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Abstract

I construct a theoretical framework in which firms offer wage-tenure contracts to direct
the search by risk-averse workers. All workers can search, on or off the job. I characterize an
equilibrium and prove its existence. The equilibrium generates a non-degenerate, continuous
distribution of employed workers over the values of contracts, despite that all matches are
identical and workers observe all offers. A striking property is that the equilibrium is block
recursive; that is, individuals’ optimal decisions and optimal contracts are independent of the
distribution of workers. This property makes the equilibrium analysis tractable. Consistent
with stylized facts, the equilibrium predicts that (i) wages increase with tenure, (ii) job-to-job
transitions decrease with tenure and wages, and (iii) wage mobility is limited in the sense
that the lower the worker’s wage, the lower the future wage a worker will move to in the next
job transition. Moreover, block recursivity implies that changes in the unemployment benefit
and the minimum wage have no effect on an employed worker’s job-to-job transitions and
contracts.
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1. Introduction

Search on the job is prevalent and generates large job-to-job transitions. On average, 2.6 percent

of employed workers in the U.S. change employers each month, and nearly two-fifths of new jobs

represent employer changes (Fallick and Fleischman, 2004). This large flow of workers between

jobs exhibits three stylized patterns. First, the longer the tenure that a worker has on his

current job, the less likely he will quit for another job (Farber, 1999). Second, controlling for

individual heterogeneity, wage is a key determinant of mobility: a worker with a higher wage is

less likely to quit for another job (Topel and Ward, 1992). Third, wage mobility is limited in

the following sense: controlling for individual characteristics, most of the transitions take place

between adjacent quintiles of wages at the lower end of the wage distribution and probabilities

of staying in a quintile are higher at the higher quintiles (Buchinsky and Hunt, 1999).

To explain these facts, I construct a theoretical framework to integrate wage-tenure contracts

and on-the-job search. In the model, firms enter the labor market competitively and offer wage-

tenure contracts. Workers are risk averse and identical, all of whom can search for jobs. Search is

directed in the sense that, when making search decisions, agents take into account that a higher

offer yields a lower matching rate for an applicant and a higher matching rate for a firm. Firms

can commit to the contracts but workers cannot commit to staying with a firm. I characterize an

equilibrium, prove its existence, and explore its properties.

The framework provides consistent explanations for the above facts. First, wages increase

with tenure, and job-to-job transitions decrease with tenure and wages. Making wages increase

continuously with tenure is the optimal way for a firm to backload wages when workers are risk

averse. As wages rise with tenure, a worker is less likely to quit because the probability of finding

higher wages elsewhere falls. Second, directed search strengthens the negative dependence of job-

to-job transitions on wages. As an optimal tradeoff between offers and matching rates, workers

with low wages choose to search for relatively low offers. Because low offers are relatively easier to

obtain, low-wage workers make job transitions with higher probabilities than high-wage workers.

Third, and similarly, directed search generates limited wage mobility. By climbing up the wage

ladder gradually, workers maximize the expected gain from search in each job transition.

An equilibrium has a non-degenerate, continuous distribution of wages or values, despite the

assumptions that all matches are identical and all workers observe all offers. On-the-job search

generates a wage ladder among identical workers by creating dispersion among workers’ histories

of search outcomes. Wage-tenure contracts fill in the gap between any two rungs of the ladder by

increasing wages continuously with tenure.

In addition to explaining the stylized facts, this paper formalizes and explores a key property

of an equilibrium with directed search, called “block recursivity”. That is, individuals’ decisions

and equilibrium contracts are independent of the distribution of workers over wages, although

the distribution affects aggregate statistics. In general, the non-degenerate distribution can serve

as a state variable in individuals’ decisions. By eliminating this role of the distribution, block re-

cursivity makes the equilibrium analysis tractable. Block recursivity arises from directed search,

because the optimal tradeoff between offers and matching rates implies that workers at different

wages choose to apply for different offers. With such endogenous separation, the workers who
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apply for a particular offer cares about only the matching rate at that offer, but not the distrib-

ution of workers over other offers. In turn, the matching rate at each offer is determined by free

entry of firms independently of the distribution of workers. Besides tractability, block recursivity

has a novel policy implication — changes in the unemployment benefit and the minimum wage

have no effect on an employed worker’s job-to-job transitions.

This paper is closely related to Burdett and Coles (2003, BC henceforth). Both papers

predict that on-the-job search induces firms to backload wages, thus making wages increase and

quit rates decrease with tenure. As a main difference, BC assume that search is undirected as

workers exogenously receive offers.1 With undirected search, wage mobility is not limited as in the

data, because all workers have the same probability of obtaining any particular offer regardless of

their current wages. Moreover, to sustain a non-degenerate distribution of wages among identical

matches, BC assume that every worker observes at most one offer before applying. In contrast,

I assume that all workers observe all offers, which makes wage dispersion more robust and on-

the-job search more potent for explaining worker turnover. In addition, a different apparatus is

required to establish existence of an equilibrium with directed search.

I model directed search as in Moen (1997) and Acemoglu and Shimer (1999a,b). To the

literature of directed search, the main contributions here are to incorporate wage-tenure contracts

and on-the-job search, and to formally establish existence of an equilibrium.2 Moen and Rosen

(2004) examine on-the-job search with contracts, but their assumption that on-the-job search is

entirely driven by changes in productivity eliminates the main issues and theoretical challenges

that I face here. Delacroix and Shi (2006) examine directed search on the job with identical

workers, but they assume that firms offer constant wages, rather than wage-tenure contracts.

In this paper, all matches are identical and the productivity of a match is public information.

Although heterogeneity, private information and learning about productivity are important for

wage dynamics and turnover in reality, as modeled by Jovanovic (1979), Harris and Holmstrom

(1982), and Moscarini (2005), abstracting from them enables me to focus on search. Most of the

proofs are omitted in this paper but are available as supplementary materials.

2. The Model Environment

Consider a labor market that lasts forever in continuous time. There is a unit measure of ho-

mogeneous, risk-averse workers whose utility function in each period is u(w), where w is income.

The utility function has the standard properties: 0 < u0(w) < ∞ and −∞ < u00(w) < 0 for all

w ∈ (0,∞), and u0(0) = ∞. Workers cannot borrow against their future income. An employed
worker produces a flow of output, y > 0, and an unemployed worker enjoys the unemployment

benefit, b > 0. A worker dies at a Poisson rate δ ∈ (0,∞), and is replaced with a newborn who
is unemployed. Death is the only exogenous separation. Firms are identical and risk-neutral.

Jobs enter the market competitively: a firm can post a vacancy at a flow cost k > 0, and can

1BC extend the wage-posting model of Burdett and Mortensen (1998). Undirected search is also the feature of
another class of search models, pioneered by Diamond (1982), Mortensen (1982), and Pissarides (1990).

2Peters (1984, 1991) and Montgomery (1991) are two of the earliest formulations of directed search. Other
examples of directed search models include Julien, et al. (2000), Burdett, et al. (2001), Shi (2001, 2002), Coles
and Eeckhout (2003), and Galenianos and Kircher (2005).
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treat different jobs independently. Firms announce wage-tenure contracts to recruit. A contract

is denoted as W = {w̃(t)}∞t=0, which specifies the wage at each tenure length, t, conditional on
that the worker stays with the firm. Firms are assumed to commit to the contracts, but workers

can quit a job at any time. In particular, a firm cannot respond to the employee’s outside offers.

Normalize the production cost to 0. Firms and workers discount future with the same rate of

time preference ρ ≥ 0. Denote r = ρ+ δ as the effective discount rate.3

Throughout this paper, t denotes tenure rather than the calendar time. Denote V (t) as the

value of a contract at t, i.e., the worker’s lifetime expected utility generated by the remaining

contract at t. The value of a contract at t = 0 is called an offer and denoted as x = V (0).

Denote an unemployed worker’s “tenure” as t = ∅, the unemployment benefit as b = w̃ (∅), and
the value of unemployment as Vu = V (∅). All offers are bounded in [V , V̄ ], where

V̄ = u(w̄)/r, V = u(b)/r. (2.1)

w̄ is the highest wage given later by (3.8), V̄ the lifetime utility of a worker who is employed at

w̄ permanently until death, and V the lifetime utility of a worker who stays in unemployment

forever. I use the phrases “all x” and “all V ” to mean all values in
£
V , V̄

¤
.

All workers, employed or unemployed, can search. There is a continuum of submarkets indexed

by the offer x. Each submarket x has a tightness, θ (x), which is the ratio of applicants to

vacancies in that submarket. The total number of matches in submarket x is given by a linearly

homogeneous matching function,M (N (x) , N (x) /θ (x)), whereN (x) is the number of applicants

in the submarket. In submarket x, a vacancy is filled at the Poisson rate q (x) ≡M (θ (x) , 1),

and an applicant obtains an offer at the rate p (x) ≡M (1, 1/θ (x)). I refer to q (.) as the hiring

rate function, and p (.) as the employment rate function. In an equilibrium, q (x) is increasing and

p (x) decreasing in x. Thus, search is directed in the sense that agents face a tradeoff between

offers and matching rates when choosing which submarket to enter. Since the matching rates act

as hedonic prices in each submarket, search is competitive.4

Although the function M is exogenous, the functions q(.), p(.) and θ (.) are equilibrium

objects. Following Moen and Rosen (2004), I eliminate θ from the above expressions for p and

q to express p(x) = M(q(x)). Because the function M(q) inherits all essential properties of the

function,M, I will takeM(.) as a primitive of the model and refer to it as the matching function.

Focus on stationary equilibria where the set of offered contracts and the functions, q (x) and

p (x), are time invariant. Moreover, I focus on an equilibrium in which p (.) satisfies:

(i) p
¡
V̄
¢
= 0; (ii) p (x) is bounded, continuous and concave for all x;

(iii) p (x) is strictly decreasing and continuously differentiable for all x < V̄ .

¾
(2.2)

3The assumptions on the contracts and the separation process are the same as in BC (2003). The main difference
of my model from BC is that search is directed here. Also, I do not impose BC’s assumption u (0) = −∞. For a
model in which firms can counter outside offers, see Postel-Vinay and Robin (2002).

4Moen (1997) and Acemoglu and Shimer (1999a,b) formulate this competitive process of directed search. An
alternative is to formulate the process as a strategic game, e.g., Peters (1991), Burdett et al. (2001), and Julien
et al. (2000). The strategic formulation endogenizes the matching function, M, but the function converges to a
linearly homogeneous function when the number of participants in the market goes to infinity. Moreover, Acemoglu
and Shimer (1999b) relax the assumption that each applicant observes all offers, and Galenianos and Kircher (2005)
allow each applicant to send two or more applications at once.
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I will first characterize individuals’ decisions under any arbitrary p function that satisfies (2.2)

and then verify, in Theorem 4.1, that an equilibrium satisfying (2.2) exists indeed.

3. Workers’ and Firms’ Optimal Decisions

3.1. A Worker’s Optimal Search Decision

Refer to a worker’s value, V , as the worker’s state or type. If the worker searches in submarket

x, he obtains the offer x at rate p(x), which yields the gain, (x− V ). The expected gain from

search in submarket x is p(x)(x− V ). The optimal search decision, x, solves:

S(V (t)) ≡ max
x∈[V (t),V̄ ]

p(x) (x− V ) . (3.1)

Denote the solution as x = F (V ). I prove the following lemma in Appendix A:

Lemma 3.1. Assume (2.2). Then, F (V̄ ) = V̄ . For all V < V̄ , the following results hold: (i)

F (V ) is interior, strictly increasing in V , and satisfies:

V = F (V ) +
p(F (V ))

p0(F (V ))
; (3.2)

(ii) F (V ) is unique for each V , and continuous in V ; (iii) S(V ) is differentiable, with S0(V ) =
−p(F (V )) < 0; (iv) F (V2)− F (V1) ≤ (V2 − V1) /2 for all V2 ≥ V1; (v) If p

00(.) exists, then F 0(V )
and S00 (V ) exist, with 0 < F 0(V ) ≤ 1/2.

The following properties are noteworthy. First, F (V ) is unique for each V . For a worker at the

state V , offers higher than F (V ) have too low employment rates to be optimal, while offers lower

than F (V ) have too low values. Only the offer F (V ) provides the optimal tradeoff between the

value and the employment rate. Second, F (V ) is strictly increasing in V . That is, the higher a

worker’s state, the higher the offer for which the worker will apply. Thus, the applicants separate

themselves according to their states. This endogenous separation arises because an applicant’s

current job is a backup for him when he fails to obtain the applied job. The higher this backup

value is, the more the worker can afford to “gamble” on the application and, hence, the higher

the offer for which he will apply. Third, the expected gain from search, S(V ), and the actual gain

in percentage, (F −V )/V , diminish as V increases. Moreover, S00(V ) > 0; i.e., the expected gain
from search diminishes at a lower rate as V increases.

Endogenous separation of the applicants is a common result in directed search models (see

Acemoglu and Shimer, 1999a, Shi, 2001, Moen and Rosen, 2004, and Delacroix and Shi, 2006).

However, it is not a result in undirected search models (e.g., BC, and Burdett and Mortensen,

1998). With undirected search, workers receive offers randomly and exogenously, and so there

is no counterpart to the search decision in (3.1). In section 5, I will contrast my model with

undirected search models on worker turnover and wage mobility.
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3.2. Value Functions of Workers and Firms

Denote ḟ = df/dt for any variable f . Consider first an employed worker whose tenure is t ≥ 0.
From the analysis above, the worker searches for the offer x (t) = F (V (t)). At rate p (F (V (t))),

he gets the offer and quits the current job. If the worker does not get the offer, he stays in the

current contract whose value increases by V̇ . Taking into account time discounting and the event

of death, the value for the worker obeys:

ρV (t) = u(w̃(t)) + V̇ (t) + p(F (V (t))) [F (V (t))− V (t)]− δV (t).

Using S(V ) defined by (3.1), and the effective discount rate r = ρ+ δ, I can rewrite:

V̇ (t) = rV (t)− u(w̃(t))− S(V (t)). (3.3)

Because I focus on stationary equilibria, the change, V̇ , is entirely caused by changes in wages

with tenure. If wages are constant, then w̃(t) = w̃ and V̇ (t) = 0 for all t.5 In particular, because

the unemployment benefit is constant, V̇u = 0, and Vu obeys:

0 = rVu − u(b)− S(Vu). (3.4)

Since S (Vu) > 0, it is clear that Vu > V , where V is defined in (2.1).

Now consider the value of a firm whose worker has a contract with a remaining value, V (t).

Let J̃(t) denote this firm’s value. Similar to (3.3), I can derive

dJ̃ (t) /dt = [r + p(F (V (t)))] J̃(t)− y + w̃(t). (3.5)

Note that J̃ (t) is bounded above and below for all t. For any arbitrary ta ∈ [0, t], define

γ(t, ta) ≡ exp
∙
−
Z t

ta

[r + p(F (V (τ)))] dτ

¸
. (3.6)

Since limt→∞ γ(t, ta) = 0, integrating (3.5) yields:

J̃(ta) =

Z ∞

ta

[y − w̃(t)] γ(t, ta)dt. (3.7)

3.3. Optimal Recruiting Decisions and Contracts

A firm’s recruiting decision contains two parts. The first is to choose an offer x to maximize the

expected value of recruiting, q(x)J̃(0), taking the function q(.) as given. The second part is to

choose a contract to deliver the value x and to maximize J̃(0).

For the first part, I will later show that there is a continuum of optimal offers, denoted as

V = £v1, V̄ ¤, where v1 ≡ F (Vu). A high offer increases the chance of filling the vacancy but yields

lower profit ex post. A low offer yields higher ex post profit, but reduces the chance of filling the

5Although a worker can quit the job to become unemployed, it is not optimal to do so in an equilibrium, because
optimal contracts provide higher values in employment than in unemployment. Also, because an employed worker
never returns to unemployment, the worker has no incentive to save provided that wages increase with tenure.
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vacancy. A firm is indifferent among the offers in V, because they all yield the same expected
value of recruiting. That is, q (x) J̃ (0) = k for all x ∈ V, where k is the vacancy cost.

The highest offer, V̄ , is delivered by the highest wage, w̄. To derive w̄, note that p(F (V̄ )) =

p
¡
V̄
¢
= 0. Since (3.1) implies S

¡
V̄
¢
= 0 and (2.1) implies V̄ = u(w̄)/r, (3.3) implies V̇ = 0 at

V̄ . Similarly, (3.5) implies that the value of a firm that employs a worker at w̄ is J = (y − w̄) /r.

Because q
¡
V̄
¢
J = k, then w̄ = y − rk/q(V̄ ). Let q̄ ∈ (0,∞) be the upper bound on q, discussed

further in Assumption 1. Then, q
¡
V̄
¢
= q̄: if q

¡
V̄
¢
< q̄, offering a constant wage slightly above

w̄ would yield a higher expected value to the firm.6 Therefore,

w̄ = y − rk/q̄ (< y) , J = k/q̄ (> 0) . (3.8)

For the contracting part of a firm’s decisions, the optimal contract, {w̃(t)}∞t=0, solves:

(P) max J̃(0), subject to V (0) = x.

This problem differs from that in BC (2003) in two aspects. First, BC assume u (0) = −∞ to

prove w̃ (t) > 0 and dw̃ (t) /dt > 0 for all t. This assumption is not necessary in the current model,

because employed and unemployed workers face the same employment rate function. Second, the

quit rate of a worker employed at V is p (F (V )) here, but it is λ [1−Q (V )] in BC, where Q (.)

is the distribution of offers and λ a constant. Despite these differences, the following lemma is

similar to the results in BC:

Lemma 3.2. Assume (2.2). Optimal contracts have the following features: (i) 0 < w̃ (t) ≤ w̄ for

all t > 0; (ii) dw̃ (t) /dt > 0 for all t <∞, w̃ (t)% w̄ as t→∞, and
dw̃ (t)

dt
=
[u0(w̃(t))]2

u00(w̃(t))
J̃(t)

∙
dp(F (V (t)))

dV

¸
, all t; (3.9)

(iii) V̇ (t) > 0 and dJ̃ (t) /dt < 0 for all t < ∞, with V (t) % V̄ and J̃ (t) & J as t → ∞.
Moreover,

dJ̃ (t) /dt = − V̇ (t)

u0(w̃(t))
, all t. (3.10)

Optimal contracts have several properties. First, wages are continuous and increasing in

tenure for all finite tenure lengths. This property is generated by firms’ incentive to backload

wages and workers’ risk aversion. Because a worker cannot commit to a job, a firm backloads

wages to entice the worker to stay. A rising wage profile is less costly to the firm than a constant

profile that promises the same value to the worker: as wages rise with tenure, it is more difficult

for the worker to find a better offer elsewhere, and so the worker’s quit rate falls. However, if

workers are risk neutral, one optimal way to backload wages is to offer a very low wage initially,

with promised wage jumps in the future (see Stevens, 2004). Risk aversion makes such jumps

suboptimal. Thus, wages increase continuously in tenure in optimal contracts.

6Suppose that q(V̄ ) = q̄ − a for some a > 0. In this case, w̄ = y − rk/(q̄ − a). A firm that deviates from w̄ to
w̄ + ε, with ε > 0, attracts all of the workers who are employed at w̄, because the deviating firm is the only one
that offers a wage higher than w̄. Thus, q(V̂ ) = q̄, where V̂ = u(w̄ + ε)/r. The deviating firm’s expected value of
recruiting is (y − w̄ − ε)q̄/r, that exceeds k for sufficiently small ε > 0. A contradiction.
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Second, wages and values are strictly increasing in tenure for all finite tenure lengths. To

explain this result, suppose that an optimal contract has a constant segment of wages. This seg-

ment should be put at the beginning of the contract in order to increase the room for backloading

wages. Moreover, the constant segment must be at the constrained level, 0; otherwise, the firm

can increase its expected value by reducing the initial wage and shortening the constant segment.

However, such a contract has a strictly lower value than the value of unemployment, because an

unemployed worker enjoys a positive benefit and faces the same job opportunities as an employed

worker does. Thus, a contract with such a constant segment of wages will not be accepted.

Third, optimal contracts induce efficient sharing of the value between a firm and its worker,

in the sense described by (3.10). To elaborate, note that −dJ̃/dt is the marginal cost to the firm
of increasing wages, while V̇ /u0 (w̃) is the marginal benefit to the worker of the wage increase,
measured in the same unit as profit. Thus, (3.10) requires that a wage increase should have the

same marginal cost to the firm as the marginal benefit to the worker.

Fourth, all optimal contracts are sections of a baseline contract. The baseline contract, denoted

as {w̃b(t)}∞t=0, is an optimal contract where w̃b (0) is the lowest wage in an equilibrium. The entire

set of optimal contracts can be constructed as follows:

{{w̃(t)}∞t=0 : w̃(t) = w̃b(t+ ta), ta ∈ [0,∞), for all t} .

That is, the “tail” of the baseline contract from any arbitrary tenure ta onward is an optimal

contract by itself when offered at the beginning of the match. This property is an implication of

the principle of dynamic optimality.7

With the above property, it suffices to examine only the baseline contract. From now on, I

suppress the subscript b on the baseline contract. In particular, V (t) denotes the value of the

baseline contract for a worker at tenure t. Note that the set of equilibrium offers across contracts

at any given time can be obtained alternatively by tracing out the baseline contract over tenure.

That is, V = {x : x = V (t), all t ≥ 0}.

4. Equilibrium and Block Recursivity

I will use V instead of t as the variable in various functions. To do so, define

T (V (t)) = t, w (V ) = w̃ (T (V )) , J (V ) = J̃ (T (V )) . (4.1)

T (V ) is the inverse function of V (t), and records the length of time for the value to increase

from the lowest equilibrium offer, v1, to V . A contract of a value V starts with the wage, w (V ),

and generates a present value, J (V ), to a firm. Refer to w (V ) as the wage function. Since

T 0 (V (t)) = 1/V̇ (t), then dJ̃ (t) /dt = J 0 (V (t)) V̇ (t), and (3.10) becomes:

J 0(V ) = − 1

u0(w(V ))
, all V < V̄ . (4.2)

7If the property does not hold for some tenure ta > 0, then there is another contract, {ŵ (t)}∞t=0, that yields a
higher value to the firm than the contract, {w̃ (t)}∞t=0, where w̃ (t) = w̃b (t+ ta) for all t. Replace the tail of the
baseline contract from tenure ta onward by letting ŵb (t+ ta) = ŵ (t) for all t. The new baseline contract yields a
higher value to the firm than the original baseline contract, contradicting the optimality of the latter.
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4.1. Definition of the Equilibrium and Block Recursivity

An equilibrium consists of a set of offers, V = {V (t) : t ≥ 0}, a hiring rate function, q (.), an
employment function, p(.), an application strategy, F (.), a value function, J(.), a wage function,

w(.), a distribution of employed workers over values, G (.), and a fraction of employed workers,

n, that satisfy the following requirements: (i) Given p (.), F (V ) solves (3.1); (ii) Given F (.) and

p(.), each offer x ∈ V is delivered by a contract that solves (P), and the resulting value function
of the firm is J(x); (iii) Zero expected profit of recruiting: q(x)J(x) = k for all x ∈ [V , V̄ ], and
q(x)J(x) < k otherwise, where q(x) =M−1(p(x)); (iv) G and n are stationary.8

Most elements of this definition are self-explanatory, except (iii). Requirement (iii) asks

expected profit of recruiting to be zero for all x ∈ [V , V̄ ], and it implies that an equilibrium
indeed has meaningful tradeoffs between offers and matching rates in all submarkets. Given

J(.), the requirement yields the hiring rate function as q(x) = k/J(x), and the employment

rate function as p(x) = M(k/J(x)). Because J (x) decreases in x (see (4.2)), the hiring rate is

increasing and the employment rate decreasing in the offer, as I have used in previous sections.

Note that requirement (iii) is imposed not just on equilibrium offers in V, but on all offers in
[V , V̄ ]. Because the lowest equilibrium offer is v1 = F (Vu) > Vu > V , V is a strict subset of
[V , V̄ ]. Thus, requirement (iii) restricts the beliefs out of the equilibrium. By completing the

markets, this restriction refines the set of equilibria and has been commonly used in directed

search models, e.g., Moen (1997), Acemoglu and Shimer (1999b) and Delacroix and Shi (2006).9

A striking property of an equilibrium is block recursivity: Although the distribution of workers

over wages or values depends on the aggregation of individuals’ decisions, parts (i) — (iii) above

are self-contained and independent of the distribution. Thus, the distribution plays no role in

individuals’ decisions, optimal contracts, the equilibrium functions, p(.) and q(.), and employed

workers’ job-to-job transitions. The reason for this independence is that directed search separates

the applicants into different submarkets and, in each submarket, free entry of firms determines

the number of vacancies independently of the distributions of workers in other submarkets. As a

result, the matching rate functions, p (.) and q (.), are independent of the distributions.

To elaborate, consider the fixed-point problem formed by (i) — (iii) in the above definition.

Given q (.), the matching function yields the employment rate function, p(.). Knowing p(.) is

sufficient for the workers to choose the optimal target, F (.). The functions, p(V ) and F (V ),

determine the quit rate of a worker at each V . For a firm, the worker’s quit rate summarizes

all the effects of competition on the firm’s expected stream of profits. Thus, given the quit rate,

the firm can calculate the expected value delivered by any wage contract, and hence can choose

the contract optimally. This optimal choice determines the wage function, w(.), and the firm’s

8The model can be extended to allow for a sunk cost of creating a vacancy, C, in addition to the flow cost, k.
Let R be the expected value of a vacancy, measured after a firm has incurred C. Then, R and the optimal offer
solve: ρR = −k +maxx {q (x) [J (x)−R]}. Free entry of vacancies requires R = C. In this economy, (iii) in the
equilibrium definition is modified as q (x) [J (x)−C] ≤ k+ ρC, with equality for all x ∈ V , V̄ . An equilibrium is
well defined if either k > 0 or ρ > 0. Only when k = ρ = 0 is there no finite R that satisfies R = C.

9To see why there can be missing markets in general, suppose that all agents believe that no one will participate
in submarket x. With such beliefs, no firm will post a vacancy and no worker will search in submarket x. Thus,
the beliefs that submarket x will be missing is self-fulfilling. This outcome of a missing market may not be robust
to a trembling-hand event that exogenously puts some firms in submarket x.
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value function, J(.). Finally, the free-entry condition ties the loop by determining the hiring rate

function q(.) that, in an equilibrium, must be the same as the one with which the process started.

The distributions of offers and workers do not appear in this process.

Note that an equilibrium is block recursive even if there is exogenous separation into unem-

ployment, which I have assumed away. With such separation, the value for a worker can still be

determined given the function, p (.), without any reference to the distributions.10

Block recursivity relies critically on endogenous separation of workers, which is an implication

of directed search. Not surprisingly, undirected search models (e.g., Burdett and Mortensen, 1998,

and BC, 2003) do not have this property. With undirected search, a worker’s quit rate is a function

of the distribution of offers because the worker can receive an offer anywhere in the distribution

of offers, and a firm’s hiring rate is a function of the distribution of workers because all workers

whose current values are less than the firm’s offer will accept the offer. Thus, the distributions of

offers and workers affect individuals’ decisions and contracts in undirected search models. In turn,

these decisions and contracts affect the flows of workers that determine the distribution of workers.

The two-way dependence and the dimensionality of the distribution make an equilibrium analysis

complicated in undirected search models. Block recursivity simplifies an equilibrium drastically.

4.2. Existence of an Equilibrium

This subsection determines the equilibrium functions, p(.), q(.), w(.), F (.) and J(.). I refer to

existence of these functions as existence of an equilibrium, although an equilibrium also involves

the distribution of workers that will be determined in section 6 later.

The following procedure formalizes the fixed-point problem discussed above. It is more con-

venient to develop a mapping on the wage function, w (V ), than on q (.). Start with an arbitrary

function, w(.). First, integrating (4.2), and using J(V̄ ) = J = k/q̄ (see (3.8)), I get:

Jw(V ) = k/q̄ +

Z V̄

V

1

u0(w(z))
dz. (4.3)

The subscript w on J , and on (q, p, F, S) below, indicates the dependence on the initial function

w. Second, the zero-profit condition yields: qw(V ) = k/Jw(V ). Since p =M (q), then

pw(V ) =M

µ
k

Jw(V )

¶
. (4.4)

Third, with pw(V ), the solution to (3.1) yields a worker’s optimal search as Fw(V ), and the

expected gain from search as Sw(V ). (3.3) yields V̇w, and (3.5) yields dJw (V (t)) /dt.

Fourth, I combine (3.10) with (3.5) and (3.3). Recall that optimal contracts require V̇ (t) > 0

for all t < ∞ (see Lemma 3.2). However, V̇w (t) constructed from an arbitrary w may not

necessarily be positive. To ensure that every step of the equilibrium mapping satisfies V̇w ≥ 0, I
10If the number of firms is fixed, rather than being determined by free entry, the expected value of recruiting is

endogenous and depends on the distribution of workers. Even in this case, the distribution plays only a limited role
because it affects individuals’ decisions and the functions p(.) and q(.) entirely through a one-dimensional object,
i.e., the expected value of recruiting.
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modify (3.10) as dJ̃w (t) /dt = −max{0, V̇w}/u0 (w̃). Substituting V̇w from (3.3), and dJ̃w (t) /dt

from (3.5), into (3.10), I get w (V ) = ψw (V ), where the mapping ψ is defined as follows:

ψw (V ) ≡ y − [r + pw (Fw (V ))]Jw (V )− max{0, rV − Sw (V )− u (w (V ))}
u0 (w (V ))

. (4.5)

The equilibrium wage function is a fixed point of ψ. With this fixed point, the first three steps

above recover q (.), p (.), J (.), F (.) and S (.) in an equilibrium. Clearly, all these functions are

independent of the distribution of workers.

To characterize the fixed point of ψ, define:

Ω =
©
w(V ) : w(V ) ∈ [w, w̄] for all V ; w(V̄ ) = w̄;

and w(V ) is continuous and (weakly) increasing} , (4.6)

Ω0 =
©
w ∈ Ω : w(V ) is strictly increasing for all V < V̄

ª
. (4.7)

The equilibrium wage function must lie in Ω0 (see Lemma 3.2). In addition, I must verify that
the equilibrium wage function induces a function p (.), through (4.4), that indeed satisfies (2.2).

To this end, I impose the following assumption on the matching function M (q):

Assumption 1. (i) M(q) is continuous and q (V ) ∈ [q, q̄] for all V , where q will be specified in
(4.8) and q̄ <∞; (ii) M 0(q) < 0 and M(q̄) = 0; (iii) M (q) is twice differentiable for all q ∈ [q, q̄],
where |M 0| ≤ m1 and |M 00| ≤ m2 for some finite constants m1 and m2; (iv) qM

00(q)+2M 0(q) ≤ 0.

Part (i) is a regularity condition. In particular, the upper bound on q is imposed to apply a

fixed-point theorem on bounded and continuous functions. Part (ii) captures the intuitive feature

that if it is easy for a firm to fill a vacancy, it must be difficult for a worker to obtain a job. In

the extreme case where a firm can fill a vacancy at the maximum rate, the employment rate is

0. Part (iii) simplifies the proof of existence significantly. By restricting convexity of M(q), part

(iv) helps establishing concavity of p (.), which is stated in (2.2) and used to ensure uniqueness

of each worker’s optimal search decision. Assumption 1 is satisfied by the so-called telegraph

matching function,M(θ, 1) = q̄θ/ (1 + θ), which implies M (q) = q̄ − q.11

Next, I specify the following bounds on various functions. Define:

J ≡ k/q̄, J̄ ≡ Jw̄ (V ) , q ≡ k/J̄, p̄ ≡M(q), S̄ ≡ Sw̄ (V ) . (4.8)

Because Jw (V ), pw (V ) and Sw (V ) are decreasing in V , and qw (V ) increasing in V , then

Jw (V ) ∈
£
J, J̄

¤
, qw (V ) ∈ [q, q̄], pw (V ) ∈ [0, p̄] , Sw (V ) ∈

£
0, S̄

¤
, all w ∈ Ω, all V.

Choose the lower bound on wages, w, to be a strictly positive number sufficiently close to 0.

11As another example, consider the Cobb-Douglas matching function, which hasM(θ, 1) = θα, where α ∈ (0, 1).
This function implies p = M̂ (q) ≡ q(α−1)/α. Let q̄ be a sufficiently large but finite constant, and let M (q) =
M̂ (q)− M̂ (q̄). Then M (q) satisfies Assumption 1 iff α ≥ 1/2.
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Assumption 2. Assume that b, V and w satisfy:

(0 <) b < w̄ = y − rk/q̄, (4.9)

y − [r + pw̄ (Fw̄ (V ))] J̄ ≥ w +

£
u (b)− Sw (V )− u (w)

¤
u0 (w)

, (4.10)

1 +
u00 (w)
[u0 (w)]2

[u (w̄)− u (w)] ≥ 0, all w ∈ [w, w̄] . (4.11)

Note that all elements in the above assumption can be derived exclusively from exogenous

objects of the model. (4.9) is necessary for there to be any worker employed. (4.10) is sufficient

for ψw(V ) ≥ w for all V , and (4.11) sufficient for ψ to map increasing functions into increasing

functions. There is a non-empty region of parameter values that satisfy all of these conditions.12

The following theorem establishes existence of an equilibrium that indeed satisfies (2.2) (see

Appendix B for a proof):

Theorem 4.1. Maintain Assumptions 1 and 2. The mapping ψ has a fixed point w∗ ∈ Ω0.
Moreover, the equilibrium has the following properties: (i) Jw∗(V ) is strictly positive, bounded

in
£
J, J̄

¤
, strictly decreasing, strictly concave, and continuously differentiable for all V , with

Jw∗
¡
V̄
¢
= J ; (ii) pw∗ (V ) has all the properties in (2.2) and is strictly concave for all V < V̄ ; (iii)

V̇w∗ > 0 and dJw∗ (V (t)) /dt < 0 for all V < V̄ .

Remark 1. Although I have focused on an equilibrium that satisfies (2.2), all equilibria must

have a strictly decreasing p (.). If p (V2) ≥ p (V1) for some V2 > V1, then q (V2) ≤ q (V1). In this

case, no worker would apply to V1, no firm would recruit at V2, and so V1 and V2 could not both

be equilibrium offers. Similarly, p (.) must be continuous in all equilibria. In contrast, not all

equilibria necessarily have a concave and differentiable p (.). However, it is natural to focus on

equilibria with a concave and differentiable p (.). Concavity of p (.) is useful for ensuring that each

worker’s optimal search decision is unique, and differentiability of p (.) allows me to characterize

this optimal decision with the first-order condition.

I will suppress the asterisk on w∗ and the subscript w∗ on the functions J , p, q, F and S.

Moreover, I will focus on a wage function, w (V ), that is differentiable.

5. Job Transitions, Wage Mobility and Policy Analysis

A typical worker in this model experiences continuous wage increases when he stays with a job

and discrete jumps in wages when he transits to another job. For example, consider a worker in

12(4.9) can be easily satisfied. By choosing w sufficiently close to 0, and using the assumption u0 (0)→∞, I can
ensure (4.10) if [r + pw̄ (Fw̄ (V ))] J̄ < y. Because the left-hand side of this inequality is a decreasing function of V ,
the inequality puts a lower bound on V . This lower bound is smaller than V̄ , because r + pw̄ Fw̄ V̄ Jw̄ V̄ =
rJ < y. Using the definition of V , I can translate this lower bound on V into a lower bound on b, which is smaller
than w̄. Hence, there are values of b that satisfy both (4.9) and (4.10). Finally, there are utility functions that
satisfy (4.11). For example, the utility function with constant relative risk aversion satisfies (4.11) if the relative
risk aversion is lower than a critical level.
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unemployment. The worker’s value is Vu and he applies for the offer v1 = F (Vu). If he obtains

the offer, the value jumps to v1, and the target of his next search is v2 = F (v1). If the worker

obtains the next offer, his value jumps to v2. If the worker fails to obtain the offer v2, the value for

the worker increases continuously according to the contract. In both cases, the worker revises the

target of search according to F (.). This process continues to increase the worker’s value toward

V̄ asymptotically until the worker dies.

The above process has the following predictions that are consistent with the stylized facts

described in the introduction. First, wages and values strictly increase with tenure, as shown by

w0 (V ) > 0 and V̇ (t) > 0. Second, the rate at which a worker quits a job for a better offer strictly
decreases with tenure and wages, as shown by the result that p (F (V )) strictly decreases in V .

The cause for this feature is directed search, rather than the fact that a low-wage worker has

more wage levels to which he can transit to than a high-wage worker does. With directed search,

low-wage workers optimally choose to search for relatively low offers that are easier to get, and

so they make job transitions with higher probabilities than high-wage workers do. Third, wage

mobility is limited endogenously, because the workers at a wage w (V ) optimally choose to search

only for the contract that starts at the wage w (F (V )). The lower a worker’s current wage, the

lower the future wage he will move to in the next job transition.

Now consider two policies: an increase in the unemployment benefit, b, and a minimum-wage

requirement, w ≥ wmin. For the minimum wage to be non-trivial, assume that w(v1) < wmin,

where w(v1) is the lowest equilibrium wage in the absence of the minimum wage. The following

corollary summarizes the effects of these policies (the proof is straightforward and omitted):

Corollary 5.1. Changes in b and wmin do not affect the functions w(.), F (.), p(.), q(.), and

J(.). Hence, they do not affect an employed worker’s transitions or contracts, conditional on the

worker’s current wage. However, they affect the distribution of workers and increases the lowest

offer in an equilibrium, v1. Moreover, an increase in b increases the value for unemployed workers,

Vu, and reduces the measure of employed workers, n. An increase in wmin reduces n and Vu.

To see more clearly the effects of the policies, suppose that the policies increase v1 to v̂1. The

offers in [v1, v̂1) are no longer equilibrium offers, but the new baseline contract is the tail of the

original baseline contract that starts at v̂1. Since the latter is an equilibrium contract prior to the

policy change, the set of equilibrium contracts after the policy change is a subset of the original

set of equilibrium contracts. Conditional on a worker’s current value (or wage), the worker’s

optimal application, the wage-tenure contract and the worker’s transition rate to another job are

all independent of the two policies. The reason for this independence is block recursivity of an

equilibrium with directed search. Because the fixed-point problem that determines q, p, F , J and

w involves only employed workers and not unemployed workers, its solution does not depend on

policies that affect only unemployed workers.

The policies do affect aggregate activities in the current model, by affecting (v1, Vu) and the

distribution of workers. These effects, stated in Corollary 5.1, are intuitive. For example, a higher

unemployment benefit reduces employment, because it makes unemployed workers “picky” about

offers. Note that an increase in the minimum wage reduces the value for unemployed workers,

despite that it raises the target value of an unemployed worker’s search. The explanation is that
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the original target value, v1, provides the best tradeoff for an unemployed applicant between

the offer and the employment rate. By raising the target value, the minimum wage reduces an

unemployed worker’s transition rate into employment by so much that it cannot be adequately

compensated by the rise in the target value.

Let me contrast the results in this section with those in BC (2003). Modeling search as an

undirected process, BC has also shown that wages increase, and quit rates fall, with tenure.

However, their model does not generate limited wage mobility; instead, even a worker at the

bottom of the wage distribution can immediately transit to the top of the distribution. Moreover,

because their model does not have block recursivity, the two policies above affect contracts and

individuals’ transitions through the distribution of workers. In particular, an increase in the

unemployment benefit in that model increases the equilibrium distribution of offers, the job-to-

job transition rate, and the slope of the wage-tenure contracts.13

6. Equilibrium Distribution of Workers

Let G be the cumulative distribution function of employed workers over V = £v1, V̄ ¤, and g the

corresponding density function.14 For any arbitrary V ∈ V and a small interval of time, dt, let
me examine the flows in and out of the group of workers who are employed at values less than or

equal to V . The measure of this group is nG (V ). The only inflow is unemployed workers who

find matches at v1, which is (1− n) p(v1)dt. There are three outflows. First, death generates an

outflow, δnG (V ) dt. Second, the contracts increase the values for the workers in (V − V̇ dt, V ]

above V , the flow of which is n[G (V )−G(V − V̇ dt)]. Third, some workers in the group quit for

offers higher than V . These quitters are currently employed in (F−1 (V ) , V ] if F−1 (V ) ≥ v1, and

in (v1, V ] if F
−1 (V ) < v1. Thus, quitting generates the following outflow:

(dt)n

Z V

max{v1,F−1(V )}
p (F (z)) dG (z) .

Equating the inflows to the sum of outflows, and taking the limit dt ↓ 0, I obtain:

lim
dt↓0

G(V )−G(V − V̇ dt)

dt
=
1− n

n
p(v1)− δG (V )−

Z V

max{v1,F−1(V )}
p(F (z))dG(z). (6.1)

Theorem 6.1. Denote vj = F (j)(v0), j = 1, 2, ..., where F (0)(v0) = v0 ≡ Vu and F (j)(v0) =

F (F (j−1)(v0)). Then, G (V ) is continuous for all V , with G(v1) = 0. The density function, g (V ),
is continuous for all V , and differentiable except for V = v2. Moreover,

n = p(v1) /[δ + p(v1)] , (6.2)

13Both the current model and BC (2003) assume that there is no exogenous separation into unemployment. If
such exogenous separation is introduced, the two policies will affect equilibrium contracts and employed workers’
transitions in the current model, because the value of unemployment will appear in the equation that determines
the value for employed workers. Even in this extension of the current model, it is still true that the policies do not
affect contracts and worker transitions through the distribution of workers.
14The distribution of employed workers over wages can be deduced as Gw(w(V )) = G(V ), with a density function

gw(w (V )) = g(V )/w0(V ).
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g(V )V̇ = δ [1−G(V )]−
Z V

max{v1,F−1(V )}
p(F (z))dG(z). (6.3)

With the function T (V ) in (4.1), define:

Γ (z2, z1) = exp

"
−
Z T (z2)

T (z1)
[δ + p (F (V (t)))] dt

#
, z1, z2 ≥ v1. (6.4)

Add a subscript j to g(V ) for V ∈ [vj , vj+1). g can be recursively solved piece-wise as follows:

g1(V )V̇ = δΓ (V, v1) , (6.5)

gj(V )V̇ − gj(vj)v̇jΓ(V, vj) =

Z V

vj

Γ(V, z)p(z)gj−1(F−1(z))dF−1(z), (6.6)

where (6.6) holds for j ≥ 2. Moreover, gj(vj) = limV ↑vj gj−1(V ) for all j.

The above theorem documents several features. First, the equilibrium distribution of employed

workers is non-degenerate and continuous, despite that all matches are identical and search is

directed. Both on-the-job search and wage-tenure contracts are important for this dispersion of

values. If on-the-job search were prohibited, only one value, v1, would be offered in an equilibrium,

as in most models of directed search with homogeneous matches. On-the-job search produces

jumps in values, and hence a non-degenerate distribution of values. However, without wage-

tenure contracts, on-the-job search alone would only produce a wage ladder formed by the set,

{v1, v2, ..., V̄ }, as in Delacroix and Shi (2006). Wage-tenure contracts provide continuous increases
in the values to fill in the gaps between any two levels in this discrete set.

Second, there is no mass point anywhere in the support of the distribution. It is particularly

remarkable that there is no build-up of workers at v1. Although all unemployed workers only

apply for v1, all workers at v1 move out of v1 in any arbitrarily short length of time, as a result of

quits, death, or wage increases in the contracts. Moreover, the density function is differentiable

except at V = v2. It is not differentiable at v2 because offers above v2 receive applications from

employed workers but offers below v2 do not.
15

Finally, more workers are employed at low values than at high values, because the job-to-

job transition rate decreases sharply in the target value. In particular, as V approaches V̄ , the

employment rate declines to 0, which requires the measure of recruiting firms per applicant to

approach zero. Thus, the density function g (V ) can be decreasing for V close to V̄ .

7. Conclusion

I have constructed a theoretical framework in which firms offer wage-tenure contracts to direct

the search by risk-averse workers. All workers can search, on or off the job. I have characterized

an equilibrium and proved its existence. The equilibrium generates a non-degenerate, continuous

15Similarly, the density function of offers is discontinuous, because a mass of firms recruit at v1 but no firm
recruits at V ∈ (v1, v2). To eliminate non-differentiability of g at v2 and discontinuity of the offer density, an earlier
version of this paper assumes that b is distributed in an interval whose upper bound is equal to w̄.
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distribution of employed workers over the values of contracts, despite that all matches are identical

and workers observe all offers. A striking property is that the equilibrium is block recursive; that

is, individuals’ optimal decisions and optimal contracts are independent of the distribution of

workers. This property makes the equilibrium analysis tractable. Consistent with stylized facts,

the equilibrium predicts that (i) wages increase with tenure, (ii) job-to-job transitions decrease

with tenure and wages, and (iii) wage mobility is limited in the sense that the lower the worker’s

wage, the lower the future wage a worker will move to in the next job transition. Moreover, block

recursivity implies that changes in the unemployment benefit and the minimum wage have no

effect on an employed worker’s job-to-job transitions and contracts.

The theoretical framework is tractable for a wide range of applications and extensions, because

of block recursivity. In particular, Menzio and Shi (2008) incorporate aggregate and match-

specific shocks into the model to examine dynamics and business cycles with on-the-job search.
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Appendix

A. Proof of Lemma 3.1

The result F (V̄ ) = V̄ is evident. Let V < V̄ , and denote K(x, V ) = p(x)(x− V ). Let V1 and V2
be two arbitrary values with V1 < V2 < V̄ , and denote Fi = F (Vi), where i = 1, 2.

For part (i), because p(.) is bounded and continuous, K(x, V ) is bounded and continuous.
Thus, the maximization problem in (3.1) has a solution. Since K(x, V ) > 0 for all x ∈ ¡V, V̄ ¢,
and K(V, V ) = 0 = K(V̄ , V ), the solutions are interior. Interior solutions and differentiability of
p (.) imply that F (V ) is given by the first-order condition, (3.2). Take two distinct values, V2 and
V1. They must generate different values for the right-hand side of (3.2). Thus, F (V1)∩F (V2) = ∅
for all V2 6= V1. This result implies that K(Fi, Vi) > K(Fj , Vi) for j 6= i. I have:

0 > [K (F2, V1)−K (F1, V1)] + [K (F1, V2)−K (F2, V2)] = [p(F2)− p(F1)](V2 − V1).

Thus, p(F2) < p(F1). Because p(.) is strictly decreasing, F (V2) > F (V1).
For part (ii), I show that K(x, V ) is strictly concave in x for all x ∈ (V, V̄ ). Let x1 and x2 be

two arbitrary values with x2 > x1 > V . Let xα = αx1 + (1− α)x2, where α ∈ (0, 1). Then,

K(xα, V ) ≥ [αp(x1) + (1− α)p(x2)] [α(x1 − V ) + (1− α)(x2 − V )]
= αK(x1, V ) + (1− α)K(x2, V ) + α(1− α)[p(x1)− p(x2)][x2 − x1]
> αK(x1, V ) + (1− α)K(x2, V ).

The first inequality comes from concavity of p, and the last from strictly decreasing p (.). Thus,
K(x, V ) is strictly concave in x, and F (V ) is unique. Uniqueness implies that F (V ) is continuous
in V , by the Theorem of the Maximum (see Stokey and Lucas, 1989, p62).

For part (iii), note that K(F1, V1) > K(F2, V1) and K(F2, V2) > K(F1, V2). Then,

S(V2)− S(V1) > K(F1, V2)−K(F1, V1) = −p(F1)(V2 − V1);

S(V2)− S(V1) < K(F2, V2)−K(F2, V1) = −p(F2)(V2 − V1).

Divide the two inequalities by (V2 − V1) and take the limit V2 → V1. Because F (.) is continuous,
the limit shows that S0(V1) = −p(F1). Since V1 is arbitrary, part (iii) holds for all V .

For part (iv), because p is decreasing and concave, p(F1) ≥ p(F2)− p0(F1) (F2 − F1). Substi-
tuting this inequality into (3.2) yields:

V2 − V1 ≥ 2 (F2 − F1) + p (F2)
p0 (F1)− p0 (F2)
p0 (F1) p0 (F2)

≥ 2 (F2 − F1) .

This implies F2 − F1 ≤ (V2 − V1) /2, and so F is Lipschitz.
For part (v), if p is twice differentiable, then differentiating (3.2) generates F 0(V ). Part (iv)

implies F 0(V ) ≤ 1/2. Hence, S00(V ) = −p0(F (V ))F 0(V ). QED

B. Proof of Theorem 4.1

Consider the sets, Ω and Ω0, defined by (4.6) and (4.7) respectively. It can be verified that Ω is
non-empty, closed, bounded and convex. Lemma B.1 below shows that properties (i) and (ii) in
Theorem 4.1 are satisfied not only by Jw∗ and pw∗ , but also by Jw and pw that are constructed
through (4.3) and (4.4) with any arbitrary w ∈ Ω. Thus, (2.2) and parts (i) - (iv) of Lemma
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3.1 hold in every iteration of the mapping ψ (defined by (4.5)), not just with the fixed point. In
particular, Fw(V ) is strictly increasing and satisfies (3.2) in every iteration. Lemma B.2 below,
whose proof uses (4.11), describes additional properties that will be used in the proofs of Lemmas
B.3, B.4 and B.5. The latter three lemmas establish that the mapping ψ satisfies the conditions
of the Schauder fixed-point theorem (see Stokey and Lucas, 1989, p520). Therefore, ψ has a fixed
point in Ω, denoted as w∗. Lemma B.3 then implies w∗(V ) = (ψw∗)(V ) ∈ Ω0.

Finally, I show that V̇w∗ > 0 for all V < V̄ , as in (iii) of Theorem 4.1. Once this is done,
(4.5) implies dJw∗ (V (t)) /dt = −max{0, V̇ ∗w (V )}/u0 (w∗ (V )) < 0 for all V < V̄ . Suppose that
V̇w∗ ≤ 0 for some V1 < V̄ , contrary to the theorem. In this case, (4.5) implies: w∗ (V1) =
y − [r + pw∗ (Fw∗ (V1))]Jw∗ (V1), and so

V̇w∗ = rV1 − Sw∗ (V1)− u (y − [r + pw∗ (Fw∗ (V1))]Jw∗ (V1)) .

With the properties of Jw∗ and pw∗ in Lemma B.1, the right-hand side of the above equation is
strictly decreasing in V1, and equal to 0 at V1 = V̄ . Thus, V̇w∗ > 0 at V1. A contradiction. This
completes the proof of Theorem 4.1. QED

The proofs of Lemmas B.1, B.2, B.3, and B.4 below are omitted but can be found in the
supplementary material.

Lemma B.1. For any w ∈ Ω, Jw(V ) and pw (V ), defined by (4.3) and (4.4), have the following
properties: (i) They are bounded, with Jw (V ) ∈

£
J, J̄

¤
, pw (V ) ∈ [0, p̄], Jw

¡
V̄
¢
= J , and

pw
¡
V̄
¢
= 0, where J , J̄ and p̄ are defined in (4.8); (ii) They are strictly decreasing, continuously

differentiable, and concave for all V ; (iii) If w ∈ Ω0, then Jw (V ) and pw (V ) are strictly concave.

Lemma B.2. Let w1, w2, w ∈ Ω. (i) pw (Fw (V )) is increasing in w in the sense that if w2 (V ) ≥
w1 (V ) for all V , then pw2 (Fw2 (V )) ≥ pw1 (Fw1 (V )) for all V ; (ii) For all V2 ≥ V1,

u (w (V2))− u (w (V1))

u0 (w (V1))
≥ ∆ ≥ [rV1 − Sw (V1)]− [rV2 − Sw (V2)]

u0 (w (V1))
, (B.1)

where ∆ is defined as follows:

∆ = 1
u0(w(V1)) max{0, rV1 − Sw (V1)− u (w (V1))}
− 1

u0(w(V2)) max{0, rV2 − Sw (V2)− u (w (V2))}. (B.2)

Lemma B.3. ψ : Ω→ Ω0 ⊂ Ω.

Lemma B.4. ψ is Lipschitz continuous in the sup norm.

Lemma B.5. With an arbitrary w ∈ Ω, define ψ0w = w and ψj+1w = ψ
¡
ψjw

¢
for j = 0, 1, 2, ....

The family of functions, {ψjw}∞j=0, is equicontinuous.

Proof. Take an arbitrary w ∈ Ω and construct the family, {ψjw}∞j=0. The family is equicon-
tinuous if it satisfies the following requirement (see Stokey and Lucas, 1989, p520): For any given
ε > 0, there exists a > 0 such that, for all V1 and V2,

|V2 − V1| < a =⇒ ¯̄
ψjw (V2)− ψjw (V1)

¯̄
< ε, all j. (B.3)

I use the following procedure to establish (B.3). In the entire procedure, fix w as an arbitrary
function in Ω and ε > 0 as an arbitrary number. First, because w is continuous, and the domain
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of w, [w, w̄], is bounded and closed, w is uniformly continuous. Thus, there exists a0 > 0 such
that, for all V1 and V2, |V2 − V1| < a0 =⇒ |w (V2)−w (V1)| < ε. Second, I show that there exists
a1 > 0 such that, for all V1 and V2, if |w (V2)−w (V1)| < ε, then

|V2 − V1| < a1 =⇒ |ψw (V2)− ψw (V1)| < ε. (B.4)

Let a = min{a0, a1}. Then, w and ψw both satisfy (B.3). Third, replacing w with ψw, and a0
with a, the above two steps yield that ψ2w satisfies (B.3). Repeating this process but fixing a at
the level just defined, it is easy to see that ψjw satisfies (B.3) for all j.

Only (B.4) needs a proof. Take arbitrary V1 and V2 that satisfy: |w (V2)− w (V1)| < ε. As
before, shorten the notation f (Vi) to fi, where f includes the functions w, Jw, Fw, pw, Sw and
ψw. Without loss of generality, assume V2 ≥ V1. Since w (V ) and ψw (V ) are increasing functions,
then w2 ≥ w1 and ψw2 ≥ ψw1. With the first inequality in (B.1), I have:

(0 ≤) ψw2 − ψw1 ≤ [r + pw (Fw1)] (Jw1 − Jw2)
+Jw2 [pw (Fw1)− pw (Fw2)] + [u (w2)− u (w1)] /u

0 (w1) .
(B.5)

Examine the three terms on the right-hand side in turn. Using (4.3), I obtain 0 ≤ Jw1−Jw2 ≤
(V2 − V1) /u

0 (w̄). For the difference in pw (F ), recall that Fw2 − Fw1 ≤ (V2 − V1) /2 (see Lemma

3.1). Also, because qw ≤ q̄, I can verify that
¯̄̄
dM(k/Jw)

dJw

¯̄̄
≤ B1 ≡ m1q̄

2/k, where m1 is specified in

Assumption 1. Thus,

0 ≤ pw (Fw1)− pw (Fw2) =M
³

k
Jw(Fw1)

´
−M

³
k

Jw(Fw2)

´
≤ B1 [Jw (Fw1)− Jw (Fw2)] ≤ B1 [Fw2 − Fw1] /u

0 (w̄) ≤ B1 (V2 − V1) / [2u
0 (w̄)] .

(B.6)

To examine the last term in (B.5), define L (w) ≡ u (w)−u (w1)−u0 (w1) (w − w1)+
μ1
2 (w −w1)

2,
where μ1 ≡ minw∈[w,w̄] |u00 (w)| > 0. Because L is concave, and L0 (w1) = 0, L (w) is maximized
at w = w1, and so L (w2) ≤ L (w1) = 0. Since w1 ≥ w, I get:

(0 ≤) u (w2)− u (w1)

u0 (w1)
≤ w2 − w1 − μ1

2u0 (w)
(w2 − w1)

2 . (B.7)

The RHS of (B.7) is maximized at w2 − w1 = [u0 (w) /μ1]1/2. Recall that w2 − w1 < ε. If

ε ≤ [u0 (w) /μ1]1/2, the RHS of (B.7) is increasing in (w2 −w1), and so it is strictly smaller

than the value at w2 − w1 = ε, which is
h
ε− μ1

2u0(w)ε
2
i
. If ε > [u0 (w) /μ1]1/2, then RHS(B.7)

< 1
2 [u

0 (w) /μ1]1/2 < ε/2. In both cases, I have:

(0 ≤) u (w2)− u (w1)

u0 (w1)
< ε max

½
1

2
, 1− μ1ε

2u0 (w)

¾
= ε− εmin

½
1

2
,

μ1ε

2u0 (w)

¾
. (B.8)

Substitute the above bounds on the terms on the RHS of (B.5). Noting that pw (Fw) ≤ p̄ and
Jw ≤ J̄ , where p̄ and J̄ are defined in (4.8), I obtain:

(0 ≤) ψw2 − ψw1 < A3 (V2 − V1) + ε− εmin

½
1

2
,

μ1ε

2u0 (w)

¾
, (B.9)

where A3 ∈ (0,∞) is defined as A3 ≡
³
r + p̄+ J̄B1

2

´
/u0 (w̄). A sufficient condition for ψw2 −

ψw1 < ε is that RHS(B.9) ≤ ε. This condition can be expressed as 0 ≤ V2 − V1 ≤ a1, where

a1 ≡ ε
A3
min

n
1
2 ,

μ1ε
2u0(w)

o
. Because A3 ∈ (0,∞), w > 0, and μ1 ∈ (0,∞), then a1 > 0, and (B.4)

holds. Moreover, a1 is independent of a0, given ε. This completes the proof of Lemma B.5. QED
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C. Supplementary Appendix

C.1. Proof of Lemma 3.2

Consider the firm’s optimization problem, (P). The state variable is V that obeys (3.3). Treat
γ, defined in (3.6), as an auxiliary state variable whose law of motion is:

d

dt
γ (t, ta) = − [r + p(F (V (t)))] γ(t, ta). (C.1)

Denote the shadow price of V as ΛV , and of γ as Λγ . Then, the Hamiltonian of (P) is:
H(t) = (y − w̃) γ(t, 0) + ΛV [rV − S(V )− u(w̃)]− Λγ [r + p (F (V ))] γ(t, 0),

where I have suppressed the dependence of the variables on t, except that of γ. Denote Λc(t) =
ΛV (t)/γ(t, 0), where the subscript c indicates the “current value”. The optimality conditions of
w̃, V and γ are as follows:

−u0(w̃)Λc − 1 ≤ 0 and w̃ ≥ 0, with complementary slackness; (C.2)

Λ̇c = Λγdp (F (V )) /dV ; (C.3)

Λ̇γ = − (y − w̃) + Λγ [r + p (F (V ))] . (C.4)

To derive (C.3), I have used the fact that S0(V ) = −p (F (V )) (see Lemma 3.1).
Using (C.1), I can rewrite (C.4) as d

dt [γ(t, 0)Λγ(t)] = − [y − w̃ (t)] γ(t, 0). Integrating this

equation under the transversality condition, limt→∞ γ(t, 0)Λγ(t) = 0, I get Λγ(t) = J̃(t) for all t,

where J̃(.) is given by (3.7). Substituting Λγ = J̃ into (C.3) and the Hamiltonian yields:

Λ̇c = J̃
dp (F (V ))

dV
, (C.5)

H(t) = γ(t, 0)
h
−dJ̃ (t) /dt+ Λc (t) V̇ (t)

i
. (C.6)

Because p (F (V )) strictly decreases in V for all t <∞, Λ̇c(t) < 0 for all t <∞.
Define t0 by Λc (t0) = 0. There is at most one such t0, because Λ̇c < 0. Moreover, Λc(t) > 0

for all t < t0, and Λc(t) < 0 for all t > t0. For all t ≤ t0, −u0 (w̃ (t))Λc(t) ≤ 0, in which case (C.2)
implies w̃(t) = 0. For all t > t0, the assumption u0(0) = ∞ ensures w̃ (t) > 0: if w̃(t) = 0, then
−u0 (w̃ (t))Λc (t)− 1 =∞ > 0, which contradicts (C.2).

The remainder of the proof establishes a sequence of results. First, dw̃ (t) /dt > 0 for all
t > t0. Suppose, to the contrary, that dw̃ (t) /dt ≤ 0 at t = t1 for some t1 ∈ (t0,∞). Because
Λ̇c < 0, then

d

dt

£−u0 (w̃ (t))Λc (t)¤ > −u00 (w̃ (t))Λc (t) dw̃ (t)
dt

, all t <∞.
1



Because dw̃ (t) /dt ≤ 0 at t = t1 and Λc (t) < 0 for t > t0, the derivative above on the RHS
is strictly positive for t near t1. As a result, there exists ε > 0 such that −u0 (w̃ (t))Λc (t) >
−u0 (w̃ (t1))Λc (t1) = 1 for t ∈ (t1, t1 + ε], where the equality follows from (C.2) and w̃ (t1) > 0.
This result contradicts (C.2). Thus, I have shown that the wage path has the following form:½

w̃(t) = 0, for t < t0;
w̃(t) > 0 and dw̃ (t) /dt > 0, for t ∈ (t0,∞). (C.7)

Because w̃ (t) is bounded for all t, and increasing, then w̃ (t)% w̄ as t→∞.
Second, H (t) = 0 for all t. Differentiating (C.6) with respect to t and substituting (C.5)

yields:
dH(t)
dt

= −γ(t, 0) £1 + u0 (w̃ (t))Λc (t)
¤ dw̃ (t)

dt
= 0,

where the second equality uses the results that dw̃ (t) /dt = 0 for t < t0, and 1+u
0 (w̃ (t))Λc (t) = 0

for t ≥ t0. Because limt→∞H(t) = 0, then H(t) = 0 for all t, which can be rewritten as
dJ̃ (t) /dt = Λc (t) V̇ (t) , all t. (C.8)

Third, V̇ (t) > 0 for all t < ∞, and J̃ (t) is maximized at t = t0. Suppose, to the contrary,
that V̇ (t1) ≤ 0 for some t1 < ∞. If t1 > t0, then dw̃ (t) /dt > 0 for all t ∈ [t1,∞) (see (C.7)).
Differentiating (3.3) yields:

dV̇ (t)

dt
= [r + p (F (V (t)))] V̇ (t)− u0 (w̃ (t))

dw̃ (t)

dt
.

V̇ (t1) ≤ 0 implies dV̇ (t) /dt < 0 at t = t1. By induction, dV̇ (t) /dt < 0 for all t ∈ [t1,∞). Thus,
V (t) strictly decreases toward V̄ as t increases from t1 to∞, contradicting the fact that V (t) ≤ V̄
for all t <∞. If t1 ≤ t0, then w̃ (t1) = 0 by (C.7), and so (3.3) implies: rV (t1)−S (V (t1)) ≤ u (0).
This result and (3.4) yield:

rVu − S(Vu)− u (b)− [rV (t1)− S (V (t1))] + u (0) ≥ 0.
Because S0 (V ) < 0, the left-hand side of the equation is strictly decreasing in V (t1). Because
the left-hand side is negative at V (t1) = Vu, then V (t1) < Vu. In this case, the worker will quit
into unemployment, which will be suboptimal to the firm. A contradiction.

Recall that Λc(t) > 0 for all t < t0, and Λc(t) < 0 for all t > t0. (C.8) and V̇ > 0 imply that
dJ̃ (t) /dt > 0 for all t < t0, and dJ̃ (t) /dt < 0 for all t > t0. That is, J̃ (t) is maximized at t = t0.

Fourth, t0 ≤ 0; thus, w̃(t) > 0 for all t > 0, and dw̃ (t) /dt > 0 for all t < ∞ (see (C.7)).
Suppose t0 > 0, to the contrary. Then, J̃ (t0) > J̃ (0) by the previous result. Let {w̃ (t)}∞t=0 be the
optimal contract that generates J̃ (0) to the firm. Consider an alternative contract, {ŵ(t)}∞t=0,
where ŵ (t) = w̃ (t+ t0) for all t. This alternative contract is feasible and generates a higher value
to the firm, J̃ (t0), than the optimal contract. A contradiction.

Finally, (3.9) and (3.10) hold. Because w̃(t) > 0 for all t, then Λc(t) = −1/u0 (w̃ (t)) for all t.
Differentiating this equation with respect to t, and substituting (C.5), I get (3.9). Substituting
Λc into (C.8) yields (3.10). Because V̇ (t) > 0, and w̃ (t) > 0, for all t < ∞, then dJ̃ (t) /dt < 0
for all t <∞. QED
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C.2. Proof of Lemma B.1

Let w ∈ Ω. Part (i) of the lemma was established in the analysis immediately following (4.8). It
is easy to verify from (4.3) that Jw(V ) is strictly decreasing and continuously differentiable, with
J 0w(V ) = −1/u0(w(V )) < 0. Since w(V ) is increasing, then J 0w(V ) is decreasing, and so Jw(V ) is
(weakly) concave. Because qw (V ) = k/Jw (V ) and pw (V ) =M (qw (V )), I have:

p0w(V ) =
M 0 (qw (V )) [qw (V )]2

u0(w(V ))k
< 0,

where M 0 (q) < 0 by Assumption 1. This shows that pw (V ) is strictly decreasing and contin-
uously differentiable. Moreover, parts (iii) and (iv) of Assumption 1 imply that

£
M 0 (q) q2

¤
is

decreasing in q. Because qw (V ) is increasing in V , M 0 (qw (V )) [qw (V )]2 is decreasing in V . Be-
cause 1/u0(w(V )) is increasing in V , and M 0 < 0, then p0w(V ) is decreasing. That is, pw(V ) is
(weakly) concave, and so part (ii) of the Lemma holds.

If w ∈ Ω0, i.e., if w (V ) is strictly increasing for all V < V̄ , then it is straightforward to
strengthen the argument for part (ii) to show that Jw (V ) and pw (V ) are strictly concave, as
stated in part (iii). QED

C.3. Proof of Lemma B.2

To prove part (i) of the lemma, pick two arbitrary functions w1, w2 ∈ Ω, with w2 (V ) ≥ w1 (V )
for all V . Simplify the notation Jwi to Ji, Fwi to Fi and pwi to pi, where i = 1, 2. Because
w2 (V ) ≥ w1 (V ) for all V , (4.3) implies J2 (V ) ≥ J1 (V ), and the assumption M 0 < 0 implies
p2 (V ) ≥ p1 (V ), for all V . Suppose, contrary to part (i) of the Lemma, that p1 (F1 (V )) >
p2 (F2 (V )) for some V . Let qi = k/Ji (Fi (V )), i = 1, 2. Because pi (Fi (V )) =M (qi), and M (q)
is strictly decreasing in q, the supposition implies q1 < q2, and hence J1 (F1 (V )) > J2 (F2 (V )).
Monotonicity of Jw in w implies J2 (F2 (V )) ≥ J1 (F2 (V )). In this case, J1 (F1 (V )) > J1 (F2 (V )),
and so F1 (V ) < F2 (V ). With these results, I can derive:

0 < p1 (F1 (V ))− p2 (F2 (V ))
= p02 (F2 (V )) [F2 (V )− V ]− p01 (F1 (V )) [F1 (V )− V ]
< [p02 (F2 (V ))− p01 (F1 (V ))] [F1 (V )− V ]

= F1(V )−V
k

h
M 0(q2)(q2)2
u0(w2(F2(V ))) −

M 0(q1)(q1)2
u0(w1(F1(V )))

i
≤ F1(V )−V

u0(w1(F1(V )))k

h
M 0 (q2) (q2)2 −M 0 (q1) (q1)2

i
.

The first inequality comes from the supposition, the first equality from (3.2), the second inequality
from F2 (V ) > F1 (V ) and p02 (F2) < 0, the second equality from computing p0i (Fi), and the last
inequality from M 0 (q2) < 0 and w2 (F2 (V )) ≥ w1 (F2 (V )) ≥ w1 (F1 (V )). Parts (iii) and (iv)
of Assumption 1 imply that M 0 (q) q2 is decreasing in q. Because q2 > q1, as shown above, the
expression in the last line above is non-positive. A contradiction.

To prove part (ii) of the lemma, let w ∈ Ω, and V2 ≥ V1. Note that w (V2) ≥ w (V1), because
w ∈ Ω. Moreover, because [rV − Sw (V )] is strictly increasing in V , rV2−Sw (V2) ≥ rV1−Sw (V1).
Hence, the following inequality holds:

∆ ≤ ∆1 ≡ 1

u0 (w (V1))

∙
max {0, rV1 − Sw (V1)− u (w (V1))}
−max {0, rV1 − Sw (V1)− u (w (V2))}

¸
.
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Consider all possible cases: (a) rV1 − Sw (V1) ≥ u (w (V2)); (b) rV1 − Sw (V1) ≤ u (w (V1)); and
(c) u (w (V1)) < rV1 − Sw (V1) < u (w (V2)). In each case, it can be verified that

∆1 ≤ u (w (V2))− u (w (V1))

u0 (w (V1))
.

Thus, the first inequality in (B.1) holds.
To establish the second inequality in (B.1), I first show that

max{0, rV2 − Sw (V2)− u (w (V2))} ≤ u0 (w (V2))
u0 (w (V1))

max{0, rV2 − Sw (V2)− u (w (V1))}.

This inequality is evident when rV2−Sw (V2) ≤ u (w (V2)), because the left-hand side is 0 in that
case. If rV2 − Sw (V2) > u (w (V2)), the above inequality becomes:

rV2 − Sw (V2)− u (w (V2))

u0 (w (V2))
≤ rV2 − Sw (V2)− u (w (V1))

u0 (w (V1))
.

Because [rV − Sw (V )] is strictly increasing in V , rV2 − Sw (V2) ≤ rV̄ − Sw
¡
V̄
¢
= u (w̄). In this

case, (4.11) implies that [rV − Sw (V )− u (w)] /u0 (w) is decreasing in w, for any given V and
Sw (V ). Since w (V2) ≥ w (V1), the above inequality holds.

Using the above result, I obtain:

∆ ≥ 1

u0 (w (V1))

∙
max{0, rV1 − Sw (V1)− u (w (V1))}
−max{0, rV2 − Sw (V2)− u (w (V1))}

¸
.

Consider all of the possible cases: (a) u (w (V1)) ≥ rV2 − Sw (V2); (b) u (w (V1)) ≤ rV1 − Sw (V1);
and (c) rV1 − Sw (V1) < u (w (V1)) < rV2 − Sw (V2). In each case, it is straightforward to deduce
the second inequality in (B.1) from the above relation. QED

C.4. Proof of Lemma B.3

Let w ∈ Ω, and consider the function ψw (V ). With Lemma B.1, ψw (V ) is a continuous and
bounded function of V . Next, I prove that ψw (V ) is an increasing function. To do so, let V1
and V2 be arbitrary values in

£
V , V̄

¤
, with V2 ≥ V1. Simplify the notation f (Vi) to fi, where f

includes the functions w, Jw, Fw, Sw and ψw. I show that ψw2 ≥ ψw1. To do so, use the second
inequality in (B.1) to obtain:

ψw2 − ψw1 ≥ [r + pw (Fw1)]Jw1 − [r + pw (Fw2)]Jw2
+ [rV1 − Sw1 − (rV2 − Sw2)] /u

0 (w1)
= [r + pw (Fw1)] (Jw1 − Jw2) + Jw2 [pw (Fw1)− pw (Fw2)]
+ [rV1 − Sw1 − (rV2 − Sw2)] /u

0 (w1) .

Because [rV − Sw (V )]
0 = r + pw (Fw), and

£
rV̄ − Sw

¡
V̄
¢¤
= u (w̄), then

rV − Sw (V ) = u (w̄)−
Z V̄

V
[r + pw (Fw (z))] dz.

Using this result, and expressing Jw (V ) as in (4.3), I get:

[r + pw (Fw1)] (Jw1 − Jw2) + [rV1 − Sw1 − (rV2 − Sw2)] /u
0 (w1)

=

Z V2

V1

h
r+pw(Fw1)
u0(w(z)) − r+pw(Fw(z))

u0(w1)

i
dz ≥ 0. (C.9)
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The inequality follows from pw (Fw1) ≥ pw (Fw (z)), and u0 (w (z)) ≤ u0 (w1), for all z ∈ [V1, V2].
Because pw (F ) is a decreasing function of F , I have established:

ψw2 − ψw1 ≥ Jw2 [pw (Fw1)− pw (Fw2)] ≥ 0. (C.10)

Now I verify ψw (V ) ∈ [w, w̄] for all V , with ψw ¡V̄ ¢ = w̄. Because w
¡
V̄
¢
= w̄, Jw

¡
V̄
¢
= k/q̄,

and pw
¡
V̄
¢
= 0, it is clear that ψw

¡
V̄
¢
= w̄. Since ψw (V ) is increasing, ψw (V ) ≤ ψw

¡
V̄
¢
= w̄

for all V . Similarly, ψw (V ) ≥ w for all V if and only if ψw (V ) ≥ w. To establish the latter
inequality, note that w (V ) ≥ w, because w ∈ Ω. Using (4.11) and the fact that rV = u (b), I
have:

1

u0 (w (V ))
[rV − Sw (V )− u (w (V ))] ≤ 1

u0 (w)
[u (b)− Sw (V )− u (w)] .

The right-hand side of the inequality is non-negative, because w is set to be small. Thus,

ψw (V ) ≥ y − [r + pw (Fw (V ))]Jw (V )− 1
u0(w) [u (b)− Sw (V )− u (w)]

≥ y − [r + pw̄ (Fw̄ (V ))] J̄ − 1
u0(w)

£
u (b)− Sw (V )− u (w)

¤
.

The first inequality comes from the preceding result. The second inequality uses part (i) of
Lemma B.2, the upper bound on J (defined in (4.8)), and the fact that Sw (V ) is increasing in w
for any given V . With the above result, (4.10) implies ψw (V ) ≥ w. Therefore, ψ maps functions
in Ω into functions in Ω.

Finally, if V2 > V1, the inequalities in (C.9) and (C.10) are strict, because Fw (V ) is strictly
increasing and pw (Fw (V )) is strictly decreasing in V for all V < V̄ (see Lemma B.2). In this
case, ψw ∈ Ω0 ⊂ Ω. This completes the proof of Lemma B.3. QED

C.5. Proof of Lemma B.4

I prove that the following inequality holds for all w1, w2 ∈ Ω, and all V :
|ψw2(V )− ψw1(V )| ≤ A kw2 − w1k , (C.11)

where the norm is the sup norm and A is a finite constant. Once this is done, Lipschitz continuity
of ψ is evident from the following inequality:

kψw2 − ψw1k = max
V
|ψw2(V )− ψw1(V )| ≤ A kw2 − w1k .

To show (C.11), take two arbitrary functions, w1, w2 ∈ Ω, and fix V at an arbitrary value in
[V , V̄ ]. Without loss of generality, assume ψw2(V ) ≥ ψw1(V ) for this given V . Since V is fixed,
I suppress it from the functions if this does not cause confusion. Also, shorten the subscript wi

on J , p, F , and S to i, where i = 1, 2. I have:

0 ≤ ψw2 (V )− ψw1 (V ) = [r + p1 (F1)] (J1 − J2) + J2 [p1 (F1)− p2 (F2)] +∆2,

where

∆2 = max

½
0,
rV − S1 − u (w1)

u0 (w1)

¾
−max

½
0,
rV − S2 − u (w2)

u0 (w2)

¾
.

To proceed, note that the following inequalities hold for all a1 and a2:

max{0, a1}−max{0, a2} ≤ max{0, a1 − a2} ≤ |a1 − a2| .
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Using these results, it is easy to verify that

∆2 ≤
¯̄̄̄
rV − S1 − u (w1)

u0 (w1)
− rV − S1 − u (w2)

u0 (w2)

¯̄̄̄
+
|S2 − S1|
u0 (w2)

.

Denote the first term on the right-hand side above as ∆3. Define:

μ1 = min
w∈[w,w̄]

¯̄
u00 (w)

¯̄
, μ2 = max

w∈[w,w̄]
¯̄
u00 (w)

¯̄
. (C.12)

μ1 and μ2 are positive and finite. Because (rV − S1) is strictly increasing in V , rV −S1 ≤ u (w̄).
Also, concavity of u implies: u (w̄) ≤ u (w) + u0 (w) (w̄ −w). Then,¯̄̄̄

d

dw

µ
rV − S1 − u (w)

u0 (w)

¶¯̄̄̄
≤ 1 + μ2

u0 (w̄)
(w̄ − w) ≡ A1, (C.13)

Hence,
∆3 ≤ A1 |w2 − w1| , ∆2 ≤ A1 |w2 − w1|+ |S2 − S1| /u0 (w̄) .

Substituting these results into the earlier expression for [ψw2 (V )− ψw1 (V )], and using the
bounds in (4.8), I obtain:

0 ≤ ψw2 (V )− ψw1 (V ) ≤ (r + p̄) |J1 − J2|+ J̄ |p2 (F2)− p1 (F1)|
+ |S2 − S1| /u0 (w̄) +A1 |w2 − w1| . (C.14)

Let me examine the first three terms on the right-hand side above. With μ2 defined in (C.12),
the following inequality holds for all w1, w2 ∈ [w, w̄]:¯̄̄̄

1

u0 (w1 (z))
− 1

u0 (w2 (z))

¯̄̄̄
≤ A2 kw2 − w1k , where A2 ≡ μ2

[u0 (w̄)]2
. (C.15)

Using this result and (4.3), I have:

|J1 − J2| ≤
Z V̄

V

¯̄̄̄
1

u0 (w1 (z))
− 1

u0 (w2 (z))

¯̄̄̄
dz ≤ A2

¡
V̄ − V

¢ kw2 − w1k . (C.16)

To put a bound on the difference, |p2 (F2)− p1 (F1)|, define:
B1 ≡ m1q̄

2/k, B2 ≡ (q̄m2 + 2m1) q̄
3/k2, (C.17)

where m1 and m2 are the bounds specified in Assumption 1. Clearly, B1 and B2 are finite.
Because k/Jw = qw ≤ q̄, it is straightforward to verify that¯̄̄̄

dM(k/Jw)

dJw

¯̄̄̄
≤ B1,

¯̄̄̄
d2M(k/Jw)

dJ2w

¯̄̄̄
≤ B2. (C.18)

Using these bounds, (C.15) and (C.16), I can derive the following results for all z ∈ £V , V̄ ¤:
|p2 (z)− p1 (z)| ≤ B1 |J2 (z)− J1 (z)| ≤ B1A2

¡
V̄ − V

¢ kw2 −w1k ; (C.19)

|p02(z)− p01(z)| =
¯̄̄

1
u0(w2(z))

d
dJ2

M
³

k
J2(z)

´
− 1

u0(w1(z))
d
dJ1

M
³

k
J1(z)

´¯̄̄
≤ B1

¯̄̄
1

u0(w2(z)) − 1
u0(w1(z))

¯̄̄
+ 1

u0(w2(z))

¯̄̄
d
dJ2

M
³

k
J2(z)

´
− d

dJ1
M
³

k
J1(z)

´¯̄̄
≤ B1A2 kw2 − w1k+ B2

u0(w̄) |J2 (z)− J1 (z)|
≤

h
B1 +

B2
u0(w̄)

¡
V̄ − V

¢i
A2 kw2 − w1k .

(C.20)
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Now, examine the difference, |p2 (F2)− p1 (F1)|. Assume F2 ≥ F1, without loss of generality.
(If F2 ≤ F1, switch the roles of F1 and F2 in the proof, and the resulting bound is the same.) In
the case where p2(F2) < p1(F1), I have the following inequalities:

0 < p1(F1)− p2(F2) = −p01(F1)(F1 − V ) + p02(F2)(F2 − V ) ≤ (F1 − V )
£
p02(F1)− p01(F1)

¤
.

The equality follows from (3.2), and the last inequality from the fact that p02 (F ) (F − V ) is
decreasing in F . Because 0 ≤ F1 − V ≤ V̄ − V , the above result and (C.20) imply:

|p2(F2)− p1(F1)| ≤
∙
B1 +

B2
u0(w̄)

¡
V̄ − V

¢¸
A2
¡
V̄ − V

¢ kw2 − w1k . (C.21)

In the case where p2 (F2) ≥ p1 (F1), the following inequalities hold:

0 ≤ p2(F2)− p1(F1) ≤ p2(F1)− p1(F1) ≤ B1A2
¡
V̄ − V

¢ kw1 − w2k .
The second inequality comes from the fact that p is decreasing, and the last inequality from
(C.19). Thus, (C.21) holds in this case too.

Next, turn to the difference, |S2 − S1|. Because S1 is the maximum of p1 (F ) (F − V ) over F ,
then S1 ≥ p1 (F2) (F2 − V ). Using the inequality and (C.19), I have:

S2 − S1 ≤ p2 (F2) (F2 − V )− p1 (F2) (F2 − V )

= (F2 − V ) [p2(F2)− p1(F2)] ≤ B1A2
¡
V̄ − V

¢2 kw2 − w1k .
Similarly, using the inequality, S2 ≥ p2 (F1) (F1 − V ), I can show that (S1 − S2) is bounded by
the same upper bound as above. Hence,

|S2 − S1| ≤ B1A2
¡
V̄ − V

¢2 kw2 −w1k . (C.22)

Assembling (C.16), (C.21) and (C.22) into (C.14), I obtain (C.11), where A is given as

A = A1 +A2
¡
V̄ − V

¢½
(r + p̄) +

∙
B1J̄ +

B1 +B2J̄

u0(w̄)
¡
V̄ − V

¢¸¾
.

Clearly, A is finite. Moreover, A is independent of the particular functions w1 and w2 with which
the functions (Ji, qi, pi, Fi, Si) are constructed. QED

C.6. Proof of Theorem 6.1

First, I derive (6.2). Set V = V̄ in (6.1). Because V̇ = 0 at V = V̄ , the left-hand side of (6.1)
is equal to 0 at V = V̄ . Moreover, the integral in (6.1) is equal to zero, because F−1(V̄ ) = V̄ .
Thus, at V = V̄ , (6.1) yields (6.2).

Second, I show that G is continuous; i.e., G does not have any mass point. Suppose, to the
contrary, that G has a mass a > 0 at some value V ∈ [v1, V̄ ]. Then, G (V )−G(V − V̇ dt) ≥ a for
all dt > 0, and so the left-hand side of (6.1) is equal to ∞. This is a contradiction, because the
right-hand side of (6.1) is bounded.

Third, to establish (6.3) and continuity of g, denote the left-hand side derivative ofG as g (V−).
The left-hand side of (6.1) is equal to g(V−)V̇ . Because G, F , F−1 and p(.) are continuous, the
right-hand side of (6.1) is continuous in V . Thus, g(V−)V̇ must be continuous. Because V̇ is
continuous, g must be continuous. Then, I can express the left-hand side of (6.1) as g (V ) V̇ .
After substituting p(v1) from (6.2), (6.1) becomes (6.3).
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Fourth, g is continuously differentiable for all V 6= v2. To see this, note that F , F
−1 and

p(.) are continuously differentiable. Since g is continuous, G is continuously differentiable, and
so the right-hand side of (6.3) is continuously differentiable for all V 6= v2. Thus, the left-hand
side of the equation, g (V ) V̇ , must be continuously differentiable for all V 6= v2. Because V̇ is
continuously differentiable, g (V ) is continuously differentiable for all V 6= v2.

Fifth, I derive (6.5). For V ∈ (v1, v2), F−1(V ) < v1, and so (6.3) becomes:

g1(V )V̇ = δ [1−G1(V )]−
Z V

v1

p(F (z))g1(z)dz. (C.23)

Note that T 0 (V ) = 1/V̇ from (4.1). Differentiating the function Γ in (6.4) yields:

dΓ (V, v1) /dV = − [δ + p (F (V ))]Γ (V, v1) /V̇ . (C.24)

With (C.24) and (C.23), it is straightforward to verify:

d

dV

"
V̇ g1 (V )

Γ (V, v1)

#
= 0. (C.25)

Recall that G1(v1) = 0, because G (V ) is continuous for all V . Taking the limit V ↓ v1 in (C.23)
leads to g1(v1)v̇1 = δ. With this initial condition, integrating (C.25) from v1 to V yields (6.5).
Since g is continuous, taking the limit V ↑ v2 in (6.5) gives g(v2).

Finally, I derive (6.6) by examining the case V ∈ [vj , vj+1), where j ≥ 2. In this case,
F−1(V ) ≥ v1, and so (6.3) becomes:

gj(V )V̇ = δ [1−G(V )]−
Z vj

F−1(V )
p(F (z))gj−1 (z) dz −

Z V

vj

p(F (z))gj (z) dz. (C.26)

I have separated the two groups of applicants who obtain jobs with values above V : one coming
from (F−1 (V ) , vj ] and the other from [vj , V ]. With (C.26) and (C.24), I can derive:

d

dV

"
V̇ gj (V )

Γ (V, v1)

#
=

p (V )

Γ (V, v1)
gj−1

¡
F−1 (V )

¢ dF−1(V )
dV

. (C.27)

Integrating this equation from vj to V yields (6.6). Because g is continuous, then gj(vj) =
limV ↑vj gj−1(V ), all j. This completes the proof of Theorem 6.1. QED
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