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Abstract
In a static frictionless transferable utilities bilateral matching mar-

ket with systematic and idiosyncratic payo¤s, supermodularity of the
match output function implies a strong form of positive assortative
matching: The equilibrium matching distribution has all positive lo-
cal log odd ratios or totally positive of order 2 (TP2). A strong form
of a preference for own type implies supermodularity of the match
output function. It has additional restrictions on local odds ratios.
Local odds ratios are not informative on whether a bilateral matching
market equilibrates with or without transfers. Using white married
couples in their thirties from the US 2000 census, spousal educational
matching obeyed TP2 except for less than 0.2% of marriages with
extreme spousal educational disparities. Using the TP2 order, there
were more positive assortative matching by couples living in SMSA�s
than those who do not; but not more positive assortative matching in
2000 than in 1970. There were increases in speci�c local log odds over
that period.

A landmark result in the theory of bilateral matching is Becker�s theory
of positive assortative matching.1 In a static frictionless transferable utilities

�I thank Gordon Anderson for many illuminating discussions, participants at the MFI
conference on New Economics of the Family, and Kevin Fawcett for excellent research
assistance. I also thank SSHRC for research support.

1Becker (1973); summarized in Becker (1991). Weiss (1997) has an elementary exposi-
tion. Roth and Sotomayor (1990) surveys the theory of static matching markets.
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matching market, Becker showed there will be perfect positive assortative
matching in equilibrium if the match output function is supermodular in the
abilities of the two agents in a match. Under perfect assortative matching,
when agents of ability i are matched with agents of ability j on the other
side of the market, other type i and type j agents should not simultaneously
be matched with lower ability agents, nor simultaneously be matched with
higher ability agents. Remarkably, equilibrium perfect assortative matching
is independent of the population distributions of agents on both sides of the
market. Also there is no restriction on the distributions of the unmatched
without further assumptions.
Becker�s insight has generated a substantial theoretical literature which

seeks to both extend and qualify it.2 Using data from marriage and labor
markets, empirical testing of his model are more preliminary.3

There are at least two related di¢ culties associated with empirical testing
of Becker�s theory. The �rst is that there is an obvious alternative explana-
tion for positive assortative matching which is a preference for own type in
a match. Becker�s theory has empirical content if we can distinguish super-
modularity against this alternative hypothesis.
The second problem is that perfect positive assortative matching is not

observed in either marriage or labor markets. High ability agents on both
sides of a market will match with lower ability agents on the other side of
the market in violation of perfect positive assortative matching. Thus an
empirical test of Becker�s model should avoid rejecting the model based on
observing inadmissible matches.
Most empirical tests of Becker�s theory do it in two steps. Given a sample

of matches, they �rst construct an index of ability for every agent.4 Then
they compute the correlation, or related summary measure of positive as-
sociation, between the abilities of match partners. A positive correlation is
interpreted as favoring Becker�s theory. These papers deal with important
and di¢ cult issues, such as how to generate a one dimension ability index for
agents on each side of the market, adding search friction and other dynamic

2E.g. Atakan (2006); Burdett and Coles (1997); Chiappori, et. al. (2008, forthcoming);
Damiano, et. al. (2005); Iyigun and Walsh (2007); Legros and Newman (2002, 2007);
Lundberg and Pollak (2003); Peters and Siow (2002); Shimer and Smith (2000).

3E.g. Abowd, et. al. (1999); Anderson and Leo (2007); Bagger and Lentz (2008);
Fernandez, et. al. (2005); Galichon and Selanie (2009); Lise, et. al. (2008); Liu and Lu
(2006); Lopes de Melo (2008); Mendes, et. al. (2007); Suen and Lui (1999).

4Galichon and Selanie (2009) is an exception.
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considerations, in order to construct a relevant correlation. A correlation test
has two advantages. First, it is non-parametric. Second, it avoids rejecting
Becker�s model based on observing inadmissible matches. However, a posi-
tive correlation has no power against the alternative of a preference for own
type.
Building on the above papers, the �rst part of this paper constructs a sto-

chastic Becker model which (1) delineates the empirical di¤erences between
supermodularity and a preference for own type; and (2) provide a test of
Becker�s theory which has the same advantages as, but is statistically more
powerful than a correlation test.
To describe patterns in bilateral matching data, let there be I types of

agents on one side of the market, i = 1; ::; I, where type i + 1 agents have
higher ability than type i agents. Let there be J types of agents on the other
side, j = 1; ::; J , where type j + 1 agents have higher ability than type j
agents. Let �(i; j) be the number of type i agents who are matched with
type j agents. The I � J matrix � with a typical element �(i; j) is known as
the equilibrium matching distribution.
The fi; jg local log odds ratio, ln[�(i; j)�(i+ 1; j + 1)][�(i+ 1; j)�(i; j +

1)]�1, is a local measure of association in �: There are (I� 1)(J � 1) of these
local log odds ratios. They and the I + J numbers of agents of each type
in matches, i.e. marginal distributions of �, provide a reparametrization of
�. Thus there is no loss of information in considering local log odds ratios
rather than �.
In the statistics literature (E.g. Douglas, et. al. (1991); Shaked and Shan-

thikumar (2007)), a common strong measure of positive assortative matching
(dependence) is totally positive of order 2, TP2. � is TP2 when all local
log odds ratios are positive. TP2 implies other weaker forms of positive
assortative matching such as positive correlation.
The stochastic Becker model retains the static frictionless transferable

utilities setup of Becker. It is a special case of Choo Siow (2006; hereafter
CS).5 Like Becker, each agent of type i has a systematic payo¤which depends
on the type of the partner, j, in the match. Unlike Becker�s deterministic
model, I instead follow CS where each agent of type i also obtains an idio-
syncratic payo¤ from an fi; jg match which is particular to that agent. Due

5Other applications include Brandt, et. al. (2008); Botticini and Siow (2008); Chiap-
pori, Selanie and Weiss (in process); Choo, Seitz and Siow (CSSa, CSSb). Siow (2008) is
a survey.
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to the idiosyncratic payo¤s, every fi; jg match will occur with positive prob-
ability. In fact without further restrictions, the stochastic Becker model will
�t any observed matching distribution. Restrictions on the systematic pay-
o¤s will generate di¤erent matching patterns in �. � is TP2 if and only if
the match output function is supermodular. Like the correlation test, the
TP2 test is non-parametric and also avoids rejecting the model based on
inadmissible matches. Unlike the correlation test, the TP2 test is tight.
Supermodularity of the match output function implies that � is TP2 and
vice versa. Similar to Becker, TP2 is independent of the distributions of the
population vectors and it also does not impose restriction on the unmatched.
Assume cardinality of i and j. De�ne a preference for own type as a

match output function which is decreasing (increasing) in i � j when i � j
(i < j). If match output is decreasing (increasing) with i� j at an increasing
rate when i � j (i < j), the match output function is supermodular and so �
is also TP2. So TP2 cannot be used to distinguish between a strong form of
preference for own type and supermodularity alone. Luckily, a match output
function which is decreasing (increasing) in i � j when i � j (i < j) also
implies local log odds only depend on i � j and not i and j independently
which is an additional restriction on �. Thus one can distinguish between
supermodularity of the marital output function alone and a strong preference
for own type. Weaker forms of a preference for own type imply other patterns
of local log odds ratio behavior.
Although this paper derives the behavior of local log odds ratios from

a transferable utilities model, the same local log odds ratios behavior can
be derived from Dagsvik (2000) non-transferable utilities model. So local log
odds ratios of a bilateral matching distribution is not informative on whether
such a market equilibrates with or without transfers. As will be shown below,
other implications can be used to empirically distinguish between these two
classes of models.
TP2 is also used to stochastically order matching distributions by their

degree of positive assortative matching (E.g. Shaked and Shanthikumar
(2007)). Consider two ordered bilateral matching distributions �1 and �2,
each of which has the same types of agents. �1 exhibits more positive depen-
dence than �2 if the di¤erence between the two distributions is TP2.6

There is an empirical literature which estimates log linear models of pos-

6Anderson and Leo (2007) provide an alternative stochastic ordering by measuring how
far each matching distribution is from perfect assortative matching.
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itive assortative marriage matching.7 A saturated log linear model is equiv-
alent to the unrestricted log odds model. TP2 are inequality restrictions on
the log linear model. The empirical literature generally estimate unsaturated
log linear models. A well known �nding, that there is an increase in positive
assortative matching by spousal education in recent decades, is potentially
driven by apriori parametric restrictions rather than present in the data. This
paper provides a formal behavioral interpretation for their �ndings and also
provides a behavioral framework for discussing their identifying restrictions.
The second part of this paper uses data from the United States 2000

census to test Becker�s theory of positive assortative marriage matching by
spousal educational attainment. The samples are restricted to white couples,
females between 31-35 and males between 32-36.
The largest sample is the national sample with over 120,000 marriages.

TP2 is rejected at the 0.001 signi�cance level. The rejection of TP2 is
localized. Ignoring the two local log odds ratios with the most dissimilar
educational matches (husband with less than high school and wife with more
than bachelor�s degree, and vice versa), the hypothesis that all other local
log odds are all positive cannot be rejected. Since there were few marriages
at these extreme dissimilar educational matches, TP2 is not rejected except
for 0.2 percent of marriages. This �nding shows the value of looking at
unrestricted local log odds ratios to describe association patterns in �. One
can pin down where the departures from TP2, or other models of association
lie.
The rejection of TP2 for the national sample may due to inappropriate

aggregation. I divide the national sample into two subsamples, a SMSA
sample (where the couple resides in an SMSA) versus a non-SMSA sample.
TP2 is rejected for both subsamples.
Recent researchers have argued that cities facilitate positive assortative

matching in marriage relative to non-cities.8 To investigate this hypothesis, I
ask whether the SMSA subsample exhibit more positive dependence than the
non-SMSA subsample in the TP2 order. Although each subsample do not
satisfy TP2, the di¤erence between them is TP2. Thus this paper provides
evidence that there is more marital sorting by spousal educational attainment
in cities.

7E.g. Mare (1991); Qian (1998); Schwartz and Mare (1995). See Agresti (2002);
Goodman (1972) for log linear models.

8Costa and Kahn (2000); Compton and Pollak (2007); Edlund (2005); Gautier, Svarer,
and Teulings (2005).
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Many observers have argued that positive assortative matching by edu-
cational attainment in the US has grown in the second half of the twentieth
century.9 Using the TP2 order, I �nd no evidence for a general increase in
positive assortative matching by educational attainment between 1970 and
2000.10 There were substantial increases in local log odds between 1970 and
2000 along the diagonal of �.
Summarizing, this paper makes three contributions. First, it provides an

empirical framework which distinguishes between Becker�s theory of positive
assortative matching and a preference for own type marital output function.
Second, the paper provides a behavioral interpretation of local odds ratio
and the TP2 order, a common statistical measure for positive dependence
in bivariate matching distributions. Using geometric programming, these
models are easy to estimate. There is no need to estimate highly parametrized
log linear models which often provide misleading inference. Third, the local
log odds and the TP2 order provide new insights on some well known �ndings
on marriage matching in spousal educational attainment in the US.
A caveat is necessary. This paper shows that one can learn some prop-

erties of the match output function from studying the local log odds of �.
What can be learned is limited. As is known from CS, the entire match
output function cannot be estimated from equilibrium matching data alone.
Finally, following CS, I have modeled the idiosyncratic payo¤s to spousal

choice as identically and independently distributed Type I extreme value
distributions. This logit assumption has well known limitations in estimation
of parametric discrete choice demand models (E.g. Section 3.3, Train (2003)).
The application here is di¤erent. My unrestricted behavioral matching model
is non-parametric. It �ts the unrestricted local log odds perfectly. Relaxing
the logit assumption will result in an unidenti�ed model. The advantage of
my formulation over other non-parametric models of bivariate matching is
that it provides an exact interpretation on the matching output function for
any pattern of local log odds behavior.

9E.g. Fernández et. al. (2005); Liu and Lu (2006); Schwartz and Mare (2005); Mare
(1991); Qian and Preston (1993); Qian (1998).
10A more comprehensive study which reaches the same conclusion is Chiappori, Selanie

and Weiss (in process).

6



1 The Stochastic Becker Model

Men and women are di¤erentiated by ability. There are I types of men,
i = 1; ::; I. The ability of type i + 1 men are higher than the ability of type
i men. There are J types of women, j = 1; ::; J . The ability of type j + 1
women are higher than the ability of type j women. Unless stated otherwise,
the ability rankings are ordinal. The ordering of individuals by ability types
is what di¤erentiates this model from CS.
M is a population vector where element mi is the number of eligible

(single) men of ability i. F is a population vector where element fj is the
number of eligible (single) women of ability j.
Each marital match between two di¤erent ability types of individuals

constitute a distinct sub-marriage market. With I ability types of men and
J ability types of women, there are I � J sub-marriage markets.
In an fi; jg marriage, �(i; j) marital output is generated. Following

Becker, let the marital output function satisfy:

Assumption 1 �(i; j) is supermodular.

where

De�nition 1 For i < I and j < J , a function �(i; j) is supermodular if11:

�(i+ 1; j + 1) + �(i; j) � �(i+ 1; j) + �(i; j + 1)

Assumption 1 says that the sum of the marital outputs from closest abil-
ity matching is higher than the sum of marital outputs from mixed ability
matching for all fi; jg.
The marital output, �(i; j), is divided between the two spouses. Lete�(i; j) be the share of the marital output that is obtained by a type j wife.

Each wife also gets an idiosyncratic payo¤ from marriage which depends on
her speci�c identity, the type of spouse that she marries and not his speci�c
identity. Her idiosyncratic payo¤ also does not depend on e�(i; j).
In an fi; jg marriage, �(i; j)�e�(i; j) is the share of marital output that is

obtained by a type i husband. Each husband also gets an idiosyncratic payo¤

11Apply induction to get the standard condition for supermodularity, �(i+ k; j + h) +
�(i; j) � �(i+ k; j) + �(i; j + h), k; h > 0.
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that is speci�c to him, the type of spouse that he marries and not her speci�c
identity. His idiosyncratic payo¤ also does not depend on �(i; j)� e�(i; j).
The above assumptions imply that every type i male regards every type

j female as perfect spousal substitutes and vice versa.
Each individual also gets a systematic payo¤ from remaining unmarried

which depends on their type as well as an idiosyncratic payo¤which depends
on their speci�c identity.
Given their payo¤s, both systematic and idiosyncratic, from every po-

tential spousal choice including remaining unmarried, each individual will
choose the spousal choice which maximizes their utility.
Given e�(i; j), we can solve each individual�s spousal choice problem. We

can aggregate these individual decisions into demand and supply functions
for spouses in every fi; jg submarriage market.
Finally, we solve for the matrix of e�(i; j) which will equilibrate demand

with supply in every submarriage market simultaneously.
The equilibrium distribution of marriages is a function of population vec-

tors and exogenous parameters which determine the systematic and idiosyn-
cratic payo¤s. The objective of this paper is to study the conditions for
equilibrium positive assortative matching in this society.
Following the additive random utility model, let the utility of male g of

ability i who marries a female of ability j be:

vijg = �(i; j)� e�(i; j) + "ijg (1)

As discussed above, �(i; j)� e�(i; j) is the systematic marital share of the
husband. "ijg is his idiosyncratic payo¤. Assume that "ijg is an i.i.d. type I
extreme value random variable.
If he chooses to remain unmarried, denoted by j = 0, his utility will be:

vi0g = �(i; 0) + "i0g (2)

where "i0g is also an idiosyncratic payo¤ which is another i.i.d. extreme
value random variable.
This man g can choose to marry one of J ability types of spouses or not

to marry. The utility from his optimal choice will satisfy:

vig = max
j
[vi0g; ::; vijg; ::; viJg] (3)

Let �(i; j) be the number of men of ability i who want to marry women of
ability j. �(i; 0) is the number of type i men who want to remain unmarried.
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When there are many type i males, McFadden (1974) showed that ability
type i�s quasi-demand for ability type j spouses satisfy:

ln
�(i; j)

�(i; 0)
= �(i; j)� e�(i; j)� �(i; 0) (4)

Turning to the marital choices of women, let the utility of female k of
ability j who marries a male of ability i be:

Vijk = e�(i; j) + �ijk (5)

As discussed above, e�(i; j) is the systematic marital share of the wife.
�ijk is her idiosyncratic payo¤. Assume that �ijk is an i.i.d. extreme value
random variable.
If she chooses to remain unmarried, denoted by i = 0, her utility will be:

V0jk = �(0; j) + �0jk (6)

where �0jk is also an idiosyncratic payo¤ which is another i.i.d. extreme
value random variable.
This woman k can choose to marry one of I types of spouses or not to

marry. The utility from her optimal choice will satisfy:

Vjk = max
j
[V0jk; ::; Vijk; ::; VIjk] (7)

Let �(i; j) be the number of women of ability j who want to marry men
of ability i. �(0; j) is the number of women of ability j who wants to remain
unmarried. When there are many ability type j females, type j�s quasi-supply
for i spouses satisfy:

ln
�(i; j)

�(0; j)
= e�(i; j)� �(0; j) (8)

For every I � J sub-marriage market, let e�(i; j) = �(i; j) be the female
equilibrium share of marital output in the fi; jg sub-marriage market which
equilibrates the demand and supply of spouses in all sub-markets simultane-
ously. In this case, the equilibrium number of fi; jg marriages, �(i; j), will
satisfy:

�(i; j) = �(i; j) = �(i; j) 8 i; j (9)
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Imposing marriage market clearing, (9), to the quasi-demand equation,
(4), and to the quasi-supply equation, (8), we get the male and female net
gains equations respectively:

ln
�(i; j)

�(i; 0)
= �(i; j)� �(i; j)� �(i; 0) (10)

ln
�(i; j)

�(0; j)
= �(i; j)� �(0; j) (11)

Add the two net gains equations to get the CS marriage matching func-
tion (MMF):

ln
�(i; j)p

�(i; 0)�(0; j)
=
�(i; j)� �(i; 0)� �(0; j)

2
8 i; j (12)

CS calls the left hand side of (12) the total gains to marriage. It is equal
to the log ratio of the number of marriages to the geometric average of the
unmarrieds. The right hand side is equal to the systematic marital output
of an fi; jg marriage minus their systematic surpluses from not marrying.
In a more general model, CSSa shows existence of marriage market equi-

librium. So there exists an I � J marriage matching distribution, �, with
typical element �(i; j), which satis�es (12).
In Becker�s deterministic model, individuals do not get any idiosyncratic

payo¤ from a match, "ijg = �ijk = 0 for all fi; j; g; kg, and there is perfect
positive assortative matching in equilibrium. As discussed in the introduc-
tion, some feasible matches will not occur in equilibrium. In the stochastic
model discussed here, the variances of "ijg and �ijk for all fi; j; g; kg are nor-
malized to one and thus Becker�s model is not a special case of the stochastic
model considered here.

2 Positive Assortative Matching

Without imposing structure on marital output, the CS model, and by impli-
cation also the stochastic Becker model, �ts any equilibrium marriage match-
ing distribution which does not have thin cells. This section provides def-
initions of positive assortative matching and relate them to restrictions on
marital output.
Given two men of adjacent abilities, i and i + 1, and two women of

adjacent abilities, j and j + 1, de�ne marital matching by closest abilities
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as the marital matches fi; jg and fi+ 1; j + 1g. De�ne marital matching by
mixed abilities as the marital matches fi; j + 1g and fi+ 1; jg.
Given a marriage distribution �, a measure of association in matching is

based on local log odds ratios:

De�nition 2 The local log odds ratio for an fi; jg match is:

l(i; j) = ln

�
�(i+ 1; j + 1)�(i; j)

�(i; j + 1)�(i+ 1; j)

�
; i < I; j < J

Altogether there are (I� 1)� (J � 1) local log odds ratios (log odds from
hereon). The (I � 1) � (J � 1) log odds and the I + J number of married
individuals of each type are a reparmetrization of �.
Consider all the men of adjacent abilities and women of adjacent abilities

who form the log odds. There are bmi+1 = �(i+1; j+1)+�(i+1; j) high ability
men, bfj+1 = �(i; j+1)+�(i; j) low ability men, bfj+1 = �(i+1; j+1)+�(i; j+1)
high ability women, and bfj = �(i+1; j) +�(i; j) low ability women. If there
is random matching between all these men and women, using De�nition 2,
the log odds is:

ln

"bmi+1

bfj+1bfj+1 + bfj
#"bmi

bfjbfj+1 + bfj
#
� ln

"bmi

bfj+1bfj+1 + bfj
#"bmi+1

bfjbfj+1 + bfj
#
= 0

When a log odds is equal to zero, there is no local association in marital
matching. Equivalently, there is local independence in marital matching.
When all log odds are equal to zero, there is random marriage matching
(Agresti (2002)).
If a log odds is larger than zero, there is local positive assortative match-

ing. There are more closest abilities marital matching relative to mixed
abilities matching than can be predicted by random matching.
Given a marriage distribution �, a strong de�nition of positive assortative

spousal matching requires that all the log odds of � are larger than zero. In
this case:

De�nition 3 � is totally positive of order 2 (TP2) if

l(i; j) � 0 8 i < I; j < J (13)

Equivalently,
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De�nition 4 � is TP2 if ln� is supermodular.

TP2 is a uniform notion of positive assortative matching (Douglas, et. al.
(1991); Karlin and Rinott (1980)). Consider a less uniform notion of positive
assortative matching. If i and j are comparable, and I = J ,

De�nition 5 The I � I matrix � has diagonal positive of order 2 (DP2) if

l(i; i) � 0 8 i < I

DP2 is weaker than TP2.
TP2 also implies a positive Spearman correlation in spousal abilities (Nelson

(1992); Yanagimoto and Okamoto (1969)).
I will now relate the de�nitions of positive assortative matching to the

stochastic Becker model. Using the de�nition of total gains in (12),

Proposition 1 The log odds of � measures the degree of complementarity of
the marital output function at fi; jg:

ln
�(i+ 1; j + 1)�(i; j)

�(i; j + 1)�(i+ 1; j)
= �(i+1; j+1)+�(i; j)� [�(i; j + 1) + �(i+ 1; j)]

(14)

The log odds are observable. It is equal to the sum of the marital outputs
from closest abilities matching minus the sum of the marital outputs from
mixed abilities matching; which measures the degree of complementarity of
the marital output function at fi; jg.
The degree of complementarity of the marital output function is �tech-

nologically�determined. It is independent of the population vectors M and
F .
Proposition 1 says that the log odds, i.e. local marriage matching behav-

ior, measures the degree of complementarity of the marital output function
at fi; jg.
It is now easy to connect the stochastic Becker model and TP2. Using

Assumption 1 and proposition 1:

Proposition 2 The marriage distribution � is TP2 if and only if the marital
output function is supermodular.

12



The above proposition says that the TP2 test is the strongest test there
is for the marital output function to be supermodular.
The TP2 test is non-parametric. It does not impose any parametric

restriction on �.
Like Becker�s perfect positive assortative matching being independent of

the population vectors M and F , � being TP2 is also independent of the
population vectors M and F .
The total gains to remaining unmarried, �(i; 0) and �(0; j); do not af-

fect the TP2 outcome. Supermodularity of �(i; j) does not pin down the
distributions of the unmarrieds which will also depend on the total gains to
remaining unmarried.
A comparison of Becker and the stochastic Becker model is displayed in

Table 1.
If a marriage distribution is not TP2, Proposition 1 shows that the local

log odds provide information on where the speci�c departures from TP2 are
located. As will be seen in the next section, there is a simple behavioral
interpretation for these departures.
A caution to the casual reader: This and the next section shows that

one can learn some properties of the marital output function, �(i; j), from
studying the local log odds of �. What can be learned is limited. As is known
from CS, the entire marital output function, �(i; j), is not identi�ed from
marriage matching data alone.

3 Preference for Own Type

The most common explanation for positive assortative matching by spousal
characteristics is that marital output is higher if spouses are more similar.
This section investigates what a preference for own type in producing

marital output means for log odds. To generate a distance metric between
types, let

Assumption 2 i and j are cardinal.

Let marital output be:

�(i; j) = h(i) + k(j)� d(i� j) (15)

h(:) are k(:) are bounded functions. d(i�j) is a penalty function between
i and j, d(0) = 0, d0 > 0 if i > j; d0 < 0 if j > i. The penalty is zero if i = j.
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Table 1: Two marriage matching models
Becker Stochastic Becker

Assumptions
Individuals ordered
by single index

Yes Yes

Static, frictionless
marriage market

Yes Yes

� Supermodular Supermodular
Payo¤ of male g
of type i in fi; jg �(i; j)� �(i; j) �(i; j)� �(i; j) + "ijg
Payo¤ of female k
of type j in fi; jg �(i; j) �(i; j) + �ijk

Given � ,
choose spousal type

Yes Yes

� clears market Yes Yes
Results

� matching pattern Perfect PAM TP2
Restrict unmarrieds None None
Restrict M and F None None
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It increases as i di¤ers more from j. The penalty need not be symmetric in
i and j. If i = j, �(i; i) = h(i) + k(i).
For i < I and j < J , the local log odds is:

l(i; j) = �(i+ 1; j + 1) + �(i; j)� (�(i+ 1; j) + �(i; j + 1)) (16)

= �[d(i� j)� d(i+ 1� j)]� [d(i� j)� d(i� j � 1)]

Equation (16) shows that l(i; j) is only a function of i� j which leads to:

Corollary 1 Log odds are the same along any diagonal.

The above corollary is a strong implication of the d(i�j) penalty function
to parametrizing preference for own type.

Corollary 2 If d00 � 0, all log odds are positive.

If d(:) is convex, the marital output function is supermodular and it will
generate � which is TP2. So TP2 cannot be used to di¤erentiate between a
supermodular marital output function versus a preference for own type with
a convex penalty function for marital output. However the convex penalty
function has an additional implication for log odds, corollary 1, which is
unrelated to TP2. Thus:

Proposition 3 A preference for own type with a convex penalty function
d(:) for marital output implies � is TP2 and uniform log odds along any
diagonal.

Corollary 3 If d00 = 0, the log odds are strictly positive along the main
diagonal and equal to zero elsewhere.

d00 = 0 is a linear penalty function. It implies strong restrictions on �,
positive log odds on the main diagonal and zero elsewhere. Call this the
DP0E model. DP0E implies that there is random matching o¤ the main
diagonal.

Corollary 4 If d00 � 0, the log odds are strictly positive along the main
diagonal and less than zero elsewhere.
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A concave penalty function imposes strong restrictions on �. All o¤
diagonal log odds must be negative. I.e. o¤ the main diagonal, there is local
negative assortative matching even though there is a preference for own type!
Call this the DPNE model, positive main diagonal and negative elsewhere
log odds. There is nothing strange about a concave penalty function.
One can generate both positive and negative o¤ main diagonal log odds

by using linear combinations of convex, linear and concave penalty functions
for marital output. Thus:

Proposition 4 A preference for own type, modelled by a d(i � j) penalty
function for marital output, implies: (1) Positive log odds along the main
diagonal of �. (2) Uniform log odds along any diagonal.

DP2, DPNE, DP0E and the log odds being the same along any diagonal
are well de�ned characterizations of � independent of whether i and j are
ordinal or cardinal. However the d(i � j) penalty function interpretation of
these features are exact only if i and j are cardinal.12

4 Non-transferable utilities

Thus far, the restrictions on the log odds have been developed under the
assumption of transferable utilities. The main alternative static model of
the marriage market is the non-transferable utilities model (See Roth and
Sotomayor (1990)).
Dagsvik (2000) proposed a static frictionless non-transferable utilities

model of the marriage market where individuals also have additive random
utility preferences over spouses. Each idiosyncratic payo¤ is also drawn from
a Type I extreme value distribution. In addition to the non-transferable
utilities assumption, the main departure from CS is that Dagsvik assumes
that, conditioning on the type of the potential spouse, an individual�s idio-
syncratic payo¤ from a particular potential spouse depends on his and her
speci�c identities. Instead, CS assumes that an individual is indi¤erent be-
tween all potential spouses of the same type.

12Proposition (4) provides a behavioral interpretation of Goodman�s 1972 crossing pa-
rameters model (E.g. Schwartz and Mare (2005)).
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Using the notation here, Dagsvik derives his MMF13:

ln
�(i; j)

�(i; 0)�(0; j)
=
�(i; j)� �(i; 0)� �(0; j)

2
8 i; j (17)

The only di¤erence between Dagsvik�s MMF in (17) and CS in (12) is
the absence of the square root in the left hand side of (17). Specializing
to the case of ability types considered in this paper, this di¤erence does
not a¤ect the log odds computed from Dagsvik model versus the stochastic
Becker model. Straightforward substitution shows that the Dagsvik MMF
(17) generates the same log odds ratios as Proposition 1.
As discussed in CS, Dagsvik MMF obeys increasing returns to scale

whereas CS has constant returns to scale. Using data from three di¤er-
ent marriage markets, Botticini and Siow (2008) shows that constant returns
to scale is a much better description of the data than increasing returns.
There are three lessons from this discussion. First, a transferable utilities

model of the marriage market is not distinguishable from a non-transferable
utilities model based on log odds of the equilibrium marriage matching dis-
tribution, �. Second, independent of whether the marriage market clears
with transfers or without, the log odds are informative about supermod-
ularity or preference for own type penalty function of the marital output
function. Third, implications other than log odds of � can empirically dis-
tinguish between transferable utilities versus nontransferable utilities models
of the marriage market.

5 Empirical Methodology

This section is known in the statistics literature and is included here for
convenience. The empirical methodology is based on estimating log odds of
the marriage matching distribution �. Di¤erent models of marriage match-
ing imply di¤erent inequality restrictions on these odds ratios. I will use
maximum likelihood to estimate these models.
Consider the maximum likelihood estimation model k where � is assumed

to be TP2. Let there be a random sample of marriages of sample sizeN . Each
marriage (observation) is assumed to follow the multinomial distribution. Let

13He uses Gale and Shapley�s 1962 classic deferred acceptance algorithm to construct
an equilibrium.
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the expected number of observations in the fi; jg cell be �ij > 0.
P

ij �ij =
N . The probability that a randomly chosen observation falls in the fi; jg cell
is pij =

�ij
N
.

Let the observed number of marriages (observations) in the fi; jg cell be
nij.
Let L be the kernel of the log likelihood function. To �nd the maximum

likelihood estimates of � subject to TP2, I want to solve:

Lk / max
�ij

L =
X
ij

nij ln�ij (18)

subject to the (I � 1)(J � 1) log odds constraints:

ln�ij + ln�i+1;j+1 � ln�i;j+1 � ln�i+1;j � 0 (19)

and
N �

X
ij

�ij = 0 (20)

I solve the above problem by rewriting it as a geometric programming
problem which is computationally easy to solve (Boyd, et. al. (2007); Lim,
et. al. (2008)):14

�ij = � argmin
X
ij

nij ln�ij (21)

subject to the (I � 1)(J � 1) log odds constraints:

� ln�ij � ln�i+1;j+1 + ln�i;j+1 + ln�i+1;j � 0 (22)

and

ln

"X
ij

�ij
N

#
� 0 (23)

The solution to (21), (22) and (23) will impose (23) as an equality con-
straint, otherwise the objective function in (21) would not have been mini-
mized.
14Open source MATLAB code to solve geometric programming problems, CVX, is avail-

able at http://www.stanford.edu/~boyd/cvx/.
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To test between the unrestricted model a and restricted model b where b
is nested in a, I will compute the log likelihood ratio test (LR) statistic:

LR = 2(La � Lb)

where La and Lb are the values of the maximized kernels of the log likeli-
hoods for models a and b respectively. Under the null, the distribution of LR
which is a Chi-bar squared distribution, does not have a closed form solution.
The p-value for the test statistic will be obtained by parametric bootstrap
(1000 replications).15 I will also provide bootstrap standard errors for the
estimated log odds.
In large samples, the power of LR, any restrictive model b against the

unrestricted alternative a, approaches one. I consider another test statistic,
MRE, mean relative error which is not sensitive to sample size:

MRE =
1

IJ

X
ij

j�b(i; j)� �(i; j)j
�(i; j)

MRE has a value of zero if model b �ts the data perfectly. With MRE;
each cell gets equal weight, independent of the number of observations in a
cell. Due to sampling error, thin cells will have more weight and thus MRE
will be more sensitive to departures of the model from the data in thin cells.

5.1 2 samples test of stochastic ordering

Let �1 and �2 be two equilibrium matching distributions with the same types
of participants, and with matrices of log odds l1 and l2 respectively. l1� l2 �
0, i.e. the di¤erence in local log odds is TP2, is a measure of whether �1

exhibits stronger positive assortative matching than �2.
Let the null hypothesis be the restricted model: l1�l2 � 0: The alternative

hypothesis is the unrestricted model: l1 7 �l2. Dykstra, et. al. (1995) shows
how a likelihood ratio test can be used to test between these two hypotheses.
Let the sample size from the �rst and second distribution be N1 and N2

respectively. Let the observed numbers of marriages in the fi; jg cell be n1ij
and n2ij for the �rst and second sample respectively.

15Wang (1996) shows consistency of these parametric bootstrapping tests of stochastic
ordering. An alternative is to use the chi-bar squared statistic (E.g. Anderson and Leo
(2007), Wolak (1991)). See Garre, et. al. (2002) for an exposition of these two alternatives
forms of likelihood ratio tests for the class of models considered here.
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The restricted model can be estimated by solving:

Lz / max
�1ij ;�

2
ij

X
ij

n1ij ln�
1
ij +

X
ij

n2ij ln�
2
ij (24)

subject to the (I � 1)(J � 1) di¤erences in log odds constraints:

l1 � l2 � 0 (25)

and
Nk �

X
ij

�kij = 0; k = 1; 2 (26)

The unrestricted model is estimated by estimating the restricted model
without imposing the di¤erences in local log odds constraints (25). I will
do a likelihood ratio test between the two models and provide parametric
bootstrap p-values for the test statistic (1000 replications).

6 Data and Empirical Results

The main data set is the 5% sample of the 2000 US census from IPUMS.
Details on variable de�nitions and extraction are in the appendix. I consider
white married couples, husbands and wives between ages 32-36 and 31-35
respectively. Educational attainment is divided into �ve categories: Less than
high school (LHS), high school (HS), less than a bachelor�s degree (LBA),
bachelor�s degree (BA) and more than a bachelor�s degree (GBA).
The educational categories are ordinal. Thus while I will use the language

of preference for own type to interpret some empirical results, the language
should be regarded as convenient rather than exact. The reason for using
the above educational categories is that they produce roughly uniform cell
sizes for the marginal distributions. Using a cardinal categorization such as
highest year of education attained will result in extremely uneven cell sizes
for the marginal distributions and many marital matches with zero marriage.

6.1 National sample

Table 1.a presents the national marriage matching distribution by educa-
tional attainment. There are 121418 marriages. About 10% of men and
women have less than high school or more than a bachelor�s degree. High
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school graduates, less than a bachelor�s degree and a bachelor�s degree oc-
cupy approximately 20% each. There are marriages for every feasible marital
match. Perfect assortative matching is rejected.
Table 2.a shows the estimates of the unrestricted cell probabilities. In

general, the estimated unrestricted cell probabilities are largest along the di-
agonal and the probabilities decline as the cells move away from the diagonal.
Table 2.b shows the estimated log odds of the unrestricted model. The

estimated diagonal log odds are all larger than one with small standard er-
rors. There are four o¤ diagonal negative log odds, with two being larger
in absolute value than twice their standard errors. These negative log odds
suggest that TP2 may not describe the data.
While I have not done so, it is easy to reject the hypothesis of uniform

log odds along every diagonal. Since the educational rankings are ordinal,
such a test has no behavioral signi�cance.
Each row of Table 3.a presents di¤erent statistics assessing the �t of a par-

ticular model. The name of the model is in Column (Model). Column (LL)
presents the value of the estimated kernel of the log likelihood of that model.
Column (LR) presents the likelihood ratio statistic for the model versus the
unrestricted model. Column (p-value) presents bootstrap p-values for the
LR test. MRE presents the mean relative error and Spearman presents the
Spearman correlation for spousal educational attainment of the estimated
model.
Row 1 of Table 3.a shows that the Spearman correlation for the unre-

stricted model is 0.6165. As discussed, it is not a strong test of Becker�s
theory.
Since all the estimated log odds along the diagonal is above one, row 2 of

Table 3.a shows that the LR statistic of DP2 is zero. The p-value is larger
than 0.999 and the MRE is 0.0. There is no statistical evidence against
DP2.
Table 2.c presents the estimated cell probabilities of the TP2 model.

Note that the marginal distributions in Table 2.c are unchanged from the
unrestricted model Table 2.a. That is, restrictions on log odds do not change
the marginal distributions of �.
Table 2.d presents the estimated log odds for the TP2 model. There were

four binding log odds constraints.
Row 3 of Table 3.a shows that the value of the LR for the TP2 is 28.2979

with a p-value less than 0.001. So TP2 does not hold at the national level.
TheMRE for the TP2 model is 0.0343. Imposing TP2 results in a mean
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di¤erence of three percent between estimated and the observed number of
marital matches. The Spearman correlation for TP2 is 0.6169 which is less
than 0.1 percent di¤erence from the correlation of the unrestricted model.
The Spearman correlation has little power against TP2.
I will investigate why TP2 fails at the national level. The unrestricted

log odds in Table 2.b shows that only the two extreme log odds, bottom
left and top right, have negative log odds which are more than twice the
size of their standard errors. These two log odds involve marital matches in
which spousal educational di¤erences are largest, one spouse is a high school
dropout and the other has more than a bachelor degree.
Table 2.e and 2.f present the estimates of the TP20 model in which all log

odds other than the top right and bottom left are restricted to be positive.
The TP20 cell probabilities and log odds estimates essentially match the
unrestricted estimates.
Row 4 of Table 3.a shows the LR statistic for TP20 against the unre-

stricted model is 0.4455 with a p-value of 0.483. So there is no statistical
evidence against TP20. MRE is 0.0010. Ignoring the lack of cardinality
in the rankings, one can provide a behavioral interpretation for TP20. The
penalty function for marital output at the national level is convex except for
the extremes in spousal educational disparities where it is concave.
From an economic signi�cance point of view, TP2 is rejected because

there are too many marital matches with the most extreme spousal educa-
tional di¤erences. These marital matches account for less than 0.2 percent
of marriages in the sample. From an economic signi�cance point of view, the
rejection of TP2 at the national level is modest.
For comparison, Tables 2.g and 2.h present estimates of the DPNE

model. The non-positive constraint binds for every o¤ diagonal log odds.
In other words, even for the top right and bottom left cells, the DPNE
model would like to make them positive if we require their adjacent cells to
be non-positive Row 5 of Table 3.a presents the statistics for this estimated
model. The LR statistic is 982.24. Not only is the DPNE model rejected
against the unrestricted model, it is also rejected against the TP2 model.
The MRE is 0.1616 which is appreciably worse than the TP2 �t. Since all
the o¤diagonal non-positive constraints bind, theDP0E model has the same
�t as the DPNE model.
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6.2 SMSA versus non-SMSA

This subsection studies two mutually exclusive subsamples of the national
sample. I divide the national sample by couples who live in a standard
metropolitan statistical area (SMSA) and those who do not. There are two
reasons for studying these subsamples. First, even if TP2 applies to every
sub-national marriage market, � measured using national (aggregated) data
need not be TP2. So my �rst objective is to construct two mutually exclusive
marriage markets which are more homogenous than the national market.16

Second, recent researchers have argued that cities facilitate positive assorta-
tive matching in marriage relative to non-cities. I will use the TP2 order to
ask whether the SMSA marriage distribution has more positive dependence
than the non-SMSA distribution.
Tables 1.b and 1.c present the 2000 marriage distributions for the SMSA

and non-SMSA subsamples. The SMSA sample has more than twice the
number of marriages compared with the non-SMSA sample. In terms of
the marginal distributions, there were disproportionately more high school
graduates and less than bachelor�s in the non-SMSA sample, whereas the
SMSA sample had disproportionately more bachelors and above.
Rows 3 and 4 in Table 3.b show that TP2 is rejected for both samples

at p�values below 0.001. A comparison of the LR statistic and the MRE
for both samples shows that TP2 is a worse description of the SMSA sample
than the non-SMSA sample.
Table 4.a and 4.b show the unrestricted log odds for both samples. The

rejection of TP2 for the SMSA sample is again due to the two extreme log
odds, bottom left and top right, having negative log odds which are more
than twice the size of their standard errors. Similar to the national sample,
TP20 cannot be rejected. The rejection of TP2 for the non-SMSA is less easy
to characterize.
The results for the SMSA and non-SMSA samples show that the rejection

of TP2 for the national sample is not just an inappropriate aggregation
problem.
I now turn to the question as to whether there is more positive dependence

in the SMSA sample. Rows 1 and 2 in Table 3.b show that the Spearman
correlation is 0.6270 and 0.5399 for the SMSA and non-SMSA sample re-
spectively. It suggests that there is more positive dependence in the SMSA

16I have also worked with New York City which has a sample size of 1396 marriages.
While TP2 was not rejected, this sample was too small to have much statistical power.
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sample.
Table 4.c provides the unrestricted di¤erence in log odds between the

SMSA and non-SMSA samples. There are six negative log odds, with two of
them being larger than twice their estimated standard error ({1,4} and {2,1}
cells).
Table 4.d provides the estimated di¤erences in log odds between the

SMSA and non-SMSA samples after imposing TP2 on the di¤erence. There
are six binding zero constraints corresponding to the six negative log odds
in Table 4.c. Row 8 of Table 3.b shows that the p�value of the LR test
that the di¤erence is TP2 is 0.384. So in spite of the six binding zero con-
straints, and consistent with the Spearman coe¢ cient ranking, the SMSA
sample does show more positive dependence than the non-SMSA sample by
the TP2 order. This �nding supports the recent research which argued for
more positive assortative matching in marriage in cities.
Rows 5 and 6 of Table 3.b show the MRE for the SMSA and non-SMSA

samples after imposing TP2 on the di¤erence. The MRE for the SMSA
sample is 0.0094 and 0.0240 for the non-SMSA sample. These MRE 0s are
signi�cantly smaller than those in rows 3 and 4 respectively where I impose
TP2 on each sample separately.
Botticini and Siow 2008 show that marriage rates and total gains to mar-

riage in cities are independent of the size of the city. Here I show that there
is more marital sorting by spousal educational attainment in cities than non-
cities. Taken together, these two studies suggest that conditional on marry-
ing, most individuals care about the type of spouse that they marry. But
their gains to marriage from di¤erent spousal choices, to a �rst order, do not
a¤ect their decision of whether to marry or not.

6.3 2000� 1970 is DP2
Many researchers have argued that positive assortative matching by spousal
educational attainment in the US has grown in recent decades. Most of these
studies use correlation tests which have low power and/or tightly parame-
trized models to make their case. This subsection will use the TP2 order to
investigate this claim.
Table 1.d presents the marriage counts for a 6% sample of the 1970 US

census. Compared with the 2000 national sample, they are comparable in
sample size. The 1970 individuals have lower educational attainment. There
were marriages for all potential marital matches in 1970.
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Table 5.a presents the unrestricted log odds for the 1970 sample. There
are �ve negative log odds, with two of them exceeding twice their standard
errors in magnitude. In row 1 of Table 3.c, the Spearman correlation of the
unrestricted model is 0.4496 which is lower than for any other sample studied
here. Row 2 of Table 3.c shows that the p�value for TP2 is less than 0.001.
The MRE is 0.0586 which suggests that TP2 is a signi�cantly worse �t of
the 1970 data than any other sample studied here.
Table 5.b presents the unrestricted di¤erences in log odds between 2000

and 1970. Surprisingly, there are seven negative log odds, with �ve of them
larger than twice their standard errors. Table 5.c shows the estimated dif-
ferences in log odds by imposing TP2 on them. There are eight binding
zero constraints. Row 8 of Table 3.c shows that the di¤erence in log odds
being TP2 has a p-value less than 0.001. The MRE is 0.0230 which also
suggests that the di¤erence in log odds is not TP2. Thus although there is
more positive dependence in 2000 than in 1970, the increase in dependence
is not well captured by the TP2 order. This �nding is anticipated by the
comprehensive study by Chiappori, Selanie and Weiss (in process).
TP2 is a worse �t in 1970 than 2000 and the Spearman coe¢ cient of

the unrestricted model is lower in 1970 than in 2000. Both of these facts
suggest that positive dependence has increased in 2000. Yet the di¤erence
in log odds being TP2 is strongly rejected. One potential reconciliation of
the two �ndings is that the increase in positive dependence in 2000 is more
localized than what a TP2 order would require. Returning to Table 5.b, the
unrestricted di¤erences in log odds along the diagonal are primarily positive.
The one negative estimate is less than twice its standard error.
Table 5.d provides the estimated di¤erence in log odds after imposing

DP2 on the di¤erence in log odds. Row 9 of Table 3.c shows that the p-
value for the di¤erence in log odds being DP2 is 0.369. The MRE for the
di¤erence in log odds is signi�cantly less than one percent. I.e. there is
almost no di¤erence between imposing DP2 on di¤erence in log odds and
leaving them unrestricted.
Thus there was a localized increase in positive dependence between 1970

and 2000 along the diagonal log odds. The changes in o¤ diagonal log odds
were idiosyncratic, some being positive and others being negative. A be-
havioral interpretation of the �nding is that a preference for own type has
increased but the increase is non-monotone. Tightly parametrized empirical
models of the increase in positive assortative matching in spousal educational
attainment between 1970 and 2000 are misleading.
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7 Conclusion

This paper makes three contributions. First, it provides an empirical frame-
work in which Becker�s theory of positive assortative matching can be dif-
ferentiated from a preference for own type marital output function. Second,
the paper provides a behavioral interpretation of local odds ratios and the
TP2 order, a common statistical measure for positive dependence in bivariate
matching distributions. Using geometric programming, these models are easy
to estimate. There is no need to estimate highly parametrized models which
often provide misleading inference. Third, the local log odds and the TP2
order provide new insights on some common �ndings on marriage matching
by spousal educational attainment in the US. For the 2000 national sample,
supermodularity of the marital output function cannot be rejected except for
less than 0.2 percent of the sample. Using the TP2 order, there was more
positive assortative matching in SMSA than non-SMSA marriage markets.
Finally, there were increases in speci�c local log odds at the national level
between 1970 and 2000.
There are some directions for further research. First, there is a need

to extend Becker�s model to multidimensional matching. Since TP2 has a
multidimensional analog, such an extension using TP2 may be fruitful (Gali-
chon and Selanie (2009)). Second, with small marriage markets, there are
two issues, one theoretical and one empirical. The theoretical issue is to in-
vestigate how the market clears with �nite number of agents. The empirical
issue is one of thin cells in estimating multinomial models of bivariate match-
ing. I encountered this problem when estimating twenty �ve marital matches
models using a sample size of around 1400 for New York City. Finally, this
paper has scratched the surface in terms of using local log odds to studying
empirical marital matching. Extensions of the framework developed here to
investigate other bivariate matching markets remain open.
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Appendix

2000 USAData: 2000 5% national sample extracted from �usa.ipums.org�.
White males and females: RACED = 100
Married individuals: MARST= 1 or 2 for married individuals with spouse

present and spouse absent respectively. Also SPRULE = 1 for husband has
same serial number as wife and is listed directly above and SPRULE = 2 for
wife has same serial number as husband and is listed directly above.
Females between the ages of 31 �35
Males between the ages of 32 �36
SMSA: MEATAREAD: Identi�es whether not an individual lives in a

Metropolitan Area (MA). In this sample, an MA refers to the same thing as
a Standard Metropolitan Statistical Area (SMSA) in previous sample years.
Refer to (usa.ipums.org) for the de�nition of an MA. METAREAD = 0 for
individuals who do not live in a Metropolitan Area. METAREAD not = 0
for individuals who do live in a Metropolitan Area (speci�c value gives the
MA in which the individual lives).
Education: LHS: Less than High School (EDUC99 = 1 - 9); HS: High

School (EDUC99 = 10); LBA: Less than a Bachelor�s Degree (EDUC99 = 11
- 13); BA: Bachelor�s Degree (EDUC99 = 14); GBA: More than a Bachelor�s
Degree (EDUC99 = 15 �17).
1970 USA Data: 1970 national data is the sum of six 1% samples (for

state, metro and neighbourhood samples, forms 1 and 2 are used). These were
combined to create a 1970 6% national sample extracted from �usa.ipums.org�.
Age ranges, race, marital status as above.
Education: LHS: Less than High School (HIGRADED = 000 - 142);

HS: High School (HIGRADED = 150); LBA: Less than a Bachelor�s Degree
(HIGRADED = 151 - 182); BA- Bachelor�s Degree (HIGRADED = 190);
GBA: More than a Bachelor�s Degree (HIGRADED >= 191)
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Table 1: US Censuses 

(a) 2000 national sample 

 MALE EDUC. 
LHS HS LBA BA GBA Tot. 

F
E

M
A

L
E

 E
D

U
C

. 
LHS 5071 2746 1288 220 91 9416 

HS 3980 16712 7650 1983 475 30800 

LBA 2333 10918 17999 6714 1868 39832 

BA 398 2933 7010 13906 5588 29835 

GBA 150 776 1853 4123 4633 11535 

Tot. 11932 34085 35800 26946 12655 121418 

 

(b) 2000 SMSA subsample 

 MALE EDUC. 
LHS HS LBA BA GBA Tot. 

F
E

M
A

L
E

 E
D

U
C

. 

LHS 3459 1656 870 163 75 6223 

HS 2274 9404 4907 1476 358 18419 

LBA 1424 6330 11996 5088 1471 26309 

BA 267 1873 5108 11273 4698 23219 

GBA 97 448 1399 3424 4036 9404 

Tot. 7521 19711 24280 21424 10638 83574 

 

(c) 2000 non-SMSA subsample 

 MALE EDUC. 
LHS HS LBA BA GBA Tot. 

F
E

M
A

L
E

 E
D

U
C

. 

LHS 1612 1090 418 57 16 3193 

HS 1706 7308 2743 507 117 12381 

LBA 909 4588 6003 1626 397 13523 

BA 131 1060 1902 2633 890 6616 

GBA 53 328 454 699 597 2131 

Tot. 4411 14374 11520 5522 2017 37844 

 

(d) 1970 national sample 

 MALE EDUC. 
LHS HS LBA BA GBA Tot. 

F
E

M
A

L
E

 E
D

U
C

. 

LHS 20409 11219 3244 1164 1209 37245 

HS 15950 28339 9607 3942 3316 61154 

LBA 2451 4330 4461 3002 3406 17650 

BA 746 1164 1121 2329 2956 8316 

GBA 343 418 453 495 1800 3509 

Tot. 39899 45470 18886 10932 12687 127874 



Table 2: 2000 national sample models 

        (a) Unrestricted  probabilities        (b) Unrestricted log odds  

 MALE EDUC.  LOCAL LOG ODDS 
LHS HS LBA BA GBA Tot.   LHS,HS HS,LBA LBA,BA BA,GBA 

F
E

M
A

L
E

 E
D

U
C

. 
LHS 0.0418 0.0226 0.0106 0.0018 0.0007 0.0776  LHS,HS 2.0482 

(0.0289) 

-0.0244 

(0.0370) 

0.4171 

(0.0762) 

-0.5463 

(0.1344) 

HS 0.0328 0.1376 0.0630 0.0163 0.0039 0.2537  HS,LBA 0.1084 

(0.0293) 

1.2813 

(0.0185) 

0.3640 

(0.0292) 

0.1497 

(0.0556) 

LBA 0.0192 0.0899 0.1482 0.0553 0.0154 0.3281  LBA,BA 0.4541 

(0.0580) 

0.3714 

(0.0248) 

1.6711 

(0.0202) 

0.3676 

(0.0307) 

BA 0.0033 0.0242 0.0577 0.1145 0.0460 0.2457  BA,GBA -0.3538 

(0.1020) 

-0.0009 

(0.0481) 

0.1148 

(0.0318) 

1.0283 

(0.0271) 

GBA 0.0012 0.0064 0.0153 0.0340 0.0382 0.0950       

Tot. 0.0983 0.2807 0.2948 0.2219 0.1042 1.0000       

(c) TP2  probabilities      (d) TP2 log odds 

 MALE EDUC.  LOCAL LOG ODDS 
LHS HS LBA BA GBA Tot.   LHS,HS HS,LBA LBA,BA BA,GBA 

F
E

M
A

L
E

 E
D

U
C

. 

LHS 0.0418 0.0228 0.0105 0.0020 0.0005 0.0776  LHS,HS 2.0405 

(0.0272) 

0 

(0.0210) 

0.2690 

(0.0655) 

0 

(0.0888) 

HS 0.0328 0.1375 0.0632 0.0161 0.0041 0.2537  HS,LBA 0.1095 

(0.0292) 

1.2778 

(0.0180) 

0.3803 

(0.0289) 

0.0797 

(0.0503) 

LBA 0.0192 0.0899 0.1482 0.0553 0.0154 0.3281  LBA,BA 0.3690 

(0.0514) 

0.3712 

(0.0233) 

1.6746 

(0.0200) 

0.3676 

(0.0304) 

BA 0.0036 0.0241 0.0575 0.1145 0.0460 0.2457  BA,GBA 0 

(0.0607) 

0 

(0.0255) 

0.0983 

(0.0290) 

1.0283 

(0.0271) 

GBA 0.0010 0.0065 0.0155 0.0340 0.0382 0.0950       

Tot. 0.0983 0.2807 0.2948 0.2219 0.1042 1.0000       

(e) TP2'  probabilities      (f) TP2’ log odds 

 MALE EDUC.  LOCAL LOG ODDS 
LHS HS LBA BA GBA Tot.   LHS,HS HS,LBA LBA,BA BA,GBA 

F
E

M
A

L
E

 E
D

U
C

. 

LHS 0.0418 0.0228 0.0105 0.0018 0.0007 0.0776  LHS,HS 2.0405 

(0.0272) 

0 

(0.0210) 

0.4005 

(0.0726) 

-0.5463 

(0.1344) 

HS 0.0328 0.1375 0.0632 0.0163 0.0039 0.2537  HS,LBA 0.1095 

(0.0292) 

1.2778 

(0.0180) 

0.3664 

(0.0291) 

0.1497 

(0.0566) 

LBA 0.0192 0.0899 0.1482 0.0553 0.0154 0.3281  LBA,BA 0.4542 

(0.0577) 

0.3712 

(0.0234) 

1.6712 

(0.0200) 

0.3676 

(0.0307) 

BA 0.0033 0.0242 0.0577 0.1145 0.0460 0.2457  BA,GBA -0.3544 

(0.1020) 

0 

(0.0481) 

0.1145 

(0.0318) 

1.0283 

(0.0271) 

GBA 0.0012 0.0064 0.0153 0.0340 0.0382 0.0950       

Tot. 0.0983 0.2807 0.2948 0.2219 0.1042 1.0000       

(g) DPNE  probabilities     (h) DPNE log odds 

 MALE EDUC.  LOCAL LOG ODDS 
LHS HS LBA BA GBA Tot.   LHS,HS HS,LBA LBA,BA BA,GBA 

F
E

M
A

L
E

 E
D

U
C

. 

LHS 0.0418 0.0225 0.0095 0.0029 0.0010 0.0776  LHS,HS 2.1402 

(0.0258) 

> -10-4 

(0.0183) 

> -10-4 

(0.0220) 

> -10-4 

(0.0401) 

HS 0.0306 0.1400 0.0590 0.0178 0.0063 0.2537  HS,LBA > -10-4 

(0.0145) 

1.5130 

(0.0157) 

> -10-4 

(0.0135) 

> -10-4 

(0.0173) 

LBA 0.0183 0.0838 0.1604 0.0485 0.0170 0.3281  LBA,BA > -10-4 

(0.0160) 

> -10-4 

(0.0112) 

2.0340 

(0.0166) 

> -10-4 

(0.0142) 

BA 0.0059 0.0270 0.0516 0.1194 0.0418 0.2457  BA,GBA > -10-4 

(0.0330) 

> -10-4 

(0.0156) 

> -10-4 

(0.0146) 

1.1857 

(0.0244) 

GBA 0.0016 0.0075 0.0144 0.0333 0.0382 0.0950       

Tot. 0.0983 0.2807 0.2948 0.2219 0.1042 1.0000       

 



Table 3: Statistics 

(a): 2000 national sample (121418 observations) 

 Model LL LR (vs. unres) p-value MRE Spearman 

1 Unres. 1.0890*10e6 - - - 0.6165 

2 DP2 1.0890*10e6 0 >0.999 0 0.6165 

3 TP2 1.0889*10e6 28.2979 <0.001 0.0343 0.6169 

4 TP2’ 1.0890*10e6 0.4455 0.483 0.0010 0.6165 

5 DPNE 1.0885*10e6 982.24 <0.001 0.1616 0.5939 

 

(b): 2000 SMSA & non-SMSA subsamples 

 Sample Model N LL LR (vs. 

unres) 

p-

value 

MRE Spearman 

1 SMSA unres. 83574 7.1707*10e5 - - - 0.6270 

2 Non-SMSA unres. 37844 2.9942*10e5 - - - 0.5399 

3 SMSA TP2 83574 7.1706*10e5 26.7121 <0.001 0.0387 0.6272 

4 Non-SMSA TP2 37844 2.9941*10e5 16.6702 <0.001 0.0337 0.5408 

5 SMSA ∆ TP2 83574 - - - 0.0094 0.6274 

6 Non-SMSA ∆ TP2 37844 - - - 0.0246 0.5383 

7 ∆ ∆ unres. - 1.0165*10e6 - - - - 

8 ∆ ∆ TP2 - 1.0165*10e6 6.2167 0.384 0.0170 - 

 

(c) 2000-1970 national models 

 Sample Model N LL LR (vs. 

unres) 

p-

value 

MRE Spearman 

1 1970 US unres. 127874 1.1739*10e6 - - - 0.4496 

2 1970 US TP2 127874 1.1738*10e6 177.8652 <0.001 0.0586 0.4524 

3 1970 US ∆ TP2 127874 - - - 0.0128 0.4479 

4 2000 US ∆ TP2 121418 - - - 0.0324 0.6184 

5 1970 US ∆ DP2 127874 - - - 0.0008 0.4496 

6 2000 US ∆ DP2 121418 - - - 0.0002 0.6165 

7 ∆ ∆ unres. - 2.2628*10e6 - - - - 

8 ∆ ∆ TP2 - 2.2628*10e6 53.3501 <0.001 0.0230 - 

9 ∆ ∆ DP2 - 2.2628*10e6 0.1455 0.369 0.0005 - 

 

 

 

 

 

 

 

 

 



Table 4: 2000 SMSA & non-SMSA subsamples 

(a) SMSA unrestricted log odds 

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 2.1562 

(0.0374) 

-0.0068 

(0.0443) 

0.4734 

(0.0901) 

-0.6403 

(0.1510) 

HS,LBA 0.0722 

(0.0366) 

1.2897 

(0.0235) 

0.3436 

(0.0350) 

1.1756 

(0.0677) 

LBA,BA 0.4562 

(0.0707) 

0.3640 

(0.0319) 

1.6493 

(0.0239) 

0.3657 

(0.0352) 

BA,GBA -0.4180 

(0.1291) 

0.1355 

(0.0600) 

0.1034 

(0.0363) 

1.0397 

(0.0285) 

 

(b) Non-SMSA unrestricted log odds 
 

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 1.8461 

(0.0473) 

-0.0215 

(0.0607) 

0.3041 

(0.1489) 

-0.1959 

(0.3043) 

HS,LBA 0.1640 

(0.0441) 

1.2487 

(0.0293) 

0.3822 

(0.0556) 

0.0564 

(0.1156) 

LBA,BA 0.4720 

(0.0980) 

0.3158 

(0.0425) 

1.6314 

(0.0411) 

0.3253 

(0.0656) 

BA,GBA -0.2681 

(0.1700) 

-0.2596 

(0.0802) 

0.1063 

(0.0672) 

0.9269 

(0.0686) 

 

(c) SMSA – Non-SMSA unrestricted log odds 

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 0.3101 

(0.0540) 

0.0147 

(0.0577) 

0.1693 

(0.1193) 

-0.4444 

(0.2119) 

HS,LBA -0.0918 

(0.0428) 

0.0410 

(0.0416) 

-0.0386 

(0.0460) 

1.1192 

(0.0987) 

LBA,BA -0.0158 

(0.0851) 

0.0482 

(0.0419) 

0.0179 

(0.0359) 

0.0404 

(0.0589) 

BA,GBA -0.1499 

(0.1601) 

0.3951 

(0.0913) 

-0.0029 

(0.0537) 

0.1128 

(0.0663) 

 
(d) SMSA – Non-SMSA TP2 log odds 

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 0.2670 

(0.0558) 

0.0266 

(0.0476) 

0.0418 

(0.0773) 

0 

(0.1317) 

HS,LBA 0 

(0.0277) 

0.0189 

(0.0227) 

0 

(0.0253) 

0.0407 

(0.0674) 

LBA,BA 0 

(0.0457) 

0.0512 

(0.0394) 

0.0003 

(0.0237) 

0.0460 

(0.0499) 

BA,GBA 0 

(0.0933) 

0.3670 

(0.0862) 

0 

(0.0369) 

0.1117 

(0.0620) 

 

 

  



Table 5: 2000 - 1970 is DP2 
 

(a) 1970 unrestricted log odds 
 

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 1.1731 

(0.0154) 

0.1591 

(0.0232) 

0.1341 

(0.0381) 

-0.2109 

(0.0467) 

HS,LBA -0.0057 

(0.0264) 

1.1116 

(0.0255) 

0.4947 

(0.0312) 

0.2992 

(0.0337) 

LBA,BA -0.1242 

(0.0540) 

-0.0674 

(0.0479) 

1.1273 

(0.0417) 

0.1121 

(0.0372) 

BA,GBA 0.2471 

(0.0847) 

0.1181 

(0.0810) 

-0.6426 

(0.0738) 

1.0526 

(0.0564) 

 

(b) 2000 - 1970 unrestricted log odds 

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 0.8751 

(0.0339) 

-0.1835 

(0.0443) 

0.283 

(0.0859) 

-0.3354 

(0.1423) 

HS,LBA 0.1141 

(0.0397) 

0.1697 

(0.0308) 

-0.1307 

(0.0427) 

-0.1495 

(0.0681) 

LBA,BA 0.5783 

(0.0786) 

0.4388 

(0.0526) 

0.5438 

(0.0471) 

0.2555 

(0.0475) 

BA,GBA -0.6009 

(0.1368) 

-0.119 

(0.0939) 

0.7574 

(0.0810) 

-0.0243 

(0.0645) 

 

(c) 2000 - 1970 TP2 log odds 

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 0.8283 

(0.0312) 

0 

(0.0222) 

0 

(0.0310) 

0 

(0.0647) 

HS,LBA 0.1223 

(0.0397) 

0.0857 

(0.0276) 

0 

(0.0187) 

0 

(0.0294) 

LBA,BA 0.5468 

(0.0711) 

0.4384 

(0.0472) 

0.5213 

(0.0426) 

0.1996 

(0.0421) 

BA,GBA 0 

(0.0710) 

0 

(0.0472) 

0.665 

(0.0635) 

0 

(0.0378) 

 
(d) 2000 - 1970 DP2 log odds 

  

LOCAL LOG ODDS 

 LHS,HS HS,LBA LBA,BA BA,GBA 

LHS,HS 0.8751 

(0.0335) 

-0.1835 

(0.0442) 

0.283 

(0.0859) 

-0.3354 

(0.1420) 

HS,LBA 0.1141 

(0.0396) 

0.1697 

(0.0309) 

-0.1307 

(0.0429) 

-0.1495 

(0.0682) 

LBA,BA 0.5783 

(0.0782) 

0.4388 

(0.0524) 

0.5468 

(0.0467) 

0.2494 

(0.0461) 

BA,GBA -0.1067 

(0.1366) 

-0.119 

(0.0936) 

0.7408 

(0.0730) 

0 

(0.0377) 

 

 

 

 


