
University of Toronto 
Department of Economics 

 

September 30, 2009

By Chuan  Goh

Efficient Semiparametric Detection of Changes in Trend

Working Paper 373



Efficient Semiparametric Detection of
Changes in Trend

Chuan Goh∗

First draft: 8 June 2008
This version: 20 May 2009

∗The author is grateful to Don Andrews, Stephen Cosslett, Robert de Jong, Jean-Marie Dufour,
Joon Park, Peter Phillips and Shinichi Sakata for their comments on an earlier version of this paper.
The usual disclaimer is applicable. This research was supported in part by the Connaught Fund of
the University of Toronto. Address correspondence to: Department of Economics, University of
Toronto, 150 St. George St., Toronto, ON, Canada, M5S 3G7. goh@economics.utoronto.ca,
http://www.chuangoh.org.

1



Abstract

This paper proposes a test for the correct specification of a dynamic time-
series model that is taken to be stationary about a deterministic linear trend
function with no more than a finite number of discontinuities in the vector of
trend coefficients. The test avoids the consideration of explicit alternatives
to the null of trend stability. The proposal also does not involve the de-
tailed modelling of the data-generating process of the stochastic component,
which is simply assumed to satisfy a certain strong invariance principle for
stationary causal processes taking a general form. As such, the resulting in-
ference procedure is effectively an omnibus specification test for segmented
linear trend stationarity. The test is of Wald-type, and is based on an asymp-
totically linear estimator of the vector of total-variation norms of the trend
parameters whose influence function coincides with the efficient influence
function.

Simulations illustrate the utility of this procedure to detect discrete breaks
or continuous variation in the trend parameter as well as alternatives where
the trend coefficients change randomly each period. This paper also includes
an application examining the adequacy of a linear trend-stationary specifi-
cation with infrequent trend breaks for the historical evolution of U.S. real
output.

JEL Classification: C12, C14, C22
KEYWORDS: Structural change, trend-stationary processes, nonparametric

regression, efficient influence function
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1 Introduction
A particularly important class of model in econometric time-series analysis in-
volves nonstationary processes characterized by stationary fluctuations about a
deterministic trend function. In particular, suppose that data Y1, . . . ,YT are ob-
served from the model

Yt = ddd
( t

T

)⊤
γγγ
( t

T

)
+ut , t = 1, . . . ,T, (1)

where ut is a generated by a mean-zero stationary process. The deterministic com-
ponent in (1) is in general nonlinear in the scaled time index and involves both a
known function ddd : [0,1]→ ℝk and an unknown parameter γγγ : [0,1]→ ℝk. From
the point of view of macroeconometric applications, the special case of (1) where
γγγ(⋅) is a vector of constants has generally been associated with a traditional “Key-
nesian” view of macroeconomic fluctuations alleging that the dynamic behaviour
of most macroeconomic series is well described by stationary fluctuations about a
smoothly evolving deterministic trend.1 Beginning with the seminal study of Nel-
son and Plosser (1982), challenges to this traditional view have typically argued
that the evolution of most macroeconomic series is better described by “differ-
ence stationarity”, or the behaviour of a unit-root process. In this paradigm, the
vector of trend parameters γγγ(⋅) fluctuates randomly, and one-off shocks to the
system have permanent effects. This challenge to the traditional conception of
macroeconomic fluctuations has been influential in theoretical macroeconomics,
as well as having served to inspire the development of an extensive empirical and
methodological literature in econometrics.2

The “segmented trend” model of Gallant and Fuller (1973) provides a formula-
tion intermediate between the trend-stationary and difference-stationary paradigms.
In this case, the trend function is neither a smooth function of time as in the trend-
stationary view nor characterized by breaks every period, as would be the case

1Cf. e.g., Kydland and Prescott (1980); Blanchard (1981).
2Empirical studies essentially corroborating the results of Nelson and Plosser (1982) using the

same Dickey–Fuller methodology but different datasets include Stulz and Wasserfallen (1985);
Wasserfallen (1986) and Perron (1988). The notion of dynamic path dependence inherent in
the difference-stationarity paradigm features in the model proposed by Blanchard and Summers
(1986) to describe “hysteresis” in European unemployment in the 1980s as well as in real business
cycle models of macroeconomic fluctuations (e.g., King et al., 1991). The theoretical literature on
unit-root testing and the behaviour of statistical models involving integrated variables is vast. Re-
cent surveys on unit-root testing and cointegration analysis can be found in Haldrup and Jansson
(2006) and Johansen (2006), respectively.
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if the data were realizations of a unit-root process. A segmented-trend model
involves dynamic behaviour similar to a trend-stationary model between the oc-
currence of infrequent trend breaks. In the context of (1), the infrequent trend
breaks appear as discontinuities in one or more components of ddd (⋅), with the vec-
tor of parameters γγγ(⋅) remaining time-invariant. Segmented trend stationarity may
be a more realistic reflection of the actual evolution of macroeconomic series than
what one would get with a unit-root process when trend breaks are interpreted as
the consequence of infrequent permanent shocks.3

The statistical question treated in this paper is the development of a procedure
to test whether the trend-function parameter γγγ in (1) is in fact time varying when
the deterministic component ddd exhibits at most a finite number of breaks at time
periods selected by the researcher. As such, this paper develops a specification
test for the adequacy of a given segmented-trend model.

In this connection, the parameter of interest is taken to be the k-vector χχχ(γγγ),
whose jth component is given by

χ j(γγγ)≡
∫ 1

0

∣∣γ ′j(s)
∣∣ds,

i.e., the total variation of the jth component of γγγ over the unit interval.4 Note
that unit-root behaviour in the dependent variable is associated with unpredictable
changes each period in one or more components of the trend parameter, which
translates into a value of ∑k

j=1 χ j(γγγ) = ∞. On the other hand, the existence of both
a finite number of discrete breaks or smooth continuous change in one or more
components of γγγ would naturally be associated with ∑k

j=1 χ j(γγγ) ∈ (0,∞). Under
the null of parameter stability, on the other hand, each of the additive components
d j
( t

T

)
γ j0 ( j ∈ {1, . . . ,k}) of the trend function evolves smoothly as a function of

time between any two consecutive breakpoints in d j, if in fact such breakpoints
have been “built-in” by the researcher as the presumed reflection of a belief in the

3Potential examples of such infrequent shocks having permanent effects include natural dis-
asters, abrupt policy changes and large sudden movements in asset prices. Cf. Perron (1989);
Rappoport and Reichlin (1989); Perron (1990) and Perron and Wada (2006).

4The vector consisting of the L2(Leb[0,1])-norm of each component of γγγ ′ may also be used.
(Here Leb[0,1] denotes Lebesgue measure on the unit interval, and γγγ ′ denotes the vector whose
components are the first derivatives of the corresponding components of γγγ .) Total variation is used
here because it imposes less of a penalty on regions of the unit inerval where

∣∣∣γ ′j(s)
∣∣∣ is large, thus

allowing for a commensurately greater degree of “roughness” in γγγ that is still compatible with a
decision in favour of a segmented trend-stationary specification in (1).
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occurrence at certain periods of significant exogenous shocks having permanent
effects on the trend.

The approach taken in this paper involves the development of a method for
testing the hypothesis of parameter stability by explicit consideration of the null
that χχχ(γγγ) = 000 for all γγγ in the space of ℝk-valued functions in the unit interval.
A focus on the parameter χχχ(γγγ) naturally allows one to abstract away from the
consideration of explicit alternatives to the hypothesis of interest and underscores
the omnibus nature of the testing procedure for trend stationarity proposed here. In
particular, the specification test for segmented trend stationarity proposed here has
power against all manner of unmodelled structural change in the trend function,
including single or multiple breaks, continuous variation or unpredictable change
each period in γγγ(⋅).

The test proposed here will also be shown to be efficient in the sense of asymp-
totically attaining a localized uniform power bound against contiguous alterna-
tives to the null that χχχ(γγγ) = 000. In particular, the proposal presented in this paper
is explicitly designed—in the absence of strong assumptions imposed on the data-
generating mechanism for the stochastic component—to attain a relevant semi-
parametric efficiency bound for local alternatives to the null of trend-parameter
stability belonging to an appropriately defined tangent space.5

In what follows, an efficient semiparametric detection procedure for time vari-
ation in the trend-function parameter is described. The test is based on the asymp-
totic behaviour of an efficient semiparametric estimator of the total variation of
the components of the trend parameter γγγ(⋅) over the unit interval. In particular,
the limiting distribution of this Wald-type test statistic, when centred at a point
γγγ0 with χχχ(γγγ0) = 000, is shown to be both regular as well as asymptotically linear
with influence function equal to the efficient influence function. A description of
this basic idea in the specific context of the model given in (1) is deferred to Sec-
tion 3. This description is preceded in Section 2 by a more general discussion of
the semiparametric efficiency criterion used in this paper. Details on constructing
a feasible efficient test statistic are provided in Section 4. Simulation evidence
regarding how the feasible testing procedure described in Section 4 performs in
small samples is provided in Section 5, while Section 6 gives the results of ap-
plications of the technique developed here to assessing the adequacy of a linear

5The literature on detecting time variation in the trend-function parameters is vast, and is
comprehensively surveyed by Perron (2006). Recent proposals for detecting structural change
in trend functions include those of Chu and White (1992); Kuan and Hornik (1995); Bai (1996);
Ploberger and Krämer (1996); Vogelsang (1997); Kuan (1998); Vogelsang (1998, 1999); Juhl and
Xiao (2005) and Wu and Zhao (2007).
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trend-stationary specification with infrequent trend breaks to the historical evolu-
tion of real output in the United States. Section 7 concludes. Proofs of most of
the theoretical results given in Sections 3 and 4 are collected in the appendix.

Notation and terminology
This section summarizes for convenience certain notational conventions and definitions that are
used extensively in the remainder of this paper.

1. For a vector xxx ∈ ℝk, ∥xxx∥ denotes the Euclidean norm of xxx. For a random vector XXX taking

values in ℝk, ∥XXX∥ ≡
(

E
[
∥XXX∥2

]) 1
2
.

2. Consider a measurable space (X ,B). Let {P0,P1,P2, . . .} be a collection of probability
measures defined on (X ,B) dominated by some σ -finite measure µ , and let {p0, p1, p2, . . .}
denote the corresponding collection of densities with respect to µ . For P ∈ {P0,P1,P2, . . .},
define Ṗ ≡ {h ∈ L2(P) :

∫
hdP = 0}.

For each n ≥ 1, consider the mapping Pn → s
(

1√
n

)
, where s

(
1√
n

)
≡ √

pn. Also define
s(0) ≡ √

p0. Suppose that s(⋅) is Fréchet-differentiable in L2(µ) at s(0), i.e., that there
exists a linear operator ṡ0 : [0,1] → ℝ such that for every sequence of positive numbers
{εn}→ 0 and a sequence {dn} with each ∣dn∣< ∞ with

∥∥∥∥
s(εndn)− s(0)

εn
− ṡ0(dn)

∥∥∥∥
2

=

∫ (
s(εndn)− s(0)

εn
− ṡ0(dn)

)2

dµ

→ 0.

It follows that for εn ≡ 1√
n , dn ≡ 1 we have the conventional formulation of differentiability

in quadratic mean, i.e.,
∫ [√

n(
√

pn −√
p0)− ṡ0(1)

]2 dµ → 0.

By Bickel et al. (1993, Example 3.2.1), ṡ0(1) = 1
2 h
√

p0 for some h ∈ Ṗ, and in this case
the sequence {Pn : n ≥ 1} has a tangent h at P0.

3. Now consider a linear operator T between Banach spaces (V,∥ ⋅ ∥V ) and (W,∥ ⋅ ∥W ). First
suppose that A is a subset of V and that A has an associated tangent space Ȧ, i.e., that
for every d ∈ Ȧ there is a corresponding local sequence {dn} with ∥dn −d∥V → 0 and a
real-valued sequence {εn}→ 0 such that a+ εndn ∈ A for every n ≥ 1 and every a ∈ A.
If for some a ∈ A there is a linear operator Ṫa : A → W such that for every {εn} → 0 and
d ∈ Ȧ with corresponding local sequence {dn}→ d we have

∥∥∥∥
T (a+ εndn)−T (a)

εn
− Ṫa(dn)

∥∥∥∥
W
→ 0, (2)

then the linear operator T is said to be pathwise- (or Hadamard-) differentiable along Ȧ at
a.
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In what follows, consideration is focused on a slightly simpler situation implied by (2),
namely the special case where εn =

1√
n in (2).

4. A function g defined on an interval I of the real line is said to be of bounded variation if

sup

{
∑

i
∣g(ti)−g(ti−1)∣

}
< ∞,

where the supremum is taken over all partitions {⋅ ⋅ ⋅< ti−1 < ti < ⋅ ⋅ ⋅} of I.

2 Efficient semiparametric estimation and testing
The detection procedure proposed in this paper for time variation in the trend-
function parameter is derived explicitly from an efficient estimator of the total
variation of the trend parameter over the unit interval. This section is expository
in nature and may be skipped by readers already familiar with the general concepts
summarized here, or by those otherwise anxious to pass directly to a statement of
the main results of this paper. In particular, this section presents in general terms
the efficiency criterion adopted in this paper, which is associated with minimum
dispersion of regular estimators of a parameter of interest. The theoretical results
stated here are fairly well-known, and as such are presented without proof.6

Let (X ,B) again denote a measurable space. let P ≡ {Pθ : θ ∈ Θ} be a
family of probability measures defined on (X ,B). Let κκκ be a functional be-
tween Θ and ℝm. The initial statistical question concerns how well one can
estimate κκκ(θ0) for some θ0 ∈ Θ given sequences of observations generated by
{PθT : T ≥ 1} ⊂ P .

Assume that the parameter space Θ is a subset of a Banach space (H ,∥ ⋅
∥H ). Let Θ̇ be the tangent space corresponding to Θ. The following two basic
assumptions are made:

Assumption 1. For every δ ∈ Θ̇ with associated local sequence {δT}, the collec-

tion
{

Pθ0+
1√
T

δT

}
has tangent Ṗθ0 [δ ] at θ0, where Ṗθ0[⋅] denotes a linear operator

on H into the the space

Ṗθ0 ≡
{

h ∈ L2(Pθ0) :
∫

hdPθ0 = 0
}
.

6Further details can be obtained in Pfanzagl and Wefelmeyer (1982); Begun et al. (1983) and
in the monograph of Bickel et al. (1993).
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Assumption 2. The functional κκκ is pathwise differentiable along Θ̇ at θ0, i.e.,
there exists a linear operator κ̇κκθ0 : H → ℝm such that for every δ ∈ Θ̇,

∥∥∥∥
√

T
(

κκκ
(

θ0 +
1√
T

δ
)
−κκκ(θ0)

)
− κ̇κκθ0(δ )

∥∥∥∥
H

→ 0 (3)

as n → ∞.

Note the following definitions for convenience:

Definition 1. 1. The closed linear span of
{

Ṗθ0[δ ] : δ ∈ Θ̇
}

is called the tan-
gent space of P and will be denoted by T .

2. An estimator is a sequence {κκκT : T ≥ 1} such that for every T ≥ 1, κκκT is
a measurable function on XT into Rm.

3. An estimator {κκκT} is said to be (locally) regular at θ0 if there is a distri-
bution Q0 such that for every δ ∈ Θ̇,

L

(√
T
(

κκκT −κκκ
(

θ0 +
1√
T

δ
))∣∣∣∣Pθ0+

1√
T

δ

)
→ Q0,

where Q0 does not depend on δ .

4. An estimator {κκκT} is said to be asymptotically linear at θ0 with influence
function ψψψ0 : X → ℝm if

∣ψψψ0(⋅)∣ ∈ L2
(
Pθ0

)
; (4)∫

ψψψ0dPθ0 = 000; (5)

and

κκκT = κκκ(θ0)+
1
T

T

∑
i=1

ψψψ0(Xt)+op

(
T− 1

2

)
, (6)

where the convergence in (6) is with respect to Pθ0-probability.

We are led to the following fundamental result:

Theorem 1 (Convolution Theorem; e.g., Bickel et al. (1993, Thm. 3.3.2)). Sup-
pose that Assumptions 1 and 2 hold and that there exists an element ψψψθ0

∈ T m

such that ∫
ψψψθ0

Ṗθ0 [δ ]dPθ0 = κ̇κκθ0(δ ) (7)
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for every δ ∈ Θ̇ and {
ααα⊤ψψψθ0

: ααα ∈ ℝm
}

(8)

is a subset of the closure of the tangent space T of P , i.e., the closed linear span
of

{
Ṗθ0[δ ] : δ ∈ Θ̇

}
.

Then for ΨΨΨ0 ≡
∫

ψψψθ0
ψψψ⊤

θ0
dPθ0 ,

1. The limiting distribution Q0 of a locally regular estimator at θ0 is a convo-
lution of N (000,ΨΨΨ0) and some other distribution M, i.e.,

Q0 = N (000,ΨΨΨ0)∗M.

2. An estimator {κκκT} is locally regular at θ0 with limiting distribution N (000,ΨΨΨ0)
iff {κκκT} is asymptotically linear and has influence function ψψψθ0

at θ0.

Note that condition (7) of Theorem 1 imposes the requirement of local reg-
ularity at θ = θ0 on the underlying statistical model P ≡ {Pθ : θ ∈ Θ}.7 If the
parameter of interest κκκ(θ) is represented as a functional ννν (Pθ ) on P , a necessary
condition of (7) is the pathwise differentiability of both κκκ(θ) and its equivalent
representation ννν (Pθ ) along Θ̇ at θ0 and along Ṗ at Pθ0 , respectively. Regular
estimators of an interest parameter κκκ(θ) are not possible if κκκ(θ) is pathwise dif-
ferentiable but the underlying model P is irregular.8

The Convolution Theorem gives rise to a notion of estimator efficiency con-
tained in the following:

Definition 2. 1. The map ψψψθ0
: X → ℝm in Theorem 1 is called the efficient

influence function for κκκ(θ0).

2. An asymptotically linear estimator {κκκT} is said to be efficient for κκκ(θ0) if
its influence function at θ = θ0 is equal to the efficient influence function
ψψψθ0

.

The notion of asymptotic efficiency contained in Definition 2 for (locally)
regular and asymptotically linear estimators of a parameter κκκ(θ0) can be linked
closely to a notion of optimality for tests of hypotheses regarding κκκ(θ0). In partic-
ular, testing procedures that are asymptotically optimal in an appropriately defined
sense can be constructed from asymptotically efficient estimators of κκκ(θ0). In this

7Cf. Bickel et al. (1993, Theorem 3.3.1 and surrounding discussion.)
8Cf. e.g., Ritov and Bickel (1990).
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connection, suppose that the interest parameter κ(θ0) is scalar-valued, and con-
sider the problem of testing the hypothesis H0 : κ(θ0)≤ 0 against the alternative
H1 : κ(θ0)> 0. Following the usual convention, let zα denote the (1−α)-quantile
of a standard normal distribution, and also suppose the existence of a functional
ν : P → ℝ that enables an alternative representation of the parameter of interest,
i.e.,

κ(θ0)≡ ν
(
Pθ0

)
.

We consider the power of an arbitrary test of H0 against arbitrary sequences of

local alternatives given by
{

Pθ0+
1√
T

δ

}
, where δ ∈ Θ̇. The regularity requirement

at θ0 of the Convolution Theorem (i.e., (7)) is assumed to be satisfied at each

element of the sequence
{

Pθ0+
1√
T

δ

}
. This ensures that for every element δ of the

tangent set Θ̇ such that
∫

ψθ0Ṗθ0 [δ ]dPθ0 = κ̇θ0(δ )> 0, (9)

the corresponding local alternative Pθ0+
1√
T

δ is in fact contained in H1 for all suf-

ficiently large T , since the implication of pathwise differentiability of κ(θ) =
ν (Pθ ) at θ = θ0 gives

ν
(

Pθ0+
1√
T

δ

)
=

1√
T

∫
ψθ0Ṗθ0[δ ]dPθ0 +o

(
1√
T

)

if in fact κ(θ0) = ν
(
Pθ0

)
= 0. The power envelope of an arbitrary test of H0

against sequences
{

Pθ0+
1√
T

δ

}
satisfying (9) is analyzed in the following theorem:

Theorem 2 (e.g., van der Vaart (1998, Thm. 25.44)). Suppose the conditions of
Theorem 1 are satisfied, and suppose κ(θ0) = 0. Consider the sequence of power
functions {πT (Pθ ) : T ≥ 1} (θ ∈ θ ) corresponding to an arbitrary sequence of
level-α tests of H0 : ψ̃

(
Pθ0

)≤ 0. Then for every δ ∈ Θ̇ satisfying
∫

ψθ0Ṗθ0[δ ]dPθ0 = κ̇θ0(δ )> 0,

we have

limsup
T→∞

πT

(
Pθ0+

1√
T

δ

)
≤ 1−Φ

(
zα −

∫
ψθ0Ṗθ0[δ ]dPθ0√

Ψ0

)
, (10)

where Ψ0 ≡
∫

ψ2
θ0

dPθ0 .
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An immediate consequence of Theorem 2 is that a “Wald-type” test based
on an efficient estimator of κ(θ0) will be “asymptotically locally uniformly most
powerful” in the sense that its power function will asymptotically attain the upper
bound given in (10):

Corollary 1 (e.g., van der Vaart (1998, Thm. 25.45)). Suppose that the estimator
{κT} is (locally) regular at θ = θ0 with a limiting distribution given by Q0 ∼
N (0,Ψ0). Let

{
τ2

T
}

be a consistent sequence of estimators for the asymptotic
variance of κT , i.e.,

τ2
T

p→ Ψ(θ)

where the convergence is in Pθ0-probability. Then for every δ ∈ Θ̇,

lim
T→∞

Pθ0+
1√
T

δ

Ã√
T κT

τT
≥ zα

)
= 1−Φ

(
zα −

∫
ψθ0Ṗθ0[δ ]dPθ0√

Ψ0

)
.

As such, a test that rejects H0 whenever
√

T κT
τT

≥ zα has size α and attains the
power bound given in Theorem 2. In what follows, it is shown that conditions (7)
and (8) hold for the parameter of interest in the setting considered here, namely
the basic model given above in (1).9 As shown in Section 4, this leads naturally
to a feasible Wald-type testing procedure for the hypothesis of stability applied to
either a scalar-valued trend-function parameter or to a linear combination of the
elements of a vector-valued trend parameter—in both cases the power functions of
these procedures will asymptotically attain the corresponding bound spelled out
in general terms in Corollary 1. The testing procedure proposed in Section 4 will
presumably also possess asymptotic invariance properties in the case of vector-
valued hypotheses involving the components of a multivariate trend parameter,
which in turn lends itself to an analysis of its asymptotic optimality from the point
of view of a maximin approach. Although this is presumed to be of interest in cer-
tain situations, it does not seem likely that a test satisfying a generally convincing
asymptotic optimality criterion exists when constructing tests of nonscalar restric-
tions on a multidimensional trend parameter.

9In order to avoid confusion, it should be emphasized that the general results cited in this sec-
tion do not necessarily require the data to be iid. The key requirement is that the joint distribution
of any finite set of random variables generated by the stochastic process under consideration re-
spond in an appropriately smooth fashion to appropriately smooth fluctuations in the parameter
space. In particular, this translates into a statement regarding the validity of Assumptions 1–2 and
condition (7) in Theorem 1.
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3 Efficient estimation of the trend parameter
This section describes the specialization of the general concepts of Section 2 to
the basic model considered in this paper. As mentioned in the introduction, the
basic assumption is that a stretch YYY T ≡ (Y1, . . . ,YT )

⊤ of observations is generated
by the model

Yt = ddd
( t

T

)⊤
γγγ
( t

T

)
+ut , t = 1, . . . ,T,

where ddd (⋅) is a knownℝk-valued function on [0,1], γγγ (⋅) is an unknownℝk-valued
function on [0,1] and ut is a stochastic component assumed to belong to a mean-
zero stationary process {ut}.10 The deterministic component ddd of the trend func-
tion is assumed to satisfy the conditions of Assumption 3, to wit:

Assumption 3. Each component of the deterministic portion ddd of the trend func-
tion is bounded and belongs to the set PL[0,1] of piecewise-Lipschitz continu-
ous functions on [0,1] with a finite number of jumps, i.e., if d j ( j ∈ {1, . . . ,k})
is the jth component of ddd, then for some δ ∈ [0,∞)∩ℤ, there exists a partition
0 = t0 < t1 < ⋅ ⋅ ⋅ < tδ < tδ+1 = 1 such that d j is Lipschitz-continuous on each
of the intervals [ti, ti+1) (i = 0, . . . ,δ ) and the jumps d j(ti)− d j(ti−) ∕= 0 for all
1 ≤ i ≤ δ . Here d j(ti−)≡ lims↑ti d j(s).

Assumption 3 is effectively designed to allow for indicator functions to be
incorporated into ddd.

The stochastic component of the model is assumed to be generated according
to the mechanism

ut = H (. . . ,εt−1,εt) , (11)

where {εt : t ∈ ℤ} is an iid process and H(⋅) is unspecified but measurable. As
such, {ut} is a causal process, and the general form of (11) subsumes a wide range
of different models, both linear and nonlinear, for the error process, including
those most commonly used in applied practice. It is also assumed that {ut} is
stationary. In particular, a deliberately weak short-range dependence condition on
{ut} is assumed, and is set out as follows:

10The “weak-trend” scaling by t
T adopted here follows a common approach in the econometric

literature when dealing with models having nonlinear time trends. Cf. e.g., Phillips and Hansen
(1990); Park and Hahn (1999); Ripatti and Saikkonen (2001); Saikkonen (2001a,b); Juhl and Xiao
(2005); Wu and Zhao (2007).
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Assumption 4. 1. For an iid sequence {εt : t ∈ ℤ}, we have

ut = H (. . . ,εt−1,εt) ,

for a measurable function H such that ut is a well-defined random variable
with mean zero and finite variance.

2. E
[
∣ut ∣4

]
< ∞.

3. For an iid copy ε ′t of εt , define

u∗t ≡ H
(
. . . ,ε−1,ε ′0,ε1, . . . ,εt−1,εt

)
.

Then
∞

∑
t=1

t
(

E
[
∣ut −u∗t ∣4

]) 1
4
< ∞ (12)

From part 1 of Assumption 4 it follows that {ut} is strictly stationary and
ergodic.11 The generality of the specification of the error process covered by
the conditions of Assumption 4 is made tractable by means of the strong invari-
ance principle recently established by Wu (2007). In this connection, define the
partial-sum process of regression errors {St : t = 1,2, . . .}, where St ≡ ∑t

s=1 us.
Wu (2007) established that under the short-range dependence condition given in
part 3 of Assumption 4,12 there exists a standard Brownian motion B that uni-
formly approximates St . In particular,

max
t≤T

∣St −σB(t)∣= oa.s.

(
T

1
4 logT

)
, (13)

where σ2 ≡ ∑∞
t=−∞ E [u0ut ] denotes the long-run variance.13

11Cf. e.g., Taniguchi and Kakizawa (2000, Thm. 1.3.3.).
12Note that the expression on the left-hand side of condition (12) can be interpreted as a measure

of the extent to which the innovation at time t = 0 is capable of predicting future expected values
of the regression error ut . Cf. Wu (2005).

13It was shown by Wu and Shao (2004) that for some r ∈ (0,1), the condition ∥ut −u∗t ∥=O
(
rT
)

holds for many nonlinear error processes, which implies the short-range dependence condition (12)
for these processes. In the perhaps most familiar case where the errors are drawn from an ARMA
process, i.e.,

ut −
p

∑
i=1

ψiut−i =
q

∑
j=1

θ jεt− j,

13



Combining the provisions of Assumption 4 and the strong invariance principle
of Wu (2007) allows one to approximate the large-sample behaviour of suitably
weighted partial sums of the regression errors, i.e., statistics of the form

T

∑
t=1

ωt,T ut ,

with that of the analogous statistic

T

∑
t=1

ωt,T Zt ,

where {Zt} is an iid sequence of N(0,σ2) random variables, with σ2 the long-run
variance σ2 ≡ ∑∞

t=−∞ E [u0ut ]. It is in this sense that the original regression model
given above in (1) can be reduced to the rather more prosaic model

Ỹt = ddd
( t

T

)⊤
γγγ
( t

T

)
+Zt (14)

with iid N(0,σ2) errors, and underscores the usefulness of the strong invariance
principle of Wu (2007) with respect to the analysis of the large-sample behaviour
of nonparametric estimators involving weakly dependent observations. This idea
is used to analyze the asymptotic behaviour of the efficient test statistic described
in Section 4.

The parameter space for the model generating the observations YYY T is given
by the set Θ ≡ Γ×G ×F , where Γ is the space of ℝk-valued functions on the
unit interval, G is the model for the joint distribution of the “initial condition”
(u1, . . . ,uT−1) and F is the model for the conditional distribution of uT given
σ {u1, . . . ,uT−1}, i.e., the σ -algebra generated by the history of the regression er-
ror process viewed from time T . The error process {ut} is assumed to be strictly

for (ψ1, . . . ,ψp,θ1, . . . ,θq)
⊤ ∈ ℝp+q, we have the well-known fact that if each root of the polyno-

mial

zp −
p

∑
i=1

ψizp−i = 0

has modulus less than one, then

ut =
∞

∑
i=0

αiεt−i,

where each αi satisfies ∣αi∣= O(ri) for some r ∈ (0,1). The condition (12) is accordingly easy to
verify for the case of stationary ARMA processes.

14



stationary and ergodic in accordance with the requirements of Assumption 4. De-
note a point in the parameter space by (γγγ,G(T ),F(T ∣T−1)), and let P(γγγ ,G(T ),F(T ∣T−1))
denote the joint distribution of (Y1, . . . ,YT ).14 The parameter of interest is the
vector each of whose components is the total variation of the corresponding com-
ponent of γγγ , i.e., a functional of the form

κκκ(θ)≡ χχχ(γγγ)≡
(∫ 1

0

∣∣γ ′1(s)
∣∣ds, . . . ,

∫ 1

0

∣∣γ ′k(s)
∣∣ds

)⊤
. (15)

The statistical question of interest in this paper is the development of a sensible
procedure for inferring whether or not χχχ(γγγ) = 000 under the sequence

{
P(γγγ ,G(T ),F(T ∣T−1)) : T ≥ 2

}
.

For clarity, it should be noted that inference regarding the components of χχχ(γγγ)
is not in fact a non-standard problem of the sort considered by Andrews (1999,
2001). The key is to realize that the interest parameter is in fact the functional
κκκ(θ), where θ ≡

(
γγγ,G(T ),F(T ∣T−1)

)
is the actual index of the underlying data-

generating process P(γγγ,G(T ),F(T ∣T−1)). In particular, P(γγγ,G(T ),F(T ∣T−1)) is essentially
unrestricted under the conditions of Assumption 5 below. In this case, the critical
requirement is that γγγ be able to approach points where χχχ(γγγ) = 000 in sufficiently
many directions for contiguity to be maintained between the corresponding se-
quences of joint distributions of the data. In constrast, the work of Andrews (1999,
2001) deals with the non-standard situation where the underlying data-generating
processes are not restricted by smoothness conditions analogous to those imposed
by Assumption 5.

In addition, it should be pointed out that inference regarding the vector of total-
variation norms of the trend-function coefficients is akin to inference regarding the
quadratic variation

∫
f 2 of a density f in the iid case, or to inference regarding the

quadratic variation
∫
[m(x)]2 dx of a regression function m(⋅) arising in the context

of the model y = m(x)+ u where E [u∣x] = 0. In both of these examples regular
estimates converging at the parametric rate and attaining an appropriately defined
asymptotic variance bound are applicable to the underlying data-generating pro-
cess.15

14For clarity, note that the component F(T ∣T−1) is not redundant, as it summarizes the nature of
time dependence between each element of the error process and the immediate past trajectory of
the same process. That this is true should be clear in the minimal case where T = 2. A similar
construction can be found in Roussas (1979).

15Cf. e.g., Ritov and Bickel (1990); Schick (1993).
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Let θ0 ≡
(

γγγ0,G
(T )
0 ,F(T ∣T−1)

0

)
denote a point in Θ where χχχ(γγγ) = 000, and let

Γ̇, Ġ and Ḟ denote the tangent spaces of Γ, G and F , respectively. Note that
the parameter of interest χχχ(γγγ), viewed as a functional on Γ into ℝk, is pathwise
differentiable along Γ̇ at γγγ0 with derivative

χ̇χχ(aaa) =
(∫ 1

0

∣∣γ ′1(s)
∣∣a1(s)ds, . . . ,

∫ 1

0

∣∣γ ′k(s)
∣∣ak(s)ds

)⊤
,

where aaa(s)≡ (a1(s), . . . ,ak(s))⊤ is a point in Γ̇⊂ (L2 (Leb[0,1]))k, where Leb[0,1]
denotes Lebesgue measure on the unit interval. As such, Assumption 2 is easily
seen to be satisfied.

Each member of the sequence
{

F(T ∣T−1)
0 : T ≥ 2

}
of conditional distributions

of uT given σ {u1, . . . ,uT−1} is assumed to have zero mean, finite variance and
finite Fisher information for location. In particular, the following condition is
imposed:

Assumption 5. The elements of
{

F(T ∣T−1)
0 : T ≥ 2

}
are all absolutely continuous

with respect to Lebesgue measure with corresponding densities

f (T ∣T−1)
0 (u)≡ f0 (u∣σ {u1, . . . ,uT−1}) .

F(T ∣T−1)
0 satisfies

∫
udF(T ∣T−1)

0 (u) = 0 and σ2
T ≡ ∫

u2dF(T ∣T−1)
0 (u)< ∞.

In addition, for

lT ≡− f (T ∣T−1)′
0

f (T ∣T−1)
0

1{
f (T ∣T−1)
0 >0

},

we have
JT ≡

∫
l2
T dF(T ∣T−1)

0 < ∞.

Assumption 5 enables the straightforward verification of Assumption 1 using
methods similar to those given in for example Hájek and Sidák (1967, pp. 210–
214) or Bickel et al. (1993, Section 3.2):

Lemma 1. Suppose that
{

F(T ∣T−1)
η

}
is a curve in F with tangent c at F(T ∣T−1)

0

and that
{

G(T )
η

}
is a curve in G with tangent b at G(T )

0 . Then if aaa ∈ Γ̇ has a

16



corresponding local sequence
{

γγγη

}
→ γγγ0, the curve

{
P(

γγγη ,G
(T )
η ,F(T ∣T−1)

η

)
}

has

tangent
ddd(s)⊤aaa(s)lT (u)+b(uuu0)+ c(u),

with respect to
{

P(
γγγ0,G

(T )
0 ,F(T ∣T−1)

0

)
}

, for each s ∈ [0,1], uuu0 ≡ (u1, . . . ,uT−1) ∼

G(T )
0 , and u ∼ F(T ∣T−1)

0 .

The verification of Assumption 1 is straightforward from Lemma 1, and it is
easily seen that for δ ≡ (δδδ 1,δ2,δ3)∈ Γ̇× Ġ ×Ḟ , the operator Ṗθ0 in Assumption 1
is given by

Ṗθ0[δ ] = ddd(s)⊤δδδ 1(s)l(u)+δ2(u0)+δ3(u),

and the tangent space T of

P =
{

P(γγγ ,G(T ),F(T ∣T−1)) : γγγ ∈ Γ, G(T ) ∈ G , F(T ∣T−1) ∈ F
}

is the closed linear span of
{

Ṗθ0 [δ ] : δ ∈ Γ̇× Ġ × Ḟ
}

.
In order to reduce the notational complexity involved in deriving the efficient

influence function for κκκ(θ0), let

l∗T (u) ≡ u
σ2

T
(16)

J∗T ≡ 1
σ2

T
, (17)

where σ2
T ≡ ∫

u2dF(T ∣T−1)
0 (u), the variance of F(T ∣T−1)

0 . Let

γγγ0(⋅)≡ (γ01(⋅), . . . ,γ0k(⋅))⊤,

and also define

vvv(⋅) ≡ (∣∣γ ′01(⋅)
∣∣ , . . . ,

∣∣γ ′0k(⋅)
∣∣)⊤ ;

v̄vv ≡
(∫ 1

0

∣∣γ ′01(s)
∣∣ds, . . . ,

∫ 1

0

∣∣γ ′0k(s)
∣∣ds

)⊤
;

vvv0(⋅) ≡ vvv(⋅)− v̄vv;

∆ ≡ JT − J∗T
J∗T

;

17



www(⋅) ≡ 1
JT

(vvv(⋅)+∆v̄vv) ;

w̄ww ≡ 1
JT

∫ 1

0
(vvv(s)+∆v̄vv)ds;

www0(⋅) ≡ www(⋅)− w̄ww,

where the T -subscripts have been suppressed for the sake of concision.
Note that

w̄ww =
1
JT

(v̄vv+∆v̄vv) =
(

1+∆
JT

)
v̄vv,

and that
www0(⋅) = 1

JT
(vvv(⋅)− v̄vv) .

Note that J∗T as given in (17) is guaranteed to be positive by virtue of Assump-
tion 5. This in turn guarantees the existence of the efficient influence function for
κκκ(θ0) given in the following:

Theorem 3. Given Assumption 5, the efficient influence function for κκκ(θ0) is
given by

ψψψ(T )
θ0

≡ vvv0(s)
lT (u)

JT
+ v̄vv

l∗T (u)
J∗T

= www0(s)lT (u)+ w̄wwl∗T (u)

for s ∈ [0,1] and u ∼ F(T ∣T−1)
0 .

Proof. Let aaa ∈ Γ̇, b ∈ Ġ , c ∈ Ḟ and uuu0 ≡ (u1, . . . ,uT−1). We have
∫ 1

0
E
[
ψψψ(T )

θ0

(
b(uuu0)+ddd(s)⊤aaa(s)lT (u)+ c(u)

)]
ds

=
∫ 1

0
E
[
www0(s)lT (u)b(uuu0)+www0(s)ddd(s)⊤aaa(s)l2

T (u)+www0(s)c(u)lT (u)

+w̄wwl∗T (u)b(uuu0)+ w̄wwl∗T (u)ddd(s)
⊤aaa(s)lT (u)+ w̄wwl∗T (u)c(u)

]
ds

=
∫ 1

0

(
www0(s)E [lT (u)b(uuu0)]+www0(s)ddd(s)⊤aaa(s)E

[
l2
T (u)

]
+www0(s)E [c(u)lT (u)]

+w̄wwE [l∗T (u)b(uuu0)]+ w̄wwddd(s)⊤aaa(s)E [l∗T (u)lT (u)]+ w̄wwE [l∗T (u)c(u)]
)

ds

=
∫ 1

0

(
www0(s)ddd(s)⊤aaa(s)E

[
l2
T (u)

]
+ w̄wwE [l∗T (u)c(u)]

)
ds,

18



where the expectation is with respect to the product of the joint distribution of
(u1, . . . ,uT−1)

⊤ and the conditional distribution of uT with respect to σ {u1, . . . ,uT−1}.
When θ = θ0, we have w̄ww =

(
1+∆
JT

)
v̄vv = 000 and www0(s) = 1

JT
vvv(s), so

∫ 1

0

(
www0(s)ddd(s)⊤aaa(s)E

[
l2
T (u)

]
+ w̄wwE [l∗T (u)c(u)]

)
ds

=

∫ 1

0
www0(s)ddd(s)⊤aaa(s)E

[
l2
T (u)

]
ds

=

∫ 1

0
vvv(s)ddd(s)⊤aaa(s)ds

= χ̇χχ(aaa),

which verifies condition (7) in the statement of Theorem 1. For λλλ ∈ ℝk, λλλ⊤ψψψ(T )
θ0

is clearly in the closed linear span of T , and it follows that ψψψ(T )
θ0

is indeed the
efficient influence function for κκκ(θ0) = χχχ(γγγ0).

Efficient inference regarding the parameter of interest χχχ(γγγ) can be conducted
by way of the following reformulation of the convolution theorem.16

Theorem 4. 1. The limiting distribution Q0 of any estimator of χχχ(γγγ0) regular

at γγγ0 ∈ Γ is a convolution of N
(

0,E
[
ψψψ(T )

θ0
ψψψ(T )⊤

θ0

])
and some other distri-

bution M, i.e.,
Q0 = N

(
0,E

[
ψψψ(T )

θ0
ψψψ(T )⊤

θ0

])
∗M.

2. An estimator {χ̂χχT} of χχχ(γγγ0) is regular at γγγ0 with limiting distribution Q0 =

N
(

0,E
[
ψψψ(T )

θ0
ψψψ(T )⊤

θ0

])
iff the sequence {χ̂χχT} has influence function ψψψ(T )

θ0
at

θ0 =
(

γγγ0,G
(T )
0 ,F(T ∣T−1)

0

)
.

16Adaptive estimation of χχχ(γγγ0) in the presence of G(T )
0 and F(T ∣T−1)

0 is also possible. This
follows from

∫ 1

0
E
[
ψψψ(T )

θ0
(b(u0)+ c(u))

]
ds

=

∫ 1

0
E [www0(s)lT (u)b(u0)+www0(s)lT (u)c(u)+ w̄wwl∗T (u)b(u0)+ w̄wwl∗T (u)c(u)]ds

=

∫ 1

0
(www0(s)E [lT (u)b(u0)]+www0(s)E [lT (u)c(u)])ds

= 000

and Bickel et al. (1993, Corollary 3.4.3).
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In particular, an estimator of χχχ(γγγ0) is said to be efficient at γγγ0 ∈ Γ iff it is
asymptotically linear with influence function ψψψ(T )

θ0
at θ0, as given above in the

statement of Theorem 3. In this paper it is proposed to test the hypothesis of time
invariance of the trend parameter γγγ via an efficient estimator χ̂χχT of the interest
parameter χχχ(γγγ0) as given above in (15). Rejection is associated with

√
T ιιι⊤k χ̂χχT

being significantly greater than zero, where ιιιk ≡ (1, . . . ,1)⊤, the unit vector in
ℝk. The next section describes the construction of an efficient estimator of the
parameter of interest.

4 Construction of an efficient test statistic
This section of the paper is concerned with the problem of constructing an efficient
estimator of the parameter of interest χχχ(γγγ0) as given above in (15). As indicated
above, this approach is largely concerned with constructing an estimate of the
efficient influence function ψψψ(T )

θ0
as given in the statement of Theorem 3. In this

connection, the general approach developed by Schick (1986), Klaassen (1987)
and Schick (1987) will be followed.

Consider the “Priestley-Chao” estimator γ̂γγT of the trend-function parameter γγγ
given by

γ̂γγT (s)≡
(

ddd(s)ddd(s)⊤
)−

ddd(s)
T

∑
t=1

wl,t,T (s)Yt , (s ∈ (0,1)), (18)

where the superscript − affixed to
(
ddd(s)ddd(s)⊤

)
denotes the generalized inverse,

and where for a positive sequence {hl} such that hl = hlT → 0 with T hlT → ∞ as
T → ∞,

wl,t,T (s)≡ 1
T hl

K
(

1
hl

( t
T
− s

))
. (19)

The estimator γ̂γγT (s) is accordingly obtained by a rescaling of the familiar Priestley-
Chao estimate of the value of the trend function ddd(s)⊤γγγ(s) at s ∈ (0,1).17

The vector of derivatives γγγ ′(s) ≡ (γ ′1(s), . . . ,γ
′
k(s))

⊤ of the trend parameter
can also be estimated using the “Priestley-Chao” approach. In particular, for a
sequence of bandwidths {hd} possibly different from {hl} and satisfying hd =
hdT → 0 with T h3

dT →∞ as T →∞, we may estimate γγγ ′(s) with what is essentially

17Cf. Priestley and Chao (1972).
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the derivative with respect to s ∈ (0,1) of the expression in (18), to wit,

γ̂γγ ′T (s) (20)

≡
[
−2

(
ddd(s)ddd(s)⊤

)−2

ddd(s)ddd ′(s)⊤ddd(s)+
(

ddd(s)ddd(s)⊤
)−

ddd ′(s)
] T

∑
t=1

wd,t,T (s)Yt

+
(

ddd(s)ddd(s)⊤
)−

ddd(s)
T

∑
t=1

w′
d,t,T (s)Yt , (21)

where ddd ′(s) denotes the vector whose components are the derivatives of the cor-
responding components of ddd(s), and where for wd,t,T (s) denoting the expression
in (19) with hd in place of hl ,

w′
d,t,T (s)≡

d
ds

wd,t,T (s).

The asymptotic properties of the estimators given in (18) and (21) are derived
under various conditions regarding ddd, hl , hd and K(⋅), as well as under the various
general conditions imposed on the regression error process {ut} in Assumption 4.

It is noted that the estimators of γγγ and of γγγ ′ given above in (18) and (21), re-
spectively, are major ingredients in the construction of the efficient test statistic
described here. As such, assumptions regarding the deterministic trend compo-
nent ddd, the bandwidth sequences {hlT} and {hdT} as well as the smoothing kernel
K(⋅) are stated:

Assumption 6. 1. hlT → 0 and T hlT → ∞ as T → ∞.

2. hdT → 0 and T h3
dT → ∞ as T → ∞.

Assumption 7. The smoothing kernel K : ℝ→ ℝ used in the construction of the
estimators in (18) and (21) is Borel-measurable, possesses a first-order derivative
of bounded variation over the real line, and satisfies

1. K(z)≥ 0 for every z ∈ ℝ;

2.
∫

K(z)dz = 1;

3.
∫

K2(z)dz < ∞.

Assumptions 3, 4, 6 and 7 lead to results set out in Appendix A.1 regarding
the uniform rate of convergence of γ̂γγT (⋅) and of γ̂γγ ′T (⋅) over the unit interval. These
results are in turn used in the proof of the main result of this section.
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Given the estimators γ̂γγT (⋅) and γ̂γγ ′T (⋅) given in (18) and (21), respectively, de-
fine the following:

ût,T ≡ Yt −ddd
( t

T

)⊤
γ̂γγT

( t
T

)
; (22)

v̂vvT (s) ≡ (∣∣γ̂ ′T 1(s)
∣∣ , . . . , ∣∣γ̂ ′T k(s)

∣∣)⊤ ; (23)

v̄vvT ≡ 1
T

T

∑
t=1

v̂vvT

( t
T

)
; (24)

δt,T ≡ ddd
( t

T

)⊤(
γ̂γγT

( t
T

)
− γγγ

( t
T

))
; (25)

f̂UT (u) ≡ 1
T

T

∑
t=1

1
aT

k
(

u− ût,T

aT

)
; (26)

l̂UT (u) ≡ − f̂ ′UT (u)
f̂UT (u)+bT

; (27)

ĴT ≡ 1
T

T

∑
t=1

l̂′UT (ût,T ); (28)

where {aT}, {bT} are positive sequences tending to zero as T → ∞. The kernel
function k(⋅) employed in f̂UT (u) and f̂ ′UT (u) is assumed to satisfy the following
condition:

Assumption 8. k is symmetric, three times continuously differentiable, satisfies∫
u2k(u)du < ∞ and ∣∣∣k(i)(u)

∣∣∣≤Ck(u)

for some positive constant C, and any u ∈ ℝ and i ∈ {1,2,3}.

Remark 1. The logistic density and the Epanechnikov (1969) kernel both satisfy
Assumption 8.

The quantities in (22)–(28) are used to construct the estimator

χ̂χχT ≡ 1
T

T

∑
t=1

[
v̂vvT

( t
T

)
+ Ĵ−1

T

(
v̂vvT

( t
T

)
− v̄vvT

)
l̂UT (ût,T )+ v̄vvT ût,T

]
. (29)

In what follows, it is shown that χ̂χχT is asymptotically linear with influence func-
tion ψψψ∗

θ0
at θ = θ0 and is therefore efficient for χχχ(γγγ0). In particular, we give
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conditions such that

χ̂χχT =
1
T

T

∑
t=1

[
vvv
( t

T

)
+ J−1

T

(
vvv
( t

T

)
− v̄vv

)
lT (ut)+ v̄vvut

]
+oθT

(
T− 1

2

)
, (30)

where the notation CT = oθT (rT ) indicates that r−1
T CT converges to zero in PθT -

probability, for {θT} a sequence in Θ and {rT} a sequence of positive numbers.
In particular, {θT} will be taken to be a local sequence about the point θ0 =

(γγγ0,G
(T )
0 ,F(T ∣T−1)

0 ) ∈ Θ.18

A central feature of the proof of (30) involves showing in a number of different
cases that suitable estimates L̂LLT of a functional LLLT satisfy

√
T

T

∑
t=1

(
L̂LLT (ut)−LLLT (ut)

)
= oθT (1). (31)

In particular, the preliminary results given below as Lemmas 2–5 involve showing
(31) for several different settings of L̂LLT and LLLT . It is assumed throughout that the
stochastic component of the model given in (1) satisfies Assumption 4. The proofs
of Lemmas 2–5 involve combining the strong invariance principle of Wu (2007)
with the machinery of Schick (1987, Lemma 3.1). In this connection, suppose that
L̃LLT is a suitable estimate of the functional of interest LLLT .19 Then for {Zt} denoting
as before an iid N(0,σ2) process, we can write

√
T

T

∑
t=1

(
L̂LLT (ut)−LLLT (ut)

)

=
√

T
T

∑
t=1

(
L̂LLT (ut)− L̃LLT (Zt)

)
+
√

T
T

∑
t=1

(
L̃LLT (Zt)−LLLT (Zt)

)

+
√

T
T

∑
t=1

(LLLT (Zt)−LLLT (ut))

≡ ∆∆∆T 1 +∆∆∆T 2 +∆∆∆T 3. (32)
18The estimator l̂UT given in (27) above may seem somewhat strange in view of the fact that

the score function denoted by lT in the statement of Assumption 5 above is actually the score
of the conditional likelihood of the time-series error uT given σ {u1, . . . ,uT−1}. What make the
estimator l̂UT work, however, are the conditions of Assumption 4. In particular, the conditions of
Assumption 4 ensure that the strong invariance principle of Wu (2007) for short-range dependent
errors taking the general form given in (11) above applies. As such, each of the various statistics
specified in (22)–(28), including l̂UT , behave almost surely asymptotically as the corresponding
procedures applied to iid normal random variates.

19The estimate L̃LLT may coincide with L̂LLT .
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In the context of Lemmas 2–5, the ∆∆∆T 1 and ∆∆∆T 3 quantities will be analyzed using
the invariance principle of Wu (2007), while the behaviour of ∆∆∆T 2, given that it
involves the iid process {Zt}, will be analyzed using the approach of Schick (1987,
Lemma 3.1).20

For some constant rl ∈ (0,1), set hl ≡ hlT ∝ T−rl to be the bandwidth used in
the construction γ̂γγT given above in (18), and for some rd ∈ (0,1) set hd ≡ hdT ∝
T−rd to be the corresponding quantity used in the construction of γ̂γγ ′T in (21). Let
r ≡ min{rl,rd}.

Also let
AT ≡ max

0≤s≤1
∥v̂vvT (s)∥+1. (33)

Lemmas 2–5 are preliminary results required to show (30). Their proofs appear
in Appendix B.

Lemma 2. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then the following hold:

1. If a−2
T T− 3

2−2r → 0, then

1
T

T

∑
t=1

∫ (
l̂′UT (u−δt,T )− l̂′UT (u)

)
dF(T ∣T−1)

0 (u) = oθT

(
T− 1

2

)
.

2. If AT a−2
T T− 3

2−2r → 0, then

1
T

T

∑
t=1

v̂vvT

( t
T

)∫ (
l̂UT (u−δt,T )− l̂UT (u)+ l̂′UT (u)δt,T

)
dF(T ∣T−1)

0 (u)

= oθT

(
T− 1

2

)
.

Lemma 3. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then if a−4
T T−1−2r → 0

and A2
T

(
T−1a−4

T b−2
T +T−2−ra−5

T b−1
T

)
→ 0,

1
T

T

∑
t=1

v̂vvT

( t
T

){
l̂UT (ût,T )−

∫
l̂UT (u−δt,T )dF(T ∣T−1)

0 (u)− l̂UT (ut)

}
= oθT

(
T− 1

2

)
.

20The modification of Schick (1987, Lemma 3.1) suitable for the purpose of analyzing the
convergence of ∆∆∆T 2 appears as Lemma 11 in Appendix A.2.
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Lemma 4. Suppose Assumptions 3, 4, 6, 7 and 8 hold. If T−3−3ra−6
T → 0,

T−2αa−4
T → 0, T−4−4ra−7

T b−1
T → 0 and T−3−2ra−6

T b−2
T → 0,

1
T

T

∑
t=1

(
l̂′UT (ût,T )−

∫
l̂′UT (u−δt,T )dF(T ∣T−1)

0 (u)
)
= oθT

(
T r+ 1

2

)
.

Lemma 5. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then

1
T

T

∑
t=1

v̄vvT ût,T = v̄vv
1
T

T

∑
t=1

ut +oθT

(
T− 1

2

)
.

Lemmas 2–5 imply the central result of this section.

Theorem 5. Suppose Assumptions 3, 4, 5, 6, 7 and 8 hold. If the conditions

a−4
T T−1−2r → 0 (34)

AT a−2
T T− 3

2−2r → 0 (35)

A2
T T−1a−4

T b−2
T → 0 (36)

A2
T T−2−2ra−5

T b−1
T → 0 (37)

are satisfied, then the estimator χ̂χχT given in (29) satisfies (30).

Proof. Lemmas 2 and 4 yield

ĴT ≡
T

∑
t=1

l̂′UT (ût,T )

=
1
T

T

∑
t=1

∫
l̂′UT (u−δt,T )dF(T ∣T−1)

0 (u)+oθT

(
T r+ 1

2

)

=
1
T

T

∑
t=1

∫
l̂′UT (u)dF(T ∣T−1)

0 (u)+oθT

(
T r+ 1

2

)

=
∫

l̂′UT (u)dF(T ∣T−1)
0 (u)+oθT

(
T r+ 1

2

)
.

This result, along with Lemmas 2 and 3, can be used to show

1
T

T

∑
t=1

v̂vvT

( t
T

){
l̂UT (ût,T )−

∫
l̂UT dF(T ∣T−1)

0 − ĴT δt,T

}
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=
1
T

T

∑
t=1

v̂vvT

( t
T

){
l̂UT (ût,T )−

∫
l̂UT dF(T ∣T−1)

0 −δt,T

∫
l̂′UT dF(T ∣T−1)

0

}
+oθT

(
T− 1

2

)

=
1
T

T

∑
t=1

v̂vvT

( t
T

){∫
l̂UT (u−δt,T )dF(T ∣T−1)

0 + lT (ut)

}

− 1
T

T

∑
t=1

v̂vvT

( t
T

)∫ (
l̂UT +δt,T l̂′UT

)
dF(T ∣T−1)

0 +oθT

(
T− 1

2

)

=
1
T

T

∑
t=1

v̂vvT

( t
T

)
lT (ut)+oθT

(
T− 1

2

)

This result, along with the uniform
√

T h3
d =T

1
2−

3rd
2 -consistency of v̂vvT (⋅) to vvv(⋅),21

yields

1
T

T

∑
t=1

1
ĴT

(
v̂vvT

( t
T

)
− v̄vvT

)(
l̂UT (ût,T )+ ĴT δt,T

)

=
1
T

T

∑
t=1

1
JT

v̂vvT

( t
T

){
l̂UT (ût,T )+ ĴT δt,T

}− 1
T

T

∑
t=1

1
JT

v̄vvT
{

l̂UT (ût,T )+ ĴT δt,T
}

+oθT (1)

=
1
T

T

∑
t=1

1
JT

v̂vvT

( t
T

)
lT (ut)+

1
T

T

∑
t=1

1
JT

v̂vvT

( t
T

)∫
l̂UT dF(T ∣T−1)

0 − 1
T

T

∑
t=1

1
JT

v̄vvT lT (ut)

− 1
T

T

∑
t=1

1
JT

v̄vvT

∫
l̂UT dF(T ∣T−1)

0 +oθT

(
T− 1

2

)

=
1
T

T

∑
t=1

1
JT

{
v̂vvT

( t
T

)
− v̄vvT

}
lT (ut)+oθT

(
T− 1

2

)

=
1
T

T

∑
t=1

1
JT

{
vvv
( t

T

)
− v̄vv

}
lT (ut)+oθT

(
T− 1

2

)
.

Appealing to Lemmas 5 and 9, we have that

χ̂χχT − 1
T

T

∑
t=1

[
vvv
( t

T

)
+

1
JT

(
vvv
( t

T

)
− v̄vv

)
lT (ut)+ v̄vvut

]

=
1
T

T

∑
t=1

[
v̂vvT

( t
T

)
− vvv

( t
T

)]
+

1
T

T

∑
t=1

{
1
ĴT

[
v̂vvT

( t
T

)
− v̄vvT

]
l̂UT (ût,T )

}

21Cf. Lemma 8 in Appendix A.1.
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− 1
T

T

∑
t=1

{
1
JT

[
vvv
( t

T

)
− v̄vv

]
lT (ut)

}
+

1
T

T

∑
t=1

[v̄vvT ût,T − v̄vvut ]

=
1
T

T

∑
t=1

{
v̂vvT

( t
T

)
− vvv

( t
T

)
+
[
v̂vvT

( t
T

)
− v̄vv

]
δt,T

}
+oθT

(
T− 1

2

)

= oθT

(
T− 1

2

)
.

Combining Theorem 4 with Corollary 1, an efficient testing procedure for the
null of parameter stability follows straightforwardly from Theorem 5. Setting

Ψ̂ΨΨT ≡ 1
T

T

∑
t=1

ψ̂ψψ t,T ψ̂ψψ⊤
t,T

where
ψ̂ψψ t,T ≡ Ĵ−1

T

(
v̂vvT

( t
T

)
− v̄vvT

)
l̂UT (ût,T )+ v̄vvT ût,T ,

we have that for ιιιk ≡ (1, . . . ,1)⊤ ∈ ℝk, a reasonable asymptotically level-α test
of H0 : ιιι⊤k χχχ(γγγ0) = 0 against H1 : ιιι⊤k χχχ(γγγ0) > 0 can be obtained by rejecting the
hypothesis whenever

1√
T

ιιι⊤k ∑T
t=1 ψ̂ψψ t,T√

ιιι⊤k Ψ̂ΨΨT ιιιk

(38)

exceeds the (1−α)-quantile of a N(0,1)-random variate. By Corollary 1 this
procedure is uniformly most powerful against contiguous alternatives.

The next section examines the finite-sample performance of the Wald-type test
given in (38).

5 Numerical evidence
This section presents the results of a modest simulation exercise examining the
size and power performance in small samples of the efficient test for trend stability
based on the asymptotically normal statistic in (38). Simulated observations were
drawn from the process given by

Yt = γ
( t

T

)
+ut

ut = ρut−1 + εt ,

}
t = 1, . . . ,T ; (39)
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where {εt} is set to be iid N(0,1) throughout. In each experiment conducted, the
kernel function k(⋅) in (26) was taken to be the logistic density, while the Priestley-
Chao estimates of the trend parameter and its derivative were constructed using a
standard normal kernel. Sample sizes of T ∈ {100,200,300} were employed for
the purposes of comparing size and power performance in a series of Monte Carlo
experiments. Each experiment involved 1000 replications.

Table 1 contains the results of the first set of experiments, which were intended
to examine the empirical size of the proposed testing procedure when the model
given in (39) was simulated under the null of a time-invariant trend. In each of
the experiments summarized in Table 1, the autoregressive coefficient was set to
ρ ≡ 1

2 , while the trend parameter was set to be identically zero, i.e., γ (⋅) ≡ 0.
Various settings for the bandwidths used in the construction of the test statistic
were experimented with, subject to the rate constraints imposed by Theorem 5.
In particular, the bandwidths used were of the form hlT = hdT = hT ≡ chT− 2

5 ,
aT = caT− 2

9 and bT = cbT− 2
9 , where the leading constants ch, ca and cb range

over the set {0.5,1.0,1.5} as indicated in Table 1.22 A glance at Table 1 reveals the
sensitivity of the empirical size of the test to bandwidth choice, although setting
the leading constants to ch = ca = cb = .5 seems to deliver a proportion of incorrect
rejections over the range of sample sizes considered that is fairly close to the level
desired.

The small-sample power of the proposed testing procedure is examined in a
series of four simulations. Like the series of experiments reported in Table 1,
each of these simulations also involved 1000 replications and a nominal level
of 5%. The sample sizes employed were each fixed at T = 200. Based on the
results reported in Table 1, the bandwidths used in each experiment were set to
hdT = hlT = hT = .5T− 2

5 and aT = bT = .5T− 2
9 , which correspond roughly to the

row of Table 1 having the most accurate empirical sizes for the nominal level of
5%.

The first experiment examining finite-sample power involves data that were
generated using the specification given in (39) with ρ = 1

2 , but where the trend

22It should be clear that the conditions of Theorem 5 are fairly loose with respect to the per-
missible rates of decay of bandwidths that one might consider reasonable for constructing the test
statistic. The rates of decay used in hT , aT were simply set to be twice the optimal rates from
the point of view of minimizing the mean integrated squared error of pointwise estimates of a
regression function and the derivative of a density, respectively. Note that the “asymptotic un-
dersmoothing” engaged in here reflects the role of the nonparametric estimators as preliminary
ingredients in estimates of nonparametric functionals. Cf. the unifying theory of Goldstein and
Messer (1992).
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parameter was set to have a one-time break halfway through the sampling interval,
i.e.,

γ
( t

T

)
= 1

( t
T

> .5
)

γ0, (40)

for γ0 ≥ 0. The break magnitude γ0 is taken to be a constant ranging over a grid
of 50 equally-spaced points in the interval [0,1]. A glance at the curve plotted
in Figure 1 indicates that the power performance of the test appears to be quite
satisfactory.

The power performance of the proposed testing procedure in small samples
also appears to be quite satisfactory in three further experiments. Figure 2 sum-
marizes the results of an experiment involving two breaks in the trend function.
In particular, the trend used is that given by

γ
( t

T

)
=

(
1
2
×1

(
.25 <

t
T

< .75
)
+1

( t
T

≥ .75
))

γ0,

where as in (40), the parameter γ0 ranges over a grid of 50 equally-spaced points
in the unit interval. In this experiment, as in the next experiment summarized in
Figure 3, the data-generating process for the errors is that given above in (39) with
ρ = 1

2 .
The simulations summarized by Figure 3 investigate the power performance

of the test when the trend function undergoes a continuous linear change in the
middle half of the sampling interval. In particular, the trend function used is given
by

γ
( t

T

)
=

{
1
(
.25 <

t
T

< .75
)[

2
(

t
T
− 1

4

)]
+1

( t
T

≥ .75
)}

γ0,

where as before γ0 ranges across a lattice of 50 equally-spaced points in [0,1].
The last experiment considering the power performance of the test proposed

here examines its suitability for detecting the existence of a stochastic trend. As
such, the specification given above in (39) was used, but with γ

( t
T

) ≡ 0 and the
autoregressive coefficient satisfying

ρ = 1− c
T
,

where c takes successive values in a grid of 50 equally-spaced points in the in-
terval [0,100]. This experiment involved the same sample size of T = 200 and
bandwidths as were used in the experiments summarized in Figures 1–3. Em-
pirical rejection probabilities of a 5%-test based on the Wald statistic in (38) are
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plotted in Figure 4 against ρ = 1− c
T as c decreases from 100 to zero. As indicated

in Figure 4, the empirical size of the proposed test is close to its nominal value
until the point where ρ reaches a value of approximately .68. The test is generally
conservative for ρ ∈ (.68, .87) and returns to being accurately sized for ρ ≈ .9.
The frequency of rejections increases sharply for ρ ≥ .95, which suggests that the
test is potentially useful for the detecting the existence of unit-root behaviour in a
time series of interest.

Figures 1-4 suggest that the proposed testing procedure has generally satisfac-
tory power against a large class of alternatives to the null of trend stability.

6 Empirical example: Models of U.S. real output
This section serves the twin functions of illustrating the practical applicability of
the efficient testing procedure proposed in this paper and providing further infor-
mal evidence concerning the sensitivity of the test’s performance to the implemen-
tation of the Priestley-Chao estimates of the trend parameter and its derivative. In
this connection data describing the dynamic behaviour of the level of U.S. real
output will be analyzed. The hypothesis considered will be the adequacy of a lin-
ear trend-stationary specification with a single break in mean. In particular, the
break relates to one of two “stylized facts”, the validity of which will essentially
be examined using the methodology proposed here. These stylized facts involve
the persistent effects on trend of the onset of the Great Depression in 1929, which
is widely held to have led to a dramatic reduction in the level of economic activity,
and the start of the OPEC oil embargo in 1973, which is believed to have led to
a somewhat less dramatic reduction in the growth rate of economic activity from
its previous trend path.23

In this connection, two time series will be analyzed. The first series considered
is the annual series of real Gross National Product from 1909 to 1970 appearing in
the dataset used by Nelson and Plosser (1982).24 The test proposed in this paper
will be used to assess the adequacy of a linear trend-stationary specification with

23Cf. e.g., Perron (1989); Perron and Wada (2006).
24The data are in the form of natural logarithms of the measurements appearing in the

source indicated in Nelson and Plosser (1982, note 10). All fourteen historical macroeco-
nomic time series analyzed by Nelson and Plosser (1982) may be downloaded from http:

//www.spatial-econometrics.com/data/contents.html.
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a single break in level just after 1929, i.e., the model given by

Yt = γ01 +d2

( t
T

)
γ02 +

t
T

γ03 +ut ,

where d2 (⋅) is unity for all observations corresponding to 1930 or later and zero
for all observations corresponding to years 1909 through 1929. The standard nor-
mal kernel was used to construct the estimates of γγγ(⋅) and γγγ ′(⋅) given above in
(18) and (21), respectively, while the function k(⋅) appearing in (26) was set to
be the Epanechnikov (1969) kernel. As was done in the simulations summa-
rized in Figures 1–4, the bandwidths aT and bT used in (26) and (27) were set
to aT = bT = .5T− 2

9 .
Various settings of bandwidth were tried out when implementing the Priestley-

Chao estimates given in (18) and (21). In particular, the estimate of γγγ given
in (18) was implemented with a bandwidth given by hl = clT− 2

5 , where cl ∈
{.125,1.0,8.0}. Similarly, the estimate of γγγ ′ given in (21) used the bandwidth
hd = cdT− 2

7 , where cd ∈ {.125,1.0,8.0}. As indicated in Figures 5 and 6, the
quality of the fit provided by the Priestley-Chao estimates to their respective esti-
mands is very sensitive to the particular bandwidth used.

The Priestley-Chao estimates are of course ingredients in the construction of
the proposed test statistic given above in (38). The effect of the bandwidths used
in their implementation on the proposed test is summarized in Table 2, which dis-
plays the value of the Wald statistic in (38) as a function of the bandwidth scaling
constants cl and cd . It is clear that the test is highly sensitive to the bandwidth
used to construct the estimate of γγγ(⋅), while the particular bandwidth used to con-
struct γ̂γγ ′T (⋅) as given in (21) appears to have little effect on the conclusion of the
proposed test. Of the various combinations tried, the setting hl = .125T− 2

5 ap-
pears to provide the best nonparametric fit to the data, as is clear from Figure 5.
Using hl = .125T− 2

5 also corroborrates the conclusion obtained by Perron (1989),
namely, that real U.S. GNP is stationary about a linear trend when one allows for
a one-time break in level just after 1929.

The second series considered consists of seasonally adjusted quarterly Gross
Domestic Product from 1947 through to the end of 2007 in billions of chained
2000 dollars.25 In this case the model being validated involves linear trend sta-
tionarity with a single break in slope just after the fourth quarter of 1973, i.e.,

Yt = γ01 +
t
T

(
γ02 +d3

( t
T

)
γ03

)
+ut ,

25The data used are the natural logarithms of the measurements downloaded from http://

www.bea.gov.
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where d3 (⋅) is unity for all observations corresponding to the fourth quarter of
1973 or later and zero for all observations corresponding to the first quarter of
1947 through to third-quarter 1973, inclusive. The test statistic in (38) was con-
structed using the same combinations of bandwidths and choices of kernels as
was described above in relation to the Nelson and Plosser (1982) real GNP series.
Table 3 indicates that in the case of the postwar real GDP series, the conclusion
of the test based on the Wald statistic given in (38) continues to be highly sensi-
tive to the bandwidth used to implement the Priestley-Chao estimate of the trend
parameter, while remaining quite insensitive to the bandwidth used to estimate
γγγ ′(⋅). A glance at Figure 7 indicates that as was the case for annual real GNP, the
bandwidth hl = .125T− 2

5 provides a good nonparametric fit for the evolution of
quarterly postwar real GDP. Its use in the construction of the test statistic in (38),
however, does not lead one to conclude that postwar real GDP is well described by
linear trend stationarity with a single break in slope around the onset of the 1973
oil crisis.26 That said, it seems plausible from the pattern of the results displayed
in (Figure 5, Table 2) and (Figure 7, Table 3) that further “undersmoothing” of
the Priestley-Chao estimate of γγγ will have the effect of pushing the realized value
of the proposed test statistic below the .95-quantile of the standard normal distri-
bution. It is clear that further research on bandwidth selection in this context is
needed.

7 Conclusion
This paper has presented a specification test for segmented-trend stationarity based
on an efficient estimator of the vector whose components are the total variation
norms of the corresponding components of the trend-function parameter. The
data-generating process of the stochastic disturbances under the null is largely un-
specified. The proposed testing procedure is shown to be locally uniformly most
powerful in large samples against deviations from the null of stability of the trend
parameter. As such, the test is capable of detecting all manner of conceivable
breaks in trend that have not already been explicitly modelled by the researcher
via the specification of the vector ddd(⋅) in (1). Monte Carlo simulations reported in
Section 5 show that the proposed test is potentially correctly sized and powerful
against discrete breaks and continuous changes in trend, as well as against the al-
ternative of a unit root process. As underscored by the empirical results presented

26This is at odds with the conclusions of Perron (1989) and Perron and Wada (2006).
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in Section 6, however, these good qualities appear to be particularly dependent on
a suitable choice of bandwidth used to implement the preliminary nonparametric
estimate of the trend parameter given in (18). A practical rule for the selection of
the bandwidth to be used in this context is clearly worthy of further research.

Another potential topic for further investigation involves the conversion of the
test for trend stationarity proposed here into a test of the unit-root hypothesis. In
particular, this would entail deriving the limiting distribution of the statistic given
in (38) under the assumption that the data are drawn from an I(1) process. Ev-
idence against the unit-root hypothesis would naturally be associated with small
realized values of the statistic given in (38). A unit-root test of this nature would
complement the specification test for segmented-trend stationarity proposed in
this paper by providing the researcher with yet another method of distinguish-
ing between processes characterized by what are effectively unpredictable trend
breaks every period from those where the trend changes only infrequently.
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A Further preliminary results
This appendix gathers together various preliminary results needed in the proofs of Lemmas 2–5
and of Theorem 5.

A.1 Rates of convergence of the Priestley-Chao estimator
This appendix section is concerned with the uniform rates of convergence over the unit interval of
the estimators of γγγ(⋅) and of γγγ ′(⋅) given in (18) and (21), respectively.

For µ
( t

T

)≡ ddd
( t

T

)⊤ γγγ
( t

T

)
with ddd satisfying the conditions of Assumption 3, let

Yt = µ
( t

T

)
+ut (41)

denote the basic model under consideration. Assuming that {ut} satisfies the conditions of As-
sumption 4, the strong invariance principle of Wu (2007) applies, and it is possible to approximate
the original dependent variables {Yt} with

{
Ỹt
}

drawn from the model

Ỹt ≡ µ
( t

T

)
+Zt , (42)

where {Zt} be an iid N(0,σ2) process with σ 2 ≡ ∑∞
t=−∞ E [u0ut ].

Consider the estimator of Priestley and Chao (1972) applied to the model given in (42), to wit:

µ̃T (s)≡
T

∑
t=1

w1,t,T (s)Ỹt , (s ∈ (0,1)) (43)

where wl,t,T (⋅) is as in (19) above. Similarly, for s ∈ (0,1), let

µ̃ ′
T (s)≡

T

∑
t=1

w′
d,t,T (s)Ỹt , (44)

denote the Priestley-Chao estimator of the derivative of µ (s) where w′
d,t,T (s) denotes the derivative

of the expression given in (19) but with bandwidth hd in place of hl . The following result under the
conditions of Assumptions 3, 6 and 7 is an easy consequence of the sort of arguments appearing
in e.g., Priestley and Chao (1972, Section 4):

Lemma 6. Under the conditions of Assumptions 3, 6 and 7 we have for s ∈ (0,1) that

1. µ̃T (s) is consistent for µ(s) in (42) at a
√

T hl rate;

2. µ̃ ′
T (s) is consistent for the derivative µ ′(s) of µ(s) in (42) at a

√
T h3

d rate.

Now consider the Priestley-Chao procedure applied to the original model (41). In particular,
suppose that for s ∈ (0,1), µ(s) and µ ′(s) are estimated by

µ̂T (s)≡
T

∑
t=1

wl,t,T (s)Yt (45)
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and

µ̂ ′
T (s)≡

T

∑
t=1

w′
d,t,T (s)Yt , (46)

respectively. Assumption 4 and the strong invariance principle of Wu (2007) allow the asymptotic
behaviour of µ̂T and µ̂ ′

T to be uniformly almost surely approximated on the unit interval by that of
µ̃T and µ̃ ′

T , respectively:

Lemma 7. Under the conditions of Assumptions 3, 4, 6 and 7 we have

1. max0≤s≤1 ∣µ̂T (s)− µ̃T (s)∣= oa.s.

(
T− 3

4 h−1
l logT

)
;

2. max0≤s≤1 ∣µ̂ ′
T (s)− µ̃ ′

T (s)∣= oa.s.

(
T− 3

4 h−2
d logT

)
.

Proof. 1. The bounded variation of K(⋅) gives

ΩlT (s) ≡
∣∣wl,1,T (s)

∣∣+
T

∑
j=2

∣∣wl, j,T (s)−wl, j−1,T (s)
∣∣

= O
(

1
T hl

)
,

while the embedding of (13) above yields the bound

∣µ̂T (s)− µ̃T (s)∣= oa.s.

(
ΩlT (s)T

1
4 logT

)
= oa.s.

(
T− 3

4 h−1
l logT

)
,

which can be extended to a uniform approximation:

max
0≤s≤1

∣µ̂T (s)− µ̃T (s)∣= oa.s.

(
T− 3

4 h−1
l logT

)
.

2. Setting Ω′
dT (s)≡

∣∣∣w′
d,1,T (s)

∣∣∣+∑T
j=2

∣∣∣w′
d, j,T (s)−w′

d, j−1,T (s)
∣∣∣, the bounded variation of K′(⋅)

yields the bound

Ω′
dT (s) = O

(
1

T h2
d

)
.

As such, (13) can be exploited to yield the uniform approximation

max
0≤s≤1

∣∣µ̂ ′
T (s)− µ̃ ′

T (s)
∣∣= oa.s.

(
T− 3

4 h−2
d logT

)
.

In this paper interest is of course centred more on the trend-function parameter γγγ(⋅) and the
derivatives of its components. Let

vvv(⋅)≡ (∣∣γ ′1(⋅)
∣∣ , . . . ,

∣∣γ ′k(⋅)
∣∣)⊤ , (47)

i.e., the vector whose components are the magnitudes of the derivatives of the corresponding com-
ponents of γγγ(⋅). For γ̂γγT (⋅) as given above in (18) and v̂vvT (⋅) as given in (23), we have the following
uniform rates of convergence:
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Lemma 8. Under the conditions of Assumptions 3, 4, 6 and 7 we have

1. max0≤s≤1 ∥γ̂γγT (s)− γγγ(s)∥= Op

(
T− 1

2 h
− 1

2
l

)
;

2. max0≤s≤1 ∥v̂vvT (s)− vvv(s)∥= Op

(
T− 3

2 h
− 3

2
d

)
.

Proof. Note that the pointwise rates of convergence in Lemma 6 can be made to hold uniformly
over s ∈ (0,1) by virtue of the bounded variation of K(⋅) and of its derivative K′(⋅). As such,

max
0≤s≤1

∣µ̃T (s)−µ(s)∣= Op

(
T− 1

2 h
− 1

2
l

)
(48)

and

max
0≤s≤1

∣∣µ̃ ′
T (s)−µ ′(s)

∣∣= Op

(
T− 1

2 h
− 3

2
d

)
. (49)

Combining (48) and (49) with the conclusions of Lemma 7 yields the desired conclusion.

A.2 Further lemmas
This appendix section collects various preliminary results needed in the proofs of Lemmas 2–
5 and of Theorem 5. In what follows, given a generic statistic ŴWW T obtained from observations
Y1, . . . ,YT generated by the basic model given above in (1), the statistic of the form W̃WW T will denote
the procedure implied by ŴWW T , but applied to observations generated by the iid normal-error model
given in (14). As such, ṽvvT (s)≡

∣∣γ̃γγ ′T (s)
∣∣, ũt,T ≡ Yt −ddd

( t
T

)⊤ γ̃γγT
( t

T

)
, etc. Also let

δ̃t,T ≡ ddd
( t

T

)⊤(
γ̃γγT

( t
T

)
− γγγ

( t
T

))
,

and let
FZ(z)≡ Φ

( z
σ

)

and
fZ(z)≡ 1

σ
φ
( z

σ

)

denote the distribution and density functions, respectively, of the regression error appearing in
(14).

Lemma 9. Suppose Assumptions 3, 4, 6, 7 and 8 hold. Then for vvv(⋅) as given in (47),

1
T

[
v̂vvT

( t
T

)
− vvv

( t
T

)
+
(

v̂vvT

( t
T

)
− v̄vv

)
δt,T

]
= oθT

(
T− 1

2

)
.

Proof. We have

1
T

T

∑
t=1

[
v̂vvT

( t
T

)
− vvv

( t
T

)
+
(

v̂vvT

( t
T

)
− v̄vv

)
δt,T

]

≤ max
0≤s≤1

∣∣∣ddd(s)⊤ (γ̂γγT (s)− γγγ(s))
∣∣∣
∥∥∥∥∥

1
T

T

∑
t=1

v̂vvT

( t
T

)
− v̄vv

∥∥∥∥∥+
∥∥∥∥∥

1
T

T

∑
t=1

[
v̂vvT

( t
T

)
− vvv

( t
T

)]∥∥∥∥∥ .
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Appealing to Lemma 8, note that

1
T

T

∑
t=1

v̂vvT

( t
T

)
− v̄vv

=
1
T

T

∑
t=1

[
v̂vvT

( t
T

)
− vvv

( t
T

)]
+

1
T

T

∑
t=1

vvv
( t

T

)
− v̄vv

= oθT

(
T− 3

2 h−
3
2

)
+O

(
T− 1

2

)

= OθT

(
T− 1

2

)
.

The result follows from a further appeal to Lemma 8.

For x ∈ ℝ and zzz ≡ (z1, . . . ,zT )
⊤, write

l̃ZT (x)≡ l̃ZT (x,zzz)≡−
a−2

T ∑T
T=1 k′

(
x−zt
aT

)

bT +a−1
T ∑T

t=1 k
(

x−zt
aT

) ,

Let

l̃(i)ZT (x,zzz)≡
∂ i

∂xi l̃ZT (x,zzz). (50)

We have the following.

Lemma 10. Given Assumption 8, there exists a positive constant c0 such that for every x ∈ℝ and
zzz,zzz′ ∈ ℝT and i ∈ {0,1,2}, the following bounds hold:

∣∣∣l̃(i)ZT (x,zzz)
∣∣∣ ≤ c0

ai+1
T

(51)

∣∣∣l̃(i)ZT (x,zzz)− l̃(i)ZT (x,zzz
′)
∣∣∣ ≤ c0

a3+i
T bT

T

∑
t=1

min
{

aT ,
∥∥zzz′t − zzzt

∥∥} (52)

∣∣∣l̃(i)ZT (x,zzz)− l̃(i)ZT (x,zzz
′)
∣∣∣
2

≤ c0

a5+2i
T bT

T

∑
t=1

∥∥zzz′t − zzzt
∥∥2

. (53)

Proof. Follows directly from the definitions.

The following modification of Schick (1987, Lemma 3.1) is needed in order to prove Lem-
mas 3–5.

Lemma 11. Let ZZZ(T ) ≡ (Z1, . . . ,ZT )
⊤. For each pair (t,T ) of positive integers with 1 ≤ t ≤ T , let

LLLt,T : ℝ×ℝT → ℝk be a measurable function. Let

L̃LLt,T (⋅)≡ λλλ t,T

(
⋅,ZZZ(T )

)

be an estimate of LLLt,T

(
⋅,ZZZ(T )

)
, where λλλ t,T : ℝ×ℝT → ℝk is a measurable function. Also let

L̄LLt,T (z)≡ E
[

L̃LLt,T (z)
∣∣Z1, . . . ,Zt−1,Zt+1, . . . ,ZT

]
.
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Suppose that the following conditions hold:

1√
T

T

∑
t=1

∫
L̃LLt,T (z)dFZ(z) = op(1) (54)

1
T

T

∑
t=1

E
[∫ ∥∥∥L̃LLt,T (z)−LLLt,T (z,ZZZ(T ))

∥∥∥
2

dFZ(z)
]

= o(1) (55)

1√
T

T

∑
t=1

(
L̃LLt,T (Zt)− L̄LLt,T (Zt)

)
= op(1) (56)

T

∑
t=1

E
[∫ ∥∥L̃LLt,T (z)− L̄LLt,T (z)

∥∥2 dFZ(z)
]

= o(1). (57)

Then
1√
T

T

∑
t=1

(
L̃LLt,T (Zt)−LLLt,T (Zt ,ZZZ(T ))

)
= op(1).

Proof. We write

1√
T

T

∑
t=1

(
L̃LLt,T (Zt)−LLLt,T (Zt ,ZZZ(T ))

)
=

1√
T

T

∑
t=1

(BBBt1 +BBBt2 +BBBt3) ,

where

BBBt3 ≡
∫

L̄LLt,T (z)dFZ(z)

BBBt1 ≡ L̃LLt,T (Zt)− L̄LLt,T (Zt)

BBBt2 ≡ L̄LLt,T (Zt)−LLLt,T (Zt ,ZZZ(T ))−BBBt3.

By (56), we have
1√
T

T

∑
t=1

BBBt1 = op(1).

By (54) and (57), we have
1√
T

T

∑
t=1

BBBt3 = op(1).

As such, it remains to show that

E

⎡
⎣
Ã

1√
T

T

∑
t=1

BBBt2

)Ã
1√
T

T

∑
t=1

BBBt2

)⊤⎤
⎦=

1
T

T

∑
t=1

E
[
BBBt2BBB⊤

t2

]
+

1
T ∑

t ∕=s
E
[
BBBt2BBB⊤

s2

]
→ 0.

By (55) and (57) and the nature of conditional variances, we have
∥∥∥∥∥

1
T

T

∑
t=1

E
[
BBBt2BBB⊤

t2

]∥∥∥∥∥ ≤ 1
T

T

∑
t=1

∥∥∥∥E
[(

L̄LLt,T (Zt)−LLLt,T (Zt ,ZZZ(T ))
)(

L̄LLt,T (Zt)−LLLt,T (Zt ,ZZZ(T ))
)⊤]∥∥∥∥

→ 0.
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Let
B̄BB(s)

t2 ≡ E [BBBt2∣Z1, . . . ,Zs−1,Zs+1, . . . ,ZT ] .

(Clearly, B̄BB(s)
s2 = 000 with probability one.)

It is possible to show that for t ∕= s,

E
[
B̄BB(s)

t2 BBB⊤
s2

]
= E

[
BBBt2B̄BB(t)⊤

s2

]
= E

[
B̄BB(s)

t2 B̄BB(t)⊤
s2

]
= 000.

This, along with the Cauchy-Schwarz inequality, the nature of conditional variances and (57)
yields

1
T ∑

t ∕=s

∥∥∥E
[
BBBt2BBB⊤

s2

]∥∥∥

=
1
T ∑

t ∕=s

∥∥∥∥E
[(

BBBt2 − B̄BB(s)
t2

)(
BBBs2 − B̄BB(t)

s2

)⊤]∥∥∥∥

≤ 1
T ∑

t ∕=s

∥∥∥∥E
[(

BBBt2 − B̄BB(s)
t2

)(
BBBt2 − B̄BB(s)

t2

)⊤]∥∥∥∥

≤ 1
T ∑

t ∕=s
E
[∫ ∥∥L̃LLt,T (z)− L̄LLs,T (z)

∥∥2 dFZ(z)
]

→ 000.

This concludes the proof.

The next preliminary result requires the use of the following quantities. For s ∈ (0,1), let
µ̃T,−k(s) denote the Priestley-Chao estimator applied to µ(s) in (42) without the use of the kth
observation, i.e.,

µ̃T (s)≡ ∑
t ∕=k

wl,t,T (s)Ỹt ,

where as before

wl,t,T (s)≡ 1
T hl

K
(

1
hl

( t
T
− s

))
.

Define

NT 1 ≡ 1
T

T

∑
t=1

E
[(

µ̃T

( t
T

)
−µ

( t
T

))2
]

;

NT 2 ≡
T

∑
t=1

E
[(

µ̃T

( t
T

)
− µ̃T,−t

( t
T

))2
]

;

NT 3 ≡ 1
T

T

∑
t=1

∑
k ∕=t

E
[(

µ̃T

( t
T

)
− µ̃T,−k

( t
T

))2
]
.

Note that

NT 1 = O
(

T−(1+r)
)

(58)
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NT 2 = O
(

T−(1+2r)
)

(59)

NT 3 = O
(

T−(1+2r)
)
. (60)

Conditions (58)–(60) are used in the lemma that follows. For brevity, let α ≡ 1+r and α∗ ≡ 1+2r,
and let

ỸYY−t,T ≡ (Ỹ1, . . . ,Ỹt−1,Ỹt+1, . . . ,ỸT )
⊤.

Lemma 12. Suppose that Ta4
T b2

T → ∞. Then for i ∈ {0,1}, define

L(i)
T 1 ≡ 1

T

T

∑
t=1

E

[
sup
y∈ℝ

(
l̃(i)ZT

(
y− µ̃T

( t
T

))
− l̃(i)ZT

(
y− µ̃T,−t

( t
T

)))2
]

;

LT 2 ≡ 1
T 2

T

∑
t=1

E
[

sup
z∈ℝ

(
l̃ZT

(
z+µ

( t
T

)
− µ̃T,−t

( t
T

))
− l̃ZT (z)

)2
]

;

L(i)
T 3 ≡ 1

T 2

T

∑
t=1

∑
k ∕=t

E
[(

l̃(i)ZT

(
Ỹt − µ̃T,−t

( t
T

))
− l̃(i)ZT

(
Ỹt −E

[
µ̃T,−t

( t
T

)∣∣∣ỸYY−t,T

]))2
]

;

LT 4 ≡ E
[∫ (

l̃ZT (z)− lZ(z)
)2 dFZ(z)

]
;

where l̃(i)ZT is as given above in (50).
Then

L(i)
T 1 = T−1a−2i

T Op

(
a−4

T T−α∗ +T−1a−4
T b−2

T +a−5
T b−1

T T−2α
)

(61)

LT 2 = T−1Op

(
T−2a−4

T b−2
T +a−5

T b−1
T T−2α

)
(62)

L(i)
T 3 = T−1a−2i

T Op

(
T−1a−4

T b−2
T +a−5

T b−1
T T−2α

)
(63)

LT 4 = O
(

a−5
T b−1

T T−2α
)
. (64)

Proof. The proof is given in detail in the following appendix section, i.e., Appendix A.3.

A.3 Proof of Lemma 12
The proof of Lemma 12 requires the following two lemmas, the first of which is a result of Schick
(1987).

Lemma 13. Under Assumption 8 on a kernel function k(⋅), if for z ∈ ℝ we have

fT (z)≡
∫

f (z−aT t)k(t)dt,

then

ΣT 1 ≡ E

[∫ (
l̃ZT (z)+

f ′T (z)
fT (z)+bT

)2

dFZ(z)

]
= O

(
T−1a−4

T b−2
T
)

;

ΣT 2 ≡
∫ (

f ′T (z)
bT + fT (z)

− f ′Z(t)
fZ(t)

)2

fZ(t)dt → 0.
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The next lemma is an easy consequence of conditions (58)–(60).

Lemma 14. Define

MT 1 ≡ 1
T 2

T

∑
t=1

∑
k ∕=t

E
[(

Zt − ũt,T,−k
)2
]

;

MT 2 ≡ 1
T

T

∑
t=1

∑
k ∕=t

E
[(

ũt,T − ũt,T,−k
)2
]

;

MT 3 ≡ 1
T 2

T

∑
t=1

∑
k ∕=t

∑
l ∕=t

∑
k ∕=l

E
[(

ũl,T,−k −E
[

ũl,T,−k
∣∣Z1, . . . ,Zt−1,Zt+1, . . . ,ZT

])2
]
.

Then

MT 1 = O
(
T−2α) ;

MT 2 = O
(
T−α∗) ;

MT 3 = O
(
T−α∗) .

Proof. We have

MT 1 ≤ 1
T

T

∑
t=1

E
[
(Zt − ũt,T )

2
]
≤ NT 1,

while
MT 3 ≤ MT 2 = NT 3.

Returning to the argument of Lemma 12 proper, appeal to results (51)–(53) in Lemma 10 to
deduce that there exists a positive constant C such that

L(i)
T 1 ≤ Ca−2i

T

(
T−1a−4

T NT 2 +T−2a−4
T b−2

T +T−1a−5
T b−1

T MT 2

)
; (65)

LT 2 ≤ C
(

T−1a−4
T NT 1 +T−3a−4

T b−2
T +T−1a−5

T b−1
T MT 1

)
; (66)

L(i)
T 3 ≤ Ca−2i

T

(
T−1a−4

T NT 3 +T−2a−4
T b−2

T +T−1a−5
T b−1

T MT 3

)
; (67)

LT 4 ≤ C
(

a−5
T b−1

T NT 1 +ΣT 1 +ΣT 2

)
. (68)

Conclusions (61)–(64) follow from (65)–(68), Lemma 13, Lemma 14 and conditions (58)–(60).
This concludes the proof of Lemma 12.

B Proofs of Lemmas 2–5

B.1 Proof of Lemma 2
Note the following.

1
T

T

∑
t=1

∫ (
l̂′UT (u−δt,T )− l̂′UT (u)

)
dF(T ∣T−1)

0 (u)
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=
1
T

T

∑
t=1

[∫ (
l̂′UT (u−δt,T )− l̂′UT (u)

)
dF(T ∣T−1)

0 (u)−
∫ (

l̃′ZT

(
z− δ̃t,T

)
− l̃′ZT (z)

)
dFZ(z)

]

+
1
T

T

∑
t=1

∫ (
l̃′ZT

(
z− δ̃t,T

)
− l̃′ZT (z)

)
dFZ(z). (69)

The first term in (69) is seen to be bounded above by

max
1≤t≤T

∣∣∣δt,T − δ̃t,T

∣∣∣
∣∣∣∣
∫

l̂′UT (u) f (T ∣T−1)′
0 (u)du−

∫
l̃′ZT f ′Z(z)dz

∣∣∣∣

= oa.s.

(
T− 3

4+2r logT
)
⋅oa.s.

(
T− 3

4 logT ⋅T−1a−2
T

)

= oa.s.

(
T− 1

2

)
.

Now consider the second term in (69). We note that for

ÃT ≡ max
0≤s≤1

∥ṽvvT (s)∥+1,

we have
max

1≤t≤T

∥∥∥ṽvvT

( t
T

)∥∥∥= Op
(
ÃT

)
.

Let JZ denote the Fisher information for location corresponding to FZ . Note that it is finite, and
therefore that ∫

∣ fZ(z+d)− fZ(z)∣dz ≤ ∣d∣√JZ .

Combining this with (51) in Lemma 10, we have
∣∣∣∣
∫ (

l̃′ZT (z−d)− l̃′ZT (z)
)

fZ(z)dz
∣∣∣∣

≤
∫ ∣∣l̃′ZT (z)

∣∣ ∣ fZ(z+d)− fZ(z)∣dz

≤ c0a−2
T ∣d∣√JZ .

The second term in (69) is accordingly oθT

(
T− 1

2

)
.

∣∣∣∣
∫ (

l̃ZT (z−d)− l̃ZT (z)+dl̃′ZT (z)
)

fZ(z)dz
∣∣∣∣

≤ ∣d∣
∫ 1

0

∣∣∣∣
∫ (

l̃′ZT (z−λd)− l̃′ZT (z)
)

fZ(z)dz
∣∣∣∣dλ

≤ ∣d∣
∫ 1

0

∫ ∣∣l̃′ZT (z)( fZ(z+λd)− fZ(z))
∣∣dzdλ

≤ c0a−2
T d2√JZ .

The demonstration of the second part of Lemma 2 is similar.
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B.2 Proof of Lemma 3
The proof is organized along the lines of showing the convergence of the quantities corresponding
to ∆∆∆T 1, ∆∆∆T 2 and ∆∆∆T 3 in (32) above. The focus here is on showing the convergence of ∆∆∆T 2, since
the convergence of ∆∆∆T 1 and ∆∆∆T 3 is easily shown. In particular, we show that ∆∆∆T 2 converges by
applying Lemma 11 with

L̃LLt,T (z) ≡ ṽvvT

( t
T

){
l̃ZT (z)−

∫
l̃ZT

(
z− δ̃t,T

)
dFZ(z)

}
;

LLLt,T (z) ≡ ṽvvT

( t
T

)
lZ(z).

It follows that conditions (54)–(57) need to be shown. This is done in sequence.

B.2.1 Verification of condition (54):
Applying Lemma 8 to the model in (14) at the appropriate location, and recalling the definition of
LT 2 in Lemma 12, we have

∥∥∥∥∥E

[
1√
T

T

∑
t=1

∫
L̃LLt,T (z)dFZ(z)

]∥∥∥∥∥
2

≤
∥∥∥∥∥

1√
T

T

∑
t=1

E
[

ṽvvT

( t
T

){
l̃ZT (z)dFZ(z)−

∫
l̃ZT

(
z− δ̃t,T

)
dFZ(z)

}]∥∥∥∥∥
2

≤ 2
T

{
T

∑
t=1

E
[∥∥∥ṽvvT

( t
T

)
− vvv

( t
T

)∥∥∥
2
]
+

T

∑
t=1

∥∥∥vvv
( t

T

)∥∥∥
2
}
×T 2LT 2

= 2T
{

O
(
T 3r)+O(T )

}×T−1O
(

T−2a−4
T b−2

T +a−5
T b−1

T T−2−2r
)

= O(T )×O
(

T−2a−4
T b−2

T +a−5
T b−1

T T−2−2r
)

= O
(

T−1a−4
T b−2

T +a−5
T b−1

T T−1−2r
)

= o(1).

B.2.2 Verification of condition (55):
We have

1
T

T

∑
t=1

E
[∫ ∥∥L̃LLt,T (z)−LLLt,T (z)

∥∥2 dFZ(z)
]

≤ 1
T

{
T

∑
t=1

E
[∥∥∥ṽvvT

( t
T

)
− vvv

( t
T

)∥∥∥
2
]
+

T

∑
t=1

∥∥∥vvv
( t

T

)∥∥∥
2
}

×
T

∑
t=1

E

[(∫
l̃ZT (z)dFZ(z)−

∫
l̃ZT

(
z− δ̃t,T

)
dFZ(z)−

∫
lZ(z)dFZ(z)

)2
]
.
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Note that
l̃ZT

(
z− δ̃t,T

)
= l̃ZT (z)− δ̃t,T l̃′ZT (z)+Op

(
δ̃ 2

t,T

)
.

As such,
∫ (

l̃ZT (z)− lZ(z)
)

dFZ(z)−
∫

l̃ZT

(
z− δ̃t,T

)
dFZ(z)

≈ δ̃t,T

∫
l̃′ZT (z)dFZ(z)−

∫
lZ(z)dFZ(z)

= δ̃t,T

∫
l̃′ZT (z)dFZ(z).

Therefore with an appeal to Lemma 8 applied to the model in (14) we have

1
T

T

∑
t=1

E
[∫ ∥∥L̃LLt,T (z)−LLLt,T (z)

∥∥2 dFZ(z)
]

≤ T−1{O
(
T 2−3r)+O(T )

}×
T

∑
t=1

E

[
δ̃ 2

t,T

(∫
l̃′ZT (z)dFZ(z)

)2
]

= O
(
T 1−3r +1

)×O
(
T−1+r)

= O
(
T−2r +T−1+r)

= o(1).

B.2.3 Verification of condition (56):
Noting that

Zt = Ỹt −µ
( t

T

)
= Ỹt − µ̃T,−t

( t
T

)
+Op

(
T−1+r) ,

we have
∥∥∥∥∥E

[
1√
T

T

∑
t=1

(
L̃LLt,T (Zt)− L̄LLt,T (Zt)

)
]∥∥∥∥∥

2

≤ 2
T

∑
t=1

E
[∥∥∥ṽvvT

( t
T

)
−E

[
ṽvvT

( t
T

)∣∣∣Ỹ1, . . . ,Ỹt−1,Ỹt+1, . . . ,ỸT

]∥∥∥
2
]

× 1
T

T

∑
t=1

E
[
l̃2
ZT

(
Ỹt −µ

( t
T

))]
+2T 2L(0)

T 3 ×
1
T

T

∑
t=1

E
[∥∥∥ṽvvT

( t
T

)∥∥∥
2
]

= o(1)+T ×T−1O
(

T−1a−4
T b−2

T +a−5
T b−1

T T−2−2r
)

O
(
T 3r)

= O
(

T−1+3ra−4
T b−2

T +a−5
T b−1

T T−2+r
)

= o(1),

where L(0)
T 3 is as in Lemma 12 and the conclusion of Lemma 8 as applied to the model in (14) is

used in the appropriate location.
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B.2.4 Verification of condition (57):
This follows the same approach as was used to show condition (56).

The conditions of Lemma 11 hold. This concludes the proof.

B.3 Proof of Lemma 4
The proof follows the same pattern as was used in the proof of Lemma 3. In particular, the con-
vergence of the quantities corresponding to ∆∆∆T 1, ∆∆∆T 2 and ∆∆∆T 3 in (32) above is shown. The focus
here, as in the proof of Lemma 3, is on showing the convergence of ∆∆∆T 2, since the convergence of
∆∆∆T 1 and of ∆∆∆T 3 is straightforward.

As such, we show that ∆∆∆T 2 converges by applying Lemma 11 with

L̃t,T (z) ≡ 1√
T

(
l̃′ZT (z)−

∫
l̃′ZT

(
z− δ̃t,T

)
dFZ(z)

)
;

Lt,T (z) ≡ 0.

Conditions (54)–(57) will be shown in sequence.

B.3.1 Verification of condition (54):

Recalling the definition of L(1)
T 1 in Lemma 12, we have

Ã
E

[
1√
T

∣∣∣∣∣
T

∑
t=1

∫
L̃t,T (z)dFZ(z)

∣∣∣∣∣

])2

≤ 2
T

L(1)
T 1

= O
(

T−2a−2
T

{
a−4

T T−1−2r +T−1a−4
T b−2

T +a−5
T b−1

T T−2−2r
})

= O
(

a−6
T T−3−2r +T−3a−6

T b−2
T +a−7

T b−1
T T−4−2r

)

= o(1).

B.3.2 Verification of condition (55):
This is similar to the verification of condition (54).

B.3.3 Verification of condition (56):
As was done above we note that

Zt = Ỹt −µ
( t

T

)
= Ỹt − µ̃T,−t

( t
T

)
+Op

(
T−1+r) ,
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and get
Ã

E

[
1√
T

∣∣∣∣∣
T

∑
t=1

(
L̃t,T (Zt)− L̄t,T (Zt)

)
∣∣∣∣∣

])2

≤ L(1)
T 3

= O
(

T−1a−2
T

{
T−1a−4

T b−2
T +a−5

T b−1
T T−2−2r

})

= O
(

T−2a−6
T b−2

T +a−7
T b−1

T T−3−2r
)

= o(1),

where L(1)
T 3 is as given in the statement of Lemma 12.

B.3.4 Verification of condition (57):
This is similar to the verification of condition (56).

The conditions of Lemma 11 have been shown to hold. This concludes the proof.

B.4 Proof of Lemma 5
We again use the framework of (32) above and focus on showing the convergence of ∆∆∆T 2. In order
to do this, we apply Lemma 11 with

L̃LLt,T (z) ≡ z√
T

v̄vvT ;

LLLt,T (z) ≡ zv̄vv,

where

v̄vv ≡
(∫ 1

0

∣∣γ ′1(s)
∣∣ds, . . . ,

∣∣γ ′k(s)
∣∣ds

)⊤
.

The four conditions of Lemma 11 are shown in sequence.

B.4.1 Verification of condition (54):
We have

∥∥∥∥∥E

[
1√
T

T

∑
t=1

∫
L̃LLt,T (z)dFZ(z)

]∥∥∥∥∥
2

≤ 2
T

{
E
[
∥v̄T − v̄∥2

]
+∥v̄∥2

}∫
z2dFZ(z)

= o(1),

where use was made of Lemma 8 as applied to the model given in (14).

B.4.2 Verification of condition (55):
This is similar to the verification of condition (54).
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B.4.3 Verification of conditions (56) and (57):

Easy. This concludes the proof.
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Table 1: Empirical size at a nominal level of 5%
Bandwidth Sample size

ch ca cb T = 100 T = 200 T = 300
0.5 0.5 0.5 0.076 0.043 0.062
1.0 1.0 1.0 0.176 0.085 0.022
1.5 1.5 1.5 0.014 0.167 0.036
1.0 0.5 0.5 0.169 0.054 0.010
0.5 1.0 0.5 0.099 0.094 0.068
0.5 0.5 1.0 0.051 0.138 0.027
1.5 0.5 0.5 0.009 0.044 0.089
0.5 1.5 0.5 0.029 0.061 0.180
0.5 0.5 1.5 0.243 0.171 0.023
0.5 1.0 1.0 0.124 0.126 0.094
0.5 1.0 0.5 0.125 0.171 0.076
1.0 1.0 0.5 0.165 0.099 0.059
1.5 1.0 1.0 0.031 0.361 0.146
1.0 1.5 1.0 0.090 0.039 0.075
1.0 1.0 1.5 0.002 0.195 0.007
0.5 1.5 1.5 0.014 0.096 0.060
1.5 0.5 1.5 0.100 0.249 0.319
1.5 1.5 0.5 0.052 0.006 0.049
1.0 1.5 1.5 0.032 0.039 0.069
1.5 1.0 1.5 0.108 0.056 0.222
1.5 1.5 1.0 0.011 0.007 0.128
0.5 1.0 1.5 0.109 0.094 0.107
0.5 1.5 1.0 0.105 0.073 0.033
1.0 0.5 1.5 0.058 0.003 0.063
1.0 1.5 0.5 0 0.018 0.084
1.5 0.5 1.0 0.118 0 0
1.5 1.0 0.5 0.105 0.069 0.066

Notes to Table 1:

1. Normal AR(1)-error design in (39) with γ
( t

T

)≡ 0, ρ = 1
2 and 1000 replications.

2. Bandwidths hT , aT and bT are scaled by constants ch, ca and cb, respectively. In particular,

hT = chT− 2
5 ;

aT = caT− 2
9 ;

bT = cbT− 2
9 .
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Figure 1: Power performance at a nominal level of 5% against a one-time break
in trend
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Notes to Figure 1:

1. Normal AR(1)-error design in (39) with ρ = 1
2 , T = 200 and 1000 replications.

2. The trend function is given by

γ
( t

T

)
= 1

( t
T

> .5
)

γ0,

where the break size γ0 takes values in a grid of 50 equally-spaced points in the interval
[0,1].

3. The bandwidths used are hT = .5T− 2
5 , aT = bT = .5T− 2

9 , where T = 200.
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Figure 2: Power performance at a nominal level of 5% against two breaks in trend
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Notes to Figure 2:

1. Normal AR(1)-error design in (39) with ρ = 1
2 , T = 200 and 1000 replications.

2. The trend function is given by

γ
( t

T

)
=

(
1
2
×1

(
.25 <

t
T

< .75
)
+1

( t
T

≥ .75
))

γ0,

where γ0 takes values in a grid of 50 equally-spaced points in the interval [0,1].

3. The bandwidths used are hT = .5T− 2
5 , aT = bT = .5T− 2

9 , where T = 200.

50



Figure 3: Power performance at a nominal level of 5% against a continuous linear
change in mean
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Notes to Figure 3:

1. Normal AR(1)-error design in (39) with ρ = 1
2 , T = 200 and 1000 replications.

2. The trend function is given by

γ
( t

T

)
=

{
1
(
.25 <

t
T

< .75
)[

2
(

t
T
− 1

4

)]
+1

( t
T

≥ .75
)}

γ0,

where γ0 takes values in a grid of 50 equally-spaced points in the interval [0,1].

3. The bandwidths used are hT = .5T− 2
5 , aT = bT = .5T− 2

9 , where T = 200.
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Figure 4: Empirical rejection probabilities of a nominal 5%-level test when the
data-generating process displays increasing persistence
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Notes to Figure 4:

1. Normal AR(1)-error design in (39) with γ
( t

T

)≡ 0, T = 200 and 1000 replications.

2. The autoregressive coefficient in the error process is given by ρ = 1− c
T , where c takes

values in a grid of 50 equally-spaced points in the interval [0,100].

3. The bandwidths used are hT = .5T− 2
5 , aT = bT = .5T− 2

9 , where T = 200.
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Figure 5: Nonparametric fits of the Nelson and Plosser (1982) real GNP series
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Notes to Figure 5:

1. The data used were annual measurements of natural logarithms of real GNP for the United
States from 1909 to 1970. The source of the data is indicated in Nelson and Plosser (1982,
note 10).

2. The broken lines indicate various implementations of the basic Priestley and Chao (1972)
estimator given in (45) applied to the real GNP series with different bandwidth settings.
In particular, the bandwidth used is given by hl = clT− 2

5 , where cl ∈ {.125,1.0,8.0}. The
standard normal kernel was used throughout.
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Figure 6: Nonparametric fits of the first differences of the Nelson and Plosser
(1982) real GNP series
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Notes to Figure 6:

1. The broken lines indicate various implementations of the Priestley-Chao estimator given in
(46) applied to the first differences of the log real GNP series used by Nelson and Plosser
(1982).

2. The bandwidth used is given by hd = cdT− 2
7 , where cd ∈ {.125,1.0,8.0}. The standard

normal kernel was used throughout.
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Table 2: Empirical results for the Nelson and Plosser (1982) real GNP series
Bandwidth
cl cd

Wald statistic

.125 .125 1.5572

.125 1.0 1.5586

.125 8.0 1.5571
1.0 .125 3.3145
1.0 1.0 3.3142
1.0 8.0 3.3145
8.0 .125 6.2229
8.0 1.0 6.2228
8.0 8.0 6.2229

Notes to Table 2:

1. The model being validated is that of linear trend stationarity with a single break in level
just after 1929, i.e.,

Yt = γ01 +d2

( t
T

)
γ02 +

t
T

γ03 +ut ,

where d2 (⋅) is unity for all observations corresponding to 1930 or later and zero for all
observations corresponding to years 1909 through 1929. Cf. Perron (1989, §5).

2. The bandwidths used are given by hl = clT− 2
5 , hd = cdT− 2

7 with cl ,cd ∈ {.125,1.0,8.0},
and aT = bT = .5T− 2

9 .

3. The standard normal kernel was used to construct the Priestley-Chao estimates of the trend
parameters and their derivatives, while the Epanechnikov (1969) kernel was used to con-
struct the estimate given in (26).
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Figure 7: Nonparametric fits of quarterly postwar real GDP
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Notes to Figure 7:

1. The data used were quarterly measurements of natural logarithms of GDP in billions of
chained 2000 dollars for the United States between 1947 and 2007, inclusive. The original
observations were seasonally adjusted at annual rates. The data were obtained from http:

//www.bea.gov.

2. The broken lines indicate various implementations of the basic Priestley and Chao (1972)
estimator given in (45) applied to the real GDP series with different bandwidth settings.
In particular, the bandwidth used is given by hl = clT− 2

5 , where cl ∈ {.125,1.0,8.0}. The
standard normal kernel was used throughout.

56



Figure 8: Nonparametric fits of the first differences of quarterly postwar GDP
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Notes to Figure 8:

1. The broken lines indicate various implementations of the Priestley-Chao estimator given
in (46) applied to the first differences of the logarithms of quarterly postwar GDP series
considered in Figure 7.

2. The bandwidth used is given by hd = cdT− 2
7 , where cd ∈ {.125,1.0,8.0}. The standard

normal kernel was used throughout.
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Table 3: Empirical results for quarterly postwar real GDP
Bandwidth
cl cd

Wald statistic

.125 .125 2.8356

.125 1.0 2.7976

.125 8.0 2.8739
1.0 .125 8.3581
1.0 1.0 8.2383
1.0 8.0 8.1927
8.0 .125 15.5274
8.0 1.0 15.5279
8.0 8.0 15.5251

Notes to Table 3:

1. The model being validated is that of linear trend stationarity with a single break in slope
just after the first quarter of 1973, i.e.,

Yt = γ01 +
t
T

(
γ02 +d3

( t
T

)
γ03

)
+ut ,

where d3 (⋅) is unity for all observations corresponding to 1973:1 or later and zero for all
observations corresponding to quarters between 1947:1 and 1973:1, inclusive. Cf. Perron
(1989, §5).

2. The bandwidths used are given by hl = clT− 2
5 , hd = cdT− 2

7 with cl ,cd ∈ {.125,1.0,8.0},
and aT = bT = .5T− 2

9 .

3. The standard normal kernel was used to construct the Priestley-Chao estimates of the trend
parameters and their derivatives, while the Epanechnikov (1969) kernel was used to con-
struct the estimate given in (26).
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Hájek, J., and Z. Sidák (1967) Theory of Rank Tests (New York: Academic Press)

Haldrup, N., and M. Jansson (2006) ‘Improving size and power in unit root testing.’ In Palgrave
Handbook of Econometrics, ed. K. Patterson and T. C. Mills, vol. 1: Econometric Theory
(Basingstoke, Hampshire, U.K.: Palgrave Macmillan) pp. 252–277

Johansen, S. (2006) ‘Cointegration: An overview.’ In Palgrave Handbook of Econometrics, ed.
K. Patterson and T. C. Mills, vol. 1: Econometric Theory (Basingstoke, Hampshire, U.K.:
Palgrave Macmillan) pp. 540–577

Juhl, T., and Z. Xiao (2005) ‘A nonparametric test for changing trends.’ Journal of Econometrics
127, 179–199

59



King, R., C. Plosser, J. Stock, and M. Watson (1991) ‘Stochastic trends and economic fluctuations.’
American Economic Review 81(4), 819–840

Klaassen, C. A. J. (1987) ‘Consistent estimation of the influence function of locally asymptotically
linear estimators.’ Annals of Statistics 15, 1548–1562

Kuan, C. M. (1998) ‘Tests for changes in models with polynomial trends.’ Journal of Econometrics
84, 75–92

Kuan, C. M., and K. Hornik (1995) ‘The generalized fluctuation test: A unifying view.’ Econo-
metric Reviews 14, 135–161

Kydland, F. E., and E. C. Prescott (1980) ‘A competitive theory of fluctuations and the feasibility
and desirability of stabilization policy.’ In Rational Expectations and Economic Policy, ed.
S. Fischer (Chicago: University of Chicago Press)

Nelson, C. R., and C. I. Plosser (1982) ‘Trends and random walks in macroeconomic time series:
Some evidence and implications.’ Journal of Monetary Economics 10, 139–162

Park, J. Y., and S. B. Hahn (1999) ‘Cointegrating regressions with time-varying coefficients.’
Econometric Theory 15, 664–703

Perron, P. (1988) ‘Trends and random walks in macroeconomic time series: Further evidence from
a new approach.’ Journal of Economic Dynamics and Control 12, 297–332

(1989) ‘The Great Crash, the oil price shock, and the unit root hypothesis.’ Econometrica
57, 1361–1401

(1990) ‘Testing for a unit root in a time series with changing mean.’ Journal of Business and
Economic Statistics 8, 153–162

(2006) ‘Dealing with structural breaks.’ In Palgrave Handbook of Econometrics, ed. K. Pat-
terson and T. C. Mills, vol. 1: Econometric Theory (Basingstoke, Hampshire, U.K.: Palgrave
Macmillan) pp. 278–352

Perron, P., and T. Wada (2006) ‘Let’s take a break: Trends and cycles in U.S. real GDP.’ Depart-
ment of Economics, Boston University

Pfanzagl, J., and W. Wefelmeyer (1982) Contributions to a General Asymptotic Statistical Theory
(Berlin: Springer-Verlag)

Phillips, P. C. B., and B. E. Hansen (1990) ‘Statistical inference in instrumental variables regres-
sion with I(1) processes.’ Review of Economic Studies 57, 99–125
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