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Abstract

I study a budget-constrained, private-valuation, sealed-bid sequential auction with two
incompletely-informed, risk-neutral bidders in which the valuations and income may be
non-monotonic functions of a bidder’s type. Multiple equilibrium symmetric bidding func-
tions may exist that differ in allocation, efficiency and revenue. The sequence of sale affects
the competition for a good and therefore also affects revenue and the prices of each good
in a systematic way that depends on the relationship among the valuations and incomes
of bidders. The sequence of sale may affect prices and revenue even when the number of
bidders is large relative to the number of goods. If a particular good, say α, is allocated
to a strong bidder independent of the sequence of sale, then auction revenue and the price
of good α are higher when good α is sold first.

Keywords: sequential auctions, budget constraints, efficiency, revenue, price, se-
quence.

JEL Classification: C7, C72, L1

1 Introduction

Much of the existing theoretical work on auctions concentrates on the allocation of a single good.1

However, in actual auctions, several heterogeneous goods are often allocated sequentially. If there

is no link among the goods then one may be able to apply the single-good analysis repeatedly.

However, such a link may arise if budget constraints limit a bidder’s ability to bid for later goods

when earlier prices deplete the bidder’s limited resources.

∗Please send correspondence to Prof. C. Pitchik, Dept. of Economics, University of Toronto, 150 St. George
St., Toronto, M5S 3G7, Canada, Internet: pitchik@chass.utoronto.ca, Telephone +1-(416)-978-5249, Fax +1-
(416)-978-6713. I thank Paul Klemperer, Preston McAfee, Martin J. Osborne, Mike Peters, Andrew Schotter,
Ralph Winter and two referees for helpful comments, insights and discussions. I gratefully acknowledge financial
support from the Social Sciences and Humanities Research Council of Canada.
†http://www.elsevier.com/wps/find/journaldescription.cws home/622836/description#description
1For a survey of the literature, see Klemperer (1999).

1



Individual bidders whose valuations derive from consumption (rather than resale) may be

budget-constrained. But the relevance of budget constraints extends well beyond this case.

A theoretical literature argues generally that the existence of agency problems implies that

firms are effectively budget-constrained in their investment decisions.2 An empirical literature

supports this idea.3 In the context of auctions, even firms that are buying to re-sell may

effectively be budget-constrained if the cost of borrowing increases with the amount borrowed4

(a standard assumption in the finance literature) or if capital market imperfections result in

budgets for projects being determined on a yearly basis, so that the firms allocate only a fixed

amount of capital5 for the completion of a project. Engelbrecht-Wiggans (1987) shows that

budget constraints arise if a bidder is an agent of a principal.

When investments are relatively large then capital market imperfections can lessen the ability

of even a large firm to borrow funds. The historic auction of radio spectrum by the FCC in the

USA is a good example of an auction in which the investments are relatively large. Cramton

(1994) finds it realistic to assume that all firms in PCS (personal communicating services)

auctions face budget constraints.6 As he explains, bidders must raise funds before the auction

starts when they do not know exactly how much they will need. Given that fund-raising is

time-consuming and costly, he argues that it is reasonable to assume that firms that come to

such auctions are budget-constrained. In addition, only forty per cent of the narrow band PCS

spectrum was for sale in the first spectrum auction held by the FCC, so that, though each

spectrum auction was simultaneous, goods were allocated sequentially across auctions as well

as simultaneously within an auction.

I find that the order of sale affects revenue in a private value budget-constrained sequential

auction with imperfect information in which bids are continuous. The order of sale affects

revenue and prices whether information is perfect and bids are discrete or whether information

is imperfect and bids are continuous. The intuition derives from the fact that once good 1 is

sold, there is an option to win good 2. The value of the option depends on demand for good 2

which in turn depends on the order of sale. Benôıt and Krishna (1998) show that in a complete

information common value auction of two goods and three budget-constrained bidders, selling

the more highly valued good first always generates the highest revenue. Their result extends

to two goods and n budget-constrained bidders since only the top three incomes are relevant.

However, it is easy to generate budget-constrained sequential common value auctions in which

2See Lewis and Sappington (1989a, 1989b), Hart and Moore (1995) and Clementi and Hopenhayn (2003).
3See Fazzari and Athey (1987), Fazzari et. al. (1988), Whited (1992), Fazzari and Petersen (1993), Love

(2003) and Clementi and Hopenhayn (2003) for empirical corroboration of budget constraints.
4See Cramton (1995) for a discussion of the budget constraints faced by firms making large investments in

the nationwide narrowband PCS auction held in the United States in July 1994.
5See Hendricks and Porter (1992) for empirical evidence of capital constraints in land lease auctions.
6As do Burguet and McAfee (2005).
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selling the most highly valued of three goods does not generate the highest revenue.7

The preceding paragraph illustrates that the relationship between the order of sale and

revenue is unclear. The question that I address in this paper is whether any systematic rules

govern the relationship among the prices of a good, the revenue, and the order of sale when the

valuations are similar and when the income exceeds the valuation of each good. In Section 7,

I provide a restricted set of auctions in which selling the more highly valued good first raises

more revenue than selling it second.

I study a budget-constrained version of the benchmark model of a private-valuation sealed-

bid sequential auction in which two risk-neutral bidders bid for two goods and information is

incomplete.8 When information is complete, revenue is affected, in a systematic way,9 by the

price-formation rule (i.e. the rule that specifies the price as a function of the bids). Assuming

information is incomplete does not change this. In order to isolate the pure effect of the budget

constraints on the prices of goods relative to their order of sale and the price-formation rule, I

restrict to a world in which the expected revenue is constant within a class of price-formation

rules that includes 1st and 2nd price rules (as would happen if there were only a single good and

no effective budget constraints). In this world, I find that the auction revenue depends on the

sequence of sale, that the price of a good depends on its position in the sequence of sale, and

that this dependence has a natural interpretation.

In a budget-constrained sequential auction of two goods in which a bidder’s type determines

the value of the bidder’s valuation and income functions, I restrict attention to symmetric

bidding functions but do not assume monotonicity in a bidder’s type. I find that multiple

symmetric equilibrium bidding functions may exist that differ with respect to efficiency, revenue

and allocation. Whether revenue is maximized or the allocation is efficient depends on the

relationship between the bidding function and the valuation and income functions and not on

the price rule.

Say that two real-valued functions f and g are ordinally equivalent on a common domain S if

f(x) > f(y) if and only if g(x) > g(y) for any x, y ∈ S (that is, they produce a common ranking of

the domain elements). Ordinal equivalence can be useful in determining whether an equilibrium

bidding function generates the highest revenue or an efficient outcome. An upper bound on

the revenue generated is that generated by any bidding function that is ordinally equivalent to

the income function (Theorem 2 and Corollary 3). An efficient allocation is generated if the

bidding function is ordinally equivalent to the difference in valuation functions (Theorem 2 and

7Benôıt and Krishna (1998).
8Benôıt and Krishna (2000) consider budget constrained buyers with complete information. Che and Gale

(1993) consider budget constrained buyers in one-good auctions. Pitchik and Schotter (1986), Pitchik and
Schotter (1988) and Pitchik (1989) considers budget constrained buyers with incomplete information.

9See Benôıt and Krishna (2000), Pitchik and Schotter (1988), and Pitchik and Schotter (1986).
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Corollary 3). In particular, if the valuation and income functions are increasing in a bidder’s

type with one valuation function increasing more rapidly than the other, then, under first or

second price rules, there exists an equilibrium bidding function that generates maximum revenue

and an efficient allocation when the good whose valuation increases more rapidly in a bidder’s

type is sold first. Thus, even when there are only two goods, selling the highest valued good

first need not generate the highest revenue. In particular, if one is auctioning the contents of

a household, then selling a wall painting by an unknown artist (for whom bidders’ tastes are

highly variable) before the used ride-on lawn mower (whose value may be high but publicly

known) maximizes revenue.

The price-formation rule may affect the price of a good even if it does not affect revenue

(Theorem 7). For example, under a second price rule, a bidder might worry about not being

awarded good 2 at a low price and so bid relatively high while, under a first price rule a bidder

might worry about winning good 1 at a high price and so bid relatively low. In addition, auction

revenue and allocation may differ across symmetric equilibrium bidding functions (Theorem 2,

8, and 10, and Corollary 3).

The law of one price does not hold for similar goods in a budget-constrained sequential

auction (Theorems 4, 17, and 20, and Corollaries 5, 18, and 19). If the goods α and β are

identically valued and the bidding function is ordinally equivalent to the income function, then

the expected price is higher the later the good is sold. If the goods α and β are similarly valued

(with a common mean) but the value of one good is even slightly more variable than the other

and income is constant across types of bidders, then the expected price is higher the earlier the

good is sold under a 2nd price rule;10 under a 1st price rule, it is higher the later the good is sold.

In my model the goods may be heterogeneous. The revenue and the price of a good depend

on the order of sale and the interaction among the valuations and income of bidder types. Each

bidder obtains no more than one good in equilibrium, but the bidders are not constrained ex

ante from obtaining both goods independent of the prices and bids; further, bidders know their

valuations of both goods at the beginning of the auction. In addition, the valuations and income

may be non-monotonic in type.

Previous models in the literature11 use various assumptions to obtain the relationship be-

tween the price of a good and its order of sale so that the various results are hard to compare

within the context of a single model. When I restrict to similar goods in my model, the effect

of the order of sale on the price depends, in a systematic way, on the way that the order of sale

affects the opportunity cost of winning good one.

10Ashenfelter (1989) and Ashenfelter and Genesove (1993) provide empirical evidence that ex ante identical
goods fetch prices that depend on their position in the order of sale.

11Genesove (1993), Black and De Meza (1993), Bernhardt and Scoones (1993) and Gale and Hausch (1992).
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Two previous models link revenue with the order of sale. Elmaghraby (2003) links revenue to

the order of sale when a buyer auctions two heterogeneous jobs to capacity-constrained suppliers.

Chakraborty et. al. (2006) obtain that the order of sale affects revenue when a seller may choose

which of two goods to sell first based on her private information in the context of the standard

auction model in Milgrom and Weber (1982).

Other work deals with the allocation of multiple goods to multiple bidders, but none of

which I am aware specifically analyzes the allocation of multiple goods auctioned sequentially to

a set of incompletely-informed, budget-constrained bidders with private valuations.12 The aim

of the paper is to understand how the relationship between auction revenue, allocation, prices

and the order of sale depends on the relationship among the parameters of the model and the

price-formation rule.

2 The Model

Two individuals, 1 and 2, bid for two heterogenous goods, α and β. The goods are sold se-

quentially; I refer to the first good sold as good 1. Each individual’s privately known type is

drawn independently from the publicly known distribution H, which is atomless, continuously

differentiable, and increasing on its support [0, 1]. An individual of type t has income I(t) and

valuation vγ(t) for good γ, for γ = α, β. An individual of type t is constrained to pay no more

than I(t) in the auction. Thus, if an individual of type t obtains good 1 at the price p1, then

p1 ≤ I(t) and the individual can pay no more than I(t)− p1 for good 2.

I assume that the functions I : [0, 1] −→ [a, b] and vγ : [0, 1] −→ [aγ, bγ], γ = α, β are

continuously differentiable, with a ≥ 0 and aγ ≥ 0 for γ = α, β. I impose the mild condition

that on no set of positive Lebesgue measure is it the case that v′1 − v′2 + I ′ = 0 and v′1 − v′2 = 0.

So, for example, if v1 and v2 differ by a constant on some interval then I is not constant on this

interval. Note that I do not impose monotonicity on v1, v2 or I.

Since I, vα and vβ may not be monotonic, knowing the value I(t) of one’s opponent’s income

need not give any information about one’s opponent’s valuations v1(t) and v2(t). For example,

no information is given when the function I is constant on [0, 1]. Note also that the income and

valuations of one individual are not correlated with those of any other.

In order that the valuations be meaningful I assume that for each type, income is at least

equal to each valuation; in order that the budget constraint be effective I assume that, for each

type, income is at most the sum of the valuations. Precisely,

vγ(t) ≤ I(t) ≤ vα(t) + vβ(t) for γ = α, β and t ∈ [0, 1], (1)

12See Benôıt and Krishna (2000), Bernhardt and Scoones (1993), Bulow and Klemperer (2002), Engelbrecht-
Wiggans and Weber (1979), Engelbrecht-Wiggans and Menezes (1993), Gale and Hausch (1992), Gale and
Stegeman (2001), Krishna (1990,1993), McAfee and Vincent (1993), Menezes (1993), Ortega-Reichert (1968),
Palfrey (1980), Pitchik and Schotter (1986,1987), von der Fehr (1994), Weber (1983) and Swinkels (1989).
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where the first inequality is strict for t ∈ (0, 1).

This assumption has two implications. (1) The maximum amount that an individual of type

t is willing and able to pay for both goods simultaneously is I(t). (2) The maximum amount

that an individual of type t is willing and able to pay for good 2, once good 1 is sold, is the

minimum of v2(t) and any income remaining to the individual after payment for good 1 is made.

I call this minimum the individual’s de facto valuation of good 2. Later I define an individual’s

de facto valuation of good 1, which takes into account the fact that the higher is the price paid

by the winner of good 1, the lower is this individual’s de facto valuation of good 2.

I study a sealed-bid auction. First, good 1, which may be α or β, is brought up for sale. Each

individual submits a bid for good 1; the bids are submitted simultaneously. The bid that an

individual of type t is able to make is constrained to be nonnegative. The bidder who submits

the higher bid obtains good 1. The price this bidder pays for the good depends on the price-

formation rule. The price that an individual of type t is able to pay is at most I(t). I assume

that there is an explicity penalty that constrains the bids so that the winning price is at most

the income of the winning bidder. (For example, if the bids and price-formation rule result in

a price that the winner is unable to pay, then the winner must forfeit the good and in addition

must pay a financial penalty that ensures compliance with this assumption.) I assume that the

price-formation rule satisfies the following conditions. (Note that both first- and second-price

rules satisfy these assumptions.)

(S1) Bidders are treated anonymously (the price of a good depends only on the collection of

bids and not on the identity of which bidder made which bid).

(S2) The price is non-decreasing in the bids.

After good 1 is sold, the winner’s budget is reduced by the price paid for good 1 and the

winning bid is revealed. The individuals then simultaneously bid for good 2 ({α, β} = {1, 2});
the price that an individual of type t is able to pay is constrained to be at most I(t) minus any

payment the individual made for good 1.

I restrict attention to symmetric equilibria—that is, equilibria in which the bid of an indi-

vidual of type t at each stage depends on t and not on t’s name. The fact that the loser in the

first stage knows the winning bid and the equilibrium bidding function in the first stage allows

the loser’s beliefs about the winner’s type to be updated. The inference problem complicates

the model substantially without apparently affecting the key incentives that I wish to explore,

so I make the simplifying assumption that once good 1 is allocated, the income of the winner of

good 1 and the price paid for good 1, in addition to the winning bid, are public knowledge.

It is well-known that the price-formation rule can affect the revenue of an auction. I want

to isolate the effect of the sequence of sale on the price of a good and therefore I restrict to
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parameters for which revenue is independent of the price-formation rule. In order to avoid

looking at special cases, I assume that, though the income of a bidder of type t is large enough

to pay either vα(t) or vβ(t) for either good, it is not so large that any bidder is allocated both

goods in equilibrium. This property is satisfied when

max
s,t

v1(t)− v2(t) + I(s)

2
≤ min

t
I(t) ≤ max

t
I(t) ≤ min

s,t

v1(t)− v2(t) + I(s)

2
+ min

s
v2(s) (2)

for all t, s ∈ [0, 1]. This condition is explained in the next section.

Since the income, I(t) say, of the winner of good 1 and its price, p1 say, are known, the

remaining income, I(t) − p1, of the winner of good 1 is known. As shown in the next section

condition (2) implies that this remaining income is less than the good 1 winner’s valuation for

good 2, so that I(t)− p1 < v2(t). It implies also that, once a bidder of type t wins good 1 from

a bidder of type s at a price p1, it is public knowledge that

min {I(t)− p1, v2(t)} = I(t)− p1 < v2(s)

That is, the good 1 winner’s de facto valuation of good 2 and the fact that it is below the good

1 loser’s valuation of good 2 are public knowledge

In the second stage, a single good is for sale. The auction in this stage differs from a standard

auction in that the players’ ability to pay are limited by their incomes. Given that neither bidder

is allocated both goods in equilibrium and given that the de facto valuation of the good 1 winner

is known and is less than the valuation of the good 1 loser, under first- and second-price-formation

rules (with suitable tie-breaking rules if necessary), the second period auction has an equilibrium

in which the bidder with the higher de facto valuation for good 2 obtains the good at a price

equal to the lower de facto valuation. For example, in the standard equilibrium under a second-

price rule, individuals bid their de facto valuations, and in the standard equilibrium under a

first-price rule with a tie-breaking rule that favors the bidder with the higher de facto valuation,

each individual bids the lower de facto valuation. I restrict attention to price-formation rules

for which such an equilibrium exists. Further, I take this equilibrium to be the one that occurs.

That is, I assume that

(S3) Good 2 is sold to the bidder with the higher de facto valuation of good 2 at a price equal

to the lower de facto valuation of good 2.

Replacing the second stage of the game by the equilibrium payoffs in this equilibrium outcome

we obtain a Bayesian game G which is the game that I study. The strategy set of a bidder of

type t in G is [0,∞), the set of feasible bids on good 1. I consider a symmetric Nash equilibrium

of G. That is, I look for a function B : [0, 1] → < that assigns a bid to each type with the

property that (B,B) is a Nash equilibrium of G.
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Suppose that, in equilibrium, a bidder of type t wins good 1 at the price p1. Then the other

bidder wins good 2 at the price13 p2 = I(t)− p1 so that

Revenue = income of the winner of good 1 (R)

Since the expected revenue equals the income of the winner of good 1 and since the price-

formation rule does not affect who wins good 1, the expected revenue does not depend on the

price-formation rule. Since the expected revenue does not depend on the price-formation rule

(as in an auction with a single good and no effective budget constraints), I am able to isolate

the pure effect of a change in the order of sale or the price-formation rule on the prices of goods

that occurs directly because of budget constraints. I note that the price-formation rule does not

affect who wins good 1.

I consider budget-constrained sequential auctions for which the price-formation rule satisfies

(S1), (S2) and (S3) and the valuation and income functions satisfy satisfy (1) and (2) so that

(R) is true.

3 The Sequence of Sale Affects Revenue and Prices

I start by defining the maximum amount that a bidder of type t is willing and able to pay

for good 1 when facing a bidder of type s. I call this maximum amount the bidder’s de facto

valuation of good 1 when facing a bidder of type s and denote it by V (t, s). If a bidder of type

t wins good 1 at a price of p1 then the payoff to this bidder is v1(t)− p1. If good 1 is sold at the

price p1 to a bidder of type s, then the bidder of type t wins good 2 at the price I(s)− p1, and

thus obtains the payoff v2(t)− (I(s)− p1). Hence the most that a bidder of type t is willing to

pay for good 1 when facing a bidder of type s is the amount p1 for which

v1(t)− p1 = v2(t)− (I(s)− p1) or p1 =
v1(t)− v2(t) + I(s)

2

Thus, the de facto valuation for good 1 of a bidder of type t when facing a bidder of type s is

V (t, s) =
v1(t)− v2(t) + I(s)

2

Suppose that f and g are real-valued functions on a domain S. I say that f is ordinally

equivalent (denoted OE) to g on S whenever the level curves and upper contour sets of f are

equal to those of g on S, that is, for all x, y ∈ S, f(x) > f(y) if and only if g(x) > g(y). I

say that f is OE to g when f is OE to g on the entire domain. In particular, any strictly

increasing function is OE to any other strictly increasing function. I say that f is ordinally

13This follows from condition (2).

8



reversed (denoted ORE) to g whenever there is one common set of level curves but the upper

contour set of one function is the lower contour set of the other function. In particular, any

strictly increasing function is ORE to any strictly decreasing function and any function f is

ORE to −f .

In a standard private valuation auction for one good, a bidding function that is OE to the

valuation function allocates the goods and money efficiently. In a budget-constrained auction,

an equilibrium bidding function that is OE to v1− v2 allocates the goods and income efficiently

(Theorem 2).

As discussed in the previous section, condition (2) ensures that no bidder is allocated both

goods in equilibrium. Since the price-formation rule does not affect who wins good 1, this

condition can be used to show that revenue is independent of the price-formation rule. The

argument is as follows. The assumption that v1(t) + v2(t) ≥ I(t) implies that the minimum de

facto valuation for good 1 is less than or equal to the minimum valuation for good 1. Therefore,

any bidder is willing to bid up the price for good 1 to the minimum de facto valuation for good

1. That is, the price of good 1 is at least equal to this minimum. The last inequality of (2)

says that the difference between the maximum possible income of the winner of good 1 and the

minimum de facto valuation for good 1 must be less than or equal to the minimum valuation of

good 2. That is, the residual income of the winner of good 1 must be less than the minimum

valuation of good 2. Thus, in equilibrium, each bidder who wins good 1 must lose good 2.

Moreover, the income of the winner of good 1 is depleted to below the winner’s valuation of

good 2. It follows that the price of good 2 is the depleted income of the winner of good 1 so that

(R) is satisfied and so a bidding function that is OE to the income function maximizes auction

revenue.

In a standard auction of one good, a bidder is always willing and able to bid up to the bidder’s

valuation. Therefore the unique efficient allocation is that in which the good is allocated to the

bidder with the highest valuation. An allocation of goods and income in a budget-constrained

auction is efficient if there are no Pareto improving trades. In contrast to the standard auction,

the willingness and ability of an individual to pay for a good depends not only on the bidder’s

valuation for the good but also on the bidder’s remaining income. In any auction allocation of

goods and income let tθ denote the type allocated good θ and let Rθ denote the money allocated

to type tθ for θ ∈ (α, β).

Definition 1 The allocation ((tα, Rα), (tβ, Rβ)) is efficient if

vα(tβ) ≤ vα(tα) or Rβ ≤ vα(tα)

vβ(tα) ≤ vβ(tβ) or Rα ≤ vβ(tβ)

9



and

either vα(tα)− vβ(tα) ≥ vα(tβ)− vβ(tβ)

or
Rβ ≤ vα(tα)− vβ(tα)
Rα ≤ vβ(tβ)− vα(tβ)

We next answer two questions when all individuals use a common bidding function. When

is the resulting allocation efficient? When is the resulting revenue maximized? All proofs not

in the text are in the Appendix. Let M be the maximum revenue generated over all equilibria

of G under either order of sale.

Theorem 2 In any symmetric equilibrium of a budget-constrained sequential auction, the ex-

pected revenue is independent of the price-formation rule. M is at most equal to the revenue

generated by a common bidding function B(t) that is OE to I(t). Moreover, if the equilibrium

bidding function B(t) is OE to I(t), the expected revenue is higher than that generated by any

auction in which both goods are bundled and allocated simultaneously to one of the bidders.

Whenever the common bidding function B(t) is OE to v1(t)− v2(t), the allocation of goods and

money is efficient.

Corollary 3 If the bidding function B is OE to v1(t)− v2(t) and I, then revenue equals M and

the goods are allocated efficiently.

The above theorem and corollary hold for any auction form under consideration for which

the income constraints are binding. The proof here does not require the explicit calculation of

equilibrium bidding functions. The bidders know their valuations ex ante and the bidders may

bid on more than one good.

The next result implies that the law of one price need not hold for identical goods since

v1 − v2 equals the zero function when the goods are identical.

Theorem 4 If the equilibrium bidding function B(t) is OE to v1(t)−v2(t) + I(t) and I(t), then

the expected price of good 1 is less than that of good 2 whenever v2(w1)− v1(w1) ≥ 0, where w1

satisfies

v1(w1)− v2(w1) + I(w1) = Emax(v1(t1)− v2(t1) + I(t1), v1(t2)− v2(t2) + I(t2)),

where E is the expectation operator.

It follows immediately that whenever each bidder considers the two goods to be identical,

the expected price of good 2 is higher than that of good 1 in such an equilibrium.
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Corollary 5 If vα(t) = vβ(t) for all t and the equilibrium bidding function is OE to I, then the

expected price of good 2 is higher than that of good 1.

I now explore opportunities for arbitrage in this case.

Theorem 6 If vα(t) = vβ(t) for all t and the equilibrium bidding function is OE to I, then the

expected price paid by a bidder in the auction is constant across bidders.

Theorems 4 and 6 imply that when vα(t) = vβ(t) for all t and the bidding function is OE to

I, the expected price of good 1 is less than that of good 2 even though the expected price paid

is constant across bidders. To see how this result is possible, let p∗ be the common expected

price that a bidder expects to pay in the auction. Since good 1 is allocated to the bidder with

the higher bid and good 2 is allocated to the bidder with the lower bid, the bidder whose type is

associated with the highest bid obtains good 1 for sure at a price of p∗, while the bidder whose

type is associated with the lowest bid obtains good 2 for sure at a price of p∗. Since the price

paid for a good is increasing in the bids, p∗ is the highest price paid for good 1 and the lowest

price paid for good 2. A bidder whose type is associated with a bid between the highest and

lowest bids sometimes obtains good 1 for a price lower than p∗ and sometimes obtains good 2 for

a price higher than p∗ but on average obtains a good for a price of p∗. Thus, the price that any

single bidder expects to pay in the auction is constant across bidders even though the expected

price of good 1 is lower than that of good 2. A violation of the law of one price does not imply

opportunities for arbitrage.

4 The Expected Price of a Good Depends on the Price-

Formation Rule

Theorem 2 shows that the revenue can be affected by the sequence of sale when income varies

with type. It follows that, if income varies, then the sequence of sale can also affect the prices

of the goods. In fact, as shown below, the price-formation rule may affect the prices even in the

case that income is constant across types. In addition, the price-formation rule may affect the

way in which the price of a good depends on the sequence of sale.

Let B be an equilibrium bidding function. Consider the direct revelation game G(B) in which

each bidder’s strategy set is the set [0, 1] of types and the payoff of type t when s is announced

is the payoff obtained by type t in G when type t bids B(s). Since (B,B) is an equilibrium

of G, the “truthful” strategy profile in which each type t chooses t is an equilibrium of G(B).

I study equilibria of G(B) for any continuous bidding function B that is not constant on any

interval. Riley and Samuelson (1981) study a standard auction of one good and so consider

11



continuous bidding functions that increase in a bidder’s type. They find that the equilibrium

price (and therefore revenue) is independent of the price-formation rule. By contrast, in a

budget-constrained sequential auction, even though the expected revenue is independent of

the price-formation rule since the price-formation rule does not affect who wins good 1, the

equilibrium price of good 1 varies with the rule.

Theorem 7 The equilibrium price of good 1 may depend on the price-formation rule.

Thus, even though the expected revenue and the winner of good 1 are independent of the

price-formation rule, the expected prices vary with the rule. Che and Gale (1998) show that

in a budget-constrained auction of one good, the expected price of the single good (which is

equivalent to revenue in this case) is higher under the 1st price rule than under the 2nd price

rule. In the auctions that we consider, revenue is constant across price rules but the price of

each good varies across rules.

5 Character of Bidding Function

In this section, we analyze the relationship between the equilibrium bidding function and the

functions v1 − v2 + I and v1 − v2. We first show that if the equilibrium bidding function is

non-monotonic then the function v1 − v2 is non-monotonic.

Theorem 8 If there exist sets Ĵ1 ⊂ [0, 1] and Ĵ2 ⊂ [0, 1]\Ĵ1 and a function x̂ : Ĵ1 −→ Ĵ2 for

which the equilibrium bidding function B satisfies B(t) = B(x̂(t)) for t ∈ Ĵ1, then v1(t)−v2(t) =

v1(x̂(t))− v2(x̂(t)) for t ∈ Ĵ1.

Definition 9 A continuous function f : X → < is S-monotonic on a set T ⊂ X if

{z ∈ X : f(z) = f(x)}

is a singleton for all x ∈ T .

Note that a function that is strictly monotonic over the entire domain X is S-monotonic but

that strict monotonicity over a set T ⊂ X is not enough to guarantee S-monotonicity on T .

The level curve in X that passes through any element of the set T must be a singleton. While

the function f(x) = x(1 − x)(2 − x) is S-monotonic on [A,∞) for A large enough, f strictly

increases but is not S-monotonic on [2,∞).

Whenever a bidder of type t faces a bidder of type s for which B(t) > B(s), let P (t, s)

denote the price that the bidder of type t pays for good 1. Let D′i denote the partial derivative

operator with respect to i; D′′ij, the second partial derivative with respect to i and j.

12



Theorem 10 Suppose that v1 − v2 + I is differentiable and S-monotonic on [0, 1]. There exists

an equilibrium bidding function that is OE to v1 − v2 + I on [0, 1] if D′′12P (t, s) = 0 for all (s, t)

and either one of D′1P (t, s) and D′2P (t, s) equals zero for all (s, t) or D′2P (t, t) = γD′1P (t, t)

for γ > 0.

We note that when P is not a member of the class of price rules assumed by Theorem 10,

then there may exist a monotonic B that is not OE to v1−v2 + I.14 Theorems 8 and 10 indicate

the possibility of multiple bidding functions that differ with respect to allocation, revenue and

efficiency.

Since the equilibrium bidding function need not be monotonic and since monotonicity affects

the equations that are necessary in equilibrium, we can use Theorems 8 and 10 and Corollary

3 to determine the feasible ordinal equivalence classes of equilibrium functions. For example,

if I(t) and vα(t) increase while vβ(t) is constant, then the difference in values increases in type

under the order (α, β). In this case, I is OE to vα − vβ. Under either a 1st or 2nd price rule,

Theorem 10 implies that there exists an equilibrium bidding function that is OE to vα − vβ, I

and vα − vβ + I. Corollary 3 then implies that revenue is maximized and that the allocation

is efficient. Thus, one might expect that, in estate auctions, heavy equipment (for example,

ride-on lawn mowers that have a fixed value) will be sold later than an item whose value may

depend more heavily on taste (for example, used bedspreads).

6 1st and 2nd Price Rules

I restrict attention to 1st and 2nd price-formation rules in this section. In general, more than one

equilibrium bidding function may exist and the equilibrium bidding functions may be neither

S-monotonic nor result in an efficient allocation. I provide a sufficient condition for there to

exist an S-monotonic equilibrium bidding function under either price-formation rule.

Theorem 11 An S-monotonic equilibrium bidding function exists if v1−v2 +I is S-monotonic.

I now provide a sufficient condition for the existence of an equilibrium bidding function whose

allocation is efficient. This condition (that c, a function analogous to v1 − v2 + I, is monotonic

on a set K whose construction depends on v1 − v2) bears some resemblance to the sufficient

condition in Theorem 11 but requires elaboration to state.

I begin by constructing the set K when v1 − v2 is S-monotonically increasing whenever it

is S-monotonic. (The derivative of any real-valued differentiable function f on [0, 1] must have

14If P (s, t) = P (t, s) =
√
B(s)B(t), Equation (4) is solved by B(t) = (t+ 1)2 for which P (0, 0) = 1 if either

v1(t)− v2(t) + I(t) = 3t2 + 6t+ 1
2 ≥

1
2 and H(t) = t or if v1(t)− v2(t) + I(t) = 10

3 t
2 + 8t− 8

3 t
1/2 + 2 ≥ 1. 780 2

and H(t) = t1/2.
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0 1 0 1

Figure 1: Two examples of the sets S and J . In each case, S is the union of the double line
segments on the x-axis and J is the union of the dotted line segments on the x-axis.

a common sign over any part of its domain over which it is S-monotonic. Suppose instead that

there exist two disconnected intervals S and T over which f is S-monotonic but the sign of f ′

over S differs from that over T . The Intermediate Value Theorem then implies that there exists

x ∈ [0, 1]\ (S ∪ T ) and y ∈ S∪T for which f(x) = f(y). This contradicts the assumption that f

is S-monotonic on S and T .) Let S ⊂ [0, 1] be the smallest closed set containing the domain on

which v1 − v2 is S-monotonically increasing. We construct J ⊂ [0, 1] to be an irreducible closed

set on which v1 − v2 is monotonically increasing and

{v1(t)− v2(t) : t ∈ S ∪ J} = {v1(t)− v2(t) : t ∈ [0, 1]}

The set J is irreducible in the sense that discarding any of its interior members renders the

above equality to be false. If J 6= ∅, then S ∪ J & [0, 1]. For each x ∈ [0, 1]\ (S ∪ J) there exists

t ∈ J for which v1(x)− v2(x) = v1(t)− v2(t). The restriction of v1 − v2 to the set S ∪ J is said

to cover v1 − v2 on the entire set [0, 1] in that the set of image points is common.

Since there is a finite number of critical values of v1 − v2, each of the sets S and J is the

union of a finite number of intervals. We construct J in an iterative fashion as follows15. Since

v1 − v2 is a continuous function on [0, 1], its maximum exists by the Extreme Value Theorem.

Let t0 be the point closest to 1 for which the maximum of v1 − v2 occurs. In particular if the

maximum occurs for some t ∈ S then continuity and the Intermediate Value Theorem imply

that it must occur for t0 = 1 in which case let ts(0) = t0 = 1. In this case let S0 = [ts(1), ts(0)] ⊂ S

be the largest interval in S that contains ts(0). If S0 = [0, 1], then J = ∅. If S0 6= [0, 1], then

J 6= ∅ and we construct J0 as follows. Let tj(0) = ts(1) and let [tj(1), tj(0)] be the largest interval

on which vα − vβ increases and for which (tj(1), tj(0)) ∩ S = ∅. If instead, the maximum of

v1 − v2 occurs for some t0 /∈ S, then t0 ≤ 1. In this case let tj(0) = t0 and we construct J0 as

follows. Let J0 = [tj(1), tj(0)] be the largest interval on which v1 − v2 increases and for which

(tj(1), tj(0)) ∩ S = ∅.
15For some graphical examples, see Figure 1.
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We now provide the iterative step in the construction of the intervals of J . Suppose that we

have obtained the intervals

S0 = [ts(1), ts(0)], S1 = [ts(3), ts(2)], ..., SM = [ts(2M+1), ts(2M)]

contained in S and the intervals

J0 = [tj(1), tj(0)], J1 = [tj(3), tj(2)], ..., JN = [tj(2N+1), tj(2N)]

contained in J as above and that ta ∈ (tk(2i+1), tk(2i)), tb ∈ (tk(2i−1), tk(2i−2)) implies ta < tb for

k = s and i = 1, ...,M or k = j and i = 1, ..., N . If ts(2M+1) < tj(2N+1) then let tj(2N+2) = ts(2M+1)

and let JN+1 = [j(2N+3), j(2N+2)] be the largest interval on which v1− v2 increases and for which

(tj(2N+3), tj(2N+2)) ∩ S = ∅. If tj(2N+1) < ts(2M+1) then there exists ε > 0 for which either

(tj(2N+1) − ε, tj(2N+1)) ⊂ S or (tj(2N+1) − ε, tj(2N+1)) ∩ int(S) = ∅. In the former case, let

ts(2M+2) = tj(2N+1) and let [ts(2M+3), ts(2M+2)] be the largest interval in S that contains ts(2M+2).

In the latter case, let tj(2N+2) < tj(2N+1) be the point closest to tj(2N+1) for which

v1(tj(2N+2))− v2(tj(2N+2)) = v1(tj(2N+1))− v2(tj(2N+1))

and define JN+1 = [tj(2N+3), tj(2N+2)] as the largest interval on which v1 − v2 increases and for

which (tj(2N+3), tj(2N+2)) ∩ S = ∅.
We stop the iterative process of constructing the sets S and J as soon as there exist M = M

and N = N such that

{v1(t)− v2(t) : t ∈ [0, 1]} =
{
v1(t)− v2(t) : t ∈

(
∪Mi=0Si

)
∪
(
∪Ni=0Ji

)}
so that

S = ∪Mi=0Si and J = ∪Ni=0Ji

are well defined. Let Ki = [t2i+1, t2i] for i = 0, ...,M +N where K0, K1, ..., KM+N represent the

intervals (
∪Mi=0Si

)
∪
(
∪Ni=0Ji

)
from right to left so that ti > ti+1 for ti ∈ int(Ki), ti+1 ∈ int(Ki+1). Let K = ∪M+N

i=0 Ki.

In the case that v1 − v2 is S-monotonically decreasing whenever it is S-monotonic, the con-

struction of the sets starts at t0 closest to 0 at which v1 − v2 reaches its maximum and the

construction of the sets progresses rightward with each new set being to the right of the already

constructed set and the sets K0, ..., KM+N represent the intervals from left to right. This ends

the construction of the set K.

Finally, we define the function c, the analogue of v1 − v2 + I in Theorem 11. Let

ci(t) =

∑
x∈X(t) (v1(t)− v2(t) + I(x))H ′(x) |x′(t)|∑

x∈X(t)H
′(x) |x′(t)|

for i ∈ Ki, i = 1, ...,M +N
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so that

c(t) = ci(t) for t ∈ Ki, i = 1, ...,M +N

Theorem 12 If v1− v2 has a finite number of critical points on [0, 1] and c(t) is monotonic on

K, then there exists an equilibrium bidding function whose allocation is efficient.

Corollary 13 If v1−v2 has at most a finite number of critical points on [0, 1] and I is constant,

then there exists an equilibrium bidding function whose allocation is efficient.

The following corollary says that, if the value of one good is common to all types and the

value of the other good is correlated with income, then revenue is maximized when the commonly

valued good is sold last.

Corollary 14 If I and vα are S-monotonically increasing on [0, 1] and vβ is constant then,

there exists a unique equilibrium bidding function under the order of sale (α, β). This unique

equilibrium bidding function generates an efficient allocation and maximizes revenue among all

equilibrium bidding functions under either order of sale.

In general, there may exist multiple equilibrium bidding functions under both 1st and 2nd

price rules. These functions may be neither S-monotonic nor efficient but the next result shows

that for each equilibrium bidding function that exists under one rule, an order-equivalent bidding

function exists under the other rule.

Theorem 15 For each equilibrium bidding function By that exists under a ythprice rule, there

exists, under a 3− yth price rule, an equilibrium bidding function B3−y OE to By for y ∈ {1, 2}.

The following two theorems compare outcomes under 1st and 2nd price rules for bidding

functions that are OE. Theorem 16 generalizes a theoretical and experimental result for auctions

with complete information in Pitchik and Schotter (1988).

Theorem 16 If the equilibrium bidding function under a 1st price rule is OE to the equilibrium

bidding function under a 2nd price rule, then the expected price of good 1 is higher under a 2nd

price rule than it is under a 1st price rule.

Intuitively, under a 1st price rule, a bidder is worried about being allocated good 1 at a

relatively high price and so makes a relatively conservative bid. Under a 2nd price rule, a bidder

is worried about not winning the good at a relatively low price.

Theorems 17 and 20 and their Corollaries compare the price of a good when it is sold first

to the price of the good when it is sold second under 1st and 2nd price rules.
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When income is an index of an individual’s ability to use the good profitably, then the

valuation for a good is correlated with income in which case it may be that vα − vβ + I and

vβ − vα + I are OE to I. In this case, we may compare the expected price of a good under one

sequence of sale with that under the other sequence of sale.

Theorem 17 If vα − vβ + I, vβ − vα + I, and I are OE to the equilibrium bidding functions

Bα,β under order α, β and Bβ,α under order β, α, then the expected revenue is independent of

the sequence of sale and the expected price of a good is higher, the later it is sold.

The following two corollaries follow from Theorems 11 and 17.

Corollary 18 If vα − vβ + I and vβ − vα + I are OE and S-monotonic, then, for each order of

sale, there exists an equilibrium bidding function that is S-monotonic. Under any S-monotonic

equilibrium bidding function, the expected revenue is independent of the sequence of sale and the

expected price of a good is higher, the later it is sold.

Corollary 19 If vα ≡ vβ and I is S-monotonic, then for each order of sale there exists an

equilibrium bidding function that is S-monotonic. Among all outcomes associated with an S-

monotonic equilibrium bidding function, the allocation is efficient, the expected revenue is in-

dependent of the sequence of sale, and the expected price of a good is higher, the later it is

sold.

If income varies widely relative to the value of either good then the expected price of the

good is higher the later it is sold.

Under each price rule, the last theorem compares the expected price of a good under the

two different sequences of sale. While it always true that vα − vβ is ORE to vβ − vα it may not

be the case that vα − vβ + I and vβ − vα + I share any equivalence. We would like to compare

the prices of goods as a function of the sequence but to do so we need to keep revenue constant

in order to find the direct effect of the order of sale on the difference in price. In the case that

vα − vβ + I is ORE to vβ − vα + I, the expected revenue is independent of the sequence only if

the income is independent of type. If income is constant across types then vα − vβ + I is ORE

to vβ− vα + I. In this case, the expected prices of the goods depend on the sequence of sale and

on the price-formation rules as follows.16

Theorem 20 If I(t) = I is constant and v1− v2 has a finite number of critical values, then for

each order of sale and for each price rule, there exists a unique equilibrium bidding function. In

16The last part of this result generalizes theoretical and experimental complete information results in Pitchik
and Schotter (1988).
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each case, the unique bidding function is OE to v1−v2 + I and allocates goods efficiently. Under

each price rule, the bidding function under one order of sale is ORE to the bidding function

under the other order of sale. In addition, (1) under a 1st price rule the expected price of a good

is higher the later it is sold, and (2) under a 2nd price rule the expected price of a good is higher

the earlier it is sold.

The reason the last part of this result differs from Theorems 4 and 17 is as follows. Because

the variation in the differences in valuation for each good are essentially dwarfed by that of

income in Theorems 4 and 17, income plays the following role in determining the allocation of

each good. The individual with the higher income obtains good 1 under either sequence and

under any price-formation rule. Thus, the results do not depend on the price-formation rule and

the allocation varies with the sequence. However, in Theorem 20, the variation in the valuation

of good α say dwarfs that of good β and income combined so that both the valuation and

position (whether first or second) of good α play a role in determining the price of each good.

In this case, under any price-formation rule and under any sequence, the individual who values

good α more highly obtains good α.

Now suppose that the value of one good, say α, varies with a bidder’s type while the income

and the value of the other good, say β, is independent of the bidder’s type. Further suppose

that the values share a common mean. In this case, Theorem 20 implies that if the goods are

similar, then the price of a good decreases with its position in the order of sale when the auction

proceeds under a 2nd price rule. Under a 2nd price rule, a bidder is able to bid up the price of

good 1 in order to obtain good 2 at a lower price than otherwise.

7 Robustness

In this section I show that the sequence of sale may affect revenue and/or prices when the

assumptions of the model are relaxed. I provide three examples below.

I first consider a 2nd price auction in the presence of n > 2 bidders who each have a common

income that is less than the valuation of either good and who each highly value good α relative to

good β and income. Specifically, I(t) = I and vα(t) > (n− 1)(vβ(t)− I) + I > vβ(t)− I > I > 0

for t ∈ [0, 1]. Since I < vβ(t) < vα(t) for all t ∈ [0, 1], no bidder obtains more than one good in

equilibrium. I want to compare the price of each good if the order of sale is (α, β) to that when

it is (β, α). If the order is (α, β) then each individual’s equilibrium bidding function for good

α is17 B(t) = I so that the expected equilibrium price of good α is I. So, when the goods are

sold in the order (α, β), the price of good α is I; that of good β is I since n > 2. If instead,

17The payoff from a bid of I is (vα(t)− I)/n+ (vβ(t)− I)(n− 1)/n(n− 1). The payoff from bidding less than
I results is (vβ(t)− I)/(n− 1).
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the goods are sold in the order (β, α) then the expected price of β is less than I. The reason

is as follows. Suppose that the expected price of β is I. In this case, at least two individuals

bid I. Let m ≥ 2 be the number of individuals who bid I. The payoff to each who bids I is

(vβ(t) − I)/m + [(m − 1)/m](vα(t) − I)/(n − 1) while the payoff to anyone who bids just less

than I is (vα(t) − I)/(n − 1). By assumption vα(t) − I > (n − 1)(vβ(t) − I), so that it cannot

be that m ≥ 2 bidders bid I in equilibrium. Thus, the equilibrium price of β must be less than

I. It follows that when the goods are sold in the order (β, α) the expected equilibrium price of

β is less than I, as claimed. Thus, revenue is highest when α is sold first and the price of β

increases with its position in the order of sale. The reason is that when β is sold second, there

are always at least two individuals who are willing and able to pay I for β so that competition

is intense; when β is sold first, competition is not as intense since each bidder wants to have

income to bid on good α.

The above example illustrates that the revenue and prices of goods may depend on the

sequence in which the goods are sold even when there are many bidders and only two goods. In

the example, revenue is maximized when the more valuable good is sold first.

I now analyse the model when there are asymmetries among the bidders as well as changes

to the assumptions on income relative to valuations so that a bidder may obtain both goods in

equilibrium under a 2nd price rule. Let’s assume that the valuations of the two goods are fixed

such that vα(t) = A, vβ(t) = B < A. Suppose that there are two pools of bidders and that

bidder 1 has enough income to buy both goods whereas bidder 2 is relatively and absolutely

poor. Specifically, let’s assume that I1(t) ∈ [c1, d1] and that I2(t) = I where A > d1 > c1 > 2I >

B > I. If the goods are auctioned in the order (α, β) then each bidder is willing to pay at least

I for α so that bidder 1 obtains good α at a price of I in equilibrium. Once good α is allocated,

each bidder is willing to pay at least I for good β. Since bidder 1 has more than double the

income of bidder 2 and since good α is relatively highly valued, bidder 1 obtains both goods in

equilibrium when the order of sale is (α, β). The equilibrium price of each good equals I and

the equilibrium revenue is 2I. However, when the goods are sold in the order (β, α), bidder 1’s

de facto valuation for good β is B/2 < I. Bidder 2 is willing to pay up to I for good β since

otherwise, bidder 2 receives nothing. Thus, under the order βα, bidder 2 obtains good β and

bidder 1 obtains good α. The equilibrium price of β is B/2 and that of α is I − B/2. The

equilibrium revenue is I. In summary, the revenue is higher when α (the more highly valued

good) is sold first; the price of good α (the good that is allocated to the rich bidder independent

of its order of sale) is higher when α is sold first; the price of good β (the good that is allocated to

the stronger bidder only when it is sold second) is higher when β is sold second. That revenue is

higher when α is sold first is consistent with the implications of Theorem 2 in which the revenue

is higher when good 1 is sold to the richer bidder. In Theorem 20, the allocation of the goods
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is independent of the price rule and the price of a good is higher the earlier it is sold under

a 2nd price rule. In our example, α is allocated to the richer bidder independent of the order

of sale so that competition for good α and its price are higher the earlier it is sold. That the

price of good α is higher when sold first in our example is therefore consistent with Theorem 20.

Under the assumptions of Theorem 17 the price of a good is higher the later it is sold when the

competition for the good is higher the later it is sold. In our example, β is allocated to the rich

bidder only when it is sold second so that competition for β is higher when it is sold second.

That the price of good β is higher when sold second is consistent with Theorem 17.

Thus, even when one bidder is relatively strong (in the example, the bidder whose income is

twice that of the other bidder is relatively strong), revenue and price may depend on the order

of sale. Whether the price of a good increases or decreases with its position in the order of sale

depends on how the order of sale affects the competition for the good. When good 1 goes to

the stronger bidder independent of the order of sale, then there is no disadvantage in obtaining

good 1 because, if there were, the stronger bidder would just mimic the weaker bidder. In this

case, the price of a good must increase with its position in the order of sale. When a designated

good goes to the stronger bidder, then the competition for the good is higher when it is sold

first and so price decreases with its position in the order of sale.

Lastly, I consider an example in which a bidder’s type is two dimensional and each dimen-

sion is distributed independently. Suppose that the valuation for each good is common and

distributed uniformly on [6, 7] and income is independently distributed uniformly on [7, 8]. An

increasing equilibrium bidding function (for which no bidder wins both goods) is

B(i) =

{
B2(i) = i+4

3
under a 2nd price rule

B1(i) = i
3

+ 7
6

under a 1st price rule

and the distribution of bids is

G(b) =

{
G2(b) = 3b− 11 on

[
11
3
, 4
]

under a 2nd price rule

G1(b) = 3b− 21
2

on
[

7
2
, 23

6

]
under a 1st price rule

In this case, the expected price of good 1 is2
∫ 4

11
3
b(1−G2(b))G

′
2(b)db = 34

9
under a 2nd price rule

2
∫ 23

6
7
2

bG1(b)G
′
1(b)db = 67

18
< 68

18
= 34

9
under a 1st price rule

Since the expected revenue is

2
∫ 8

7
i(i− 7)di = 23

3
under 1st and 2nd price rules

we obtain that the expected price of good two is{
23
3
− 34

9
= 35

9
under a 2nd price rule

23
3
− 67

18
= 71

18
> 70

18
= 35

9
under a 1st price rule
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Thus, even when the valuations are distributed independently from income, when the values are

identical, the price of a good is affected by its order of sale. As in Theorem 17 and Corollary

19, there exists a bidding function that is OE to v1 − v2 + I and I, and the expected price of

good 2 is higher than that of good 1. As in Theorem 16, the expected price of good 1 is higher

under a second price rule than under a first price rule. As in Theorem 7 the equilibrium price

of good 1 depends on the price rule.

8 Conclusion

In the presence of budget constraints there may exist multiple symmetric equilibrium bidding

functions and they may differ with respect to allocation, prices and revenue. Prices depend on

the price-formation rule. In addition, even in the absence of arbitrage possibilities, identical

goods may fetch different prices. The sequence of sale affects the expected revenue through the

allocation of the goods. Whenever the winner of good 1 is the bidder with the higher income,

expected revenue is maximized. Under 1st and 2nd price rules, whenever, independent of the

sequence, the winner of good 1 is the bidder with the higher income, the expected price of a

good is no lower the later it is sold. Intuitively, if good 1 is always sold to the stronger bidder,

then there can be no disadvantage in winning good 1. This happens when the goods are similar

enough and income is relatively variable. By contrast, if, independent of the sequence, the

stronger bidder is allocated a designated good (which may be good 1 or good 2), the expected

price of a good decreases with its position in the order of sale under a 2nd price rule and increases

under a 1st price rule. Intuitively, under a 2nd price rule, there is an incentive for the loser of

good 1 to bid up its price, depleting the winner’s income, in order to obtain good 2 at a lower

price. Thus, under a 2nd price rule, when the allocation of the goods is independent of the

sequence, the expected price of a good declines with its position in the order of sale. Under a

1st price rule, a higher bid of the loser does not affect the price of good 1 and may adversely

affect the payoff of the loser so that bids are more conservative.

Basically, the price of a good is higher whenever competition for the good is higher. If

bidders are drawn from populations that differ according to income, then goods that are always

allocated to the richer bidder fetch a higher price when sold first. Goods that are sold to the

richer bidder only when sold second fetch a higher price when sold second.

Other links between the goods can have the same effect as do budget-constraints. For

example, if firms with limited plant capacities bid on projects let by the government, the results

of letting any given contract will depend on the available capacity of firms in the industry. The

results are not qualitatively different in this case.
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9 Appendix

Proof of Theorem 2: By (R), expected revenue equals the expected income of the winner of good

1 so that revenue is highest if the winner of good one has the higher income. If B(t) is OE to I(t)

under any price-formation rule then good 1 is allocated to the bidder with the higher income

so that, by (R), the expected revenue is the expected value of the higher income so that, in the

case of multiple equilibria, the expected revenue is highest if the equilibrium bidding function is

OE to the income function. Thus, the expected revenue is independent of the price-formation

rule since the winner of good 1 is unaffected by the price-formation rule.

We now compare revenue in the revenue-maximizing sequential auction to that in an auction

in which both goods are sold simultaneously. When both goods are sold simultaneously to one

of the bidders, rather than sequentially, an individual t’s de facto valuation of holding both

goods is I(t) by assumption (1). Thus, the auction in which both goods are sold simultaneously

is equivalent to an auction in which one good is sold whose value to individual t is I(t). The

result follows since no auction of a single good can yield an expected equilibrium revenue equal

to the expected value of the highest valuation (Riley and Samuelson [1981]).

In the case that the bidding function is OE to v1 − v2, the individual who obtains good 1

(say type t1) has the higher v1 − v2 while the individual who obtains good 2 (say type t2) has

the lower. By assumption, in equilibrium, the remaining income R1 of the individual t1 is less

than v2(t2), the valuation for good 2 of individual t2. Thus, if the bidding function B is OE

to v1 − v2, then the allocation is efficient. In the case of multiple equilibria, the allocation is

efficient only if the bidding function is OE to the difference in the value functions.

Proof of Theorem 4: The de facto valuation of good 1 for a bidder of type t who faces a bidder

of type s is V (t, s) = (v1(t)− v2(t) + I(s))/2. Since B is OE to v1 − v2 + I and I, the average

price that a bidder of type t expects to pay for good 1 is strictly less than bidder t’s critical

value v(t) = (v1(t)− v2(t) + I(t))/2. In this case the expected price of good 1 must be strictly

less than the critical value of the expected winner. Thus, the expected price of good 1 must be

strictly less than (v1(w1)− v2(w1) + I(w1)) /2. However, by (R), the expected revenue is I(w1).

Thus, the expected price of good 2 must be strictly greater than (v2(w1)− v1(w1) + I(w1)) /2

which proves the result.

Proof of Theorem 6: If the other bidder uses the equilibrium strategy B(t), let ∆(x) be the

probability that a bidder of type t who pretends to be type x wins good 2 and let P̃ (x) be the

expected payment made by such a bidder. The expected payoff Π(t, x) of such a bidder equals

the expected benefit minus the expected payment

Π(t, x) = v1(t)(1−∆(x)) + v2(t)(∆(x))− P̃ (x)
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In equilibrium, D′2Π(t, x) equals 0 when x = t so that

−(v1(t)− v2(t))∆
′(t) = P̃ ′(t) (3)

Since v1(t) = v2(t), (3) implies P̃ ′(t) = 0 for all t as required.

In order to prove the next Theorem, let P ∗(x) denote the expected price that an individual

(who claims to be of type x) pays for good 1 and P∗(x) denote the expected price that an

individual (who claims to be of type x) pays for good 2. Thus, P̃ (t, x) = P ∗(x) + P∗(x). Let

P (x, z) denote the price that an individual who claims to be of type x pays for good 1 if the

other individual claims to be of type z.

Let σ1(t, x) be the set of opponents who lose good 1. Let σ2(t, x) denote the set of opponents

who lose only good 2. By assumption, no bidder wins both goods in equilibrium so that, in

equilibrium, σ12(t, t) = ∅ (which implies that σ1(t, t) + σ2(t, t) = 1) and v2(s) > I(s)− P (s, t)

for s ∈ σ2(t, t). Thus, if s ∈ σ1(t, x), then individual t obtains good 1 at the price P (x, s); if

instead s ∈ σ2(t, x) then individual t loses good 1 and obtains good 2 at the price I(s)−P (s, x).

In equilibrium, the expected payoff must be maximized when x = t. If s(x) is an upper end

point of an interval in σ1(t, x) that varies with x then s(x) is a lower end point of an interval in

σ2(t, x) so that the derivative (evaluated at x = t) of
∫
σ1(t,x)

H ′(s)ds with respect to x equals the

the negative of the derivative (evaluated at x = t) of
∫
σ2(t,x)

H ′(s)ds with respect to x. Thus, in

equilibrium,

P̃ (t) = P ∗(t) + P∗(t) =

∫
σ1(t,t)

P (t, s)H ′(s)ds+

∫
σ2(t,t)

(I(s)− P (s, t))H ′(s)ds

Proof of Theorem 7: In equilibrium, P (s, t) = P (t, t) for all endpoints s of intervals in σ2(t, t)

that depend on t. Since, in equilibrium,

P̃ ′(t) =

∫
σ1(t,t)

D′1P (t, s)H ′(s)ds−
∫
σ2(t,t)

D′2P (s, t)H ′(s)ds− 2P (t, t)∆′(t) +
d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

(3) implies that 2P (t, t)∆′(t) =

(v1(t)− v2(t))∆
′(t) +

d

dt

∫
σ2(t,t)

I(s)H ′(s)ds−
∫
σ2(t,t)

D′2P (s, t)H ′(s)ds+

∫
σ1(t,t)

D′1P (t, s)H ′(s)ds (4)

So, since

P ∗′(t) =

∫
σ1(t,t)

D′1P (t, s)H ′(s)ds− P (t, t)∆′(t)

we can substitute for P (t, t)∆′(t) from (4) to obtain

P ∗′(t) = 1
2

(
− (v1(t)− v2(t))∆

′(t)− δ′(t) +

∫
σ2(t,t)

D2P (s, t)H ′(s)ds+

∫
σ1(t,t)

D1P (t, s)H ′(s)ds
)

(5)
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The result follows since the right-hand side of (5) depends on the price-formation rule.18

Proof of Theorem 8: Equation (4) implies that, for t ∈ Ĵ1∫
σ2(t,t)

D′2P (s, t)H ′(s)ds−
∫
σ1(t,t)

D′1P (t, s)H ′(s)ds+ 2P (t, t)
d

dt

∫
σ2(t,t)

H ′(s)ds (6)

= (v1(t)− v2(t))
d

dt

∫
σ2(t,t)

H ′(s)ds+
d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

and for t ∈ Ĵ2∫
σ2(t,t)

D′2P (s, t)H ′(s)ds−
∫
σ1(t,t)

D′1P (t, s)H ′(s)ds+ 2P (t, t)
d

dt

∫
σ2(t,t)

H ′(s)ds (7)

= (v1(t)− v2(t))
d

dt

∫
σ2(t,t)

H ′(s)ds+
d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

If instead of t varying in Ĵ2, we have t varying in Ĵ1 and x̂(t) varying in Ĵ2, we can rewrite

(7) for t ∈ Ĵ1, as∫
σ2(x̂(t),x̂(t))

D′2P (s, x̂(t))H ′(s)ds−
∫
σ1(x̂(t),x̂(t))

D′1P (x̂(t), s)H ′(s)ds

+ 2P (x̂(t), x̂(t))
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds (8)

= (v1(x̂(t))− v2(x̂(t)))
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds+
d

dt |t=x̂(t)

∫
σ2(t,t)

I(s)H ′(s)ds

If we then multiply both side of (8) above by x̂′(t) we obtain that, for t ∈ Ĵ1,∫
σ2(x̂(t),x̂(t))

D′2P (s, x̂(t))x̂′(t)H ′(s)ds−
∫
σ1(x̂(t),x̂(t))

D′1P (x̂(t), s)x̂′(t)H ′(s)ds

+ 2P (x̂(t), x̂(t))x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds (9)

= (v1(x̂(t))− v2(x̂(t)))x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds+ x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

I(s)H ′(s)ds

However, by definition of x̂(t), σ2(t, t) = σ2(x̂(t), x̂(t)), σ1(t, t) = σ1(x̂(t), x̂(t)), P (s, t) =

P (s, x̂(t)), D′2P (s, t) = D′2P (s, x̂(t))x̂′(t), P (t, s) = P (x̂(t), s), D′1P (t, s) = D′2P (x̂(t), s)x̂′(t),

P (t, t) = P (x̂(t), x̂(t)), and

d

dt

∫
σ2(t,t)

H ′(s)ds = x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

H ′(s)ds

d

dt

∫
σ2(t,t)

I(s)H ′(s)ds = x̂′(t)
d

dt |t=x̂(t)

∫
σ2(t,t)

I(s)H ′(s)ds

18The analog of equation (5) in the standard one good auction is P ∗′(t) = v(t)H ′(t) which is independent of
the price formation rules.
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so equation (9), for t ∈ Ĵ1, is equivalent to∫
σ2(t,t)

D′2P (s, t)H ′(s)ds−
∫
σ1(t,t)

D′1P (t, s)H ′(s)ds+ 2P (t, t)
d

dt

∫
σ2(t,t)

H ′(s)ds (10)

= (v1(x̂(t))− v2(x̂(t)))
d

dt

∫
σ2(t,t)

H ′(s)ds+
d

dt

∫
σ2(t,t)

I(s)H ′(s)ds

Thus, (6) and (10) must hold for t ∈ Ĵ1 which implies the result.

Proof of Theorem 10: We look for an equilibrium bidding function B that is monotonically

increasing on [0, 1] so that when setting up equation (4), σ2(t, t) = (t, 1), σ1(t, t) = (0, t) and

∆(t) = 1−H(t). Let D denote the total derivative so that D′1P (t, t)+ D′2P (t, t) = DP (t, t).

If B(t) solves (4), then, by construction, bidder t gains most by bidding according to B(t)

rather than according to B(s) for any s 6= t. I first show that there is no incentive for any bidder

to bid outside the range of bids. Continuity of the payoff function and the fact that the payoff

function decreases as the distance between the out-of-equilibrium bid and the set of equilibrium

bids increases imply that no bidder can gain by deviating, proving the result. It remains to show

that there exists a solution to (4) that is monotonically increasing for which no bidder obtains

both goods in equilibrium. If the bidding function satisfies P (0, 0) ≥ (v1(0)− v2(0) + I(0)) /2,

condition (2) would be sufficient to imply that no bidder obtains both goods in equilibrium.

Let D denote the total derivative. In the case that one of D′1P (t, s) or D′2P (s, t) equals

zero, then, since D′1P (t, t)+ D′2P (t, t) = DP (t, t) and D′′12(t, t) = D′′21(t, t) = 0, (4) implies that

there exists a monotonically increasing B that is an equilibrium bidding function if there exists

a monotonically increasing bidding function for which

P (0, 0) ≥ min
s,t∈[0,1]

v1(t)− v2(t) + I(s)

2

and either

DP (t, t)(1−H(t))− 2P (t, t)H ′(t) = −(v1(t)− v2(t) + I(t))H ′(t)

or

DP (t, t)H(t) + 2P (t, t)H ′(t) = (v1(t)− v2(t) + I(t))H ′(t)

so that either

P (t, t)(1−H(t))2 =

∫ t

1

(v1(s)− v2(s) + I(s))
d(1−H(s))2

2

implies

P (t, t) =
v1(t)− v2(t) + I(t)

2
−
∫ t

1
(1−H(s))2(v′1(s)− v′2(s) + I ′(s))ds

2(1−H(t))2
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or

P (t, t)(H(t))2 =

∫ t

0

(v1(s)− v2(s) + I(s))
d((H(s))2)

2
ds

implies

P (t, t) =
(v1(t)− v2(t) + I(t))

2
−
∫ t

0
(H(s))2(v′1(s)− v′2(s) + I ′(s))ds

2(H(t))2

Since P (t, t) is a strictly increasing function of B(t) and v′1(s) − v′2(s) + I ′(s) > 0, there exists

a bidding function that solves (4) for which either

DP (t, t) =
2H ′(t)

∫ 1

t
(1−H(s))2(v′1(s)− v′2(s) + I ′(s))ds

2(1−H(t))3
> 0 on (0, 1)

and

P (0, 0) ≥ min
s,t∈[0,1]

v1(t)− v2(t) + I(s)

2

or

DP (t, t) =
2H ′(t)

∫ t
0
(H(s))2(v′1(s)− v′2(s) + I ′(s))ds

2(H(t))3
> 0 on (0, 1)

and

P (0, 0) ≥ min
s,t∈[0,1]

v1(t)− v2(t) + I(s)

2

Thus, when v′1− v′2 + I ′ > 0 on (0, 1), D′′12(t, t) = D′′21(t, t) = 0 and one of D′1P (t, s) or D′2P (s, t)

equals zero, DP > 0 for t ∈ (0, 1). Thus, since P (t, t) is a strictly increasing function of B(t),

v′1(s)−v′2(s)+I ′(s) > 0 on [0, 1] implies that there exists a monotonically increasing equilibrium

bidding function.

In the case that D′′12(t, t) = D′′21(t, t) = 0 and D′2P (t, t) = γD′1P (t, t) for γ > 0, and

D′1P (t, t)+ D′2P (t, t) = DP (t, t), (4) implies that

DP (t, t)

(
γ

1 + γ
−H(t)

)
− 2P (t, t)H ′(t) = −(v1(t)− v2(t) + I(t))H ′(t)

so that

P (t, t)

(
γ

1 + γ
−H(t)

)2

=

∫ t

H−1( γ
1+γ )

(v1(s)− v2(s) + I(s))
d
(

γ
1+γ
−H(s)

)2

2

implies

P (t, t) =
(v1(t)− v2(t) + I(t))

2
−

∫ t
H−1( γ

1+γ )

(
γ

1+γ
−H(s)

)2

(v′1(s)− v′2(s) + I ′(s))ds

2
(

γ
1+γ
−H(t)

)2
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Since P (t, t) is a strictly increasing function of B(t), v′1(s)− v′2(s) + I ′(s) > 0 this implies that

there exists a bidding function that solves (4) for which

DP (t, t) = −

∫ t
H−1( γ

1+γ )
(1−H(s))2

2
(v′1(s)− v′2(s) + I ′(s))ds(

γ
1+γ
−H(t)

)3 > 0 on (0, 1)

and

P (0, 0) ≥ min
s,t∈[0,1]

v1(t)− v2(t) + I(s)

2

so that again v′1(s)− v′2(s) + I ′(s) > 0 on [0, 1] implies that there exists an equilibrium bidding

function B that is monotonically increasing on [0, 1]. Analogous arguments show that the results

remain when v1(s)− v2(s) + I(s) is S-decreasing on [0, 1].

Proof of Theorem 11: Under first price rules, D2P (t, s) = 0 and under second price rules,

D1P (t, s) = 0. Thus, D12P (t, s) = 0 and the result follows from Theorem 10.

Proof of Theorem 12: We show that there exists an equilibrium bidding function that is OE

to v1 − v2. If all play according to a bidding function B that is OE to vα − vβ, let

∆i(t) =

∫
σ2(t,t)

H ′(s)ds

denote the probability that player t ∈ Ki ⊂ S ∪ J obtains good 2. Let X(t) represent the set

of points in [0, 1] for which v1 (x) − v2 (x) = v1(t) − v2(t). If t ∈ int(S), X(t) = {t} where int

denotes the interior. If t ∈ int(J), then X(t) % {t}. In this case, as t varies so does each point

in X(t). We abuse notation and let x ∈ X(t) stand for a point and also for a function that

varies with t whenever t is not a critical point of v1 − v2. In this case, the sign of x′(t) equals

that of v′1 (x)− v′2 (x) for x 6= t. Let |z| denotes the absolute value of z. Since v1 − v2 increases

at t ∈ int(S) ∪ int(J) we obtain that, for k = s and i = 0, ...,M +N ,

∆′i(t) = −
∑
x∈X(t)

H ′(x) |x′(t)| ≤ 0

Since v1− v2 is maximized at t0, ∆0(t0) = 0. We note that ∆i(t) > 0 at all other right-hand

endpoints of Ki, i = 1, ...,M +N .

We provide the proof explicitly under a second price rule in the case that v1 − v2 is S-

monotonically increasing whenever it is S-monotonic. We begin construction of B with a differ-

ential equation on K0. In this case, since v1 (x)− v2 (x) = v1(t)− v2(t) for x ∈ X(t), the ODE

that characterizes B on K0 is

B′(t)∆0(t) + 2B(t)∆′0(t) = c(t)∆′0(t) (11)

with initial condition B(t0) = c(t0)/2.
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Thus the solution to ODE (11) and its initial condition is

B(t)∆2
0(t) =

∫ t

t0

c0(s)∆
′
0(s)∆0(s)ds

for t ∈ [t1, t0] = K0. The proof that B′(t) > 0 for t ∈ int (K0) follows the exact reasoning offered

in the proof of Theorem 10 with c0 in the current proof taking on the role of v1 − v2 + I in the

previous proof so that the sign of B′ > 0 as required.

We now derive B for the iterative step. Suppose that B has been derived and that B′(t) > 0

for t ∈ ∪i=ki=0Kr as above. Suppose that, for t ∈ Kk = [t2k+1, t2k],

B(t)∆2
k(t) =

∫ t

t2k

ck(s)∆
′
k(s)∆k(s)ds+B(t2k)∆

2
k(t2k) and

B(t2k)∆
2
k(t2k) = −

r=k−1∑
r=0

∫ t2r+1

t2r

cr(s)∆
′
r(s)∆r(s)ds

where ∆r(t2r) = ∆r−1(t2r−1) and cr(t2r+1) = cr+1(t2r+2) on Kr for r = 0, ..., k. We now derive

B for t ∈ Kk+1 and show that B′ > 0 on Kk+1.

Since v1(t2k+2) − v2(t2k+2) = v1(t2k+1) − v2(t2k+1), and since B is OE to vα − vβ, the ODE

(11) over Kk+1 is accompanied by the initial condition B(t2k+2) = B(t2k+1)where

B(t2k+1)∆
2
k(t2k+1) =

r=k∑
r=0

∫ t2r+1

t2r

cr(s)∆
′
r(s)∆r(s)ds

where the equality ∆r(t2r) = ∆r−1(t2r−1) holds for r = 0, ..., k + 1 so that

B(t2k+2)∆
2
k+1(t2k+2) = B(t2k+1)∆

2
k(t2k+1)

Since ∆0(t0) = 0, the solution to ODE (11) with initial condition is

B(t)∆2
k+1(t) =

∫ t

t2k+2

ck+1(s)∆
′
k+1(s)∆k+1(s)ds+

r=k∑
r=0

∫ t2r+1

t2r

cr(s)∆
′
r(s)∆r(s)ds

for t ∈ Kk+1 and its derivative is

B′(t) =
ck+1∆

′
k+1(t)∆k+1(t)

∆2
k+1(t)

−
2∆′k+1(t)

∆3
k+1(t)

(∫ t

t2k+2

ck+1(s)∆
′
k+1(s)∆k+1(s)ds+

r=k∑
r=0

∫ t2r+1

t2r

cr(s)∆
′
r(s)∆r(s)ds

)
for t ∈ Kk+1. Using integration by parts and that facts that c increases, ∆r(t2r) = ∆r−1(t2r−1)

on Kr for r = 0, ..., k and ∆0(t0) = 0 we obtain that

B′(t) = −
2∆′k+1(t)

∆3
k+1(t)

(
−
∫ t

t2k+2

c′k+1(s)∆k+1(s)

2
ds

)
−

2∆′k+1(t)

∆3
k+1(t)

r=k∑
r=0

(
−
∫ t2r+1

t2r

c′r(s)∆r(s)

2
ds

)
> 0
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since c′r > 0 for r = 0, ..., k + 1, ∆′k+1 < 0, t2r+1 < t2r, t ∈ [t2k+3, t2k+2].

By construction, for x ∈ X(t) ⊂ [0, 1]\ (S ∪ J), there exists t ∈ J for which v1(x)− v2(x) =

v1(t) − v2(t) so that we may extend B letting B(x) = B(t). In this case, B′(x(t))x′(t) = B′(t)

for x ∈ X(t) as required.

Thus far, we have obtained the unique bidding function that is OE to v1 − v2 and that

satisfies the appropriate ODE (and initial condition) required to guarantee that, for t ∈ [ti+1, ti]

bidding B(t) is best among bids B(s) for t ∈ [ti+1, ti]. It remains to show that, for any bidder

t ∈ [ti+1, ti] say, bidding any bid b = B(s) for s ∈ Kr for r 6= i or b /∈ {B(s) : s ∈ S ∪ J} is

weakly dominated by bidding B(t).

First note that if s ∈ S ∪ J , then bidding B(s) results in

π(t, s) =

∫
σ2(t,s)

(vα(t)−B(u))H ′(u)du+

∫
σ1(t,s)

(vβ(t)− I(u) +B(s))H ′(u)du

If all types bid according to B, then ∂π(s, s)/∂s = 0. Now, suppose that s ∈ J ∪ S, then

B(s) < B(t) implies ∂π(t, s)/∂s > ∂π(s, s)/∂s since vα(s) − vβ(s) < vα(t) − vβ(t) whenever

B(s) < B(t) and B(s) > B(t) implies that ∂π(t, s)/∂s < ∂π(s, s)/∂s since vα(s) − vβ(s) >

vα(t)− vβ(t) whenever B(s) > B(t). Thus, bidder t prefers to bid B(t) rather than B(s) for any

s ∈ S∪J , s 6= t. Continuity of the payoff guarantees that bidder t prefers to bid B(t) rather than

b < mins∈S∪J B(s) or b > maxB(s) since the payoff function increases in bids b < mins∈S∪J B(s)

and decreases in bids b > maxB(s). One can prove the theorem under a 1st price rule either

analogously or by appealing to Theorem 15.

Proof of Corollary 13: c(t) is monotonic on K so that Theorem 12 implies the result.

Proof of Corollary 14: Efficiency, existence, uniqueness and revenue maximization follows

from the proof of Theorems 12, 11, 8 and 2.

Proof of Theorem 15: As the reasoning is entirely analogous in the two cases, we prove the

result starting with an equilibrium bidding function that exists under a 2nd price rule. Begin by

letting

B1(t) = B2(t)−

∫
(c,t)∩K̂ B

′
2(t)∇(s)ds

(∇(t))2

as stated at the end of the proof of Lemma 22. It is immediate from reversing the Proof of

Lemma 22 that B1 is an equilibrium bidding function under a 1st price rule. Since the sign of

∇′ equals that of B′2 and by definition of ∇, it is also immediate that B1 is OE to B2.

The following lemmas are used to prove Theorems 16, 17, and 20.

Lemma 21 Let W : [0, 1] −→ [0, 1] be onto and continuous. Let K̂ be the union of intervals

over which the cover of W is strictly monotonic on K̂. Let W−1(0) = C, W−1(1) = D where
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C < D or D < C are the endpoints of K̂. Let

F (t) = W (t) lnW (t)− (2W (t)− 1)2

4

G(t) = 2(1−W (t))2 ln(1−W (t))− (2W (t)− 1)2

2

Then

F (t) ≤ −1

4
, G(t) ≥ −1

2

If L is OE to W , then ∫
(C,D)∩J

L′(t)F (t)dt ≤ −1

4

∫
(C,D)∩J

L′(t)dt∫
(C,D)∩J

L′(t)G(t)dt ≥ −1

2

∫
(C,D)∩J

L′(t)dt

If L is ORE to W and W ′ > 0, then∫
(C,D)∩J

L′(t)F (t)dt ≥ −1

4

∫
(C,D)∩J

L′(t)dt

Proof. We first note that F (C) = −1/4 = F (D), G(C) = −1/2 = G(D).

F ′(t) = W ′(t) (lnW (t) + 2− 2W (t)) = W ′(t)M(t)
G′(t) = 2W ′(t) (−2(1−W (t) ln(1−W (t))−W (t)) = 2W ′(t)K(t)

where

M ′(t) = W ′(t)

(
1

W (t)
− 2

)
K ′(t) = W ′(t) (2 ln(1−W (t)) + 1)

Since W ′ > 0 if and only if C < D, as t increases along (C,D)∩K̂, F (t) decreases then increases

while G(t) increases then decreases which proves the first pair of results.

Let L be OE to W . In this case, W ′ > 0 implies L′ > 0, C < D which implies∫
(C,D)∩K̂

L′(t)F (t)dt ≤ −1

4

∫
(C,D)∩K̂

L′(t)dt∫
(C,D)∩K̂

L′(t)G(t)dt ≥ −1

2

∫
(C,D)∩K̂

L′(t)dt

and W ′ < 0 implies L′ < 0, D < C which implies∫
(C,D)∩K̂

L′(t)F (t)dt = −
∫

(D,C)∩K̂
L′(t)F (t)dt ≤ 1

4

∫
(D,C)∩K̂

L′(t)dt = −1

4

∫
(C,D)∩K̂

L′(t)dt∫
(C,D)∩K̂

L′(t)G(t)dt = −
∫

(D,C)∩K̂
L′(t)G(t)dt ≥ 1

2

∫
(D,C)∩K̂

L′(t)dt = −1

2

∫
(C,D)∩K̂

L′(t)dt
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Let L be ORE to W and W ′ > 0. C < D and L′ < 0 implies the last result.

Given any bidding function B and its associated probability ∇(t) = 1 − ∆(t), there is a

monotonic cover of B. Denote by K̂ the closure of union of intervals over which the cover is

strictly monotonic and let c = ∇−1(0), D = ∇−1(1) denote the end-points of K̂. Either the

cover is strictly increasing over K̂ and C < D or the cover is strictly decreasing over K̂ and

D < C. There may be gaps in K̂ but, by nature of a cover, the values of the bidding function

form a continuous range as t ranges over K̂. Below, the subscripts indicate the price rule.

Lemma 22 If the equilibrium bidding function under a 1st price rule is OE to that under a 2nd

price rule, then

B1(t) = B2(t)−

∫
(C,t)∩K̂ B

′
2(t)∇(s)ds

(∇(t))2

Proof. Since B1 and B2 are OE there are OE monotonic covers of B1 and B2 with a common

associated K̂ and ∇. Since ∇(t) = 1−∆(t), (4) implies

B′2(t)(1−∇(t))− 2B2(t)∇′(t) = −(v1(t)− v2(t))∇′(t) + δ′(t)

B′1(t)∇(t) + 2B1(t)∇′(t) = (v1(t)− v2(t))∇′(t)− δ′(t)

so that

(B′1(t)−B′2(t))∇(t) + 2 (B1(t)−B2(t))∇′(t) = −B′2(t)

which implies that, for t ∈ K̂,

B1(t) = B2(t)−

∫
(C,t)∩K̂ B

′
2(s)∇(s)ds

(∇(t))2

The next two Lemmas restrict to 1st (denoted by a = 0) and 2nd price rules (denoted by

a = 1). Let the subscripts on B denote the order of sale.

Lemma 23 If va − vβ + I, vβ − vα + I and I are each OE to the equilibrium bidding function

under order α, β and under order β, α then, for t ∈ K̂

Bα,β(t) +Bβ,α(t) = I(t)− a

∫
(D,t)∩K̂(1−∇(s))2I ′(s)ds

(1−∇(t))2
− (1− a)

∫
(C,t)∩K̂ ∇

2(s)I ′(s)ds

∇2(t)

Proof. Since Bα,β and Bβ.α are OE, the associated Ĵ and ∆ are common. Since ∇(t) =

1−∆(t), (4) and the fact that I is OE to both bidding functions imply

B′α,β(t) (a(1−∇(t))− (1− a)∇(t))− 2Bα,β(t)∇′(t) = −(vα(t)− vβ(t) + I(t))∇′(t)

B′β,α(t) (a(1−∇(t))− (1− a)∇(t))− 2Bβ,α(t)∇′(t) = −(vβ(t)− vα(t) + I(t))∇′(t)(
B′α,β(t) +B′β,α(t)

)
(a(1−∇(t))− (1− a)∇(t))− 2 (Bα,β(t) +Bβ,α(t))∇′(t) = −2I(t)∇′(t)
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Lemma 24 If va−vβ+I is ORE to vβ−vα+I and each bidding function is OE to its associated

critical value v(t) then, if I(t) = I

Bα,β(t) +Bβ,α(t) = I +

∫
(C,t)∩K̂

(
aB′α,β(s) + (1− a)B′β,α(s)

)
∇α,β(s)ds

∇2
α,β(t)

for t ∈ K̂

Proof. Since ∇(t) = 1−∆(t), (4) implies that

B′α,β(t) (a(1−∇α,β(t))− (1− a)∇α,β(t))− 2Bα,β(t)∇′α,β(t) = −(vα(t)− vβ(t) + I)∇′α,β(t)

B′β,α(t) (a(1−∇β,α(t))− (1− a)∇β,α(t))− 2Bβ,α(t)∇′β,α(t) = −(vβ(t)− vα(t) + I)∇′β,α(t)

By assumption, ∇α,β(t) +∇β,α(t) = 1 so that after adding the two equations, we obtain

(
a(B′α,β(t) +B′β,α(t)) + (1− a)(B′α,β(t) +B′β,α(t))

)
∇α,β(t) + 2(Bα,β(t) +Bβ,α(t))∇′α,β(t)

= 2I∇′α,β(t) + aB′α,β(t) + (1− a)B′β,α(t)

which implies the result where ∇α,β(C) = 0, ∇α,β(D) = 1, C,D ∈ K̂ where ∇α,β is OE to Bα,β

on K̂ which is ORE to Bβ,α on K̂.

Proof of Theorem 16: By assumption, there is a common ∇ and Ĵ . Since the expected price

of good 1 under a 2nd price rule is

exp p2
1 = 2

∫
(c,d)∩Ĵ

B2(t)(1−∇(t)∇′(t)dt

and the expected price of good 1 under a 1st price rule is

exp p1
1 = 2

∫
(c,d)∩Ĵ

B1(t)∇(t)∇′(t)dt

the expected difference in the price of good 1 under 1st and 2nd price rules is

exp p1
1 − exp p2

1 = 2

∫
(c,d)∩Ĵ

B1(t)∇(t)∇′(t)dt− 2

∫
(c,d)∩Ĵ

B2(t)(1−∇(t)∇′(t)dt

After using Lemma 22 and grouping terms we obtain that exp p1
1 − exp p2

1 equals∫
(c,d)∩Ĵ

B2(t)d
(2∇(t)− 1)2

2
− 2

∫
(c,d)∩Ĵ

∫
(c,t)∩Ĵ

B′2(s)∇(s)dsd ln(∇(t))

After integrating by parts (using ∇(c) = 0, ∇(d) = 1), we obtain exp p1
1 − exp p2

1 equals

2

(
B2(d)

4
− B2(c)

4

)
+ 2

∫
(c,d)∩J

B′2(t)

(
∇(t) ln∇(t)− (2∇(t)− 1)2

4

)
dt
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By Lemma 21 using ∇(t) = W (t) is OE to L = B2 we obtain

exp p1
1 − exp p2

1 ≤ 2

(
B2(d)

4
− B2(c)

4

)
− 2

4

∫
(c,d)∩Ĵ

B′2(t)dt = 0

Proof of Theorem 17: SinceI is OE to the equilibrium bidding functions Bα,β and Bβ,α the

expected income of the winner of good one is independent of the sequence of sale so that the

expected revenue is independent of the sequence of sale. Since the sum of the expected prices

of the goods equals exp max{I(t1), I(t2)}, the difference expβ,αα − exp pα,βα in the expected price

of good α under sequence (β, α) and that under sequence (α, β) is

2

∫
(c,d)∩Ĵ

I(t)∇(t)∇′(t)dt− 2a

∫
(c,d)∩Ĵ

(Bβ,α(t) +Bα,β(t))∇′(t) (1−∇(t)) dt

− 2(1− a)

∫
(c,d)∩Ĵ

(Bβ,α(t) +Bα,β(t))∇′(t)∇(t)dt

Lemma 23 implies that expβ,αα − exp pα,βα =

a

∫
(c,d)∩Ĵ

I(t)d

(
(2∇(t)− 1)2

2

)
− 2a

∫
(c,d)∩Ĵ

(∫
(d,t)∩Ĵ

(1−∇(s))2I ′(s)ds

)
d (ln (1−∇(t)))

+ 2(1− a)

∫
(c,d)∩Ĵ

∫
(c,t)∩Ĵ

∇2(s)I ′(s)dsd (ln∇(t))

Since ∇(c) = 0, ∇(d) = 1 integration by parts implies expβ,αα − exp pα,βα =

a
I(d)

2
− aI(c)

2
+ a

∫
(c,d)∩Ĵ

I ′(t)

(
2 (ln (1−∇(t))) (1−∇(t))2 − (2∇(t)− 1)2

2

)
dt

− 2(1− a)

∫
(c,d)∩Ĵ

ln∇(t)∇2(t)I ′(t)dt

By Lemma 21 using ∇ = W, I = L, we obtain that expβ,αα − exp pα,βα ≥

a
I(d)

2
− aI(c)

2
− a

2

∫
(c,d)∩Ĵ

I ′(t)ds− 2(1− a)

∫
(c,d)∩Ĵ

ln∇(t)∇2(t)I ′(t)dt

= −2(1− a)

∫
(c,d)∩Ĵ

ln∇(t)∇2(t)I ′(t)dt ≥ 0

Proof of Corollary 18: Theorem 11 therefore implies existence of an S-monotonic equilibrium

bidding function. Theorem 17 then implies the result.

Proof of Corollary 19: Existence follows from Theorem 11. Efficiency follows from the fact

that vα = vβ. The remainder of the theorem follows from Theorem (17).
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Proof of Theorem 20: Uniqueness follows from Theorems (8) and (10). Existence follows

from Theorem (12) since v1 − v2 is OE to v1 − v2 + I. I now prove points (1) and (2). WLOG,

I focus on α and assume Bα,β strictly increases on Ĵ .

The expected price of good α under order β, α minus that under order α, β is

exp pα
β,α − exp pα,βα

= I − 2a

(∫
(d,c)∩Ĵ

Bβ,α(t)(1−∇β,α(t))∇′β,α(t)dt+

∫
(c,d)∩Ĵ

Bα,β(t)(1−∇α,β(t))∇′α,β(t)dt

)
−2(1− a)

(∫
(d,c)∩Ĵ

Bβ,α(t)∇β,α(t)∇′β,α(t)dt+

∫
(c,d)∩Ĵ

Bα,β(t)∇α,β(t)∇′α,β(t)dt

)
Lemma 24, ∇α,β(t) +∇β,α(t) = 1, I(t) = I implies exp pα

β,α − exp pα,βα =

2a

(∫
(c,d)∩Ĵ

Bα,β(t)d

(
(2∇α,β(t)− 1)2

4

)
−
∫

(c,d)∩Ĵ

∫
(c,t)∩Ĵ

B′α,β(s)∇α,β(s)dsd ln∇α,β(t))

)
+2(1− a)

(∫
(c,d)∩Ĵ

Bβ,α(t)d

(
(2∇α,β(t)− 1)2

4

)
−
∫

(c,d)∩Ĵ

∫
(c,t)∩Ĵ

B′β,α(s)∇α,β(s)dsd ln∇α,β(t))

)
Since ∇α,β(c) = 0, ∇α,β(d) = 1, integrating by parts implies exp pα

β,α − exp pα,βα =

2a

(
Bα,β(d)

4
− Bα,β(c)

4
+

∫
(c,d)∩Ĵ

B′α,β(t)

(
ln∇α,β(t)∇α,β(t)− (2∇α,β(t)− 1)2

4

)
dt

)
+2(1− a)

(
Bβ,α(d)

4
− Bβ,α(c)

4
+

∫
(c,d)∩Ĵ

B′β,α(t)

(
ln∇α,β(t)∇α,β(t)− (2∇α,β(t)− 1)2

4

)
dt

)
By Lemma 21, since Bα,β is OE to ∇α,β and Bβ,α is ORE to ∇α,β, under a 2nd price rule,

exp pα
β,α − exp pα,β ≤ 2

(
Bα,β(d)

4
− Bα,β(c)

4
− 1

4

∫
(c,d)∩Ĵ

B′α,β(t)dt

)
= 0

and, under 1st price rule,

exp pα
β,α − exp pα,β ≥ 2

(
Bβ,α(d)

4
− Bβ,α(c)

4
− 1

4

∫
(c,d)∩J

B′β,α(t)dt

)
= 0
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