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Abstract

This paper considers the problem of implementing semiparametric ex-
tremum estimators of a generalized regression model with an unknown link
function. The class of estimator under consideration includes as special
cases the semiparametric least-squares estimator of Ichimura (1993) as well
as the semiparametric quasi-likelihood estimator of Klein and Spady (1993).
In general, it is assumed to involve the computation of a nonparametric ker-
nel estimate of the link function that appears in place of the true, but un-
known, link function in the appropriate location in a smooth criterion func-
tion. The specific question considered in this paper concerns the practical
selection of the degree of smoothing to be used in computing the nonpara-
metric regression estimate. This paper proposes a method for selecting the
smoothing parameter via resampling. The particular method suggested here
involves using a resample of smaller size than the original sample. Specific
guidance on selecting the resample size is given, and simulation evidence
is presented to illustrate the utility of this method for samples of moderate
size.

JEL Classification: C14
KEYWORDS: Bandwidth selection, semiparametric, single-index model, boot-

strap, m-out-of-n bootstrap, kernel smoothing
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1 Introduction
This paper is concerned with the general issue of smoothing parameter selec-
tion for nonparametric estimators that are used as components of a semiparamet-
ric estimator. In particular, the focus is on the implementation of members of a
class of semiparametric M -estimator involving both the estimation of an infinite-
dimensional nuisance parameter by some method of smoothing and the computa-
tion of an estimate of a finite-dimensional parameter of interest by minimization
of a smooth objective function. It is assumed that the nonparametric estimator of
the infinite-dimensional nuisance parameter appears within the objective function
in place of the true, but unknown, infinite-dimensional nuisance parameter. Exam-
ples of the many semiparametric estimators that can be included in this framework
include the proposals of Robinson (1988); Powell et al. (1989); Ichimura (1993)
and Klein and Spady (1993).

The specific class of estimator considered in this paper is concerned with the
estimation of a conditional mean possessing a single-index structure in the con-
ditioning variables that enter the regression via an unknown link function. An
obvious, though perhaps uninteresting, example of a single-index model belong-
ing to this class is the linear regression model. Other cases include models in-
volving dependent variables characterized by censoring and sample selectivity. In
general, the parameter of interest in these cases is naturally the vector of index
coefficients, while the link function is treated as an infinite-dimensional nuisance
parameter. Ignorance of the link function is assumed in this paper to be accom-
modated using a nonparametric kernel regression method of the Nadaraya-Watson
type. The vector of index coefficients is estimated by means of an explicit opti-
mization procedure, as in Ichimura (1993) or Klein and Spady (1993). The first-
order asymptotic distribution theory for semiparametric estimators of this class
has been described by Andrews (1994), Newey (1994) and Sherman (1994).

The theory developed in this paper is largely concerned with the higher-order
asymptotic properties of the particular class of semiparametric M -estimator under
consideration. The reason for this is that the asymptotic distribution of the nor-
malized estimator does not actually depend on the bandwidth used to construct the
kernel regression estimates of the link function. Asymptotic approaches to band-
width selection in this setting will therefore depend on the use of higher-order
distributional approximations.

This paper considers the specific context of semiparametric M -estimation
of a generalized regression model described above and proposes a new method
of selecting the bandwidth in applications. The approach taken in this paper
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was inspired by a suggestion of Horowitz (2009, §2.7) and involves the use of
resampling—with replacement—fewer observations than are present in the origi-
nal sample—the so-called “m-out-of-n” or “m-bootstrap”.1

The approach taken in this paper also complements existing methods based on
resampling as many observations as exist in the original sample coupled with an
explicit method of bias correction. The “manual” bias correction called for in this
case arises out of the inability of the full-sample bootstrap to generate adequate
approximations to the bias of the semiparametric estimator.2 The approach taken
in this paper avoids any need to engage in the sort of case-specific explicit bias
correction required by approaches involving the full-sample bootstrap.

The remainder of the paper proceeds as follows. The following section presents
the specific estimation problem considered in this paper and describes the class of
semiparametric M -estimator that is being assumed to handle it. The main re-
sults of this paper appear in Section 3. In particular, higher-order asymptotic
expansions of the estimator are derived under both the original and bootstrap sam-
pling schemes and are used to motivate the method of bandwidth selection pro-
posed here. Section 4 presents the results of simulation experiments evaluating
the small-sample performance of the method of bandwidth selection described in
Section 3. Section 5 concludes. Detailed proofs of the analytical results presented
in Section 3 appear in the appendix.

2 Setup
Suppose

{
Zi ≡ (X>

i , Yi)
> : i = 1, . . . , n

}
is a sample from a population of ran-

dom (d + 2)-variates Z ≡ (X>, Y )>, where X is a random (d + 1)-variate, and
where

E [Y |X] = G0

(
X>β(θ0)

)
(1)

for some unknown link function G0 : R→ R. As such, the data are drawn from a
single-index model, which naturally subsumes the class of multiple linear regres-
sion models, Tobit models and various econometric models of discrete choice as

1An analogous procedure involving resampling without replacement (i.e., “subsampling”)
should also be feasible in the context considered in this paper. In particular, resampling with-
out replacement is the actual mode of resampling suggested in Horowitz (2009, §2.7).

2See e.g., the approach taken by Nishiyama and Robinson (2005) for the case of semiparamet-
ric estimators of density-weighted average derivatives.
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special cases.3

In this paper it is explicitly assumed that the link function in (1) is unknown
and that one takes a semiparametric approach to estimating the parametric index.
In addition, it is assumed that the (d+1)-dimensional vector of index coefficients
in (1) has the form

β(θ0) ≡ (1,θ>0 )>

for identifiability.
Let K denote a univariate kernel function for density estimation and suppose

that {hn} is a sequence of non-negative real numbers with hn → 0 as n → ∞.
Define Khn ≡ K

(
t

hn

)
and set

ĝ(i)
n (u|θ) ≡

∑
j 6=i YjKhn

(
u−X>

j β(θ)
)

∑
j 6=i Khn

(
u−X>

j β(θ)
) ; (2)

f̂ (i)
n (u|θ) ≡ 1

(n− 1)hn

∑

j 6=i

Khn

(
u−X>

j β(θ)
)
. (3)

It follows that ĝ
(i)
n (u|θ) is a Nadaraya-Watson estimator estimating the condi-

tional mean
g0 (u|θ) ≡ E

[
Y |X>β(θ) = u

]
,

while f̂
(i)
n (u|θ) estimates the marginal density f0 (u|θ) of X>β(θ) evaluated at

the point X>β(θ) = u.
It is noted that there exist many possibilities for the semiparametric estimation

of the finite-dimensional parameter θ0 in the context of a generalized regression
model taking the form given in (1) above.4 This paper, however, is concerned with
estimates of θ0 having the form

θ̂n = arg min
θ∈Rd

Ŝn(θ), (4)

where

Ŝn(θ) ≡ 1

n

n∑
i=1

ρ
(
Yi, ĝ

(i)
n

(
X>

i β(θ)
∣∣ θ

))
τ̂ni(θ). (5)

3The estimation of the parametric index and infinite-dimensional link function has been the
subject of a fairly lengthy literature in econometrics and statistics more generally; a review is
available in Carroll et al. (1997).

4In particular, the method of average derivatives proposed by Härdle and Stoker (1989), the
sliced inverse regression method of Li (1991) and the semiparametric least squares procedure of
Ichimura (1993) are amongst the most popular.
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It follows that θ̂n is a semiparametric M -estimator, and subsumes a number of
estimators previously considered in the econometric literature as special cases.5

In the context of (5), the function ρ : R2 → R denotes a known criterion func-
tion possessing a sufficient order of diffentiability in the second argument, while
τ̂ni(θ) denotes a data-dependent trimming function used to guarantee the

√
n-

consistency of θ̂n in the face of observations involving values of f0

(
X>

i β(θ)
∣∣θ

)
close to zero.6 In particular, we set

τ̂ni ≡ τn

(
f̂ (i)

n

(
X>

i β(θ)
∣∣θ

))

for some smooth function τn(·) bounded on R with

τn(u) =

{
1 , u ≥ 2n−ζ

0 , u ≤ n−ζ

for a suitable positive constant ζ .7 The function τn(·) is taken to be monotonically
increasing and smooth on R and taking values in (0, 1) whenever n−ζ < u <
2n−ζ .8

3 Main Results
The asymptotic behaviour of the class of estimator considered in this paper is
derived under the following regularity conditions. In this connection, define

ρ̃(Zi,θ) ≡ ρ
(
Yi, g0

(
X>

i β(θ)
∣∣ θ

))
;

ρ(m)(s, t) ≡ ∂m

∂tm
ρ(s, t), m = 0, 1, 2, . . . .

Also let ∇m denote the mth-order partial derivative operator with respect to θ.
5In addition to the procedure of Ichimura (1993), the estimators of Robinson (1988), Powell et

al. (1989) and Klein and Spady (1993) can be categorized as belonging to this class.
6Technical discussions of various trimming procedures can be found in among others, Härdle

and Stoker (1989), Härdle et al. (1993), Ichimura (1993) and Sherman (1994).
7The precise restrictions on ζ are given in Assumption 6 below.
8An example would be

τn(u) =
exp

[(
2n−ζ − u

)−1
]

exp
[
(2n−ζ − u)−1

]
+ exp

[
(u− n−ζ)−1

] .
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Assumption 1 (Identifiability and rate of convergence). 1. θ0 is an interior point
of Θ, which is in turn a compact subset of Rd.

2. θ0 is the unique minimizer of E
[
ρ(Y, g0

(
X>β(θ)

∣∣θ
)]

over Θ.

3. θ̂n ∈ Θn, where

Θn ≡
{

θ : ‖θ − θ0‖ ≤ C0n
− 1

2

}

for some C0 > 0.

Assumption 2 (Data-generating process). 1. The data
{
(X>

i , Yi)
>}

constitute
a random sample from a population (X>, Y )> satisfying the single-index
structure given above in (1).

2. The density function f0 (u|θ) of X>β(θ) and its derivatives up to fourth
order are bounded on R for every θ ∈ Θn and for every θ ∈ Θn and for
every u ∈ Λn, where Θn is as given above in the statement of Assumption 1
and

Λn ≡
{
u : |u| < nc, f0 (u|θ) > n−2ζ , θ ∈ Θn

}
.

3. supu∈R,θ∈Θn
|f0 (u|θ)− f0 (u|θ0)| ≤ c ‖θ − θ0‖

4. E
[‖X‖6] < ∞.

5. E
[|Y |3] < ∞. for some constant c > 0.

Assumption 3 (Link function).

sup
u∈Λn,θ∈Θ

∣∣∣g(m)
0 (u|θ)

∣∣∣ < ∞

for m = 0, 1, 2, 3, 4, where Λn is as given above in the statement of Assumption 2.

Assumption 4 (Criterion function). 1.

E
[
ρ(1)

(
Y, g0

(
X>β(θ)

∣∣θ
))]

= 0.

2. For each z in the support of Z ≡ (X>, Y )>, all mixed partial derivatives
of ρ̃(z, ·) exist to third order on Θ.
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3.

E

[
sup
Θ
‖∇3ρ̃(Z,θ)‖

]
< ∞.

4.

E
[‖∇1ρ̃(Z,θ0)‖2] < ∞

and
E [‖∇2ρ̃(Z,θ0)‖] < ∞.

5. The matrix E [∇2ρ̃(Z,θ0)] is positive definite.

6. For m ∈ {0, 1, 2, 3},

E

[
sup
θ∈Θ

[
ρ(m)

(
Y, g0

(
X>β(θ)

∣∣ θ
))]2

]
< ∞.

Assumption 5 (Kernel function). K(s) is a symmetric density function possessing
finite moments of all orders.

Assumption 6 (Bandwidth and trimming function). 1. hn ∈
[
δn−

1
3 , δ−1n−

1
3

]

for some small δ ∈ (0, 1).

2. τn(u) is bounded and boundedly differentiable on R with

τn(u) =

{
1 , u > 2n−ζ ;
0 , u ≤ n−ζ .

3. ζ ∈ (
0, 2

15

)
.

It is noted that part 1 of Assumption 1 is standard. Part 2 of Assumption 1 as-
sumes identification, while part 3 assumes the existence of a root-n-consistent
estimator of θ0. The conditions of Assumption 2 allow for the design vector
X to have discrete components as long as X>β(θ) is continuous in a root-n-
neighbourhood of θ0. The moment requirement on X is the same as that imposed
by Xia et al. (2009), and is in fact weaker than the bounded support condition
for X imposed in Härdle et al. (1993). Part 5 of Assumption 2 is designed to
ensure the applicability of Xia et al. (2009, Lemma 6.1), which appears in the
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Appendix as Lemma 1. The differentiability condition on the link function in As-
sumption 3 helps ensure that the bias of ĝ

(i)
n (u|θ) as an estimator of g0 (u|θ) is

of order O(h2
n) uniformly for u ∈ Λn and θ ∈ Θ. The condition of Assump-

tion 3 may be relaxed to a requirement of a uniformly bounded second derivative
at the expense of additional analytical complications in the proofs and a smaller
bandwidth. Part 1 of Assumption 4 ensures that θ̂n has the same asymptotic distri-
bution as the minimizer of an idealized criterion function where g0

(
X>

i β(θ)
∣∣θ

)

appears in place of its estimate ĝ
(i)
n

(
X>

i β(θ)
∣∣θ

)
.9 Parts 2–5 of Assumption 4

are standard regularity conditions that ensure the existence of a Taylor expansion
of ρ̃(z, θ) about ρ̃(z,θ0). Part 6 of Assumption 6 is imposed primarily for conve-
nience in establishing the first-order asymptotic representation of

√
n

(
θ̂n − θ0

)

given below in Theorem 1.10 Assumption 5 allows for the use of the most popu-
lar smoothing kernels in empirical practice, including in particular the Gaussian
kernel. Part 1 of Assumption 6 presets the rate of decay of the bandwidth to
that which minimizes the order of the two largest higher-order bias terms in the
stochastic expansion of

√
n

(
θ̂n − θ0

)
given below in Theorem 2. Finally, part 3

of Assumption 6 ensures that the effect of trimming is asymptotically negligible
in the stochastic expansion for

√
n

(
θ̂n − θ0

)
.

For completeness, the asymptotic behaviour of the estimator to first order is
explicitly stated.

Theorem 1 (First-Order Asymptotics). Under the conditions of Assumptions 1–6,
θ̂n is asymptotically normal and satisfies

√
n

(
θ̂n − θ0

)
=

1√
n

n∑
i=1

Ψ
(
Zi,θ0, ĝ

(i)
n

)
+ o(1),

almost surely, where for each i ∈ {1, . . . , n},

Ψ
(
Zi, θ0, ĝ

(i)
n

)

≡
[

1

n

n∑
j=1

∇2ρ
(
Yj, ĝ

(i)
n

(
X>

j β(θ0)
∣∣θ0

))
τ̂nj(θ0)

]−1

·∇1ρ
(
Yi, ĝ

(i)
n

(
X>

i β(θ0)
∣∣ θ0

))
τ̂ni(θ0).

9See e.g., Sherman (1994).
10It is verifiable for the case of the semiparametric least squares procedure of Ichimura (1993)

and also for the pseudo-maximum likelihood estimator of the binary-choice model considered by
Klein and Spady (1993) under the regularity conditions imposed by those authors.
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Proof. Appendix A.2.

An expansion of Ψ
(
Zi, θ0, ĝ

(i)
n

)
about g0

(
X>

i β(θ0)
∣∣ θ0

)
gives immediate

access to the higher-order effects of the nonparametric estimation of the link func-
tion on the asymptotic behaviour of θ̂n, as is summarized in the following result.
The precise form of the asymptotic variance of the estimator is an immediate
corollary of the higher-order expansion, which incidentally does not involve a
curse of dimensionality.

Theorem 2 (Higher-Order Asymptotics). Recall the definition of Λn given above
in the statement of Assumption 2. Let

εi(θ) ≡ Yi − g0

(
X>

j β(θ)
∣∣θ

)
,

σ2(θ0) ≡ E
[
ε2
1(θ0)

]

and

ψ (Zi,θ, g) ≡


 1

n

∑

{j:X>
j β(θ0)∈Λn}

∇2ρ
(
Yj, g

(
X>

j β(θ)
∣∣ θ

))



−1

·∇1ρ
(
Yi, g

(
X>

i β(θ)
∣∣θ

))
.

Denote the first and second-order derivatives of ψ with respect to g as ψg and
ψgg, respectively, and define

µ̄gi (θ0, g0) ≡ E
[
ψg (Zi, θ0, g0)|X>

i β(θ0) ∈ Λn

]
,

µ̄ggi (θ0, g0) ≡ E
[
ψgg (Zi,θ0, g0)|X>

i β(θ0) ∈ Λn

]
.

Furthermore, set

b0 (Z1|θ0) ≡ 1

2

[
g′′0

(
x>β(θ)

∣∣θ
)

+
2g′0

(
x>β(θ)

∣∣θ
)
f ′0

(
x>β(θ)

∣∣ θ
)

f0 (x>β(θ)|θ)

+
g0

(
x>β(θ)

∣∣ θ
)
f ′′0

(
x>β(θ)

∣∣θ
)

f0 (x>β(θ)|θ)

]
·
∫

s2K(s)ds.

Then under the conditions of Assumptions 1–6, we have

√
n

(
θ̂n − θ0

)
= An0 + h2

n

√
nγ1 +

1

hn

√
n

γ2 + o
(
n−

1
5

√
log n

)
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almost surely, where

An0 ≡ 1√
n

n∑
i=1

(ψ(Zi,θ0, g0) + µ̄gi(θ0, g0)εi(θ0)) ,

γ1 ≡ E [µ̄g1(θ0, g0)b0 (Z1|θ0)]

and

γ2 ≡ σ2(θ0)

∫
K2(s)ds · E

[
µ̄gg1(θ0, g0) · 1

f0

(
X>

1 β(θ0)
∣∣ θ0

)
]

.

Proof. Appendix A.3.
Corollary 1 (Asymptotic Variance).

√
n

(
θ̂n − θ0

)
d→ N (0,Σ0) ,

where

Σ0 ≡ E
[
(ψ(Z1, θ0, g0) + µ̄g1(θ0, g0)ε1(θ0)) (ψ(Z1,θ0, g0) + µ̄g1(θ0, g0)ε1(θ0))

>
]
.

It is readily seen from the conclusion of Theorem 2 that the order of the
stochastic expansion of

√
n

(
θ̂n − θ0

)
may be minimized by equating the orders

of the two higher-order bias terms; in particular, by setting hn ∝ n−
1
3 .11 We can

moreover consider picking the bandwidth hn to minimize the expectation of the

weighted L2-norm n
(
θ̂n − θ0

)>
Σ−

0

(
θ̂n − θ0

)
, where Σ−

0 denotes the general-

ized inverse.12 In particular,

n
(
θ̂n − θ0

)>
Σ−

0

(
θ̂n − θ0

)

11It should also be possible to follow e.g., the analysis of Ichimura and Linton (2005) of the
higher-order properties of the average treatment effect estimator of Hirano et al. (2003) in de-
veloping an analytical method of bias correction for the specific class of estimator dealt with in
this paper. In particular, it should be possible to develop analytically a method of eliminating the
term of order 1

hn
√

n
in the stochastic expansion of

√
n

(
θ̂n − θ0

)
. This would allow for the use

of smaller bandwidths and better estimator performance in terms of mean squared error. In this
case, an analogous stochastic expansion for the bias-corrected estimator in the bootstrap domain,
parallelling Theorem 3 below, would also be feasible, which would lead in turn to a bootstrap-
based method of bandwidth selection for the bias-corrected estimator parallelling the method for
the non-bias corrected estimator developed below.

12Analgous bandwidth selection procedures can also be developed for any scalar criterion de-
rived from the asymptotic mean squared error of θ̂n.
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=

(
An0 +

√
nh2

nγ1 +
1

hn

√
n

γ2 + oa.s.

(
n−

1
5

√
log n

))>
Σ−

0

·
(

An0 +
√

nh2
nγ1 +

1

hn

√
n

γ2 + oa.s.

(
n−

1
5

√
log n

))

=

(
An0 +

√
nh2

n +
1

hn

√
n

γ2

)>
Σ−

0

(
An0 +

√
nh2

n +
1

hn

√
n

γ2

)

+oa.s.

(
n−

1
5

√
log n

)

≡ W>
n Σ−

0 Wn + oa.s.

(
n−

1
5

√
log n

)
,

from which it follows that the optimal bandwidth should minimize E
[
W>

n Σ−
0 W

]
.

In this connection, note that

E
[
W>

n Σ−
0 Wn

]

= E
[
A>

n0Σ
−
0 An0

]

+

(√
nh2

nγ1 +
1

hn

√
n

γ2

)>
Σ−

0

(√
nh2

nγ1 +
1

hn

√
n

γ2

)
. (6)

Since the leading term E
[
A>

n0Σ
−
0 An0

]
does not depend on hn, it suffices to pick

hn to minimize the second term in (6). It follows that the optimal bandwidth is
given by

hn,opt =




√(
γ>1 Σ−

0 γ2

)2
+ 8

(
γ>1 Σ−

0 γ1

) (
γ>2 Σ−

0 γ2

)− γ>1 Σ−
0 γ2

4γ>1 Σ−
0 γ1




1
3

n−
1
3 . (7)

Although it is possible to derive a plug-in procedure to estimate the optimal
bandwidth given in (7), the practical implementation of such a method is likely
to be complicated by the need to estimate the first and second-order derivatives
embedded in the expressions for γ1 and γ2. In particular, this would require the
further complication of selecting pilot bandwidths and affords no guarantee re-
garding the stability of the resulting estimates of hn,opt produced by such a plug-in
procedure. A possible alternative would be to replace the nonparametric deriva-
tive estimates with parametric estimates, leading to a rule-of-thumb bandwidth
qualitatively similar to the classic method of Silverman (1986) in the context of
density estimation. The drawback of such a procedure would be the strong as-
sumptions regarding the data-generating process required for its implementation,
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which seem to go against the whole rationale for resorting to a semiparametric
procedure in the first place.

This paper accordingly develops a resampling-based method to estimate the
optimal bandwidth hn,opt. In this connection, let

Xn ≡
{
Zi ≡ (X>

i , Yi)
> : i = 1, . . . , n

}

denote the original sample, and let

X ∗
m ≡ {

Z∗
i,m ≡ (X∗>

i,m, Y ∗
i,m)> : i = 1, . . . , m

}

denote a sample of size m ≤ n drawn randomly with replacement from Xn. De-
fine bootstrap counterparts to quantities previously considered, to wit:

ĝ∗(i)m (u|θ) ≡
∑

j 6=i Y
∗
j,mKhm

(
u−X∗>

j,mβ(θ)
)

∑
j 6=i Khm

(
u−X∗>

j,mβ(θ)
) ,

f̂ ∗(i)m (u|θ) ≡ 1

(m− 1)hm

∑

j 6=i

Khm

(
u−X∗>

j,mβ(θ)
)
,

where for hm → 0 as m,n →∞,

Khm(t) ≡ K

(
t

hm

)
,

where K is a smoothing kernel satisfying the conditions of Assumption 5. Also
define

θ̂∗m ≡ arg min
θ∈Rd

1

m

m∑
i=1

ρ
(
Y ∗

i,m, ĝ∗(i)m

(
X∗>

i,mβ(θ)
∣∣ θ

))
τ̂ ∗mi(θ)

and
τ̂ ∗mi(θ) ≡ τm

(
f̂ ∗(i)m

(
X∗>

i,mβ(θ)
∣∣θ

))
,

where τm(·) is a smooth function on R satisfying the conditions of Assumption 6
above.

Let ĝ
(i,m)
n

(
X∗>

i,mβ(θ)
∣∣θ

)
and f̂

(i,m)
n

(
X∗>

i,mβ(θ)
∣∣θ

)
be the estimates of g0 and

f0 given above in (2) and (3), respectively, that are constructed by summation over
the elements in the original sample Xn but excluding the observation appearing in
the resample X ∗

m with index number i.
The following result shows how the particular resampling scheme adopted

here may be used to reproduce the higher-order behaviour of θ̂n in the bootstrap
domain.
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Theorem 3 (Higher-Order Asymptotics for the Bootstrapped Estimator). Recall
the definition of θ̂n as given above in (4), and recall the definitions of γ1 and
γ2 given in the statement of Theorem 2 above. In addition, let Am0 denote the
quantity An0 given in the statement of Theorem 2 for a sample of size n = m.
Suppose hm ∈

[
δm− 1

3 , δ−1m− 1
3

]
for some small δ ∈ (0, 1).

Then under the conditions of Assumptions 1–6, we have

1.

√
m

(
θ̂∗m − θ̂n

)
= Am0 + h2

m

√
mγ1 +

1

hm

√
m

γ2 + o
(
m− 1

5

√
log m

)

almost surely iff m ∈ [
C1n

ξ, C2n
1−ξ

]
for suitable positive constants C1, C2

and ξ; while

2. if m = n, then

√
m

(
θ̂∗m − θ̂n

)
= Am0 +

1

hm

√
m

γ2 + o
(
m− 1

5

√
log m

)
.

Proof. Appendix A.4.

Let θ̂m denote the original estimator given above in (4) of the population pa-
rameter θ0 constructed from a sample of size m. Theorem 3 shows that it is
possible to induce

√
m

(
θ̂∗m − θ̂n

)
a.s.
=
√

m
(
θ̂m − θ0

)

for large m and n up to higher-order terms of magnitude m− 1
6 provided that the

resample size m is sufficiently small relative to the original sample size n.13 In
13The conclusion of Theorem 3 also illustrates the scope of what explicit methods of bias cor-

rection might be able to accomplish in this setting when combined with resampling. In particular,
a method of correction for “degrees of freedom bias” that eliminates the term of order 1

hn
√

n
in

the expansion of Theorem 2 may be combined with a scheme of resampling m < n observations
with replacement from the original sample of size n if one wishes to design a procedure to select
a bandwidth for the resulting bias-corrected estimator. Combining an analytical correction for
degrees of freedom bias in this context with the m-out-of-n bootstrap would not be in essence
different from the bandwidth selection procedure for the non-bias corrected estimator described
below. On the other hand, a resampling scheme involving the generation of resamples of the same
size as the original sample must be combined with a method of eliminating the bias term of order
h2

n

√
n in the expansion of Theorem 2 in order to be of any use in bandwidth selection.
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particular, it is immediate from the conclusion of Theorem 3 that the value of
hm that minimizes the order of the stochastic expansion of

√
m

(
θ̂∗m − θ̂n

)
is

asymptotically equal with probability one to that which minimizes the stochastic
expansion of

√
m

(
θ̂m − θ0

)
. In particular, if h∗m,opt minimizes

E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)]
,

and if hm,opt minimizes

E

[
m

(
θ̂m − θ0

)>
Σ−

0

(
θ̂m − θ0

)]

for θ̂m computed using a sample size of n = m, then

h∗m,opt

hm,opt

a.s.→ 1.

From this we have that

ĥn,opt ≡ h∗m,opt

(m

n

) 1
3

(8)

is asymptotically equal almost surely to hn,opt given above in (7).
In practice, one would generate B independent bootstrap resamples X ∗

m,b of
size m (where b = {1, . . . , B}) and choose hm to minimize a Monte Carlo ap-

proximation to the bootstrap estimate E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)∣∣∣∣Xn

]
of

E

[
m

(
θ̂m − θ0

)>
Σ−

0

(
θ̂m − θ0

)]
. In particular, if θ̂∗m,b denotes the semipara-

metric M -estimator computed using the observations appearing in the bth boot-
strap resample X ∗

m,b, then h∗m,opt would be taken to be the bandwidth value that
minimizes

m

B

B∑

b=1

(
θ̂∗m,b − θ̂n

)>
Σ̂∗−

m,B

(
θ̂∗m,b − θ̂n

)
, (9)

where Σ̂∗−
m,B is the generalized inverse of the empirical variance matrix of

√
m

(
θ̂∗m,b − θ̂n

)
, b = 1, . . . , B
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taken over the B bootstrap resamples.14

It remains to provide some guidance on the practical choice of the resample
size m. In this connection, note that choosing h∗m,opt to minimize the quantity
in (9) above is asymptotically equivalent for large n and B to choosing h∗m,opt

to minimize E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)∣∣∣∣Xn

]
. In this connection, it is

possible to provide some guidance in choosing the value of m that minimizes
the magnitude of the estimation error involved in working with the estimated

criterion E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)∣∣∣∣Xn

]
rather than with its estimand

E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)]
. We have the following result.

Theorem 4. Suppose hm ∈
[
δm− 1

3 , δ−1m− 1
3

]
for some small δ ∈ (0, 1) and

m ∈ [
C1n

ξ, C2n
1−ξ

]
for suitable positive constants C1, C2 and ξ. Then under the

conditions of Assumptions 1-6, a setting of

m ∝
(

n

log n

) 3
4

is sufficient to minimize the order of the estimation error

E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)∣∣∣∣Xn

]
−E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)]
.

Proof. Appendix A.5.

As such, Theorem 4 prescribes an optimal setting for the resample size in the
form

mk,opt = k

(
n

log n

) 3
4

(10)

for some k > 0, which immediately invites the question of how one should in
practice choose the proportionality constant k.

14This method naturally requires the preliminary computation of the estimator θ̂n using all the
observations in the original sample. As such, a pilot bandwidth hn,pil is required in order to
implement the computation of θ̂n over the full sample. In practice, one might select hn,pil using
some sort of rule of thumb or perhaps via the procedures of Härdle et al. (1993) or Xia et al.
(2009).
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In this connection, suppose one has B independent bootstrap resamples of
size m = mk,opt for mk,opt as given in (10). Let θ̃∗m,b denote the semiparametric
M -estimator computed using the observations in the bth bootstrap resample and
implemented using a suitable preliminary bandwidth hm,pre. Set Σ̃∗

mk,opt,b
to be

the empirical variance matrix of
√

m
(
θ̃∗m,b − θ̂n

)
taken over the B bootstrap re-

samples. Following the basic suggestion of Bickel and Sakov (2008), it may be
advisable in this case to choose k to minimize

∥∥∥Σ̃mk,opt,B

∥∥∥.15

4 Numerical Evidence
This section presents the results of a series of modest simulation experiments de-
signed to assess the finite-sample reliability of the method of bandwidth selection
proposed in this paper. In particular, the method described above is applied to the
problem of implementing the semiparametric least-squares procedure of Ichimura
(1993), i.e., the estimator

θ̂n = arg min
θ∈Rd

n∑
i=1

(
Yi − ĝ(i)

n

(
X>

i β(θ)
∣∣θ

))2
τ̂ni(θ) (11)

of the normalized vector of index coeffcients θ0 appearing in the regression rela-
tionship

E [Y |X] = G0

(
X>β(θ0)

)
, (12)

where
β(θ0) ≡ ( 1 θ>0 )>.

The link function G0(·) appearing in (12) is naturally unknown and is estimated
using the Nadaraya-Watson estimator given by ĝ

(i)
n ( ·|θ) appearing above in (2).

15It may also be feasible to construct an iterative procedure that alternates between bandwidth
selection by minimization of

m

B

B∑

b=1

(
θ̃∗m,b − θ̂n

)>
Σ̃∗−

m,B

(
θ̃∗m,b − θ̂n

)

and the selection of k by minimization of
∥∥∥Σ̃mk,opt,B

∥∥∥. In general, the practical selection of the
resample size m is the subject of ongoing research. See e.g., Bickel and Sakov (2008) and the
references cited therein.
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In the series of Monte Carlo experiments presented here, 500 simulated sam-
ples each of size n = 1000 were drawn from a population of ordered triples
(X1, X2, U)>, where X1 and U are standard normal and X2 is exponential with
unit mean. X1, X2 and U were set to be mutually independent, and taken to
determine realizations of a binary response variable Y given as

Y = 1

{[
X1 X2

] [
1
θ0

]
+ U > 0

}
,

where the parameter of interest is taken to be θ0 ≡ −1.
The trimming function appearing in (11) was set to be identically equal to

unity in the simulations, i.e., τ̂ni(θ) ≡ 1 for all n, i and θ. A quartic kernel of
second order was used to compute the Nadaraya-Watson estimator given above in
(2), to wit,

K(u) =
15

16

(
1− u2

)2 · 1 {
u2 ≤ 1

}
. (13)

Figures 1 and 2 below summarize the behaviour of the resulting semiparamet-
ric least-squares estimator θ̂n over a range of bandwidths used to implement the
Nadaraya-Watson estimator in (2). In particular, Figure 1 involves a plot against
bandwidth of numerical approximations to the square root of the ratio of the mean
squared error of θ̂n to its variance—the so-called “root relative mean squared er-
ror” (RRMSE)— over the 1000 Monte Carlo replications considered. Figure 2
presents the same information, but with the axes adjusted to a log-log scale.

In particular, the value of the bandwidth that minimizes the simulated RRMSE
of θ̂n was found to be

hn,opt = h1000,opt = .4785.

This is compared in Table 1 to a number of m-bootstrap estimates of the optimal
bandwidth as well as the bandwidth h1000,Sil obtained by application of the rule-
of-thumb of Silverman (1986). In the context of the quartic kernel given in (13)
used here, the Silverman rule of thumb yields a bandwidth of the form

hn,Sil = 2.7799snn−
1
5 , (14)

where sn is an estimate of the standard deviation of the index X>β(θ). In the
context of the simulations presented here, sn was set to be the empirical standard
deviation of

{
X>

i bOLS : i = 1, . . . , n
}

, where bOLS is the vector of ordinary least
squares coefficients from a regression of Y on X with the first element normalized
to unity.
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With respect to the bootstrap bandwidth estimates, consider B = 99 bootstrap
resamples each of size m drawn with replacement from the original dataset and
take a particular RRMSE analogue given by

√√√√ 1
B

∑B
b=1

(
θ̂∗m,b(h)− θ̂n(ĥn,Sil)

)2

σ∗2B (h)
, (15)

where θ̂∗m,b(h) denotes the semiparametric least-squares estimator of θ0 imple-
mented with bandwidth h and computed using observations contained in the bth
bootstrap resample, and where

σ∗2B (h) ≡ 1

B − 1

B∑

b=1

(
θ̂∗m,b(h)− 1

B

B∑

b′=1

θ̂∗m,b′(h)

)2

,

i.e., the empirical variance of θ̂∗m,b(h) over the set of B bootstrap resamples of size
m. The quantity θ̂n(ĥn,Sil) in (15) denotes a “pilot” estimate of θ0 computed using
the observations in the full sample of size n and implemented using the Silverman
rule-of-thumb bandwidth hn,Sil given above in (14).

The m-bootstrap bandwidth estimates indicated in Table 1 were obtained by
rescaling the bandwidth minimizing the expression in (15) over a grid of 100
evenly spaced points in the interval [.0001, 1] by a factor of

(
m
n

) 1
3 , as prescribed

above in (8). The resulting bandwidth estimates are denoted ĥm,opt. Four dif-
ferent settings of resample size m were used to compute the expression in (15).
Following the guidance given in Section 4, m was set to

m = bkm∗c ≡
⌊
k

(
n

log n

) 3
4

⌋

for
k = 1,

3

2
, 2, 5,

which for n = 1000 resulted in the settings of

m = 41, 62, 83, 208,

respectively.16 The means and standard deviations of ĥbkm∗c,opt over the 1000
Monte Carlo replications considered are summarized in Table 1 for k = 1, 3

2
, 2, 5,

16Note that the notation buc denotes the largest integer that is less than or equal to u.
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along with their root mean squared errors with respect to the “true” value of
h1000,opt = .4785. It is found that the estimate ĥb 3

2
m∗c,opt seems to perform best in

terms of root mean squared error out of the four m-bootstrap bandwidth estimates
considered, although not by an overwhelmingly large margin. The finite-sample
performance of the rule-of-thumb smoothing rule ĥn,Sil given above in (14) is also
indicated in Table 1, and is clearly dominated by the four bootstrap bandwidth es-
timates considered.

Whether this makes any practical difference in the context of the specific data-
generating process considered here is the focus of Table 2. In particular, Table 2
summarizes the finite-sample behaviour over 1000 Monte Carlo replications of
the semiparametric least-squares estimator θ̂n implemented using the six differ-
ent smoothing rules considered in Table 1. Given that all six smoothing rules
have sampling distributions that concentrate in the region of Figure 1 where the
RRMSE of θ̂n is both relatively flat and minimized, it is perhaps unsurprising
that the behaviour of θ̂n does not vary dramatically depending on which of the
six bandwidths considered in Table 1 is used to implement the estimator. That
said, however, the bootstrap bandwidth estimate computed using a resample size

of m =

⌊
3
2

(
n

log n

) 3
4

⌋
= 62 leads θ̂n to have a slightly smaller root mean squared

error than would be the case if the estimator was implemented using any of the
four other feasible bandwidths considered. This result is in agreement with the
results presented in Table 1 regarding the statistical behaviour of the smoothing
rules themselves. The relative insensitivity of the behaviour of the semiparametric
least-squares estimator shown in the simulation experiment presented here to the
particular estimate of the optimal bandwidth used to implement it should perhaps
be of some comfort for empirical practice.

5 Conclusion
This paper has considered the practical problem of implementing a semipara-
metric optimization estimator of the vector of index coefficients in a general-
ized single-index regression model with an unknown link function. The unknown
link function is treated as a nuisance parameter and is taken to be estimated us-
ing a nonparametric kernel regression procedure of the Nadaraya-Watson type,
while the criterion function in which the nonparametric estimate of the infinite-
dimensional nuisance parameter appears is assumed to possess a sufficiently high
order of differentiability in a neighbourhood of the true regression function. A par-
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ticular resampling method was proposed in this paper for estimating an asymptot-
ically optimal bandwidth required to implement the nonparametric estimate of the
link function from the point of view of minimizing the expectation of the Maha-
lanobis distance between the estimator and the true value of the Euclidean interest
parameter. In particular, the method proposed here involves the so-called “m-
out-of-n”, or m-bootstrap—i.e., it involves the generation of resamples with re-
placement containing strictly fewer observations than are contained in the original
dataset. This method is shown to work in the sense that the resulting m-bootstrap
estimate of the average Mahalanobis distance is so close in a uniform sense in
large samples to the actual expected value of the Mahalanobis distance of a pa-
rameter estimate computed using a dataset of m observations that the bandwidth
that minimizes one is asymptotically equal almost surely to the bandwidth that
minimizes the other. An estimate of the asymptotically optimal bandwidth for the
parameter estimate computed using the full sample of size n can then be obtained
by an appropriate rescaling of the bandwidth found to minimize the m-bootstrap
estimate of the mean squared error.

Specific guidance on the practical selection of the resample size m was also
given. In particular, for resamples of size m ∈ [

C1n
ζ , C2n

1−ζ
]

for suitable pos-

itive constants C1, C2 and ζ , it was shown that a setting of m ∝
(

n
log n

) 3
4

is
sufficient to minimize the stochastic order of the estimation error committed by
substituting a bootstrap estimate of the average Mahalanobis distance for its ac-
tual population expectation. Simulation evidence presented here for the case of
a semiparametric least-squares estimator of a binary-choice model seems to in-
dicate that the parameter estimates implmemented using the m-bootstrap band-
width estimator has a small-sample behaviour that is relatively insensitive to the
choice of resample size. Further work on the relationship between the sampling
behaviour of bandwidth estimators and the sampling behaviour of the semipara-
metric estimators in which they are embedded would appear to be fruitful from
both a theoretical and an applied viewpoint.
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A Appendix

A.1 Lemmas
Begin with a recent martingale convergence result of Xia et al. (2009).

Lemma 1 (Xia, Härdle & Linton (2009, Lemma 6.1)). Suppose {Gni(x) : i = 1, . . . , n} is a
martingale with respect to Fi ≡ σ {Gnl(x) : l ≤ i} with x ∈ X , where X is a compact region in
a multidimensional space such that

1. |Gni(x)| < ξi, where the ξi are iid and supE
[
ξ2r
1

]
< ∞ for some r > 2;

2. E
[
G2

nk(x)
]

< ans(x) with inf s(x) > 0;

3. |Gni(x)−Gni(x̃)| < nα1 |x− x̃|Mi almost surely for some α1 > 0 where Mi (i =
1, 2, . . .) are iid with E

[
M2

1

]
< ∞.

Then if an = cn−δ with 0 ≤ δ < 1− 2
r , then for every α′1 > 0 we have

sup
|x|≤nα′1

∣∣∣∣∣
1
n

s−
1
2 (x)

n∑

i=1

Gni(x)

∣∣∣∣∣ = O

(√
an log n

n

)

almost surely.

Lemma 1 is required for the uniform convergence results given in Lemma 2 below. In this
connection, define

Λn ≡
{
u : |u| < nc, f0 (u|θ) > n−2ζ , θ ∈ Θn

}
, (16)

where c > 1
3 and ζ > 0 satisfies the constraints of Assumption 6. For a random matrix An

depending on both u and θ, write An = Ō(an) or An = ō(an) iff all elements in An are O(an)
or o(an) almost surely and uniformly for θ ∈ Θn and u ∈ Λn.

Lemma 2. The following convergences hold as n →∞ given the validity of Assumptions 1–6:

1. f̂
(i)
n (u|θ) = f0 (u|θ) + Ō

(
h2

n +
√

log n
nhn

)
;

2. ĝ
(i)
n (u|θ) = g0 (u|θ) + Ō

(
h2

n +
√

log n
nhn

)
.

Proof. 1. Let
ε̂
(i)
nf (u|θ) ≡ f̂ (i)

n (u|θ)− E
[
f̂ (i)

n (u|θ)
]
.

We have V ar
[
ε̂
(i)
nf (u|θ)

]
= O

(
1

nhn

)
, so from Lemma 1

ε̂
(i)
nf (u|θ) = Ō

(√
log n

nhn

)
.
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Now let W1(θ) ≡ X>
1 β(θ). We have

E
[
f̂ (i)

n (u|θ)
]

=
1
hn

E

[
K

(
u−W1(θ)

hn

)]

=
1
hn

∫
K

(
u− w

hn

)
f0 (w|θ) dw

=
∫

K(z)f0 (u− hnz|θ) dz

= f0 (u|θ) +
h2

n

2
f ′′0 (u|θ)

∫
s2K(s)ds + Ō(h4

n).

The desired conclusion follows.

2. First consider the convergence of

1
(n− 1)hn

∑

j 6=i

YjKhn

(
u−X>

j β(θ)
)

= ĝ(i)
n (u|θ) f̂ (i)

n (u|θ) .

We have

V ar
[
ĝ(i)

n (u|θ) f̂ (i)
n (u|θ)− E

[
ĝ(i)

n (u|θ) f̂ (i)
n (u|θ)

]]
= O

(
1

nhn

)
,

so an application of Lemma 1 yields the convergence

ĝ(i)
n (u|θ) f̂ (i)

n (u|θ)− E
[
ĝ(i)

n (u|θ) f̂ (i)
n (u|θ)

]
= Ō

(√
log n

nhn

)
.

For W1(θ) ≡ X>
1 β(θ),

E
[
ĝ(i)

n (u|θ) f̂ (i)
n (u|θ)

]

=
1
hn

E

[
Y1K

(
u−W1(θ)

hn

)]

=
1
hn

E

[
E [Y1|W1(θ)] K

(
u−W1(θ)

hn

)]

=
1
hn

∫
g0 (w|θ) K

(
u− w

hn

)
f0 (w|θ) dw

=
∫

g0 (u− hnz|θ)K(z)f0 (u− hnz|θ) dz

= g0 (u|θ) f0 (u|θ)

+
h2

n

2
[g′′0 (u|θ) f0 (u|θ) + 2g0 (u|θ) f0 (u|θ) + g0 (u|θ) f ′′0 (u|θ)]

∫
s2K(s)ds

+Ō(h4
n).
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As such,

ĝ(i)
n (u|θ) f̂ (i)

n (u|θ) = g0 (u|θ) f0 (u|θ) + Ō

(
h2

n +
√

log n

nhn

)
.

Combining this with the conclusion of the first part of this lemma yields the result

ĝ(i)
n (u|θ) = g0 (u|θ) + Ō

(
h2

n +
√

log n

nhn

)
.

The next preliminary result considers the asymptotic effects of trimming. In particular, recall
the definition of Λn given above in (16), and define a similar set

Λ̃n ≡
{
x : f0

(
x>β(θ)

∣∣ θ
)

> 2n−ζ
}

. (17)

We have the following.

Lemma 3. For i = 1, . . . , n, define Wi ≡ X>
i β(θ). Then summations over the sets

{Xi : i = 1, . . . , n} ,

{Wi : Wi ∈ Λn, i = 1, . . . , n}
and {

Xi : Xi ∈ Λ̃n, i = 1, . . . , n
}

are interchangeable in the sense of almost sure consistency.

Proof. From Assumption 2 we have for θ ∈ Θ that

∞∑
n=1

P [∪n
i=1 {Wi 6∈ Λn}] ≤

∞∑
n=1

nP [Wn 6∈ Λn]

≤
∞∑

n=1

nP [|Wn| > nc]

<

∞∑
n=1

n · n−6cE
[|Wn|6

]

< ∞
for all c > 1

3 . By the Borel-Cantelli Lemma we have

P [∩∞n=1 ∪n
i=1 {Wi 6∈ Λn}] = 0.

A similar argument leads to the conclusion that

P
[
∩∞n=1 ∪n

i=1

{
Xi 6∈ Λ̃n

}]
= 0.

The desired conclusion is immediate.
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The next result is required in the derivation of the higher-order asymptotic representation of√
n

(
θ̂n − θ0

)
. In this connection, define

ŵij(θ) ≡ Khn

(
X>

i β(θ)−X>
j β(θ)

)

(n− 1)hnf̂
(i)
n

(
X>

i β(θ)
∣∣ θ

) (18)

and

wij(θ) ≡ Khn

(
X>

i β(θ)−X>
j β(θ)

)

(n− 1)hnf0

(
X>

i β(θ)
∣∣ θ

) . (19)

We have the following.

Lemma 4. 1. ĝ
(i)
n

(
X>

i β(θ)
∣∣ θ

) − g0

(
X>

i β(θ)
∣∣ θ

)
=

∑
j 6=i εj(θ)wij(θ) + bn (Zi|θ),

where
εj(θ) ≡ Yj − g0

(
X>

j β(θ)
∣∣ θ

)

and

bn (Zi|θ) ≡
∑

j 6=i

Yj (ŵij(θ)− wij(θ))+
∑

j 6=i

g0

(
X>

j β(θ)
∣∣ θ

)
wij(θ)−g0

(
X>

i β(θ)
∣∣ θ

)
.

2. bn (Zi|θ) = Ō
(
h2

n +
√

log n
nhn

)
.

3. For z ≡ (x>, y)> and bandwidth hn satisfying the requirements of Assumption 6,

h−2
n bn (Zi|θ)

a.s.→ 1
2

[
g′′0

(
x>β(θ)

∣∣ θ
)

+
2g′0

(
x>β(θ)

∣∣ θ
)
f ′0

(
x>β(θ)

∣∣ θ
)

f0 (x>β(θ)|θ)
+

g0

(
x>β(θ)

∣∣θ)
f ′′0

(
x>β(θ)

∣∣ θ
)

f0 (x>β(θ)|θ)

]

·
∫

s2K(s)ds

≡ b0 (z|θ)

uniformly for x ∈ Λ̃n and θ ∈ Θn.

Proof. 1. Write

ĝ(i)
n

(
X>

i β(θ)
∣∣ θ

)− g0

(
X>

i β(θ)
∣∣ θ

)

=
∑

j 6=i

Yjŵij(θ)− g0

(
X>

i β(θ)
∣∣ θ

)

=
∑

j 6=i

Yj (ŵij(θ)− wij(θ)) +
∑

j 6=i

Yjwij(θ)− g0

(
X>

i β(θ)
∣∣ θ

)
+

∑

j 6=i

g0

(
X>

j β(θ)
∣∣ θ

)
wij(θ)

−
∑

j 6=i

g0

(
X>

j β(θ)
∣∣ θ

)
wij(θ)

and the conclusion is immediate.
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2. Write bn (Zi|θ) = bni1(θ) + bni2(θ), where

bni1(θ) ≡
∑

j 6=i

Yj (ŵij(θ)− wij(θ)) ;

bni2(θ) ≡
∑

j 6=i

g0

(
X>

j β(θ)
∣∣ θ

)
wij(θ)− g0

(
X>

i β(θ)
∣∣ θ

)
.

Conditional on Xi ∈ Λ̃n and θ ∈ Θn we have

bni1(θ)

=
1

f̂
(i)
n

(
X>

i β(θ)
∣∣ θ

)

·

 1

(n− 1)hn

∑

j 6=i

YjKhn

(
X>

i β(θ)−X>
j β(θ)

)− 1
hn

E
[
Y1Khn

(
X>

i β(θ)−X>
1 β(θ)

)]



+
1

f̂
(i)
n

(
X>

i β(θ)
∣∣ θ

) · 1
hn

E
[
Y1Khn

(
X>

i β(θ)−X>
1 β(θ)

)]

− 1
f0

(
X>

i β(θ)
∣∣ θ

)

·

 1

(n− 1)hn

∑

j 6=i

YjKhn

(
X>

i β(θ)−X>
j β(θ)

)− 1
hn

E
[
Y1Khn

(
X>

i β(θ)−X>
1 β(θ)

)]



− 1
f0

(
X>

i β(θ)
∣∣ θ

) · 1
hn

E
[
Y1Khn

(
X>

i β(θ)−X>
1 β(θ)

)]

= Ō

(√
log n

nhn

)
+ g0

(
X>

i β(θ)
∣∣ θ

)
+ Ō(h2

n) + Ō

(√
log n

nhn

)
− g0

(
X>

i β(θ)
∣∣ θ

)
+ Ō

(
h2

n

)

= Ō

(
h2

n +
√

log n

nhn

)

by Lemmas 1 and 2 and a Taylor expansion of 1
hn

E
[
Y1Khn

(
X>

i β(θ)−X>
1 β

)]
.

Now consider bni2(θ). Conditional on Xi ∈ Λ̃n and θ ∈ Θn we have

bni2(θ)

=
1

f0

(
X>

i β(θ)
∣∣ θ

)

·

 1

(n− 1)hn

∑

j 6=i

g0

(
X>

j β(θ)
∣∣ θ

)
Khn

(
X>

i β(θ)−X>
j β(θ)

)

− 1
hn

E
[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khn

(
X>

i β(θ)−X>
1 β(θ)

)]]
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+
1

f0

(
X>

i β(θ)
∣∣ θ

) · 1
hn

E
[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khn

(
X>

i β(θ)−X>
1 β(θ)

)]

−g0

(
X>

i β(θ)
∣∣ θ

)

= Ō

(√
log n

nhn

)
+ g0

(
X>

i β(θ)
∣∣ θ

)
+ Ō(h2

n)− g0

(
X>

i β(θ)
∣∣ θ

)

= Ō

(
h2

n +
√

log n

nhn

)

by Lemma 1 and a Taylor expansion of 1
hn

E
[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khn

(
X>

i β(θ)−X>
1 β(θ)

)]
.

It follows that bn (Zi|θ) = Ō
(
h2

n +
√

log n
nhn

)
.

3. Part 3 of this lemma is immediate from a Taylor expansion of

1
hn

E
[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khn

(
X>

i β(θ)−X>
1 β(θ)

)]
.

The final result in this appendix is needed in the derivation of the stochastic expansion of the
normalized bootstrapped estimator

√
m

(
θ̂∗m − θ̂n

)
. In this connection define

ŵ∗ij(θ) ≡ Khm

(
X∗>

i,mβ(θ)−X∗>
j,mβ(θ)

)

(m− 1)hmf̂
∗(i)
m

(
X∗>

i,mβ(θ)
∣∣ θ

) (20)

and

w∗ij(θ) ≡ Khm

(
X∗>

i,mβ(θ)−X∗>j,mβ(θ)
)

(m− 1)hmf̂
(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

) . (21)

For a random matrix A∗
m depending on both u and θ, write A∗

m = Ō∗(am) or A∗
m = ō∗(am) iff

each element of A∗
m is O(am) or o(am) almost surely and uniformly for u ∈ Λm and θ ∈ Θn

conditionally on Xn as m,n →∞.17 We have the following result analogous to Lemma 4.

Lemma 5. 1.

ĝ∗(i)m

(
X∗>

i,mβ(θ)
∣∣ θ

)− ĝ(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

)
=

∑

j 6=m

ε∗j,m(θ)w∗ij(θ) + b∗m
(
Z∗

i,m

∣∣ θ
)
,

where

ε∗j,m(θ) ≡ Y ∗
j,m − ĝ(j,m)

n

(
X∗>

j,mβ(θ)
∣∣ θ

)
;

b∗m
(
Z∗

i,m

∣∣ θ
) ≡

∑

j 6=i

Y ∗
j,m

(
ŵ∗ij(θ)− w∗ij(θ)

)

+
∑

j 6=i

ĝ(j,m)
n

(
X∗>

j,mβ(θ)
∣∣ θ

)
w∗ij(θ)− ĝ(i,m)

n

(
X∗>

i,mβ(θ)
∣∣ θ

)
.

17Here Λm is as given above in (16) with n = m.
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2. E
[
b∗m

(
Z∗

i,m

∣∣ θ
)∣∣Xn, X∗

i,m ∈ Λ̃m

]
= 1

n

∑̄
ib
∗
m (Zi|θ) = Ō

(
h2

n +
√

log n
nhn

)
, where Λ̃m

is as given above in (17) for n = m.

3. (a) If m ∈ [
C1n

ξ, C2n
1−ξ

]
for suitable positive constants C1, C2 and ξ and hm satis-

fies the requirements of Assumption 6 for n = m, then

h−2
m E

[
b∗m

(
Z∗

i,m

∣∣ θ
)∣∣Xn, X∗

i,m ∈ Λ̃m

]

a.s.→ 1
2

[
g′′0

(
X∗>

i,mβ(θ)
∣∣ θ

)
+

2g′′0
(
X∗>

i,mβ(θ)
∣∣ θ

)
f ′0

(
X∗>

i,mβ(θ)
∣∣ θ

)

f0

(
X∗>

i,mβ(θ)
∣∣ θ

)

+
g0

(
X∗>

i,mβ(θ)
∣∣ θ

)
f ′′0

(
X∗>

i,mβ(θ)
∣∣ θ

)

f0

(
X∗>

i,mβ(θ)
∣∣ θ

)
] ∫

s2K(s)ds

= b0

(
(X∗>

i,m, Yi)>
∣∣ θ

)

uniformly for X∗
i,m ∈ Λ̃m and θ ∈ Θn and where b0

(
(X∗>

i,m, Yi)>
∣∣ θ

)
is as in the

statement of Lemma 4 above.

(b) If m = n, then h−2
m E

[
b∗m

(
Z∗

i,m

∣∣ θ
)∣∣Xn, X∗

i,m ∈ Λ̃m

]
diverges.

Proof. 1. Write

ĝ∗(i)m

(
X∗>

i,mβ(θ)
∣∣ θ

)− ĝ(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

)

=
∑

j 6=i

Y ∗
j,mŵ∗ij(θ)− ĝ(i,m)

n

(
X∗>

i,mβ(θ)
∣∣ θ

)

=
∑

j 6=i

Y ∗
j,m

(
ŵ∗ij(θ)− w∗ij(θ)

)
+

∑

j 6=i

Y ∗
j,mw∗ij(θ)− ĝ(i,m)

n

(
X∗>

i,mβ(θ)
∣∣ θ

)

+
∑

j 6=i

ĝ(j,m)
n

(
X∗>

j,mβ(θ)
∣∣ θ

)
w∗ij(θ)−

∑

j 6=i

ĝ(j,m)
n

(
X∗>

j,mβ(θ)
∣∣ θ

)
w∗ij(θ)

and the conclusion is immediate.

2. Write b∗m
(
Z∗

i,m

∣∣ θ
)

= b∗mi1(θ) + b∗mi2(θ), where

b∗mi1(θ) ≡
∑

j 6=i

Y ∗
j,m

(
ŵ∗ij(θ)− w∗ij(θ)

)

and
b∗mi2(θ) ≡

∑

j 6=i

ĝ(j,m)
n

(
X∗>

j,mβ(θ)
∣∣ θ

)
w∗ij(θ)− ĝ(i,m)

n

(
X∗>

i,mβ(θ)
∣∣ θ

)
.

Consider b∗mi1(θ). We have

b∗mi1(θ)

=
f̂

(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

)− f̂
∗(i)
m

(
X∗>

i,mβ(θ)
∣∣ θ

)

f̂
∗(i)
m

(
X∗>

i,mβ(θ)
∣∣ θ

)
f̂

(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

)

· 1
(m− 1)hm

∑

j 6=i

Y ∗
j,mKhm

(
X∗>

i,mβ(θ)−X∗>
j,mβ(θ)

)
.
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Note that

f̂∗(i)m

(
X∗>

i,mβ(θ)
∣∣ θ

)

=
1

nhm

n∑

j=1

Khm

(
X∗>

i,mβ(θ)−X>
j β(θ)

)
+ Ō∗

(√
log m

mhm

)

= Ō

(
h2

m +
√

log n

nhm

)
+ Ō∗

(√
log m

mhm

)

= Ō

(
h2

n +
√

log n

nhn

)
,

where an appeal to Lemma 1 has been made. Combined with a further application of
Lemma 1 we have

E
[
b∗mi1(θ)| Xn, X∗

i,m ∈ Λ̃m

]
= Ō

(
h2

n +
√

log n

nhn

)
.

On the other hand,

E
[
b∗mi2(θ)| Xn,X∗

i,m ∈ Λ̃m

]

=
1
n

n∑

k=1

ĝ(k)
n

(
X>

k β(θ)
∣∣ θ

) · Khm

(
X∗>

i,mβ(θ)−X>
k β(θ)

)

hmf̂
(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

)

−ĝ(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

)
. (22)

Note that when m ∈ [
C1n

ξ, C2n
1−ξ

]
for suitable positive constants C1, C2 and ξ,

E
[
b∗mi2(θ)| Xn, X∗

i,m ∈ Λ̃m

]

=
E

[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khm

(
X∗>

i,mβ(θ)−X>
1 β(θ)

)]

hmf0

(
X∗>

i,mβ(θ)
∣∣ θ

) + Ō

(√
log n

nhm

)

−g0

(
X∗>

i,mβ(θ)
∣∣ θ

)
+ Ō

(
h2

n +
√

log n

nhn

)
(23)

= Ō

(
h2

n +
√

log n

nhn

)
.

If, however, m = n we have

E
[
b∗mi2(θ)| Xn, X∗

i,m ∈ Λ̃m

]

=
1

f̂
(i,m)
n

(
X∗>

i,mβ(θ)
∣∣ θ

)
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· 1
nhn

n∑

k=1

(
ĝ(k)

n

(
X>

k β(θ)
∣∣ θ

)− Yk

)
Khn

(
X∗>

i,mβ(θ)−X>
k β(θ)

)
+ ō(1)

=
1

f0

(
X∗>

i,mβ(θ)
∣∣ θ

)
(

1
hn

E
[
ε1(θ)Khn

(
X∗>

i,mβ(θ)−X>
1 β(θ)

)]
+ Ō

(√
log n

nhn

))

+ō(1)

= Ō

(√
log n

nhn

)

by virtue of E [ε1(θ)|X1]
a.s.= 0 and via applications of Lemma 1.

3. (a) The desired convergence is a direct consequence of the presence of

1
hn

E
[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khm

(
X∗>

i,mβ(θ)−X>
1 β(θ)

)]

in (23) above. In particular, the desired conclusion can be obtained via a Taylor
expansion of 1

hn
E

[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khm

(
X∗>

i,mβ(θ)−X>
1 β(θ)

)]
.

(b) This conclusion follows from the absence of

1
hn

E
[
g0

(
X>

1 β(θ)
∣∣ θ

)
Khm

(
X∗>

i,mβ(θ)−X>
1 β(θ)

)]

in the expression for E
[
b∗mi2(θ)| Xn, X∗

i,m ∈ Λ̃m

]
when m = n.

A.2 Proof of Theorem 1
Note from Lemma 2 that

f̂ (i)
n (u|θ) = f0 (u|θ) + Ō

(
h2

n +
√

log n

nhn

)
.

From the smoothness of the trimming function τn(·) we have

τ̂ni(θ) = τ̃ni(θ) + Ō

(
nζ

(
h2

n +
√

log n

nhn

))
, (24)

where
τ̃ni(θ) ≡ τn

(
f0

(
X>

i β(θ)
∣∣ θ

))
. (25)

Let
∑̄

i denote summations over indices i such that Xi ∈ Λ̃n for Λ̃n as given above in (17). For
θ ∈ Θn, let

γn(θ) ≡ θ0 +
√

n (θ − θ0) ,

and let
ρ̃ (Zi,θ) ≡ ρ

(
Yi, g0

(
X>

i β(θ)
∣∣ θ

))
.
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Abuse existing notation and let Ŝn(θ) denote Ŝn (γn(θ)), g0

(
X>

i β(θ)
∣∣ θ

)
denote

g0

(
X>

i β (γn(θ))
∣∣ γn(θ)

)
,

ĝ
(i)
n

(
X>

i β(θ)
∣∣ θ

)
denote ĝ

(i)
n

(
X>

i β(γn(θ))
∣∣ γn(θ)

)
, τ̂ni(θ) denote τ̂ni (γn(θ)), and so on mu-

tatis mutandis.
Expand the function ρ

(
Yi, ĝ

(i)
n

(
X>

i β(θ)
∣∣ θ

))
about g0

(
X>

i β(θ)
∣∣ θ

)
to third-order terms

to arrive at

Ŝn(θ)

=
1
n

ρ̃ (Zi, θ) τ̂ni(θ) (26)

+
2∑

m=1

1
m!n

n∑

i=1

ρ(m)
(
Yi, g0

(
X>

i β(θ)
∣∣ θ

))

·
(
ĝ(i)

n

(
X>

i β(θ)
∣∣θ)− g0

(
X>

i β(θ)
∣∣ θ

))m

τ̂ni(θ) (27)

+
1

3!n

n∑

i=1

ρ(3) (Yi, uni(θ))
(
ĝ(i)

n

(
X>

i β(θ)
∣∣ θ

)− g0

(
X>

i β(θ)
∣∣ θ

))3

τ̂ni(θ), (28)

where uni(θ) is between ĝ
(i)
n

(
X>

i β(θ)
∣∣ θ

)
and g0

(
X>

i β(θ)
∣∣ θ

)
.

Consider (26). By (24) and appealing to Lemma 3 we have

1
n

n∑

i=1

ρ̃ (Zi, θ) τ̂ni(θ)

=
1
n

n∑

i=1

ρ̃ (Zi, θ) τ̃ni(θ) + Ō

(
nζ

(
h2

n +
√

log n

nhn

))

=
1
n

∑̄
i
ρ̃ (Zi,θ) + Ō

(
nζ

(
h2

n +
√

log n

nhn

))

=
1
n

∑̄
i
ρ̃ (Zi,θ) + ō(1) (29)

Exapnding ρ̃ (Zi, θ) about θ0, and recalling the abuse of notation that equates ρ̃ (Zi,θ) with
ρ̃ (Zi,θ0 +

√
n (θ − θ0)) yields

1
n

∑̄
i
ρ̃ (Zi,θ)

=
1
n

∑̄
i
ρ̃ (Zi,θ0) + (θ − θ0)

1√
n

∑̄
i
∇1ρ̃ (Zi,θ0)

+
n

2
(θ − θ0)

> · 1
n

∑̄
i
∇2ρ̃ (Zi,θ0) (θ − θ0) + ō

(
n ‖θ − θ0‖2

)
. (30)

Note that
1√
n

∑̄
i
∇1ρ̃ (Zi,θ0)

d→ N (0, D0) ,
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where
D0 ≡ E

[
∇1ρ̃ (Z1, θ0) ∇1ρ̃ (Z1, θ0)

>
]
.

Combining (29) and (30), the desired conclusion is immediate if it can be shown that both
(27) and (28) are ō(1).

Consider (27). By Lemma 2, we have

∣∣∣ĝ(i)
n (u|θ)− g0

(
X>

i β(θ)
∣∣ θ

)∣∣∣ = Ō

(
h2

n +
√

log n

nhn

)
,

while by Assumptions 3 and 6 we have

2∑
m=1

1
m!n

n∑

i=1

ρ(m)
(
Yi, g0

(
X>

i β(θ)
∣∣ θ

)) (
ĝ(i)

n

(
X>

i β(θ)
∣∣ θ

)− g0

(
X>

i β(θ)
∣∣ θ

))m

τ̂ni(θ)

=
2∑

m=1

1
m!n

n∑

i=1

ρ(m)
(
Yi, g0

(
X>

i β(θ)
∣∣ θ

)) (
ĝ(i)

n

(
X>

i β(θ)
∣∣ θ

)− g0

(
X>

i β(θ)
∣∣ θ

))m

τ̃ni(θ)

+ō

(
nζ

(
h2

n +
√

log n

nhn

))

=
2∑

m=1

1
m!n

∑̄
i
ρ(m)

(
Yi, g0

(
X>

i β(θ)
∣∣ θ

)) (
ĝ(i)

n

(
X>

i β(θ)
∣∣ θ

)− g0

(
X>

i β(θ)
∣∣ θ

))m

+ō

(
nζ

(
h2

n +
√

log n

nhn

))

= ō(1).

A similar argument shows that

1
3!n

n∑

i=1

ρ(3) (Yi, uni(θ))
(
ĝ(i)

n

(
X>

i β(θ)
∣∣ θ

)− g0

(
X>

i β(θ)
∣∣ θ

))3

τ̂ni(θ) = ō(1).

As such, the first-order asymptotic behaviour of
√

n
(
θ̂n − θ0

)
is summarized by the representa-

tion
√

n
(
θ̂n − θ0

)
=

1√
n

n∑

i=1

Ψ
(
Zi, θ0, ĝ

(i)
n

)
+ ō(1), (31)

where for each i ∈ {1, . . . , n},

Ψ
(
Zi, θ0, ĝ

(i)
n

)

≡

 1

n

n∑

j=1

∇2ρ
(
Yj , ĝ

(i)
n

(
X>

j β(θ0)
∣∣ θ0

))
τ̂nj(θ0)



−1

·∇1ρ
(
Yi, ĝ

(i)
n

(
X>

i β(θ0)
∣∣ θ0

))
τ̂ni(θ0). (32)
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A.3 Proof of Theorem 2
Start from the first-order representation given above in (31). Define for a smooth link function
g : R→ R satisfying the conditions of Assumption 3 the functional

ψ (Zi,θ, g) ≡
[

1
n

∑̄
j
∇2ρ

(
Yj , g

(
X>

j β(θ)
∣∣ θ

))]−1

∇1ρ
(
Yi, g

(
X>

i β(θ)
∣∣ θ

))
. (33)

Let ψg and ψgg denote the first and second-order derivatives of ψ with respect to g. Expanding

ψ
(
Zi, θ0, ĝ

(i)
n

)
about ψ (Zi, θ0, g0) to second order yields

√
n

(
θ̂n − θ0

)

=
1√
n

∑̄
i
ψ (Zi, θ0, g0)

+
1√
n

∑̄
i
ψg (Zi, θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))

+
1

2
√

n

∑̄
i
ψgg (Zi,θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))2

+Ō

(
nζ

(
h2

n +
√

log n

nhn

))

=
1√
n

∑̄
i
ψ (Zi, θ0, g0)

+
1√
n

∑̄
i
µ̄gi (θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))

+
1√
n

∑̄
i
ψ̄g (Zi, θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))

+
1

2
√

n

∑̄
i
µ̄ggi (θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))2

+
1

2
√

n

∑̄
i
ψ̄gg (Zi,θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))2

+Ō

(
nζ

(
h2

n +
√

log n

nhn

))
, (34)

where

µ̄gi (θ0, g0) ≡ E
[
ψg (Zi, θ0, g0)|Xi ∈ Λ̃n

]

ψ̄g (Zi, θ0, g0) ≡ ψg (Zi,θ0, g0)− µ̄gi (θ0, g0)

µ̄ggi (θ0, g0) ≡ E
[
ψgg (Zi, θ0, g0)|Xi ∈ Λ̃n

]

ψ̄gg (Zi, θ0, g0) ≡ ψgg (Zi, θ0, g0)− µ̄ggi (θ0, g0) .

Consider

W1 ≡ 1√
n

∑̄
i
µ̄gi (θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))

.
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Appealing to Lemma 4 we can write

W1

=
1√
n

∑̄
i
µ̄gi (θ0, g0)


∑

j 6=i

εj(θ0)wij(θ0) + bn (Zi|θ0)




=
1√
n

∑̄
i
µ̄gi (θ0, g0) εi(θ0) +

1√
n

∑̄
i
µ̄gi(θ0, g0)


∑

j 6=i

εj(θ0)wij(θ0)− εi(θ0)




+
1√
n

∑̄
i
µ̄gi(θ0, g0)bn (Zi|θ0)

≡ W11 + W12 + W13. (35)

Note that W11 = Ō(1) and is jointly asymptotically normal with the leading term

W0 ≡ 1√
n

∑̄
i
ψ (Zi, θ0, g0) (36)

in (34). W12 is mean zero and has variance proportional to

E





∑

j 6=i

εj(θ0)wij(θ0)− εi(θ0)




2

 = O(h4

n).

Applying Lemma 1 it follows that W12 = Ō
(
h2

n

√
log n

)
. Finally note via Lemma 4 that W13

has magnitude Ō
(√

nh2
n +

√
log n
nhn

)
. A further application of Lemma 4 yields the convergence

h−2
n · 1

n

∑̄
i
µ̄gi (θ0, g0) bn (Zi|θ0)

a.s.→ E [µ̄g1(θ0, g0)b0 (Z1|θ0)]
≡ γ1, (37)

where b0 (Z1|θ0) is as given above in the statement of Lemma 4.
Next, consider

W2 ≡ 1√
n

∑̄
i
ψ̄g (Zi, θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))

.

We have

W2

=
1√
n

∑̄
i
ψ̄g (Zi, θ0, g0)

∑

j 6=i

εj(θ0)wij(θ0) +
1√
n

∑̄
i
ψ̄g (Zi, θ0, g0) bn (Zi|θ0)

≡ W21 + W22.
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Note that W21 is mean zero, is uncorrelated with the leading terms and has variance of order

O
(

1
nhn

)
. Applying Lemma 1 we have W21 = Ō

(√
log n
nhn

)
. W22 is also mean zero with variance

of order O
(

1
nhn

)
. A further application of Lemma 1 gives W22 = Ō

(√
log n
nhn

)
.

Now consider

W3 ≡ 1
2
√

n

∑̄
i
µ̄ggi (θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))2

.

We have via appeals to Lemma 1 and 4 that

W3

=
1

2
√

n

∑̄
i
µ̄ggi(θ0, g0)


∑

j 6=i

εj(θ0)wij(θ0) + bn (Zi|θ0)




2

=
1

2
√

n

∑̄
i
µ̄ggi(θ0, g0)


∑

j 6=i

εj(θ0)wij(θ0)




2

+ Ō

(√
nh4

n +
√

log n

nhn

)

=
1

2
√

n

∑̄
i
µ̄ggi(θ0, g0)

∑

j 6=i

E
[
ε2j (θ0)

∣∣ Xj

]
w2

ij(θ0)

+
1

2
√

n

∑̄
i
µ̄ggi(θ0, g0)

∑

j 6=i

w2
ij(θ0)

[
ε2j (θ0)− E

[
ε2j (θ0)

∣∣ Xj

]]

+
1

2
√

n

∑̄
i
µ̄ggi(θ0, g0)

∑

j 6=1

∑

k 6=1︸ ︷︷ ︸
j 6=i,k

wij(θ0)wik(θ0)εj(θ0)εk(θ0) + Ō

(√
nh4

n +
√

log n

nhn

)

≡ W31 + W32 + W33 + Ō

(√
nh4

n +
√

log n

nhn

)
.

For
σ2(θ0) ≡ E

[
ε21(θ0)

]

we have via an appeal to Lemma 1 that

W31 =
σ2(θ0)

∫
K2(s)ds

2hn
√

n
· 1
n

∑̄
i
µ̄ggi(θ0, g0) · 1

f0

(
X>

i β(θ0)
∣∣ θ0

) + ō

(√
log n

hn
√

n

)
.

As such,

W31 =
1

hn
√

n
γ2 + ō

(√
log n

hn
√

n

)
,

where

γ2 ≡ σ2(θ0)
∫

K2(s)ds · E
[
µ̄gg1(θ0, g0) · 1

f0

(
X>

1 β(θ0)
∣∣ θ0

)
]

. (38)
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Noting that both W32 and W33 are mean zero, similar appeals to Lemma 1 yield W32 = Ō
( √

n
nhn

)

and W33 = Ō
(√

log n
nhn

)
.

Finally consider

W4 ≡ 1
2
√

n

∑̄
i
ψ̄gg (Zi,θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))2

.

Note that ψ̄gg(Zi, θ0, g0) is conditionally independent of
(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))2

given Xi. As such, W4 is mean zero, and also uncorrelated with the asymptotically normal terms
in (34), namely W0 and W11 as given above in (36) and (35), respectively. Deduce via Lemmas 4
and 1 that

W4 =
1

2
√

n

∑̄
i
ψ̄gg (Zi,θ0, g0)


∑

j 6=i

εj(θ0)wij(θ0) + bn (Zi|θ0)




2

= Ō

(√
nh4

n +
√

log n

nhn

)
.

Summarizing, we have the representation
√

n
(
θ̂n − θ0

)
= An0 + An1 + An2 + An3 + An4 + Rn.

Here

An0 ≡ 1√
n

∑̄
i
(ψ(Zi, θ0, g0) + µ̄gi(θ0, g0)εi(θ0)) (39)

= Ō(1)

and is asymptotically N(0,Σ0), where

Σ0 ≡ E
[
(ψ(Z1,θ0, g0) + µ̄g1(θ0, g0)ε1(θ0)) (ψ(Z1, θ0, g0) + µ̄g1(θ0, g0)ε1(θ0))

>
]
; (40)

while

An1

≡ 1√
n

∑̄
i
µ̄gi(θ0, g0)bn (Zi|θ0) (41)

=
√

nh2
nγ1 + ō(1).

In addition,

An2

≡ σ2(θ0)
∫

K2(s)ds

2hn
√

n
· 1
n

∑̄
i
µ̄ggi(θ0, g0) · 1

f0

(
X>

i β(θ0)
∣∣ θ0

) (42)

=
1

hn
√

n
γ2 + ō(1),
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An3

≡ 1√
n

∑̄
i

[
ψ̄g(Zi,θ0, g0)

(
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
))

+
1
2
µ̄ggi(θ0, g0)

∑

j 6=1

∑

k 6=1︸ ︷︷ ︸
j 6=i,k

wij(θ0)wik(θ0)εj(θ0)εk(θ0)




(43)

= Ō

(√
log n

nhn

)
,

An4

≡ 1√
n

∑̄
i



µ̄gi (θ0, g0)


∑

j 6=i

εj(θ0)wij(θ0)− εi(θ0)




+
1
2
µ̄ggi (θ0, g0)

∑

j 6=i

w2
ij(θ0)

[
ε2j (θ0)− E

[
ε2j (θ0)

∣∣ Xj

]]

+
1
2
ψ̄gg(Zi,θ0, g0)

[
ĝ(i)

n

(
X>

i β(θ0)
∣∣ θ0

)−G0

(
X>

i β(θ0)
)]2

}
(44)

= Ō

(
h2

n

√
log n +

√
log n

nhn
+
√

nh4
n

)

and

Rn = Ō

(
nζ

(
h2

n +
√

log n

nhn

))
.

For bandwidth hn ∝ n−
1
3 and trimming parameter ζ ∈ (

0, 2
15

)
we have

An1 = n−
1
6 γ1 + ō(1),

An2 = n−
1
6 γ2 + ō(1),

An3 = Ō
(
n−

1
3
√

log n
)

,

An4 = Ō
(
n−

2
3
√

log n
)

and
Rn = ō

(
n−

1
5
√

log n
)

.

It follows that under the conditions of Assumptions 1–6,
√

n
(
θ̂n − θ0

)
has the representation

√
n

(
θ̂n − θ0

)
= An0 +

√
nh2

nγ1 +
1

hn
√

n
γ2 + ō

(
n−

1
5
√

log n
)

. (45)

38



A.4 Proof of Theorem 3
Recall the notation defined above the statement of Lemma 5 above that A∗

m = Ō∗(am) (or
ō∗(am)) iff each element of A∗

m is uniformly Oa.s.(am) (resp. oa.s.(am)) over Λm and Θn con-
ditionally on Xn as m,n →∞. For

ε∗i,m(θ) = Y ∗
i,m − ĝ(i,m)

n

(
X∗>

i,mβ(θ)
∣∣ θ

)
, (46)

let
σ∗2(θ) ≡ V ar

[
ε∗i,m(θ)

∣∣Xn

]
(47)

and let
∑̄

(i,m) denote summation over observations in X ∗m with X∗
i,m ∈ Λ̃m.

An application of Lemma 5 and imitation of the steps taken in Appendix A.3 yields the fol-
lowing representation for

√
m

(
θ̂∗m − θ̂n

)
when hm ∝ m− 1

3 and ζ ∈ (
0, 2

15

)
:

√
m

(
θ̂∗m − θ̂n

)
=

1√
m

∑̄
(i,m)

(
ψ∗

(
Z∗

i,m, θ̂n, ĝn

)
+ µ̄∗gi

(
θ̂n, ĝn

)
ε∗i,m(θ̂n)

)

+
1√
m

∑̄
(i,m)

µ̄∗gi

(
θ̂n, ĝn

)
b∗m

(
Z∗

i,m

∣∣ θ̂n

)

+
σ∗2(θ̂n)

∫
K2(s)ds

2hm
√

m
· 1√

m

∑̄
(i,m)

µ̄∗ggi(θ̂n, ĝn) · 1

f̂
(i,m)
n

(
X∗>

i,mβ(θ̂n)
∣∣∣ θ̂n

)

+ō
(
m− 1

5
√

log m
)

, (48)

where

ψ∗
(
Z∗

i,m, θ̂n, ĝn

)
≡

[
1
m

∑̄
(j,m)

∇2ρ
(
Y ∗

j,m, ĝ(i,m)
n

(
X∗>

j,mβ(θ̂n)
∣∣∣ θ̂n

))]−1

·∇1ρ
(
Y ∗

i,m, ĝ(i,m)
n

(
X∗>

i,mβ(θ̂n)
∣∣∣ θ̂n

))
;

µ̄∗gi

(
θ̂n, ĝn

)
≡ E

[
ψg

(
Z∗

i,m, θ̂n, ĝn

)∣∣∣ X∗
i,m ∈ Λ̃m,Xn

]

and
µ̄∗ggi

(
θ̂n, ĝn

)
≡ E

[
ψgg

(
Z∗

i,m, θ̂n, ĝn

)∣∣∣ X∗
i,m ∈ Λ̃m,Xn

]
.

Analyze the first three terms in (48) in succession.
First consider

W ∗
m0 ≡ 1√

m

∑̄
(i,m)

(
ψ∗

(
Z∗

i,m, θ̂n, ĝn

)
+ µ̄∗gi(θ̂n, ĝn)ε∗i,m(θ̂n)

)
(49)

≡ 1√
m

∑̄
(i,m)

W ∗
m0i.

Note that W ∗
m0 = Ō∗(1) and is asymptotically N (E [W ∗

m0i| Xn] , V ar [W ∗
m0i| Xn]) conditional

on Xn. But

E [W ∗
m0i| Xn] a.s.→ E [ψ (Z1,θ0, g0) + µ̄g1(θ0, g0)ε1(θ0)]

= 0
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and
V ar [W ∗

m0i| Xn] a.s.→ Σ0,

where Σ0 is as given above in (40). It follows that W ∗
m0 = Am0 + ō(1), where Am0 is as given

above in (39) with n = m.
Next consider

W ∗
m1 ≡ 1√

m

∑̄
(i,m)

µ̄∗gi

(
θ̂n, ĝn

)
b∗m

(
Z∗

i,m

∣∣ θ̂n

)
(50)

≡ 1√
m

∑̄
(i,m)

W ∗
m1i.

When m ∈ [
C1n

ξ, C2n
1−ξ

]
for suitable positive constants C1, C2 and ξ, an application of

Lemma 5 yields

h−2
m · 1

m

∑̄
(i,m)

Wm1i = h−2
m E

[
µ̄∗gi

(
θ̂n, ĝn

)
b∗m

(
Z∗

i,m

∣∣ θ̂n

)∣∣∣Xn

]
+ ō∗(1)

a.s.→ E [µ̄g1(θ0, g0)b0 (Z1|θ0)]
= γ1,

where γ1 is as given above in (37).
On the other hand, a setting of m = n yields via another application of Lemma 5 the repre-

sentation

W ∗
m1 = Ō

(
h2

n +
√

log n

nhn

)
= ō

(
m− 1

5
√

log m
)

.

It follows that
W ∗

m1 = h2
m

√
mγ1 + ō(1)

iff m ∈ [
C1n

ξ, C2n
1−ξ

]
, n →∞ and hm ∝ m− 1

3 .
Finally, take

W ∗
m2 ≡ σ∗2(θ̂n)

∫
K2(s)ds

2hm
√

m
· 1
m

∑̄
(i,m)

µ̄∗ggi(θ̂n, ĝn) · 1

f̂
(i,m)
n

(
X∗>

i,mβ(θ̂n)
∣∣∣ θ̂n

) (51)

≡ σ∗2(θ̂n)
∫

K2(s)ds

2hm
√

m
· 1
m

∑̄
(i,m)

W ∗
m2i.

We have as m,n →∞

1
m

∑̄
(i,m)

Wm2i = E


 µ̄∗ggi(θ̂n, ĝn) · 1

f̂
(i,m)
n

(
X∗>

i,mβ(θ̂n)
∣∣∣ θ̂n

)
∣∣∣∣∣∣
Xn


 + ō∗(1)

a.s.→ E

[
µ̄gg1(θ0, g0) · 1

f0

(
X>

1 β(θ0)
∣∣ θ0

)
]

=
1

σ2(θ0)
∫

K2(s)ds
γ2,
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where γ2 is as given above in (38). It follows that

W ∗
m2 =

1
hm
√

m
γ2 + ō(1)

as m,n →∞.
Summarizing, when hm ∈

[
δm− 1

3 , δ−1m− 1
3

]
for some small δ ∈ (0, 1) and m ∈ [

C1n
ξ, C2n

1−ξ
]

and ζ ∈ (
0, 2

15

)
the representation

√
m

(
θ̂∗m − θ̂n

)
= Am0 + h2

m

√
mγ1 +

1
hm
√

m
γ2 + ō

(
m− 1

5
√

log m
)

.

This shows that
√

m
(
θ̂∗m − θ̂n

)
can be made almost surely equal in large samples to

√
m

(
θ̂m − θ0

)

up to terms of order m− 1
6 .

On the other hand, a setting of m = n under the same constraints on hm yields the represen-
tation √

m
(
θ̂∗m − θ̂n

)
= Am0 +

1
hm
√

m
γ2 + ō

(
m− 1

5
√

log m
)

.

A.5 Proof of Theorem 4
Let W ∗

m0, W ∗
m1 and W ∗

m2 be as given above in (49), (50) and (51), respectively. Define

W ∗
m ≡ W ∗

m0 + W ∗
m1 + W ∗

m2.

It follows from Theorem 3 that choosing the bandwidth h∗m,opt to minimize

E

[
m

(
θ̂∗m − θ̂n

)>
Σ−

0

(
θ̂∗m − θ̂n

)∣∣∣∣Xn

]

is asymptotically equivalent to defining h∗m,opt as the bandwidth value that minimizes E [W ∗
m| Xn].

By Lemmas 1 and 2 we have that

E [W ∗
m0| Xn] = Ō

(
√

m

(√
log n

n
+ h2

n +
√

log n

nhn

))
.

On the other hand, E [W ∗
m1| Xn] = Ō

(
h2

m

√
m

)
and E [W ∗

m2| Xn] = Ō
(

1
hm

√
m

)
. From this it

follows that the magnitude of E [W ∗
m| Xn]− E [Wm], where

Wm ≡ Am0 + h2
m

√
mγ1 +

1
hm
√

m
γ2,

is of order
√

m log n
n + m− 1

6 when hm ∝ m− 1
3 and E [W ∗

m1| Xn] and E [W ∗
m2| Xn] are both

Ō
(
m− 1

6

)
.

It follows that setting m ∝
(

n
log n

) 3
4

is sufficient to minimize the order of the estimation error
involved in the substitution of E [W ∗

m| Xn] for E [Wm].
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Figure 1: Relative root MSE as a function of bandwidth
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Figure 2: Relative root MSE as a function of bandwidth, log-log scale
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Table 1: Finite-sample behaviour of the bandwidth estimators, n = 1000

Bandwidth Mean Standard deviation RMSE

hn,opt .4785 — —
ĥbm∗c,opt .6220 .3502 .3781

ĥb 3
2
m∗c,opt .3350 .1858 .2346

ĥb2m∗c,opt .2243 .1070 .2758
ĥb5m∗c,opt .1914 .1592 .3282

ĥn,Sil .9743 .0627 .4997

Table 2: Finite-sample behaviour of the SLS estimator with various bandwidths,
n = 1000

Estimator Mean SD RMSE

θ̂n (hn,opt) -.7283 .0897 .2861

θ̂n

(
ĥbm∗c,opt

)
-.7125 .0949 .3027

θ̂n

(
ĥb 3

2
m∗c,opt

)
-.7286 .0941 .2872

θ̂n

(
ĥb2m∗c,opt

)
-.7269 .0899 .2875

θ̂n

(
ĥb5m∗c,opt

)
-.7143 .0811 .2970

θ̂n

(
ĥn,Sil

)
-.6938 .1249 .3306
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