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Abstract 
 
Aphorisms that “Rising tides raise all boats” or that material advances of the rich 
eventually “Trickle Down” to the poor are really maxims regarding the nature of 
stochastic processes that underlay the income paths of groups of individuals. This paper 
looks at the implications of conventional assumptions made by economists concerning 
such processes for the empirical analysis of wellbeing in terms of poverty, inequality, 
mobility and polarization. The implications of attributing different processes to different 
groups in society following the club convergence literature are also discussed. Various 
forms of poverty, inequality and income mobility structures are considered and much of 
the conventional wisdom afforded us by such aphorisms is questioned. To exemplify 
these ideas the results are applied to the distribution of GDP per capita in the continent of 
Africa.



Introduction. 
 
 

The aphorism that “a rising tide raises all boats” and the theory that advances in 

economic well-being of the rich ultimately trickle down to the poor have frequently been 

cited as reasons for believing that growth elevates poor from poverty1.These are 

essentially notions about the nature of income or consumption processes as stochastic 

processes. Economists interested in growth, consumption and convergence issues of 

various forms have a long tradition of modeling income or consumption as a stochastic 

process (usually of the random walk variety)2, presumably because such processes 

provide good descriptions of income and consumption paths for modeling purposes but 

also because such formulations, in the form of growth regressions, provided a useful way 

of relating growth rates to initial conditions. Surprisingly, for the link does not appear to 

have been made very often in the income size distribution and economic well being 

literatures3, such models have implications for, and provide predictions as to, the 

progress of inequality, poverty and polarization that would be of interest to those 

interested in various aspects of empirical well-being. 
                                                 
1 Recently there has been considerable interest in the “rising tides” notion (Freeman (2001) Hynes et. al. 
(2001) Burgess et. al. (2001)) which the Oxford Dictionary of Quotations (2004) attributes to the Kennedy 
family. Anderson (1964) is responsible for the “trickle down” theory. 
2 A microeconomic literature that built on Modigliani and Brumberg (1954) and Freidman (1957) 
developed models of agents who maximized the present value of lifetime happiness (0∫TU(C(t))e-r*tdt) 
subject to the present value of lifetime wealth (0∫TY(t)e-rtdt) where U(  ) is an instantaneous felicity 
function, Y is income, r* is the individuals rate of time preference and r is the market lending rate. 
(Browning and Lusardi (1996)) show that this taken together with the assumption of a constant relative risk 
aversion and no bequest motive preference structure leads to a consumption smoothing model of the form: 

                                                           ( *) /( ) (0)r r tC t e Cς−=  
where ζ is the risk aversion coefficient and by implication g = (r-r*)t/ζ is the consumption growth rate. The 
empirical counterpart of this equation is the familiar random walk model: 
                                                     ln ( ) ln( ( 1)) ( )C t C t g e t= − + +  
these types of formulations are also used by macro modelers in developing savings and income equations. 
3 (Blundell and Lewbel (2008), Deaton and Paxson (1994), Meghir and Pistaferri (2004), Meyer and 
Sullivan (2003), O’Neill (2005) and Osberg (1977) are exceptions) 



 

Stochastic process theory also provides a motivation for fitting particular size 

distributions of income or consumption (since the nature of the stochastic process has 

strong implications for the nature of the size distribution of income). There are 

advantages associated with fitting size distributions parametrically. Poverty calculations 

of the non-parametric variety can be difficult, especially when sample sizes are small or 

the poverty group is small in number relative to the size of the population because 

information on the relevant tail of the distribution is sparse and changes in the tails of 

distributions can be very difficult to get a handle on (see Davidson and Duclos (2008) for 

a discussion that highlights this problem). A parametric distribution that fits the data well 

can provide substantive information about the nature of such tails. Furthermore if 

incomes are truly governed by such processes poverty, inequality or polarization policies 

need to focus on changing the structure of the processes or at least mitigating their effects 

and obviously a full understanding the processes and their implications will help in this 

regard. Indeed some policies, such as defining a poverty frontier (social security net) or 

lower boundary below which incomes are not permitted to fall, can become part of the 

process, changing its structure and the nature of the resultant size distribution of income. 

This in turn provides a powerful test of the effectiveness of such a policy in terms of the 

extent to which the distribution conforms to that predicted by the process structure. 

 

Alternatively one may construe the population as a collection of subgroups each with 

their own process with the poor as a particular sub group, an entity in itself, with a unique 

stochastic process defining its path as opposed to the paths of the other presumably more 



advantaged groups in society. The societal income distribution then in effect becomes a 

mixture distribution governed by the variety of processes defining the separate groups 

and the mixture coefficients which define the respective memberships. This imposes 

additional strictures on rising tides and trickle down theories in the way they impact the 

separate groups. Anti poverty policies can then focus on the changing the nature of the 

processes governing the poorest groups and ideas from the convergence literature become 

relevant in understanding the relative poverty process. In these circumstances the way 

poverty is measured also needs to be reviewed since poverty is now about the changing 

membership of a class and the way the stochastic process describing that class proceeds 

through time. 

 

Before examining what such models imply for the progress of poverty or inequality one 

needs to be clear as to what sort of poverty or inequality it is that is in question.  There 

has been considerable debate about the nature of poverty measurement as to whether it 

should be an absolute or a relative measure. The issue entertained the minds of the 

founders of the discipline. Adam Smith (1776) can be interpreted to have had a relative 

view of poverty viz: “….. By necessaries I understand, not only the commodities which 

are indispensably necessary for the support of life, but whatever the custom of the 

country renders it indecent for creditable people, even the lowest order, to be without.” 

Similarly Ferguson (1767) states “The necessary of life is a vague and relative term: it is 

one thing in the opinion of the savage; another in that of the polished citizen: it has a 

reference to the fancy and to the habits of living”. Marshall (1890) on the other hand had 

a very clear idea of income poverty as an absolute concept, his comment on poverty in 



the introduction to The Principles  being  “…for with £150 the family has, with £30 it has 

not, the material conditions of a complete life.”. More recently Townsend (1985) (the 

major advocate of the relative measure in recent times) and Sen (1983) (who favours a 

basic needs formulation) have lead the debate regarding the two approaches, both claim 

consistency with the intent of Smith’s thoughts largely via different interpretations of the 

words decent, creditable etc. 

 

Interestingly enough no such debate seems to have taken place regarding relative versus 

absolute inequality, though invariably relative inequality measures (Coefficient of 

Variation, Gini and Shutz coefficients for example) seem to have been favored and 

recently the concept of polarization which is related to, but distinctly different from, 

relative inequality has gained favour (see Duclos, Esteban and Ray (2004) for details).  

Some absolute inequality measures (variance levels and quantile differences for example) 

have currency and absolute measures of polarization are also a possibility. 

 

Here the theoretical implications of stochastic processes for absolute and relative 

wellbeing measures will be outlined and the results employed in looking at the stochastic 

processes underlying the per capita GDP of African nations and considering what they 

imply for the progress of poverty and inequality on that continent. After a consideration 

of the implications of some aspects of relatively simple stochastic processes for the 

progress of poverty and inequality in section 2 mixtures are considered in section 3. 

These ideas are considered in the light of data on per capita GDP for African nations over 

the period 1985 to 2005 in section 4 and conclusions are drawn in section 5. 



2. Gibrat’s Law, Kalecki’s Law, The Pareto Distribution and notions of absolute 

and relative poverty and inequality. 

 

Two early front runner’s for describing the size distribution of income or consumption 

were the Pareto distribution and the Lognormal distribution4, subsequently it has been 

learned that they are linked via stochastic process theory. Pareto (1897) felt that his 

distribution was a law which governed the size distribution of incomes, Gibrat (1931), 

working with firm sizes, used statistical central limit theorem type arguments to 

demonstrate that a sequence of successive independent proportionate “close to one” 

shocks to an initial level of a variable would yield an income the log of which was 

normally distributed regardless of the distribution governing the shocks5. Gabaix (1997), 

working with city size distributions, highlighted the link in showing that if a process such 

as that proposed by Gibrat was subjected to a reflective lower boundary, bouncing back 

the variable should it hit the boundary from above, the resulting distribution would be 

Pareto6. Obviously a social security net of some kind, such as a legislated low income 

cut-off below which no one was permitted to fall, would constitute such a boundary7 for 

an income process. Both of these notions regarding the shape of income size distributions 

draw on theories of stochastic processes which, if empirically verified, will also tell us 

much about the progress of poverty and or inequality however defined. 

 

                                                 
4  Conventional wisdom was that Pareto fit well in the tails whereas the lognormal fit well in the middle, 
(Harrison (1984), Johnson, Kotz and Balakrishnan (1994)). 
5 Kalecki (1945) showed that Gibrat’s result could be obtained from a stationary process as well. 
6 This has been established before, Harrison (1987) and Champernowne (1953) demonstrate a somewhat 
similar result. Reed (2006) provides an alternative link between the Lognormal and Pareto and provides 
rationales from stochastic process theory for more complex size distributions. 
7 The Millenium goals and $1 and $2 poverty frontiers may be construed as such potential frontiers. 



Starting off with Gibrat’s law of proportionate effects in a discrete time paradigm 

suppose that xt, the income of the representative agent at period t, follows the law of 

proportionate effects with δt its income growth rate in period t, T the elapsed time period 

of earnings with x0 the initial income. Thus: 
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Assuming the δ’s to be independent identically distributed random variables with a small 

(relative to one) mean μ and finite variance σ2 it may be shown that for an agents life of T 

years with starting income x0 the log income size distribution of such agents would be 

linked systematically from period to period in terms of means and variances in the form8: 

 

                                2
0ln( ) ((ln( ) ( 0.5 )), )Tx N x T T 2μ σ σ+ +∼    [2] 

 

These types of models are very close to the cross – sectional growth (or Barro) 

regressions familiar in the growth and convergence literature (see Durlauf et.al.(2005) for 

details) except that the properties of the error processes they engender are usually ignored 

in cross-sectional comparisons, in particular the variance of the process is heteroskedastic 

increasing in a cumulative fashion through time implying increasing absolute inequality. 

Note that [2] could also be the consequence of a process of the form: 

                                                 
8 The same result can be achieved in the continuous time paradigm by assuming a Geometric Brownian 
Motion for the x process of the form: 
                                                           dx xdt xdwμ σ= +  
Where μ is the mean drift σ is a variance factor and dw is the white noise increment of a Weiner process. 



                                             ln(xt) = ln(xt-1) + ψ + et  

which had started at t=0 and had run for T periods where et was an i.i.d. N(0,σ2) and 

where ψ =μ+0.5σ2. Indeed the i.i.d. assumption regarding the δ’s is much stronger than 

needed, under conditions of 3rd moment boundedness, log normality can be established 

for sequences of non-independent, heteroskedastic and heterogeneous δ (see Gnedenko 

(1962)) where the variance of the process still grows as O(T). The power of the law, like 

all central limit theorems, is that a log normal distribution prevails in the limit almost 

regardless of the underlying distribution of the δ’s (or e’s). 

 

Clearly for a needs based (absolute) poverty line (say x*) and growth exceeding -0.5σ2 

the poverty rate would be 0 in the limit (i.e. limT->∞ Φ([(ln(x*/x0)-T(μ+0.5σ2))/(σ√T)] 

where Φ(z) is the cumulative density of the standard normal distribution) and for growth 

less than -0.5σ2 the poverty rate would be 1. For a relative poverty line, for example 0.6 

of median income (note median income will be exp(ln(x0)+T(μ+0.5σ2)) and the poverty 

cut-off will be .6 of that value), the poverty rate would be Φ([ln(0.6)/(σ√T)]) which 

obviously increases with time reaching .5 at infinity. The income quantiles in such an 

income process will not have common trends and, provided growth is sufficiently small9 , 

such a society exhibits increasing inequality by most measures that are not location 

normalized (hereafter referred to as absolute inequality). For aficionados of the Gini what 

really matters is the growth rate, Lambert (1993) shows that for the Log Normal 

Distribution with mean and variance θ, γ respectively and with a distribution Function 

F(z | θ, γ ) the Gini coefficient may be written in the present context as: 

                                                 
9 Many inequality measures are location normalized measures of dispersion they are in effect relative 
inequality measures, (for example the Coefficient of Variation and Gini) if the location is increasing slow 
enough and the dispersion is increasing fast enough inequality by any measure will be increasing 



                   2F(exp(ln(x0)+T(μ+0.5σ2)) | exp(ln(x0)+T(μ+0.5σ2)),Tσ2 ) – 1 

This will tend to zero as T => ∞ when μ < -0.5σ2 and will tend to 1 otherwise, note 

particularly for zero growth Gini will tend to 1. Note this is purely a function of the Gini 

being a relative inequality index that is normalized on the mean (it may be interpreted as 

the average distance between individual incomes normalized by the mean income). If the 

average distance between individuals were normalized by one of the income quantiles the 

results would be quite different with a greater propensity to increasing inequality when 

normalized by a low income quantile and a smaller propensity when normalized by a 

high income quantile. 

 

The Polarization index proposed by Esteban and Ray (1994) may be seen as closely 

related to the discrete version of the Gini Index since, given πi is the probability of being 

in the i’th cell, it is of the form: 

                                    1

1 1
| |

n n

i j i
i j

P K x x α
α jπ π+

= =

= −∑∑  

A continuous version of this index is given in Duclos Esteban and Ray (2004) as: 

                                      ( ) | | ( ) ( )P K f x y x dF x dF yα
α = −∫

where in each case α > 0 is the index of polarization aversion (when α = 0 we have the 

Gini index) and K is a scale factor. In the Gini version K is the inverse of mean income 

giving it its relative flavour thus the effects on this index wil be much the same as for the 

Gini coefficient.  

 



With respect to relative poverty measures should a “civil society” protect its poor in 

maintaining its “relative status”, for example by defining a poverty cut off such that the 

poorest 20% of society were considered the poor, then the cut off would exhibit a lower 

growth rate than mean income. One may thus engage propositions such as those mooted 

in Freidman (2005) by considering the dynamics of the poverty cut – off relative to the 

mean income. 

 

To somewhat muddy the waters Kalecki (1945) generated a lognormal size distribution 

from a stationary process of the form: 

                                1 1ln ln ( ( ) ln ) [3]t t t t tx x f w x eλ− −− = − +  

With 0 < λ < 1 this corresponds to a partial adjustment model to some equilibrium f(wt), 

(which in the context of incomes would be a “fundamentals” notion of long run log 

incomes). This is essentially a reversion to mean type of process where the mean itself 

could be a description of the average income level at time t (which incidentally may well 

be trending through time) but here the variance of the process (and concomitantly 

absolute inequality) stays constant over time. For et ~ N(0,σ2) in the long run 

ln(xt)~N(f(wt), σ2 /λ2). There are several observations to be made. 

 

Firstly the pure integrated process story associated with Gibrat’s law is not even a 

necessary condition for lognormality of the income size distribution, such distributions 

can be obtained from quite different, more generally integrated or non-integrated 

processes. Secondly stationary processes are in some sense memory-less in that the 

impacts of the initial value of incomes f(w0) and the associated shock e0 disappear after a 



sufficient lapse of time. On the other hand integrated processes never forget, the marginal 

impact of the initial size and subsequent shocks remain the same throughout time. Thirdly 

if f(wt) were itself an integrated process (if the w’s were integrated of order one and f(w) 

was homogenous of degree one for example)  [3] would correspond to an error correction 

model and incomes would still present as an integrated process in its own right with x and 

the function of the w’s being co-integrated with a co-integration factor of 1. This is the 

key to distinguishing between “Kalecki’s law” and Gibrat’s law, the cross-sectional 

distribution of the former only evolves over time in terms of its mean f(wt), its variance 

(written as σ2 /λ2) is time independent, whereas the cross distribution of the latter evolves 

in terms of both its mean and its variance overtime. The distinction has major 

implications for the progress of poverty and inequality. 

 

Clearly for a needs based (absolute) poverty line (say x*) the poverty rate will depend 

upon the time profile of f(wT) in the limit (i.e. limT->∞ Φ([(x*-f(wT)))/ (σ/λ)]) for positive 

growth it will be 0 and for negative growth it will be 1. For a relative poverty line, 0.6 of 

median income for example (note median income will be exp(f(wT)) and the poverty cut-

off will be .6 of that value), the poverty rate would be Φ([ln(0.6)/(σ/λ)]) which obviously 

remains constant over time. Inequality measures that are not mean income normalized 

will remain constant over time location normalized inequality measures will diminish 

with positive growth and diminish with negative growth since the Gini coefficient may be 

written as: 

                                          2F(exp(ln(x0)+Tμ),σ2 /λ2) – 1 

which will be 0 for negative growth, 1 for positive growth and constant for zero growth.  



 

Where does Pareto’s Law fit in? 

 

Suppose the income process is governed by [1] but now, should xt fall below x* which is 

a lower reflective boundary (such as an enforced poverty frontier for example a mandated 

social security benefit payment), then the process is modified to [1] plus: 

 

                                     xt = x*  if (1+δt-1)xt-1 <   x*    [1a] 

 

Gibrat’s Law will no longer hold, in fact after a sufficient period of time the size 

distribution of x would be Pareto (F(x) = 1–(x*/x)θ) with a shape coefficient θ = 1. In the 

literature on city size distributions this distribution is known as Zipf’s Law and in that 

literature Gabaix (1999) showed that Zipf’s law follows from a Gibrat consistent 

stochastic process (essentially a random walk) that is subject to a lower reflective 

boundary. In fact this phenomena, that a random walk with drift that is subject to a lower 

reflective boundary generates a Pareto distributed variable, has been known in the 

statistical process literature for some time (see for example Harrison (1987))10. In the 

present context this has many implications, the Pareto distribution has a very different 

shape from the log normal and it would be constant through time, all relative poverty 

measures, absolute poverty measures and inequality measures11 would be constants over 

                                                 
10 Champernowne (1953) discovered as much in the context of income size distributions. 
11 The Gini for a Pareto distribution is 1/(2θ-1) which is 1 when the shape coefficient is one because in this 
case the Pareto distribution has no moments or an infinite mean. 



time so that Pareto based predictions provide very powerful tests of the effectiveness of a 

mandated social security safety net.  

 

These stochastic theories also have something to say about societal mobility. From a 

somewhat different perspective than is usual, mobility in a society may be construed as 

its agents opportunity for changing rank. Suppose that opportunity is reflected in the 

chance that two agents change places and consider two independently sampled agents xit 

= xit-1 + eit and xjt = xjt-1 + ejt, so that E(eit - ejt) = 0 and V(eit - ejt) = 2σ2. For the Gibrat 

model the probability that agents switch their relative ranks in period t is given by: 

                            P(xit > xjt | xit-1 <  xjt-1)  =  P(eit - ejt > xjt-1 -  xit-1)  

By noting that the Gini coefficient is one half the relative mean difference between agents 

and that, for the log normal distribution, this may be written as twice the integral of a 

standard normal curve over the interval [0, (√(V(x)/2))], the average distance between 

two agents = 4E(x)(Φ(√(V(x)/2))-Φ(0)) and this probability may be written as: 

=  P((eit - ejt)/(σ/√2) > 4exp(ln(x0)+T(μ+0.5σ2))(Φ(T0.5σ/√2)-Φ(0))/(σ/√2)) 

=  P(Z > 4exp(ln(x0)+T(μ+0.5σ2))(Φ(T0.5σ/√2)-Φ(0))/(σ/√2)) 

The point is this probability diminishes over time (the intuition being that under constant 

population size the agents are growing further and further apart on average) so that 

mobility diminishes over time. 

 

For Kalecki’s law note that the independently sampled agents processes may be written 

as xit = f(wt) + (1-λ)xit-1 + eit and xjt = f(wt) + (1-λ)xjt-1 + ejt, so that E(eit - ejt) = 0 and V(eit 

- ejt) = 2σ2, with the inequality being written as: 



 

                    P(xit > xjt | xit-1 <  xjt-1)  =  P((eit - ejt)/(1-λ) > xjt-1 -  xit-1)  

 

In this case using the Gini relationship to the population mean and the mean difference 

this probability may be written as: 

               P((1-λ)(eit - ejt)/(σ/√2)  > (1-λ)4exp(f(wt))(Φ(σ/(λ√2))-Φ(0))/(σ/√2)) 

                   =  P(Z > (1-λ)4exp(f(wt)) (Φ(σ/((λ√2))-Φ(0))/(σ/√2)) 

so that as long as the fundamentals process f(wt) is constant then so will mobility be in 

that society. A similar result may be established for Pareto’s law. Table 1 summarizes all 

these results: 

Table 1. 

Type of Stochastic Process Wellbeing 
Type Gibrat’s Law Kalecki’s Law Pareto’s Law 
Absolute  
Poverty 

Increasing or 
decreasing dependent 
upon growth rate 

Increasing or 
decreasing dependent 
upon growth rate 

Constant if the 
reflective boundary is 
at the poverty cut-off. 

Relative  
Poverty 

Increasing with time Constant Constant if the 
reflective boundary is 
at the poverty cut-off. 

Non-
Normalized 
Inequality 

Increasing Constant Constant 

Location 
Normalized 
Inequality and 
Polarization 

Decreasing with +ve 
growth rate 

Decreasing Constant 

Mobility Diminishing Constant (if the 
fundamentals are 
constant) 

Constant (if the 
fundamentals are 
constant) 

 



Mixture Distributions and Trickle Down Theories (Anderson (1964)) 

 

The popularity of the “Rising Tide Raises All Boats” argument for the alleviation of 

poverty through growth (it is an irresistible temptation to comment that this is only true 

when all of the boats have no holes in them) has already been alluded to. For basic needs 

based definitions of the poverty cut-off this is no doubt true though it is not true if 

relative poverty is the measurement criterion. A slightly more sophisticated development 

of this argument is the “Trickle Down” effect (Anderson (1964)). The idea is that it is 

necessary for economic growth to initially benefit the higher income groups (because 

they make the marginal product of labour enhancing investments that increased the 

incomes of the poor) but it transits downward to the lower income groups over time. 

However this idea is predicated on the notion of economically different groups in society 

(with different investment behaviours for example) and it is not unreasonable to presume 

that different stochastic processes govern their respective behaviours. In effect one is 

“modeling” different groups, one of which would be the poor group, which will perhaps 

calls for a different approach to measuring poverty and inequality. The poor are identified 

by the extent to which their income processes are noticeably different from the income 

processes of other groups in society rather than because their income is less than some 

pre-specified boundary. It follows that some identifiably “rich” individuals may have, at 

least temporarily, incomes that are lower than some of the members in the poor group.  

 

To explore the implications of this structure imagine the societal income process to be 

that of a mixture of K normal distributions corresponding to the K income classes so that: 



 

                    2 2
0(ln( )) ((ln( ) ( 0.5 )), ) 1,..,k kT k k k kf x N x T T kμ σ σ= + + = K

.

 

 

The classes are distinguished by their initial conditions in the sense that ln(xk0)>ln(xj0) for 

all j < k where j, k = 1,..,K and the proportion of the population in each class is given by 

wk. Note that: 

 

                        
0

( ( ) ( )) 0 0
x

i jf z f z dz x and i j− ≤ ∀ >∫ >
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The class k=1 may be thought of as “the Permanently or Chronically Poor” so that CP, 

the Chronic Poverty rate is w1. In this form there will be chronically poor agents whose 

incomes will be, at least temporarily, higher than some non-poor agents since the poor 

and non-poor distributions will overlap. The extent to which the Permanently Poor 

distribution overlaps the distribution of the other classes those members of those classes 

may be considered the transitorily poor, so that the Transitorily Poor rate TP may be 

written as: 

                                           10
2

( )
K

k k
k

TP w f x dx
∞

=
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For momentary convenience assume μk = μ and σk = σ for all k (i.e. the various classes are 

distinguished by their initial conditions alone). So here the poor are class k=1 and the rich 

are class k=K. Assume now that at period T1 society moves to a new higher growth rate 



μ* > μ, if all classes move together the income groups would have size distributions of 

the form: 

                                               

        2 2
0 1 1ln( ) ((ln( ) ( *) ( * 0.5 )), ) 1,.., ,kT kx N x T T T k K and T Tμ μ μ σ σ+ − + + = >∼  

 

All classes retain their mean differences over time, the extent to which class A first order 

dominates class B remains constant and there is no change in the degree of polarization 

between the classes. However if in the first period only the highest income group (K) 

moves, j periods later only the next highest group (K-1) moves, j periods later only the 

next highest group (K-2) moves etc… Then the new societal income process will be the 

same mixture of K normal distributions corresponding to the K income classes but with: 

                                

2 2
0 1 1ln( ) ((ln( ) ( )( *) ( * 0.5 )), ) 1,.., ,kT kx N x T jK jk T T k K and T T Kμ μ μ σ σ+ + − − + + = > +∼

 

There are several observations to make. The distribution of average log incomes of the 

classes will be more widely spread initially and these initial differences will only be 

dissipated asymptotically (If the growth rates differ between the classes with the 

differences increasing with income class the differences will not dissipate 

asymptotically). In the short term the income size distribution of high income groups will 

more strongly first order dominate that of lower income groups increasing the 

polarization or lack of identification between poor and rich groups and the effect will be 

larger the longer is the lag in the trickle down effect (j). In effect there will be greater 

absolute inequality in the short run. When poverty lines are defined relative to an income 

quantile this will increase the probabilities of both transient and chronic poverty for the 



lower income classes. All of this is predicated on all income groups differing only in their 

initial incomes, should there be heterogeneity in growth rates and variances as well as 

starting incomes then anything is possible. 

 

It should be said that in this model structure so-called poverty cutoffs are superfluous 

since the poverty group is better defined as those agents governed by the process that is 

dominated by all other processes. Issues concerning measuring the plight of the poor 

would centre upon w1, the mixture coefficient for the poor group, and measuring the 

differences between the poor group sub-distribution and the other distributions in the 

mixture. Inequality can also be measured in terms of these concepts or it can be measured 

in terms of the general variability characteristics (variance or coefficient of variation for 

example) of the overall mixture distribution. Similarly issues concerned with addressing 

the plight of the poor may then be seen in terms of influencing the weights attached to 

each class as well as changing the nature of the process that governs the poor group 

outcomes. In this context income mobility (Shorrocks (1976)) can be construed as the 

ability to transit between stochastic processes that govern income classes. The vector of 

weights in period t is given by w(t) and generational transitions take the form w(t) = 

Tw(t-1) where T - ||p(i|j)|| is a matrix of conditional probabilities of transiting to income 

group i given the agent was in group j where i, j = 1,.., K. T ( = JD-1) is a joint density 

matrix J post multiplied by an inverted diagonal matrix of marginal probabilities D-1. In 

effect the policy makers have several instruments to work with, they  can work with the 

parameters of the poor process (the various growth rates and variability’s in the poor 



processes), or they can work with T, getting agents to transit from poor processes to less 

poor processes in other words trying to move J towards an upper triangular matrix.  

 

The Experience of Africa 1985-2005 

 

To illustrate these issues data on per capita GDP for 47 African countries12 together with 

their populations were drawn from the World Bank African Development Indicators 

CD-ROM for the years 1985, 1990, 1995, 2000, 2005 were used. An issue immediately 

arises as to whether the raw data or population weighted data should be employed. At 

the statistical level the parameters of interest will be estimated as though the data were 

an independent random sample and the properties of those estimators predicated upon 

that assumption. If the population of interest is that of Africa then this is not so and 

sample weighting is necessary to adjust for the under sampling of highly populated 

countries and over sampling of sparsely populated countries. A similar argument 

prevails at the economic theoretic level if some sort of representative agent model is 

presumed and the wellbeing of all Africans is of interest.  For the purposes of 

comparison, and to highlight the substantive differences the distinction makes both will 

be reported here. 

 

                                                 
12 The countries in the sample were: Algeria, Angola, Benin, Botswana, Burkina Faso, 
Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo, 
Dem. Rep., Congo, Rep., Cote d'Ivoire, Egypt, Arab Rep., Equatorial Guinea, Ethiopia, 
Gabon, Gambia, The, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, 
Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia, 
Niger, Nigeria, Rwanda, Senegal,  Seychelles, Sierra Leone, South Africa, Sudan, 
Swaziland, Togo, Tunisia, Uganda, Zambia, Zimbabwe 
 



Table 1 reports summary statistics (means and variances) for the sample years and 

clearly indicates the implicit over sampling of higher income nations in the un-weighted 

estimates. Notice the un-weighted estimates record a growth of 14% over the period 

whereas the weighted results report less than 8% growth, a substantial difference. 

 Table 1. ln(GDP per capita)    

 Un-weighted Weighted 
Year Means Variances Means Variances 
1985 
1990 
1995 
2000 
2005 

6.1820771              
6.1784034    
6.1113916          
6.2174786          
6.3223021         

0.92778351  
0.98733961  
1.1495402  
1.2386242  
1.3481553 

6.0692785             
6.0827742              
6.0053685              
6.0488727        
6.1461927         

0.90744347  
0.88023763  
0.95556079  
1.0276219  
1.0300315 

 
Diagrams 2 and 3 present the beginning of period and end of period size distributions13 

of ln(GDP per capita) again in un-weighted and weighted form. The shifts in location 

and spread discerned in Table 1 can readily be perceived in these diagrams. 

 

                                                 
13 These are essentially Epetchanikov kernel estimates of the respective size distributions. 



  
 

 
 
Pearson Goodness of Fit Tests of the hypothesis that these distributions are Log Normal 



Or Pareto, performed for both weighted and unweighted samples, are reported in Table 

2. At the 1% critical value there is a preponderance of evidence favouring the Log 

Normal formulation (it only gets rejected twice in the un-weighted sample and once in 

the weighted sample and pretty marginally so at that) whereas the Pareto gets solidly 

rejected in every instance. This is slightly surprising since, to the eye, diagrams 1 and 2 

suggest mixtures of 2 normals (one large poor group and a much smaller rich group), 

but the evidence does not appear strong enough in the data to really reject pure 

normality. Indeed the joint test of normality over the 5 observation periods does not 

reject normality at the 1% level for the weighted sample. Interestingly enough the 

populations are clearly log – normally distributed so that it may be inferred that gdp’s 

are themselves log- normally distributed since the difference or sum of two normally 

distributed variables is also normally distributed.  

Table 2. 
Ln GNP per capita 
Un-weighted Normal χ2(4), [P(Upper Tail)] Pareto χ2(4), [P(Upper Tail)] 
1985 
1990 
1995 
2000 
2005 
All years χ2(20) 

      12.320748      [0.015118869]                  599.37137   [2.1196982e-128]  
      18.172132     [0.0011420720]                 648.71719   [4.4178901e-139]  
        7.2879022       [0.12143386]                 254.88561   [5.7677072e-054]  
      10.035066      [0.039841126]                  413.23135   [3.8477939e-088]  
      19.439149    [0.00064419880]                418.01949   [3.5518925e-089] 
      67.254997    [5.0783604e-007]             2334.2250     [0.00000000]  

Weighted Normal χ2(4), [P(Upper Tail)] Pareto χ2(4), [P(Upper Tail)] 
1985 
1990 
1995 
2000 
2005 
All years χ2(20) 

         5.4247526       [0.24642339]                 850.67992   [8.0715931e-183]  
       10.882507      [0.027916699]                  890.92447   [1.5416785e-191]  
         3.7072456       [0.44707297]                 389.07173   [6.3881404e-083]  
         2.8078575       [0.59047714]                 869.74574   [5.9768551e-187]  
       13.992590     [0.0073187433]                 935.78289   [2.9403608e-201] 
       36.814952      [0.012314284]                3936.2047       [0.00000000] 

Ln Population 
Unweighted Normal χ2(4), [P(Upper Tail)] Pareto χ2(4), [P(Upper Tail)] 
1985 
1990 
1995 
2000 
2005 

       2.6979621       0.60957127                     194.39270   6.0291654e-041  
       3.4815355       0.48069145                     193.84403   7.9101293e-041  
       2.5274974       0.63971883                     308.86671   1.3243132e-065  
       2.9924681       0.55908664                     250.28037   5.6645137e-053  
       3.7924813       0.43481828                     245.77727   5.2865977e-052 



 
Given the joint normality of the 5 observation periods is accepted, the restrictions 

implied by [2] can be examined. Under the heroic assumption that the 5 year periods are 

independent the Likelihood for the sample may be written as: 
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and the null and alternative hypotheses may be written as: 

 

Ho: f(xT+i)~N((ln(xo)+(θ+i)μ+0.5σ2),(θ+i)σ2) versus H1: f(xT+i)~N(μi,σi2) for i=0, 1, …,4; 

 
Table 3. Estimates and Tests of Restrictions 
 Un-weighted Sample Weighted Sample 
Ln(xo) 
θ (# of five year intervals) 
μ 
σ2

Χ2(6) 
P(>χ2(6)) 

5.7827258 
9.9694699 
-0.012055759 
0.094224026 
0.19646781      
0.99985320 

4.0511799 
103.01656 
0.014659728 
0.0091376682  
0.78654360     
0.99242963 

     
 

Here ln(x0) and θ are parameters thus implying 6 restrictions on the alternative. Table 3 

reports the estimates of ln(x0), θ, μ and σ2 for the weighted and un-weighted samples, 

together with the test of the restrictions. In both cases the restrictions are not rejected 

implying that, conditional on the underlying normality of the distributions, Gibrat’s law 

is an adequate description of the data.  

 

To examine what these different approaches imply for poverty measurement headcount 

measures of both the absolute and relative type are considered, the former based upon 



the popular dollar and 2 dollar a day cut offs (which for our sample become 5.8749307        

Table 4. 

Year Year by year normality Under Gibrats Law 
Absolute (1 and 2 dollar a day cut-off) Un-weighted poverty rate estimates 
1985 
1990 
1995 
2000 
2005 

      0.37491020       0.65569496  
      0.38002613       0.65253180  
      0.41272336       0.66492689  
      0.37912189       0.62362764  
      0.35000783       0.58381961 

      0.39532698       0.67353927  
      0.38684395       0.65329716  
      0.37893064       0.63472718  
      0.37150161       0.61758498  
      0.36449051       0.60167400   

Absolute (1 and 2 dollar a day cut-off) Weighted poverty rate estimates 
1985 
1990 
1995 
2000 
2005 

      0.41916948       0.69972853  
      0.41233910       0.69751462  
      0.44692413       0.71757254  
      0.43188059       0.69573737  
      0.39462744       0.66118137  

      0.43567992       0.70969353  
      0.42823308       0.70198016  
      0.42088097       0.69425410  
      0.41362387       0.68651911  
      0.40646200       0.67877884  

Relative (50% and 60% median cut-off) Un-weighted Estimates 
1985 
1990 
1995 
2000 
2005 

      0.23588005       0.29794024  
      0.24272087       0.30359444  
      0.25898028       0.31687954  
      0.26670464       0.32312080  
      0.27526233       0.32998688 

      0.23725235       0.29907775  
      0.24768529       0.30767299  
      0.25697797       0.31525458  
      0.26532206       0.32200680  
      0.27286739       0.32807031  

Relative (50% and 60% median cut-off) Weighted Estimates 
1985 
1990 
1995 
2000 
2005 

      0.23341745       0.29589478  
      0.23001494       0.29305958  
      0.23913688       0.30063716  
      0.24706083       0.30716108  
      0.24731361       0.30736834 

      0.23748342       0.29926912  
      0.23854875       0.30015083  
      0.23960137       0.30102105  
      0.24064154       0.30188005  
      0.24166951       0.30272805  

 
6.5680779 respectively) and the latter based upon the also popular 50% and 60% of the 

median cutoffs.  As expected in general absolute poverty measures decline with 

economic growth and relative poverty measures decline. 

As for mobility the transitions can be evaluated for each of the five year intervals via the 

distance of the joint density matrix from that of a diagonal. The statistic 

  

                                          ∑ij min(pij,diag(pi.)). 

 



provides an index of immobility, where pij, is the probability of a country being in 

category i in period t and in category j in period t+1, diag(pi.), a square matrix with the 

vector of probabilities of being in category i in period t on the on diagonal corresponds to 

complete immobility (Anderson and Leo (2008) establish that this is asymptotically 

normal). Splitting this sample into 5 equal sized categories the four 5 year transitions 

generate statistics (standard errors) 0.87234 (0.04868) for the first three transitions and 

0.82979 (0.05482) for the fourth. This corresponds to very high immobility consistent 

with Gibrats law though it was expected to be increasing rather than staying constant. 

 

The African Distribution as a mixture of normals. 

 

As observed earlier the diagrams are very suggestive of a mixture of normals one largish 

poor group and one smaller rich group and it is of interest to see the consequences of 

modelling the processes under this structure. First it is appropriate to examine the 

degree of mobility within the distribution over time. Table 5 reports the 20 year 

transition probability matrix and indicates that in essence there appears to be very little 

mobility over the period between 5 rank groups (the five rank cells were 1-10 11-19 20-28 

29-37 38-47). Essentially 5 countries moved up from cell 1 to cell 2 and 4 moved down 

from cell 2 to cell 1, 1 moved up from cell 2 to cell 3, two moved up from cell 3 to cell 4 

and one moved down from cell 4 to cell 3. The only change of more than one cell was 

Liberia who dropped from cell 4 to cell 1 over the period and one other original cell 4  

Member moved up to cell 5 and one cell 5 member moved down to cell 4. In sum there 

appears to be some deal of mobility at the lowest end of the spectrum but very little 

elsewhere, certainly it is reasonable to assume that memberships of the large poor and 



Table 5. 20 year Transition Probability Matrix 

1985 Cell                                                           2005 Cell 
             1-10                11-19                  20-28                 29-37                 38-47 

1-10  
11-19  
20-28 
29-37  
38-47 

       0.10638298       0.10638298       0.00000000       0.00000000       0.00000000  
     0.085106383      0.085106383      0.021276596       0.00000000       0.00000000  
      0.00000000       0.00000000       0.14893617      0.042553191       0.00000000  
     0.021276596       0.00000000      0.021276596       0.12765957      0.021276596  
      0.00000000       0.00000000       0.00000000      0.021276596       0.19148936 

Immobility Index      0.65957447      Standard Error  0.069118460  
 
small rich groups apparent in diagrams 1 and 2 (and hence the mixture coefficients) 

appear to be relatively constant.  

 

Techniques for estimating mixtures of normals are available (see for example Johnson 

Kotz and Balakrishnan (1994)) but tend to be complex and depend upon fairly large 

numbers of observations. Here, since there are a limited number of observations, an ad 

hoc method is used for simplicity and convenience, but it turns out to be quite successful 

in terms of replicating the empirical distribution . Given the evidence is that the 

membership of the groups is very stable over the period, countries are allocated into rich 

and poor groups in the following fashion. Visual inspection of the 2005 distribution in 

diagram 1 suggests that the modal values of the poor and rich groups are approximately 

6 and 7 respectively. Observations below 6 can be almost all be attributed to the poor 

group and similarly observations above 7 can be similarly attributed to the rich group 

and the corresponding observations were allocated accordingly. Given the symmetry of 

the underlying log - normals around their respective modes, the areas under the curve 

corresponding to these two regions reflects the relative size and hence weights wr 

(20/47) and wp (27/47) of the rich and poor groups. The observations between 6 and 7 

were allocated randomly according to these weights to the rich and poor groups. After 



an initial fit of the individual poor and rich country distributions a below median poor 

country was switched with an above median rich country14 which improved the fit so 

that the following two rich and poor subgroups were established. 

 

Disposition of Poor and Rich Countries.  
Poor Group Rich Group 
Benin, Burkina Faso, Burundi, Cape Verde, 
Central African Republic, Chad, 
Democratic republic of the Congo, Cote 
d'Ivoire, Ethiopia, The Gambia, Ghana, 
Guinea-Bissau, Kenya, Liberia, 
Madagascar, Malawi, Mali, Mauritania, 
Mozambique, Niger, Rwanda, 
Sierra Leone, Sudan, Togo, Uganda, 
Zambia, Zimbabwe. 

Algeria, Angola, Botswana, Cameroon, 
Comoros, Republic of the Congo, Egypt,  
Equatorial Guinea, Guinea, Lesotho, 
Mauritius, Morocco, Namibia, Nigeria, 
Senegal, Seychelles, South Africa, 
Swaziland, Tunisia. 

 

 

Having partitioned the sample in this fashion estimation of the mixture distribution is 

quite simple in both unweighted and population weighted modes. Tables 6 and 7 and 

diagrams 3 and 4 report the results. In both cases the fits are extremely good and 

correspond to a more than adequate description of the data. The poor group has enjoyed 

zero economic growth and the rich group has enjoyed a steady one percent annual  

Table 6. A Mixture of 2 Log Normals (Poor group and Rich group). 
         Poor          Rich 

        Mean        Mean 
      Poor          Rich 
   Variance   Variance     

χ2(4)       [P(Upper Tail)] 

1985 
1990 
1995 
2000 
2005 

       5.5869        6.9856  
       5.5425        7.0369  
       5.4325        7.0278  
       5.5006        7.1852  
       5.5680        7.3406 

      0.2691       0.6950  
      0.2350       0.7183  
      0.3461       0.7705  
      0.3258       0.8370  
      0.3219       0.9234 

3.6312             0.4582  
5.9701             0.2014  
0.2800             0.9911  
0.4526             0.9780  
1.9169             0.7510 

 

                                                 
14 Relative to a normal distribution the initial poor country distribution appeared attenuated in the upper tail 
and the rich country distribution appeared attenuated in the lower tail.  



 
 
Table 7. Sample Weighted Mixtures 
 
         Poor          Rich 

        Mean        Mean 
      Poor          Rich 
   Variance   Variance     

Χ2(4)       [P(Upper Tail)] 

1985 
1990 
1995 
2000 
2005 

       5.4115       6.7584  
       5.4146       6.7975 
       5.3109       6.7532   
       5.3423       6.8289  
       5.4340       6.9527 

     0.6262       1.6988 
     0.5422       1.4666 
     0.5743       1.4099 
     0.5671       1.2868 
     0.4943       1.1327 

  3.0473      0.5499  
  1.6053      0.8078  
  4.3005      0.3669  
  8.2530      0.0827  
  5.9860      0.2002 

 



 
growth rate over the period. Differences between the un-weighted and weighted cases 

emerge when gdp per capita levels and variabilities are concerned. In the unweighted 

case income levels are generally higher and variances are lower but increasing over time 

whereas in the weighted case incomes are lower and variances are higher but 

diminishing over time. The restrictions implied by Gibrat’s law for the separate poor 

and rich groups in both weighted and unweighted samples are rejected in all cases 

(frequently resulting in nonsense estimates such as negative variances and negative time 

parameters) though basic log normality is not rejected in any case suggesting that 

Kalecki’s Law is the best description of the data for the individual groups. Poor and rich 

groups appear to be moving apart, Table 8 reports a trapezoidal measure of bi-

polarization (Anderson et al (2008) Anderson et al (2009a)) for both weighted and un-

weighted samples illustrating the point. This may be interpreted as the poor becoming 

relatively poorer 



Table 8. Bi-Polarization Index = 0.5(fp(xpmode)+ fr(xrmode)) (xrmode- xpmode) 
Year Unweighted Sample Weighted Sample 
1985  
1990  
1995  
2000  
2005 

      0.87249993    (0.027374440) 
      0.96662956    (0.028177909) 
      0.90342925    (0.028177909) 
      0.95600414    (0.030424419)   
      0.99116013    (0.032321510) 

       0.54564641    (0.046480295) 
       0.60239981    (0.042441864) 
       0.62192838    (0.041522365) 
       0.65517946    (0.039377304) 
       0.71551955    (0.036396440) 

 

In this circumstance the issue of population weighting makes a big difference, with no 

population weighting the poor group are becoming absolutely poorer and exhibiting 

diminishing within group association, the source of polarization is the increased 

alienation or distance between the two groups. With population weighting they are not 

Table 9. Polarization Tests* 

Unweighted Sample 
Comparison 
Years 

              Difference             (“t”test)                 {P(T<t)} 

1990-1985 
1995-1985 
1995-1990 
2000-1985 
2000-1990 
2000-1995 
2005-1985 
2005-1990 
2005-1995 
2005-2000 

           0.094129622        (1.6144785)            {0.94678816}  
           0.030929320        (0.53083245)          {0.70223256}  
          -0.063200302        (-1.0761795)          {0.14092349}  
           0.083504205        (1.4159301)            {0.92160202}  
            -0.010625417      (-0.1787883)          {0.42905197}  
             0.052574885       (0.88520127)         {0.81197595}  
              0.11866019        (1.9819244)           {0.97625615}  
            0.024530571        (0.40667537)         {0.65787679}  
             0.087730873       (1.4553093)           {0.92720818}  
             0.035155988       (0.57662100)         {0.71790225} 

Weighted Sample 
Comparison 
Years 

              Difference             (“t”test)                 {P(T<t)} 

1990-1985 
1995-1985 
1995-1990 
2000-1985 
2000-1990 
2000-1995 
2005-1985 
2005-1990 
2005-1995 
2005-2000 

           0.056753398        (0.79846297)          {0.78769906}  
           0.076281972        (1.0823101)            {0.86044263}  
           0.019528574        (0.28349312)          {0.61160057}  
           0.10953305          (1.5752869)            {0.94240488}  
           0.052779657        (0.77714642)          {0.78146381}  
           0.033251083        (0.49415344)          {0.68940109}  
           0.16987315          (2.4790814)            {0.99341394}  
           0.11311975          (1.6913645)            {0.95461639}  
           0.093591173        (1.4127973)            {0.92114233}  
           0.060340090        (0.92496252)          {0.82250730} 

* Tests are based on the trapezoid measure being asymptotically normally distributed 
with a variance ≈ (f(x1m)+f(x2m))2(f(x1m)/[f’’(x1m)]2+f(x2m)/[f’’(x2m)]2)||K’||22 where xmj j = 



1,2 are the modes of the respective distributions, where f() is the normal and K is the 
Gaussian kernel (Anderson, Linton and Wang (2009)). 
 

becoming absolutely poorer but are exhibiting increased within group association, there 

is a small amount of between group alienation but a substantial increase in within group 

association. The only significant changes in polarization in both comparison types were 

increases in polarization over time. In both cases the poor and rich groups are following 

distinct stochastic processes and there is no sense in which “the rising tide is raising all 

boats” or improvements in the well being of the rich African countries are trickling 

down to the poor countries. 

 

Conclusions. 

 

It is not at all clear that boats and tides aphorisms and trickle down theories apply either 

in theory or practice when the well-being indicator is well described by some sort of 

stochastic process, especially when the process is one that is frequently observed in 

practice. It really depends on the nature of poverty or inequality being considered as 

well as the precise nature of the stochastic process(es) involved. Stochastic processes that 

are non-stationary engender distributions whose dispersion (absolute inequality) 

increases over time, whether or not relative inequality increases depends upon the 

nature of the growth process. Similar statements can be made about poverty, but here 

the nature of the growth process affects both absolute and relative poverty. What is clear 

is that it is not unequivocally the case that rising tides raise all boats or that wellbeing 

unequivocally trickles down even in the simplest of circumstances. This is even more so 



the case when the progress of the poor and the non-poor are described by different 

stochastic processes.   

 

In the case of Africa when GNP per capita is modelled over the recent two decades as a 

singular stochastic process the prediction of Gibrat’s law appears to hold true regardless 

of whether the analysis is performed under a population weighting scheme or a non- 

weighted scheme in the sense that the distribution is log normal. Under this description 

absolute poverty is diminishing and relative poverty is increasing and absolute 

inequality is increasing and relative inequality is diminishing. Kernel estimates of the 

density indicated some evidence of bimodality suggesting a mixture of at least two 

distributions. When log GNP per capita is described by a mixture of two normals (which 

was not rejected by the data), one describing the poor country process and the other 

describing the rich country process, it is apparent that the two groups are polarizing, 

with the poor group in this sense becoming relatively poorer. In this circumstance the 

issue of population weighting made a big difference, with no population weighting the 

poor group are becoming absolutely poorer and exhibiting diminishing within group 

association, with population weighting they are not becoming absolutely poorer but are 

exhibiting increased within group association. 
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