of this. We discuss which features of the model are necessary to provide im-
provements over a traditional multivariate GARCH model that only uses daily returns.
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1 Introduction

This paper proposes a new dynamic model of realized covariance (RCOV) matrices based
on recent work in time-varying Wishart distributions.1 The specifications can be linked to
returns for a joint multivariate model of returns and covariance dynamics that is both easy
to estimate and forecast. The models are compared to a dynamic conditional correlation
GARCH model that uses only daily returns. Capturing the persistence in RCOV matrices
is critical to improved performance. The quality of multiperiod density forecasts and as well
as multiperiod minimum variance portfolios are discussed.

Multivariate volatility modeling is a key input into portfolio optimization, risk mea-
surement and management. There has arose a voluminous literature on how to approach
this problem. The two popular approaches based on return data are multivariate GARCH
(MGARCH) and multivariate stochastic volatility (MSV). Bauwens et al. (2006) provide a
recent survey of MGARCH modeling while Asai et al. (2006) review the MSV literature.
Despite the important advances in this literature there remain significant challenges. In
practise the covariance of returns is unknown and is either projected onto past data in the
case of MGARCH or is assumed to be latent in the case of MSV. For MSV sophisticated
simulation methods must be used to deal with the unobserved nature of the conditional
covariances. However, if an accurate measure of the covariance matrix could be obtained
many of these difficulties could be avoided.

Recently, a new paradigm has emerged in which the latent covariance of returns is re-
placed by an accurate estimate based upon intraperiod return data. The estimator is non-
parametric in the sense that we can obtain an accurate measure of daily ex post covariation
without knowing the underlying data generating process. Realized covariance (RCOV) ma-
trices open the door to standard time series analysis. See Andersen et al. (2003), Barndorff-
Nielsen and Shephard (2004b) and Bandi and Russell (2005b) for the theoretical foundations
and Andersen et al. (2009) and McAleer and Medeiros (2008) for surveys of the literature.

The purpose of this paper is to propose a new model for time-varying RCOV matrices.
Among the few models in the literature for RCOV matrices is the Wishart autoregressive
model of Gourieroux, Jasiak, and Sufana (2009). The process is defined by the Laplace
transform and naturally leads to method of moments estimation (see also Chiriac (2006))
while the transition density is a noncentered Wishart. In a different approach Bauer and
Vorkink (2007) decompose the RCOV matrix by a log-transformation and then use various
time-series approaches to model the elements. Chiriac and Voev (2008) use a 3-step proce-
dure, by first decomposing the RCOV matrices into Cholesky factors and modelling them
with a VARFIMA process before transforming them back.

This paper is related to this literature but differs in that our model builds on the MSV
Wishart specifications of Asai and McAleer (2009) and Philipov and Glickman (2006). These
models specify a standard Wishart transition density for the covariance of returns.2 We begin
with a similar specification that replaces the latent covariance matrix by its RCOV analogue

1The Wishart distribution is a generalization of the univariate gamma distribution to nonnegative-definite
matrices.

2An advantage to working with the Wishart distribution is that the pdf and simulation methods for ran-
dom draws are readily available, while this is not the case for the noncentral Wishart distribution (Gauthier
and Possamai 2009).
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estimated following Barndorff-Nielsen et al. (2008) to obtain an observable MSV model.3

Relative to the Wishart MSV models the estimation is considerably simplified.
The empirical analysis of 5 stocks show the strong persistence of the daily time series

of RCOV elements. Our basic model does not perform well since it does not capture this
feature. We propose an extension of the basic model that introduces components along the
lines of Corsi (2009). A component is defined as a sample average of past RCOV matrices
based on a particular window of data. Different windows of data give different components.
These models provide significant improvements over a multivariate Dynamic Conditional
Correlation MGARCH (DCC) model of Engle (2002) that uses only daily returns.

The models are estimated from Bayesian perspective. We show how to estimate the
length of data windows that enter into the component version of the model. The second
component is associated with 2 weeks of data while the third component is associated with
about 3 months of past data. The component models provide a dramatic improvement
in capturing the time series autocorrelations of the smallest and largest eigenvalues of the
RCOV matrices.

Besides providing new tractable models for multivariate observable SV we also evaluate
the models over a term structure of density forecasts of returns and a term structure of global
minimum-variance portfolios.4 This allows for the comparison of models and performance
over short to medium investment horizons out-of-sample. Parameter uncertainty is integrated
out of these problems.

The gains from using high-frequency data are substantial. The 2 and 3 component models
provide the best multiperiod density forecasts as well as the smallest portfolio variance. The
best RCOV models provide significant improvements in density forecasts of returns over the
DCC model for up to 3 months out-of-sample. The gains from using high frequency data for
global minimum variance portfolio selection are important up to 3 weeks out. After this the
DCC model provides comparable performance.

In summary, we provide a new approach to modeling multivariate returns that consists
of joint models of returns and RCOV matrices. We find that it is critical to include the
component extensions to obtain improved performance relative to a DCC model. Compared
to MSV models, our specifications provide the additional flexibility of SV at a considerably
lower computational cost. This paper is organized as follows. In Section 2, we review the
theory and the procedures of constructing the RCOV estimator and the data. In Section 3,
our basic model for RCOV is introduced after briefly discussing two representative models of
volatility based on daily returns. Section 4 explains the estimation procedure. An extension
of the basic RCOV model to allow for components is introduced in Section 5 before reporting
the estimation results in Section 6, followed by model comparison. Section 7 concludes.

3Estimation of RCOV this way has several benefits including imposing the positive definiteness and
accounting for the bias that market microstructure and nonsynchronous trading can have.

4Maheu and McCurdy (2009) introduced the term structure of density forecasts for returns using joint
models for returns and realized volatility for individual assets. We extend this to include multivariate assets
and global minimum variance portfolios.
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2 Realized Covariance

2.1 RCOV Construction

Suppose the k-dimensional efficient log-price Y (t), follows a continuous time diffusion process
defined as follows:

Y (t) =

∫ t

0

a(u)du +

∫ t

0

Φ(u)dW (u), (1)

where a(t) is a vector of drift components, Φ(t) is the instantaneous volatility matrix, and
W (t) is a vector of standard independent Brownian motions. The quantity of interest here
is

∫ τ

0
Φ(u)Φ′(u)du, known as the integrated covariance of Y (t) over the interval [0, τ ]. It is a

measure of the ex-post covariation of Y (t). For simplicity, we normalize τ to be 1. Results
from stochastic process theory (e.g. Protter (2004)) imply that the integrated covariance of
Y (t), ∫ 1

0

Φ(u)Φ′(u)du, (2)

is equal to its quadratic variation over the same interval,

[Y ](1) ≡ plimn→∞

n∑
j=1

{Y (tj) − Y (tj−1)}{Y (tj) − Y (tj−1)}′ (3)

for any sequence of partitions 0 = t0 < t1 < . . . < tn = 1 with supj{tj+1 − tj} → 0 for
n → ∞.

An important motivation for our modeling approach is Theorem 2 from Andersen, Boller-
slev, Diebold and Labys (2003). They show that the daily log-return follows,

Y (1) − Y (0)|σ{a(v), Φ(v)}0≤v≤1 ∼ N

(∫ 1

0

a(u)du,

∫ 1

0

Φ(u)Φ′(u)du

)
,

where σ{a(v), Φ(v)}0≤v≤1 denotes the sigma-field generated by {a(v), Φ(v)}0≤v≤1. In our em-
pirical work we will assume the drift term is approximately 0 while the integrated covariance
can be replaced by an accurate estimate using high-frequency intraday data. We discuss the
estimation of this next.

We are interested in obtaining an estimator of the quadratic variation of Y over a day,
which is a measure of the ex post daily covariation. This estimator is referred to as realized
covariance, or RCOV. We require RCOV to be positive definite. One way of constructing
RCOV for a particular day t is

R̂COVt =
nt∑
i=1

ri,tr
′
i,t,

where nt is the number of intraday log-returns for day t, ri,t is the ith intraday return:
ri,t = Yt,i − Yt,i−1, i = 1, 2, . . . nt. In the absence of market microstructure noise, Barndorff-

Nielsen and Shephard (2004b) shows that R̂COVt is a consistent estimator of quadratic
covariation as nt → ∞.

In the real world there is microstructure noise that affects the log price process, and
intraday prices for different stocks are not observed at the same time, nor the same frequency.
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In other words, the price process is not synchronized, introducing another source of bias,
known as the Epps effect. In the presence of microstructure noise, Bandi and Russell (2005b)
show that the realized covariation estimator given above is not consistent. They propose
a method for selecting the optimal sampling frequency as a trade-off between bias and
efficiency. Instead of using all the intraday prices available, prices are sampled at a fixed
frequency, say every 15 minutes. This method does not come without a cost. A majority of
intraday information is discarded and a smaller sample size (the number of intraday prices
to construct RCOV) usually means larger variation in the estimator.

We follow the procedure in Barndorff-Nielsen et al. (2008) (BNHLS) to construct RCOV
using the high-frequency stock returns. BNHLS propose a multivariate realized kernel to
estimate the ex-post covariation of log-prices. They show this new estimator is consistent,
guaranteed to be positive semi-definite, and robust to measurement noise of certain types
and can also handle non-synchronous trading. To synchronize the data, they use the idea of
refresh time. A kernel estimation approach is used to minimize the effect of the microstruc-
ture noise, and to ensure positive semi-definiteness. They choose the Parzen weight function
for the kernel. We review these key ideas.

The econometrician observes the log price process X =
(
X(1), X(2), . . . , X(k)

)′
, which

is generated by Y , but is contaminated with market microstructure noise. Prices arrive at
different times and at different frequencies for different stocks over the unit interval, t ∈ [0, 1].

Suppose the observation times for the i-th stock are written as t
(i)
1 , t

(i)
2 , . . . , i = 1, 2, . . . , k.

Let N
(i)
t count the number of distinct data points available for the i-th asset up to time t.

The observed history of prices for the day is X(i)(t
(i)
j ), for j = 1, 2, . . . , N

(i)
1 , i.e, the j-th

price update for asset i is X(i)(t
(i)
j ), it arrives at t

(i)
j . The steps to computing daily RCOV

are the following.

1. Synchronizing the data.
The first key step is to deal with the non-synchronous nature of the data. The idea

of refresh time is used here. Define the first refresh time as τ1 = max
(
t
(1)
1 , . . . , t

(k)
1

)
,

and then subsequent refresh times as τj+1 = max

(
t
(1)

N
(1)
τj

+1
, . . . , t

(k)

N
(k)
τj

+1

)
. τ1 is the

time it has taken for all the assets to trade, i.e. all their posted prices have been
updated at least once. τ2 is the first time when all the prices are again updated,
etc. From now on, we will base our analysis on this new conformed time clock {τj},
and treat the entire k-dimensional vector of price updates as if it is observed at these
refreshed times {τj}. The number of observations of the synchronized price vector
is n + 1, which is no larger than the number of observations of the stock with the
fewest price updates. Then, the synchronized high frequency return vector is defined
as xj = X(τj) − X(τj−1), j = 1, 2, . . . , n, where n is the number of refresh return
observations for the day.

2. Compute the positive semi-definite realized kernel. Having synchronized the high fre-
quency vector returns {xj}, j = 1, 2, . . . , n, daily RCOVt is calculated as,

RCOVt =
n∑

s=−n

f

(
s

S + 1

)
Γs. (4)
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The selection of the bandwidth S is discussed in BNHLS while

f(x) =


1 − 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1 − x)3 1/2 ≤ x ≤ 1
0 x > 1.

Γs is the s-th realized autocovariance:

Γs =


∑n

j=|s|+1 xjx
′
j−s, s ≥ 0∑n

j=|s|+1 xj−sx
′
j, s < 0.

We apply this multivariate realized kernel estimation to our high-frequency data, obtain-
ing a series of daily RCOVt matrices, which will then be fitted by our proposed Wishart
Model. The j-th diagonal element of RCOVt is called realized volatility5 and is an ex
post measure of the variance for asset j. Realized correlation between asset i and j is
RCOVt,ij/

√
RCOVt,iiRCOVt,jj where RCOVt,ij is the element from the i-th row and j-th

column.

2.2 Data

We use high-frequency stock prices for 5 assets, namely Standard and Poor’s Depository
Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C), Alcoa Inc. (AA) and Boeing
Co. (BA). The sample period runs from 1998/12/04 – 2007/12/31 delivering 2281 days.
We reserve the data back to 1998/01/02 (219 observations) as conditioning data for the
components models. The data are obtained from the TAQ database. We use transaction
prices and closely follow Barndorff-Nielsen et al. (2008) to construct daily RCOV matrices.
The data is cleaned as follows. First, trades before 9:30 AM or after 4:00 PM are removed
as well as any trades with a zero price. We delete entries with a corrected trade condition,
or an abnormal sale condition.6 Finally, any trade that has a price increase (decrease) of
more than 5% followed by a price decrease (increase) of more than 5% is removed. For
multiple transactions that have the same time stamp the price is set to the median of the
transaction prices. From this cleaned data we proceed to compute the refresh time and the
realized kernel discussed in the previous section. The daily return rt, is the continuously
compounded return from the open and close prices and matches RCOV. Table 1 reports the
average number of daily transaction for each stock. The average number of transactions
based on the refresh time is much lower at 1835. This represents just under 5 transactions
per minute. Based on this our sample is quite liquid.

Table 2 shows the sample covariance from daily returns along with the average RCOV.
Figure 1 displays daily returns while the corresponding realized volatilities (RV) are in Fig-
ure 2.

5Also called realized variance in the literature.
6Specifically we remove a trade with CORR 6= 0, or a trade that has COND letter other than E or F in

the TAQ database.
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3 Models

One challenge in modelling volatility in a multivariate setting is the positive-definite restric-
tion of the covariance matrices. To ensure positive-definiteness, most models either impose
conditions on the parameters (Engle and Kroner (1995)), or reparameterize the volatility
matrices by, for example, a Cholesky decomposition (Tsay (2005)), both of which com-
plicate the models in a non-trivial way. First we review two representative multivariate
volatility models that use daily returns, the first one is the Dynamic Conditional Correlation
MGARCH model introduced by Engle (2002), the second one, which motivates our model to
be proposed later, is the Wishart Inverse Covariance Model (WIC) in the MSV family. An
advantage of the Wishart model is that it is a distribution over positive-definite matrices.

3.1 Models of daily returns

3.1.1 Dynamic Conditional Correlation Model (DCC)

A typical DCC model is as follows:

rt|It−1 ∼ N(0, DtRtDt) (5)

Dt = diag(σi,t) (6)

σ2
i,t = ωi + κir

2
i,t−1 + λiσ

2
i,t−1, i = 1, . . . , k (7)

εt = D−1
t rt (8)

Qt = Corr(r)(1 − α − β) + αεt−1ε
′
t−1 + βQt−1 (9)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (10)

where rt is a k-dimensional daily return series, It−1 = {r1, ..., rt−1}, Corr(r) is the sample
correlation matrix. Dt, Rt, Qt are all k × k matrices. The parameters are ω1, . . . , ωk,
κ1, . . . , κk, λ1, . . . , λk, α, β. In this specification, the unconditional mean of Qt is just equal
to Corr(r), the sample correlation. This is called correlation targeting and in this way the
number of parameters is greatly reduced from k2+5k

2
+ 2 to 3k + 2. Equation (7) governs

the dynamics of the conditional variances of each individual return by a univariate GARCH
process; equation (9) governs the dynamics of the time-varying conditional correlation of the
whole return vector. Because Corr(r) is symmetric positive definite, and εtε

′
t is symmetric

positive semi-definite, the conditional correlation matrices are guaranteed to be symmetric
positive definite.

3.1.2 Wishart Inverse Covariance (WIC) Model

Based on the WIC multivariate stochastic volatility model in Asai and McAleer (2009)
consider the following specification:

rt|Ωt ∼ N(0, Ωt) (11)

Ω−1
t |ν, St−1 ∼ Wishartk(ν, St−1) (12)

St =
1

ν
(Ω

−d/2
t )A(Ω

−d/2
t ) (13)
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where Ωt is the latent conditional covariance matrix of the return vector at time t.7 Wishartk(ν, St−1)
denotes a Wishart distribution of dimension k with time-varying scale matrix St−1 and degree
of freedom parameter ν ≥ k. The density function has the form

Wishartk(Ω
−1
t |ν, St−1) =

|Ω−1
t | ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2 πk(k−1)/4

∏k
j=1 Γ(ν+1−j

2
)
exp

(
−1

2
Tr(Ω−1

t S−1
t−1)

)
. (14)

Philipov and Glickman (2006) proposes a similar model, with their specification using St =
1
ν
(A1/2)Ω−d

t (A1/2).8

The parameters are d, ν, and A. d is a scalar parameter, A is a positive definite symmetric
parameter matrix. Since the support of a Wishart distribution are symmetric positive definite
matrices, given its scale parameter being symmetric positive definite, which is ensured by the
quadratic expression of St, the covariance matrices are guaranteed to be symmetric positive
definite. Asai and McAleer (2009) shows that the condition for stationarity is given by
|d| < 1.

This model has been estimated using Bayesian methods and daily returns. By far the
most challenging and time consuming aspect is the sampling of latent Ω−1

t efficiently.9 By
using the observed RCOV to replace the covariance we completely side-step this difficult
issue.

3.2 Basic Model of RCOV

Motivated by Philipov and Glickman (2006) and Asai and McAleer (2009), we propose
to model the dynamics of RCOV by a time-varying Wishart distribution, using a similar
specification to Asai and McAleer (2009). To be more specific, let Σt ≡ RCOVt, then the
joint model of return vector rt and its RCOVt is

rt|Σt ∼ N(0, Σt) (15)

Σt|ν, St−1 ∼ Wishartk(ν, St−1) (16)

St =
1

ν
(Σ

d/2
t )A(Σ

d/2
t ) (17)

The parameters here, A, a symmetric and positive definite matrix, and two scalars d and ν,
all have exactly the same meanings as in the WIC specification above. The law of motion
for the RCOV series in the model described by equation (17) will ensure positive definiteness
in a very natural way. However, in contrast to Philipov and Glickman (2006) and Asai and

7In Asai and McAleer (2009), Ωt governs the correlation dynamics while the asset variances are modeled by
univariate SV models. They estimate the model is two steps and also discuss alternative parameterizations.

8If V is a symmetric positive definite matrix then it can be decomposed as V = EDE
′
, where E is an

orthogonal matrix and D is a diagonal matrix of eigenvalues. Raising V to a scalar power α is defined as
V α = EDαE

′
where Dα has diagonal elements dα

i . See Greene (2002).
9In the MCMC sampler of Asai and McAleer, adjusted to sample covariances, we found that increasing

the asset number to 5 rendered the acceptance rate so close to 0 that the model could not be estimated.
Philipov and Glickman (2006) document the same problem of low acceptance frequencies for covariances as
the number of assets increases.
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McAleer (2009) our model governs Σt and not the precision Σ−1
t .10 By the properties of the

Wishart distribution, the conditional expectation of Σt is:

E(Σt|Σt−1) = νSt−1 = (Σ
d/2
t−1)A(Σ

d/2
t−1). (18)

The RCOV inverse then follows the inverse-Wishart distribution with the conditional expec-
tation being:

E(Σ−1
t |Σt−1) = (ν − k − 1)−1S−1

t−1 =
ν

ν − k − 1
(Σ

−d/2
t−1 )A−1(Σ

−d/2
t−1 ). (19)

The elements of A determine how each element of Σt is related to elements of Σt−1. For
example, if W ∼ Wishartk(ν, Ik) then

Σt =
1

ν
(Σ

d/2
t−1)A

1/2W (A1/2)
′
(Σ

d/2
t−1). (20)

The scalar parameter d measures the overall influence of past RCOV on current RCOV.
This parameter is closely related to the degree of persistence present in the RCOV series,
with d larger the stronger the persistence. A and d together govern the relationship between
RCOVs of two adjacent periods. Suppose A is the identity matrix and d = 1, then by
equation (18), E(Σt|Σt−1) = νSt−1 = Σt−1, which is a random walk in matrix form. If
d = 0, then E(Σt|Σt−1) = A, so the RCOV matrix follows an i.i.d. Wishart distribution over
time. The degree of freedom parameter ν, determines how close the RCOVs are centered
around their conditional mean, with larger ν meaning the random matrices generated by the
Wishart distribution are more concentrated around the mean.

Since we know {Σt}T
t=1, as RCOV is calculated using intraday data, we do not need

equation (15) of return dynamics to estimate the parameters. This is different from the
MGARCH and MSV models where the variance is latent and parameters can only be inferred
through returns. Equation (15) links the dynamics of returns to that of the RCOV, so the
model gives us a law of motion for both the return vector and RCOV at the daily frequency,
hence we can simulate the model out-of-sample and perform multiperiod density forecasts
of returns.

4 Model Estimation

We apply a standard Bayesian approach to estimate our model, using MCMC methods for
posterior simulation. Since the posterior distribution is unknown, the idea behind MCMC
simulation is to construct a Markov Chain that has as its limiting distribution the poste-
rior distribution of the parameters of interest. Features of the posterior density can then
be estimated consistently based on the samples obtained from posterior simulation. For
example, we can estimate the posterior mean of model parameters by the sample average
of the MCMC draws. For more details on MCMC methods see Chib (2001). The steps in
estimation used here are similar to Asai and McAleer (2009).

To apply Bayesian inference, we need to first assign priors to the parameters. A−1 ∼
Wishartk(γ0, Q0), a Wishart distribution with k×k symmetric positive definite scale matrix

10We found this to lead to significant improvements in model performance.
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Q0 and γ0 degrees of freedom. We set Q0 = I and γ0 = k+1 to reflect a proper but relatively
uniformative prior. d follows the uniform prior d ∼ U(−1, 1), and ν ∼ exp(λ0)Iν>k, an
exponential distribution with support truncated to be greater than k. To make the prior flat,
λ0 is set to 100. We assume independence among the prior distributions of our parameters,
so the joint prior for A−1, d, ν is just the product of the individual priors.

p(A−1, d, ν) = Wishartk(A
−1|γ0, Q0) × p(d) × exp(λ0). (21)

Given the parameters the data density is the product of the Wishart densities,

p({Σt}T
t=1|A, d, ν) =

T∏
t=1

Wishartk(Σt|ν, St−1). (22)

According to Bayes’ rule, the joint posterior distribution of the parameters is,

p(A−1, d, ν|{Σt}T
t=1) ∝ Wishartk(A

−1|γ0, Q0)×p(d)×exp(λ0)Iν>k×
T∏

t=1

Wishartk(Σt|ν, St−1).

(23)
To directly sample all parameters from this complicated distribution is not possible. Instead,
we use MCMC methods to iteratively sample from the conditional posterior distribution of
each parameter conditional on the other parameters. Samples from this procedure will
converge to samples from the the joint posterior distribution. We iterate sampling from the
following conditional distributions.

• A−1|ν, d, {Σt}T
t=1

• d|A, ν, {Σt}T
t=1

• ν|A, d, {Σt}T
t=1

Sampling A−1|ν, d, {Σt}T
t=1 is a typical Gibbs sampling step from a Wishart density while

the remaining two densities are unknown and require a Metropolis-Hastings step. For these
we employ a random walk proposal. See the appendix for full details.

Drawing from these 3 distributions constitutes one sweep of the sampler. After dropping
an initial set of draws as burnins we collect M draws to obtain {θ(i)}M

i=1, where θ = (A−1, d, ν).
Then simulation consistent estimates of posterior moments can be obtained as sample aver-
ages of the draws. For instance, the posterior mean of θ can be estimated as M−1

∑M
i=1 θ(i).

5 A Component Model of RCOV

Persistence in volatility is one of the most important stylized features of financial assets. As
we shall see in the results section, the basic Wishart RCOV model has difficulty capturing
the persistence properties of the data, which leads us to explore a component extension of the
model. Andersen, Bollerslev and Diebold (2007), Corsi (2009), Maheu and McCurdy (2009)
among others use the Heterogeneous AutoRegressive (HAR) model of realize variance in the
univariate case in order to capture long-memory like features of volatility parsimoniously.
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Motivated by this work, we consider an extension of our basic model to allow for components,
which are averages of past Σt, to multiplicatively affect the scale parameter matrix, St.

The Wishart-RCOV(K) model with K ≥ 1 components is defined as,

Σt|ν, St−1 ∼ Wishartk(ν, St−1)

St =
1

ν

[
1∏

j=K

Γ
dj
2

t,`j

]
A

[
K∏

j=1

Γ
dj
2

t,`j

]
(24)

Γt,` =
1

`

`−1∑
i=0

Σt−i (25)

1 = `1 < · · · < `K . (26)

The components enter as a sample average of past Σt raised to a different matrix power dk.
11

The component terms Γt,l allow for more persistence in the location of Σt while the different
values of dj allow the effect to be dampened or amplified. In (24) the order of the product
operator is important and differs in the two terms. The window width ` of each component
Γt,l could be preset or be estimated. The case of one component K = 1, `1 = 1, is identical
to the model discussed in Section 3.2. The remaining parameters A and ν are the same as
those discussed before.

The priors on dj are all U(−1, 1). In the following we confine the analysis to a K = 1, 2
and 3 component models. Rather than preset `2, and `3, we estimate them. For the Wishart-
RCOV(2) model the prior for `2 is uniform discrete with support {2, 3, . . . , 200}, while for
Wishart-RCOV(3) both `2 and `3 have the same prior with the additional restriction that
`2 < `3 for identification.

Most of the estimation details are identical to the one component model discussed in
Section 4 with the addition of the lag length parameters affecting the components. For
example, the 2-component model has the conditional posterior density:

p(`2|A, d1, d2, ν, {Σt}) ∝ p(`2) exp

(
−d2νψ

2`2

− 1

2
Tr

(
νA−1Q(`2)

−1
))

(27)

where

ψ =
T∑

t=1

log|Γt−1,`2 |, Q(`2)
−1 =

T∑
t=1

Σ
− d1

2
t−1 (Γ

− d2
2

t−1,`2
)Σt(Γ

− d2
2

t−1,`2
)Σ

− d1
2

t−1

and p(`2) has the density of a discrete uniform prior over {2, 3, . . . , 200}. To sample from
the conditional posterior we use a simple random walk proposal. The proposal distribution
is a Poisson random variable multiplied by a random variable that takes on values 1 and −1
with equal probability. The density of the proposal is

q(`) =


λ`e−λ

2`!
` = 1, 2, · · ·

e−λ ` = 0

−λ`e−λ

2`!
` = −1,−2, · · ·

11We also examined a geometric average version using the following specification: Γd
t,` ≡

Σ
d
`

t−`+1Σ
d
`

t−`+2 · · ·Σ
d
`
t . So past RCOVs affect current RCOV multiplicatively, which is in accordance with

our basic model. We found this geometric average version, while it has similar performance in almost every
aspect, is computationally more costly. We will hence focus our results on the sample average version.
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In the empirical work λ = 2. Given the value `2 in the Markov chain, the new proposal
`
′
2 ∼ q(`2) is accepted with probability

min

{
p(`

′
2|A, d1, d2, ν, {Σt}T

t=1)

p(`2|A, d1, d2, ν, {Σt}T
t=1)

, 1

}
. (28)

In a similar way `3 is sampled for the Wishart-RCOV(3) model.

6 Results

All data is used for estimation of the DCC and Wishart-RCOV(K) models. Parameter
estimates for the DCC based on daily returns appear in Table 3 and are typical of results
found in the literature. Estimates for the RCOV models are shown in Table 4. Estimates of
the elements of A−1 are found in Table 5 for Wishart-RCOV(3). In each case, the first 1000
draws are discarded as burnin in posterior simulation and the next 5000 MCMC draws are
used for inference. The numerical standard errors are based on the Newey-West estimator
for the long run variance with a lag length of 1000. The inefficiency factors are the ratio
of the long-run variance estimate to the sample variance where the latter assumes an i.i.d.
sample. This serves as an indicator of how well the chain mixes. The lower the value is, the
closer the sampling is to i.i.d. The 95 percent density intervals are constructed using the
2.5th percentile and 97.5th percentile of the MCMC draws for the corresponding parameters.

The inefficiency measures indicate that the MCMC chain mixes well. Both the d and
µ parameter in the Wishart-RCOV(1) model are accurately estimated. For instance, d
has a posterior mean of 0.6677 with a 0.95 density interval of (0.6600, 0.6756). There is
no evidence from this model that RCOV follows a martingale. Note that the Wishart-
RCOV(3) specification nests both the 1 and 2 component versions by setting d2 = d3 = 0
and d3 = 0, respectively. Table 4 estimates indicate that the Wishart-RCOV(3) model
significantly diverges from its nested counterparts with posterior means for d2 of 0.4502 and
d3 of 0.2651 and both having densities intervals very far from 0.

To evaluate the in-sample fit of the model, we plot in Figure 3 the time-series of the
determinant of the RCOV matrices, {|Σt|}T

t=1, obtained from the data.12 Then, for the
1-component model, we plot the determinants of the expected RCOV using the estimated
parameters. The in-sample fitted value is E(Σt|Σt−1) = νSt−1. The two series in Figures 3
and 4 move together closely, indicating a good fit of the basic model.

To investigate the time-series persistence in RCOV, we plot the sample autocorrelation
function (ACF) of both the largest and smallest eigenvalues of the RCOV series observed,
and compare it to the posterior mean ACF obtained from the Wishart-RCOV(K) models.13

The interpretation of the eigenvalues follows Gourieroux, Jasiak, and Sufana (2009). The
largest (smallest) eigenvalue is equal to the maximum (minimum) risk from the portfolio
with variance ω′Σtω, given standardized portfolio weights ω′ω = 1. In Figure 5 and 6 both

12Muirhead (1982) labels the determinant of the covariance matrix from a multivariate distribution as a
generalized variance which measures the overall spread of a distribution.

13The posterior mean of the ACF of the eigenvalues is obtained as follows. A parameter draw is taken
from the posterior density and used to simulate 2281 observations of Σt. From this the ACF is computed
and saved. This is repeated many times and the average ACF is displayed.
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the largest and smallest eigenvalues show strong persistence and are different from zero even
400 lags out. The one component Wishart-RCOV(1) is completely unable to match the
data.14 The K = 2, and 3 component models provide significant improvements. The kinks
in the ACF function from the simulated models occur at exactly the window width of the
components. For instance, the Wishart-RCOV(3) has posterior mean of `2 equal to 9 and `3

equal to 64, and the change in the slope of the ACF can be seen at these locations. As we
shall see in the remaining results and those in the next section, capturing the persistence in
the RCOV matrices is critical to providing better in-sample and out-of-sample predictions.

Table 6 reports the mean square error (MSE) for our RCOV models against the observed
RCOV series. For each model, the MSE is calculated in the following way: for each period t,
we calculate the expected RCOV according to E(Σt|Σt−1) = νSt−1, and subtract it from the
observed RCOV, Σt. We then square each element of the difference matrix and sum them.
As a comparison, the MSE for another 3 models: a naive model that sets the expected
RCOV as last period’s RCOV (i.e. E(Σt|Σt−1) = Σt−1); a model that sets the predicted
RCOV equal to the sample covariance computed from daily returns; and a DCC model
are included. The DCC model (Section 3.1.1) is estimated using daily returns to produce
an in-sample estimate of the conditional covariance DtRtDt. The DCC model provides an
improvement over the sample covariance estimate and also beats the naive RCOV model.
However, each of the Wishart-RCOV(K) models provide significant improvements relative
to any method that uses daily returns. The 3-component has the smallest MSE but this is
only marginally smaller that the 2-component version.

To compare how the model tracks correlations Figures 7 and 8 display realized correlation
computed from the elements of the RCOV matrix along with the fitted estimates from the
Wishart-RCOV(3) specification and the DCC model. For the models, the fitted correlation
is extracted from E(Σt|Σt−1) for the RCOV model and obtained from DtRtDt for the DCC
model. The first figure is the correlation between SPY and GE and the second is the
correlation between GE and Citigroup. Both models track the realized correlation closely
with the RCOV model displaying a clear advantage. In some episodes the DCC wanders
away from the realized correlations. This is not surprising since the DCC can only infer
correlations from noisy daily returns.

6.1 Density Forecasts

In this section, we compare our RCOV models to the benchmark DCC model, focusing on
their out-of-sample performance. We compare each candidate’s forecast ability of future re-
turns through predictive likelihood, which is a popular approach in the literature (Maheu and
McCurdy (2009), Amisano and Giacomini (2007), Bao, Lee, and Saltoglu (2007), Weigend
and Shi (2000)). From a Bayesian perspective the predictive likelihoods are a key input
into model comparison through predictive Bayes factors (Geweke (2005)). Following Maheu
and McCurdy (2009) we evaluate a term structure of a model’s density forecasts of returns.
This is the cumulative predictive likelihood based on out-of-sample data for h = 1, ..., H
period ahead density forecasts of returns. Using returns results in a common benchmark
for the RCOV model and the DCC model which uses only daily returns in estimation. The

14Similar results are obtained for the ACF of individual elements of the RCOV matrices.
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Wishart-RCOV(K) models are linked to returns through equation (15).
For a candidate model A, we compute the following cumulative predictive likelihood:

p̂Ah =
T−h∑

t=T0−h

log(p(rt+h|It,A)),

for h = 1, 2, . . . , H and T0 < T . For each h, p̂Ah measures the forecast performance based on
the same common set of returns : rT0 , ..., rT . Therefore, p̂A1 is comparable with p̂A

10 and allows
us to measure the decline in forecast performance as we move from 1 day forecasts to 10 day
forecasts using model A. We are also interested in comparing p̂Ah for a fixed h with another
specification, p̂Bh . Better models will have larger cumulative predictive likelihood values.

For the RCOV models It = {r1, Σ1, ..., rt, Σt} while for the DCC model It = {r1, ..., rt}.
The predictive likelihood p(rt+h|It,A), is the h-period ahead predictive density for model A
evaluated at the realized return rt+h,

p(rt+h|It,A) =

∫
p(rr+h|Ωt+h,A)p(Ωt+h|θ, It,A)p(θ|It,A)dθdΩt+h. (29)

Parameter uncertainty is integrated out of the density. In the DCC model Ωt ≡ DtRtDt

while for the Wishart-RCOV(K) models Ωt ≡ Σt, while θ is the respective parameter vector.
The integration is approximated as∫

p(rt+h|Ωt+h,A)p(Ωt+h|θ, It,A)p(θ|It,A)dθdΩt+h ≈ 1

M

M∑
i=1

p(rt+h|Ω(i)
t+h,A), (30)

where Ω
(i)
t+h ∼ p(Ωt+h|θ(i), It,A), and θ(i) ∼ p(θ|It,A). p(rt+h|Ω(i)

t+h,A) is the pdf of a multi-

variate Normal with mean 0 and covariance Ω
(i)
t+h evaluated at rt+h. {θ(i)}M

i=1 are the MCMC
draws from the posterior distribution p(θ|It,A) for the model. Note that for each term
p(rt+h|It,A) in the out-of-sample period we re-estimate the model to obtain a new set of
draws from the posterior to compute (30).

Given a model A with predictive likelihood p(rT0 , ..., rT |A), and model B with predictive
likelihood p(rT0 , ..., rT |B), the Bayes factor in favor of model A versus model B is BFAB =
p(rT0

,...,rT |A)

p(rT0
,...,rT |B)

. Kass and Raftery (1995) suggest interpreting the evidence for A as: not worth

more than a bare mention if 0 ≤ BFAB < 3; positive if 3 ≤ BFAB < 20; strong if 20 ≤
BFAB < 150; and very strong if BFAB ≥ 150.

Figure 9 plots p̂h for all the models against h = 1, 2, . . . , H = 60, giving each model a
cumulative log-predictive likelihood term structure. Included are 3 Wishart-RCOV models
along with the DCC and a model that sets the conditional covariance to the sample analogue
computed from returns. Finally, a perfect foresight model (labelled RCOV in the figure)
which assumes the RCOV matrix Σt+h is known. Of course we cannot use this model in
practise, but it provides an upper bound on performance.

The out-of-sample data begins at T0=2006/03/31 and ends at 2007/12/31 for a total
of 441 observations. This is true for each model and each forecast horizon h. With the
exception of the perfect foresight model, all specifications have a downward sloping term
structure. Intuitively, forecasting further out is more difficult.
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The DCC model completely dominates the basic 1-component Wishart-RCOV(1) model.
Despite the better measure of latent covariation, the RCOV dynamics in the basic model
are too simple and neglect to capture the persistence properties of the eigenvalues discussed
above. The 2-component Wishart-RCOV(2) model shows superior forecast ability over the
DCC model up to 10 periods ahead, while the 3-component Wishart-RCOV(3) model domi-
nates all other candidates consistently across the entire forecast horizon. Note that according
to predictive Bayes factors the improvement of the Wishart-RCOV(3) model over the DCC
model is large. For instance, the log-Bayes factors in favor of the Wishart-RCOV(3) specifi-
cation are: 56.34 (h = 1), 20.82 (h = 30), and 23.56 (h = 60). We conclude that the RCOV
models based on high-frequency intraday data can provide substantial improvements over
the DCC model estimated from daily returns. For these improvements to be realized it is
critical that the persistence properties of RCOV matrices be modeled correctly.

6.2 Economic Evaluation

In this section, we evaluate the out-of-sample performance of the models from a portfolio
optimization perspective. We focus on the simple problem of finding the global minimum
variance portfolio, so the issue of specifying the expected return is avoided. The h-period
ahead global minimum variance portfolio (GMVP) is computed as the solution to

min
wt+h|t

w′
t+h|tΩt+h|twt+h|t

s.t. w′
t+h|tι = 1.

Ωt+h|t is the predictive mean of the covariance matrix at time t + h given time t information
for a particular model. Each model is re-estimated at each data point in the out-of-sample
period. From the posterior draws the predictive mean of the covariance matrix at time t+h
is simulated along the lines of the previous subsection. wt+h|t is the portfolio weight, and ι
is a vector with all the elements equal to 1. The optimal portfolio weight is

wt+h|t =
Ω−1

t+h|tι

ι′Ω−1
t+h|tι

.

It can be shown (Engle and Colacito (2006)) that if the portfolio weights, wt, are constructed
from the true conditional covariance, then the variance of a portfolio computed using the
GMVP from any other model must be larger.

We evaluate model performance starting at 2006/03/31 to 2007/12/31 for a total of 441
observations for h = 1, ..., H = 60. The specifications considered are: Wishart-RCOV(K),
K = 1, 2, 3, the DCC model, a model that always uses fixed equal portfolio weights, a model
using fixed portfolio weights based on the sample covariance of daily returns, and a perfect
foresight model using observed Σt+h of each period. The last model serves as a proxy for the
ideal case where the portfolio is constructed using the “true” variance. We report the sample
variances of the GMVPs across models in Figure 10. As in the density forecast exercise we
use a common set of returns to evaluate the performance over different h. As a result, the
upwards sloping portfolio variances indicates that time-series information is most useful for
short term forecasts. Generally, the Wishart-RCOV(3) model provides the lowest portfolio

15



variances and is closest to the perfect foresight model except for the first 3 weeks when
the 2 component model is slightly better. The RCOV component models deliver variance
reductions for about 3 weeks out, after which the DCC model has approximately the same
variance. The DCC model provides improvements over both the equal weight portfolio and
the sample covariance model.

7 Conclusion

This paper proposes to model the dynamics of realized covariance matrices (RCOV) based
on recent work in time varying Wishart distributions. Realized covariance matrices are
constructed for 5 stock returns using high-frequency intraday prices based on positive semi-
definite realized kernel estimation introduced by Bardorff-Nielson et al. (2008). We explore
the time series properties of our RCOV models and propose component models to capture
persistence. Out-of-sample performance of our models are compared to that of a benchmark
DCC model that only uses daily returns. The best RCOV models provide significant im-
provements over the DCC model in terms of density forecasts of returns for up to 3 months
out-of-sample. The gains from using high frequency data for global minimum variance port-
folios is important up to 3 weeks out.

8 Appendix

8.1 Wishart-RCOV Estimation

Given the priors listed in Section 4 the conditional posterior distributions are as follows.

p(A−1|ν, d, {Σt}T
t=1) ∝ Wishartk(A

−1|γ0, Q0) ×
T∏

t=1

Wishartk(Σt|ν, St−1)

∝ |A−1|
γ0−k−1

2 |Q−1
0 |

γ0
2

2
γ0k
2

∏k
j=1 Γ(γ0+1−j

2
)
exp

(
−1

2
Tr(A−1Q−1

0 )

)

×
T∏

t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(ν+1−j

2
)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)

× exp

(
−1

2
Tr(A−1Q−1

0 ) − 1

2

T∑
t=1

Tr(ΣtνΣ
−d/2
t−1 A−1Σ

−d/2
t−1 )

)

∝ |A−1|
Tν+γ0−k−1

2 exp

(
−1

2
Tr(A−1Q−1

0 ) − 1

2

T∑
t=1

Tr(νA−1Σ
−d/2
t−1 ΣtΣ

−d/2
t−1 )

)

∝ |A−1|
Tν+γ0−k−1

2 exp

(
−1

2
Tr[A−1(Q−1

0 + ν
T∑

t=1

Σ
−d/2
t−1 ΣtΣ

−d/2
t−1 )]

)
∝ Wishartk(A

−1|γ̃, Q̃) (31)
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Where Q̃−1 = ν
∑T

t=1 Σ
−d/2
t−1 ΣtΣ

−d/2
t−1 + Q−1

0 , γ̃ = Tν + γ0.
For d we have,

p(d|A, ν, {Σt}T
t=1) ∝ p(d) ×

T∏
t=1

Wishartk(Σt|ν, St−1)

= p(d)
T∏

t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(ν+1−j

2
)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)
∝ p(d) exp

(
−dνψ

2
− 1

2
Tr(νA−1Q(d)−1)

)
, (32)

where ψ =
∑T

t=1 log|Σt−1|, and Q(d)−1 =
∑T

t=1 Σ
−d/2
t−1 ΣtΣ

−d/2
t−1 . To sample from this density

we do the following. If d is the previous value in the chain we propose d
′

= d + u where
u ∼ N(0, σ2) and accept d

′
with probability

min

{
p(d

′|A, ν, {Σt}T
t=1)

p(d|A, ν, {Σt}T
t=1)

, 1

}
. (33)

and otherwise retain d. σ2 is selected to achieve a rate of acceptance between 0.3-0.5.
Finally, ν has the conditional posterior density

p(ν|A, d, {Σt}T
t=1) ∝ p(ν) × p({Σt}T

t=1|A, d, ν)

= p(ν)
T∏

t=1

|Σt|
ν−k−1

2 |S−1
t−1|

ν
2

2
νk
2

∏k
j=1 Γ(ν+1−j

2
)
exp

(
−1

2
Tr(ΣtS

−1
t−1)

)

= p(ν)

∏T
t=1 |Σt|

ν
2 × ν

Tνk
2 |A−1|Tν

2 ×
∏T

t=1 |Σt−1|−
dν
2

2
Tνk
2 (

∏k
j=1 Γ(ν+1−j

2
))T

exp

(
−1

2
Tr(νA−1Q−1)

)

∝ exp

(
−λ0ν +

Tν

2
log|A|−1 +

Tνk

2
log

ν

2
− T

k∑
j=1

logΓ

(
ν + 1 − j

2

))

× exp

(
ν

2

T∑
t=1

log|Σt| −
dν

2

T∑
t=1

log|Σt−1| −
1

2
Tr(νA−1Q−1)

)
(34)

where Q−1 =
∑T

t=1 Σ
−d/2
t−1 ΣtΣ

−d/2
t−1 . This is a nonstandard distribution which we sample using

a Metropolis-Hastings step with a random walk proposal analogous to the sampling in the
previous step above.

8.2 DCC Estimation

The parameters are (ω1, . . . , ωk, κ1, . . . , κk, λ1, . . . , λk, α, β) = Θ. All parameters are assigned
an independent Normal prior with mean 0 and variance 100, truncated to the interval (0, 1)
with the following restrictions:

ωi > 0, κi ≥ 0, λi ≥ 0, κi + λi < 1, i = 1, ..., k, α ≥ 0, β ≥ 0, α + β < 1. (35)
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The joint prior p(Θ) is just the product of the individual priors. The likelihood function
p({rt}T

t=1|Θ) is:

p({rt}T
t=1|Θ) = (2π)

Tk
2

T∏
t=1

|DtRtDt|−
1
2 × exp

(
−1

2

T∑
t=1

r′t(DtRtDt)
−1rt

)
(36)

The posterior of the parameters p(Θ|{rt}T
t=1) is:

p(Θ|{rt}T
t=1) ∝ p(Θ)(2π)

Tk
2

T∏
t=1

|DtRtDt|−
1
2 × exp

(
−1

2

T∑
t=1

r′t(DtRtDt)
−1rt

)
(37)

To sample from the joint posterior distribution p(Θ|{rt}T
t=1), we do the following steps:

We first adopt a single move sampler. For each iteration, the chain cycles through the
conditional posterior densities of the parameters in a fixed order. For each parameter, a
random walk with normal proposal is applied. After dropping an initial set of draws as
burnins, we collect M draws and use them to calculate the sample covariance matrix of the
joint posterior. Then, a block sampler is used to jointly sample the full posterior. The
proposal density is a multivariate normal random walk with the covariance matrix set to the
sample covariance, obtained from the draws of the single-move sampler, scaled by a scalar.
When the model is re-estimated out-of-sample as a new observation arrives the previous
sample covariance is used as the next covariance in the multivariate normal random walk.
This results in fast efficient sampling.
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Table 1: Average daily number of transactions and average daily refresh time ( RT ) obser-
vations per day

SPY GE C AA BA RT
6985 7479 6121 3279 3745 1835

This table reports the average daily number of transactions (after data cleaning) for Standard and Poor’s
Depository Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C), Alcoa Inc. (AA) and Boeing Co.
(BA). The total number of days is 2281. RT reports the average number of daily observations according to
the refresh time.

Table 2: Summary statistics: Daily returns and RCOV

Sample covariance from daily returns Average of realized covariances
SPY GE C AA BA SPY GE C AA BA

SPY 0.963 1.078 1.172 0.834 0.751 0.907 0.972 1.099 0.822 0.718
GE 2.410 1.500 1.062 0.931 2.327 1.250 0.897 0.796
C 2.826 1.014 0.931 3.176 0.982 0.835

AA 3.900 0.993 3.921 0.734
BA 2.933 2.910

This table reports the sample covariance from daily returns and the sample average of the realized covariances.
The data are Standard and Poor’s Depository Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C),
Alcoa Inc. (AA) and Boeing Co. (BA). Total observations is 2281.

Table 3: Estimation results for DCC

SPY GE C AA BA
ω 0.0044(0.0012) 0.0037(0.0013) 0.0107(0.0029) 0.0189(0.0073) 0.0271(0.0096)
κ 0.0331(0.0047) 0.0273(0.0045) 0.0522(0.0066) 0.0349(0.0049) 0.0512(0.0072)
λ 0.9623(0.0057) 0.9713(0.0047) 0.9460(0.0070) 0.9606(0.0064) 0.9403(0.0099)
α 0.0095(0.0010)
β 0.9881(0.0015)

This table reports the posterior mean and the posterior standard deviation in parenthesis for the DCC model
of Section 3.1.1.
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Table 4: Estimation results

Parameter Mean NSE 0.95 DI Ineff
Wishart-RCOV(1)

d 0.6677 0.0001 (0.6600, 0.6756) 3.1170
ν 11.7707 0.0025 (11.6259, 11.9313) 4.7304

Wishart-RCOV(2)
d1 0.2791 0.0005 (0.2618, 0.2914) 21.0949
d2 0.6539 0.0004 (0.6404, 0.6706) 10.6056
ν 14.4389 0.0034 (14.2661, 14.6320) 6.4359
`2 13.6644 0.0438 (12.0000, 14.0000) 18.0278

Wishart-RCOV(3)
d1 0.2553 0.0004 (0.2415, 0.2671) 17.6101
d2 0.4502 0.0006 (0.4303, 0.4715) 17.0676
d3 0.2651 0.0006 (0.2413, 0.2858) 15.5695
ν 14.6679 0.0032 (14.4736, 14.8603) 5.3509
`2 9.0280 0.0219 (8.0000, 10.0000) 13.5203
`3 64.1822 0.0294 (63.0000, 67.0000) 3.0019

This table reports the posterior mean, its numerical standard error (NSE), a 0.95
density interval (DI) and the inefficiency factor for model parameters.

Table 5: Posterior mean and standard deviation of lower triangular elements of A−1 for
Wishart-RCOV(3)

0.9548
(0.0092)
−0.0112 0.9256
(0.0057) (0.0074)
−0.0152 −0.0082 0.9136
(0.0056) (0.0052) (0.0074)
−0.0049 −0.0048 −0.0035 0.8980
(0.0052) (0.0050) (0.0050) (0.0082)
−0.0024 −0.0015 −0.0014 −0.0029 0.9026
(0.0051) (0.0050) (0.0050) (0.0050) (0.0076)

This table reports the posterior mean, and the posterior standard deviation
in parentheses for the lower triangle of A−1.

Table 6: Mean square error for different models

3-comp 2-comp 1-comp E(Σt|Σt−1) = Σt−1 DCC Sample covariance
70.21 70.80 75.12 102.03 85.20 118.52

Given a model’s in-sample fitted value Σ̂t and the data Σt this table reports∑T
t=1‖Σt − Σ̂t‖2, where ‖·‖ denotes the Frobenius matrix norm.
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Figure 1: Daily returns

23



 0

 5

 10

 15

 20

 25

 30

1998 2001 2004 2007

(a) SPYDER

 0

 10

 20

 30

 40

 50

 60

1998 2001 2004 2007

(b) GE

 0

 20

 40

 60

 80

 100

 120

1998 2001 2004 2007

(c) Citigroup Inc.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1998 2001 2004 2007

(d) Alcoa Inc.

 0

 10

 20

 30

 40

 50

 60

1998 2001 2004 2007

(e) Boeing Co.

Figure 2: RV for individual assets

24



-10

-5

 0

 5

 10

 15

1998 2001 2004 2007

Figure 3: Determinant of RCOV

-10

-5

 0

 5

 10

 15

2001 2004 2007

Figure 4: Determinant of “fitted RCOVs”, Wishart-RCOV(1)

25



-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  50  100  150  200  250  300  350  400

data
Wishart-RCOV(3)
Wishart-RCOV(2)
Wishart-RCOV(1)

Figure 5: Sample autocorrelation functions of the largest eigenvalues of RCOVs
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Figure 6: Sample autocorrelation functions of the smallest eigenvalues of RCOVs
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Figure 7: Correlation between SPYDER and GE
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