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Abstract

This paper proposes a method for implementing counterfactual experiments in es-

timated models that have multiple equilibria. The method assumes that the researcher

does not know the equilibrium selection mechanism and wants to impose minimum

restrictions on it. Our key assumption is that the equilibrium selection function does

not jump discontinuously between equilibria as we change marginally the structural

parameters of the model. Under this assumption, we show that, although the equi-

librium selection function is unknown, the researcher can obtain an approximation of

this function in a neighborhood of the estimated values of the structural parameters.

Under the additional assumption that the counterfactual equilibrium is stable, this ap-

proximation can be combined with iterations in the equilibrium mapping to obtain the

exact counterfactual equilibrium. We illustrate the differences between our approach

and other methods, such as the selection of a counterfactual equilibrium that is closer to

the equilibrium in the data, and equilibrium mapping iterations using the equilibrium

in the data as the initial value. We show that, in general, these alternative methods

are not consistent with the assumption that the equilibrium selection mechanism is

continuous with respect to the structural parameters.
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1 Introduction

Multiplicity of equilibria is a prevalent feature in static and dynamic games and in general

equilibrium models. Models with multiple equilibria do not have a unique reduced form, and

this indeterminacy poses practical estimation problems. In the context of discrete games

with incomplete information, recent papers have proposed two-step and sequential estimators

that significantly simplify the estimation of these models (Aguirregabiria and Mira, 2007;

Bajari, Benkard and Levin, 2007; and Pesendorfer and Schmidt-Dengler, 2008). Nevertheless,

the indeterminacy problem associated with multiple equilibria still remains an issue when

the researcher wants to use the estimated model to predict the effects of counterfactual

changes in the structural parameters. Although we can use the data to identify which of the

multiple equilibria is the one observed in the data, we do not know which equilibrium will be

selected in a counterfactual scenario. In some contexts, a possible approach for dealing with

this issue is to calculate all of the equilibria in the counterfactual scenario and then draw

conclusions that are robust to whatever equilibrium is selected. However, this approach is

of very limited applicability because the different equilibria typically provide ambiguous or

even contradictory predictions for the effects we want to measure. Given that one of the

most attractive features of structural models is the possibility of implementing counterfactual

experiments, this is a very important issue in structural econometrics. This issue is clearly

illustrated in the recent literature on empirical dynamic oligopoly games. Most applications

in this area either do not present counterfactual experiments (Collard-Wexler, 2006, and

Sweeting, 2007), or ignore the issue of multiple equilibria in the counterfactual model (Ryan,

2009, see footnote 32 in page 49; and Dunne et al, 2009, see pages 33-34).

This paper proposes a simple approach for dealing with multiple equilibria when under-

taking counterfactual experiments with an estimated model. Under the assumption that the

equilibrium selection mechanism, which is unknown to the researcher, is a smooth function of

the structural parameters, we show how to obtain a Taylor approximation of the counterfac-

tual equilibrium. More specifically, we show that, although the equilibrium selection function

is unknown, the Jacobian matrix of that function, evaluated at the estimated equilibrium,

depends on objects that the researcher knows.
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As in any Taylor approximation, the approximation error has the same order of magnitude

as the distance between the factual and the counterfactual parameters. Therefore, this

approach can be inaccurate when the counterfactual experiment does not imply marginal

changes in the parameters. For these cases, we propose to combine the Taylor approximation

with iterations in the equilibrium mapping. The idea is that the Taylor approximation can

be far away from the counterfactual equilibrium but close enough to lie within the dominion

of attraction of that equilibrium.

We illustrate the differences between our approach and other methods, such as the se-

lection of a counterfactual equilibrium that is closer to the equilibrium in the data, and

equilibrium mapping iterations using the equilibrium in the data as the initial value. In gen-

eral, these alternative methods are not consistent with the assumption that the equilibrium

selection mechanism is continuous with respect to the structural parameters.

2 Model

Let y ∈ Y and x ∈ X be two vectors of random variables with discrete and finite support.1

Let P0 ≡ {Pr(y|x) : (y,x) ∈ Y × X} be a vector with the probability distribution of y
conditional to x in the population under study. The structural model is a parametric family

of probability distributions π(y|x,θ), where θ ∈ Θ is a vector of K parameters, and Θ ⊂ RK

is a compact set. Let Π(θ) be the vector with the probability distribution of y conditional to

x in the model for a value θ of the structural parameters: i.e., Π(θ) ≡ {π(y|x,θ) : (y,x) ∈
Y × X}. The probability distribution Π(θ) is implicitly defined as the solution of a fixed

point problem. Let Ψ(θ,P) be a fixed-point or equilibrium mapping from Θ× [0, 1]|X||Y | into
[0, 1]|X||Y | such that Ψ(θ,P) ≡ {ψ(y|x,θ,P) : (y,x) ∈ Y ×X}. The vector Π(θ) is a fixed
point of Ψ(θ, .), i.e., Π(θ) = Ψ(θ,Π(θ)). However, for some values of θ, the mapping Ψ(θ, .)

can have more than one fixed point. That is, the model can have multiple equilibria for some

values of the structural parameters. We use Γ(θ) to denote the set of equilibria associated

with θ. We know that Π(θ) belongs to Γ(θ) but we do not make any additional assumption

1We describe our approach in the context of a class of models in which all the variables have a discrete

and finite support. This is convenient because we can use standard derivatives to construct Taylor approxi-

mations. However, it is possible to extend this approach to models where variables have continuous support

by using Banach spaces and Fréchet derivatives.
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on how Π(θ) is selected within the set Γ(θ). This class of econometric models includes as

particular cases discrete models with social interactions (Brock and Durlauf, 2001), quantal

response games (McKelvey and Palfrey, 1995), and static and dynamic games of incomplete

information (Bajari et al., 2009, and Doraszelski and Satterthwaite, 2009), among others.

Let θ0 be the true value of θ in the population under study. The model establishes

that P0 = Π(θ0). Suppose that P0 and θ0 are point-identified given a random sample on

{y,x}. Let θ̂0 and P̂0 be our consistent estimates of θ0 and P0, respectively. Let θ∗ be
a value of the vector of structural parameters that is different to θ̂0. We denote θ∗ as the

vector of counterfactual values of the structural parameters. The researcher wants to obtain

the counterfactual equilibrium P∗ associated with θ∗, i.e., P∗ = Π(θ∗), and compare this

equilibrium with the one estimated from the data, P̂0. However, although the researcher can

calculate the set of equilibria Γ(θ∗) (i.e., the set of fixed points of the mapping Ψ(θ∗, .)), he

does not know which of these equilibria is P∗.

It is clear that we need additional information/structure to select P∗ from among the set

of equilibria Γ(θ∗). A possible approach might be to impose restrictions on the characteristics

of the equilibrium P∗ (e.g., stability, symmetry, Pareto optimality, maximum payoffs for a

certain player) that define a subset of Γ(θ∗) such that all the equilibria in that subset provide

similar predictions. That is, we may specify an equilibrium selection mechanism that selects

a single equilibrium, or a very reduced set of equilibria, in Γ(θ∗). However, in most of

the applications, these restrictions may be difficult to justify. The researcher would want

to have a method for implementing counterfactual experiments that does not require these

additional assumptions.2 In this paper, we consider that the researcher is not willing to

impose these restrictions. We propose an approach that imposes minimum conditions on the

characteristics of the equilibrium P∗. Assumptions 1 and 2 specify our restrictions on the

model.

ASSUMPTION 1: Ψ is twice continuously differentiable in θ and P.

ASSUMPTION 2: The equilibrium selection mechanism is such that Π(θ) is a continuous

differentiable function within a convex subset of Θ that includes θ̂0 and θ∗.
2In fact, if these restrictions were plausible, the researcher would incorporate them into his model to

obtain more precise estimates of the structural parameters.
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Our approach is agnostic with respect to the equilibrium selection mechanism. We assume

that there is such a mechanism, that it is a function, and that it does not "jump" between

the possible equilibria when we move over the parameter space. However, we do not specify

any particular form for the equilibrium selection mechanism Π(.).

Figure 1 illustrates Assumption 2 for a simple model where P is a scalar. The three

curves represent the equilibrium mapping for three different values of the vector of structural

parameters, say θ1, θ2, and θ3, such that ||θ2 − θ1|| and ||θ3 − θ1|| are small, i.e., marginal
changes in the parameters. In that figure, an equilibrium is a value of P for which the curve

meets with the 45-degree line, i.e., P = Ψ(θ,P). The set of equilibria associated with θ1

is Γ(θ1) ={PA1,PB1,PC1}. Suppose that Π(θ1) = PC1, i.e., when the vector of structural

parameters is θ1, the selected equilibrium is the one with the highest value of P. Assumption

2 implies that Π(θ2) = PC2 and Π(θ3) = PC3. That is, the equilibrium selection mechanism

does not jump discontinuously from the ’high-type’ equilibrium to the ’low-type’ (i.e., PA)

or to the ’middle-type’ (i.e., PB).
3

Assumption 2 seems a reasonable condition when the researcher is interested in evaluating

the effects of a change in the structural parameters but keeping in the counterfactual the

same equilibrium type as the one that generates the data.

3 Counterfactual experiments

We want to obtain the counterfactual equilibrium associated with θ∗, that we denote P∗.

Under Assumption 2, we know that P̂0 = Π(θ̂0) and P∗ = Π(θ∗). Although P̂0, θ̂0, and θ∗

are known to the researcher, P∗ and the function Π(.) are unknown. Under Assumptions 1-2,

we can use a first order Taylor expansion to obtain an approximation to the counterfactual

equilibriumΠ(θ∗) around the estimated vector θ̂0. We do not know the function Π. However,

it is possible to use the equilibrium condition to obtain the Jacobian matrix ∂Π(θ̂0)/∂θ
0 in

terms of derivatives of the equilibrium mapping evaluated at (P̂0,θ̂0). A Taylor expansion

3Some equilibrium ’types’ may disappear when we move along the parameter space. Therefore, As-

sumption 2 establishes that the type of equilibrium Π(θ̂0) does not disappear when we move from θ̂0 to
θ∗.
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of Π(θ∗) around θ̂0 implies that:

Π(θ∗) = Π(θ̂0) +
∂Π(θ̂0)

∂θ0
(θ∗ − θ̂0) +O(k θ∗ − θ̂0 k2) (1)

Note that Π(θ̂0) = P̂0 that is known. Taking into account that Π(θ̂0) = Ψ(θ̂0,Π(θ̂0)),

differentiating this expression with respect to θ, and solving for ∂Π(θ̂0)/∂θ
0, we can represent

this Jacobian matrix in terms of Jacobians of Ψ(θ,P) evaluated at the estimated values

(θ̂0, P̂0). That is,

∂Π(θ̂0)

∂θ0
=

Ã
I− ∂Ψ(θ̂0, P̂0)

∂P0

!−1
∂Ψ(θ̂0, P̂0)

∂θ0
(2)

where I is the identity matrix. Solving expression (2) into (1), we have that:

Π(θ∗) = P̂0 +

Ã
I− ∂Ψ(θ̂0, P̂0)

∂P0

!−1
∂Ψ(θ̂0, P̂0)

∂θ0
(θ∗ − θ̂0) +O(k θ∗ − θ̂0 k2) (3)

Therefore, when k θ∗ − θ̂0 k2 is small, the vector P̃∗ ≡ P̂0 + (I − ∂Ψ(θ̂0, P̂0)/∂P
0)−1

∂Ψ(θ̂0, P̂0)/∂θ
0 (θ∗ − θ̂0) provides a good approximation to the true counterfactual equilib-

rium P∗. Note that all the elements in the expression that describes P̃∗ are known to the

researcher.

In some applications, the counterfactual experiments of interest are far from being mar-

ginal changes in the parameters. In such a situation, a first order Taylor approximation could

be inaccurate. Higher-order approximations to Π(θ∗) can be used. It is possible to show

that higher-order derivatives of Π(.) at θ̂0 depend only on derivatives of Ψ at (θ̂0, P̂0), which

are known to the researcher. However, in applications where the dimension of the vector

P is large (e.g., dynamic games with heterogeneous players), the numerical computation of

high-order derivatives of Ψ with respect to P can be computationally very demanding. An

alternative approach for improving the accuracy of the Taylor approximation is to combine

it with iterations in the equilibrium mapping. Suppose that P∗ is an stable equilibrium.

This implies that there is a neighborhood of P∗, say N , such that if we iterate in the equi-
librium mapping Ψ(θ∗, .) starting with a P ∈N , then we converge to P∗, i.e., if P1∈N and

Pk+1 = Ψ(θ∗,Pk) for k ≥ 1, then limk→∞Pk = P∗ (Judd, 1998, Theorem 5.4.2). The

neighborhood N is called the dominion of attraction of the stable equilibrium P∗. Suppose

that the Taylor approximation is precise enough such that P̃∗ belongs to the dominion of
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attraction of P∗. Then, by iterating in the equilibrium mapping Ψ(θ∗, .) starting at P̃∗ we

will obtain the counterfactual equilibrium P∗.

It is important to explain the differences between the method that we propose here and

two alternative methods for calculating a counterfactual equilibrium. The first alternative

method consists of iteration of the equilibriummapping Ψ(θ∗, .) starting with the equilibrium

in the data. This approach will return the counterfactual equilibriumP∗ if only if P̂0 belongs

to the dominion of attraction of P∗. It should be clear that this condition is stronger than the

one establishing that the Taylor approximation P̃∗ belongs to the domination of attraction

of P∗.

A second alternative approach consists of calculating all the equilibria of the mapping

Ψ(θ∗, .) and then selecting as the counterfactual the equilibrium with the smallest Euclidean

distance to P̂0. In general, this approach is not consistent with Assumption 2 which estab-

lishes that the equilibrium selection mechanism does not jump. We illustrate this issue in

Figures 2 and 3. By Assumption 2, the counterfactual equilibrium P∗ has the same type as

P̂0. In Figures 2 and 3, P∗ and P̂0 are ’high-type’ equilibria. In the example presented in

Figure 2, P∗ is also the equilibrium in Γ(θ∗) that is closest (in Euclidean distance) to P̂0.

Therefore, our method and the "closest-equilibrium" method coincide in that case. However,

in Figure 3, the closest equilibrium to P̂0 is not P∗ but rather the ’middle-type’ equilibrium.

In this example, the "closest-equilibrium" method implies an equilibrium selection function

that is not continuous over hθ̂0,θ∗i.
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Figure 2
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