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Abstract

This paper proposes a sequential Monte Carlo method for estimating GARCH
models subject to an unknown number of structural breaks. We use particle filter-
ing techniques that allow for fast and efficient updates of posterior quantities and
forecasts in real-time. The method conveniently deals with the path dependence
problem that arises in these type of models. The performance of the method is
shown to work well using simulated data. Applied to daily NASDAQ returns, the
evidence favors a partial structural break specification in which only the intercept of
the conditional variance equation has breaks compared to the full structural break
specification in which all parameters are subject to change. Our empirical applica-
tion underscores the importance of model assumptions when investigating breaks.
A model with normal return innovations result in strong evidence of breaks; while
more flexible return distributions such as t-innovations or adding jumps to the model
still favor breaks but indicate much more uncertainty regarding the time and impact
of them.
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1 Introduction

There is growing interest among practitioners as well as academics in estimating mod-
els with structural breaks that are able to capture abrupt changes in the behavior of
economic agents in response to changes in economic conditions and policies as well as
political events. One prominent example of parameter change over time is the GARCH
model, e.g. Lamoureux and Lastrapes (1990), Chu (1995), Mikosch and Starica (2004),
Hillebrand (2005), Rapach and Strauss (2006) and Chopin (2007).1 A common finding of
this literature is that neglected parameter changes cause substantial biases in parameter
estimates and poor forecasts.

This paper addresses the econometric challenges of estimating GARCH models subject
to structural breaks by using a Bayesian sequential Monte Carlo approach. The Bayesian
approach delivers exact finite sample results that are well suited to dealing with struc-
tural breaks that may occur after relatively short intervals. We present a particle filtering
approach to sequential estimation that builds on the change-point model of Chib (1998).
The approach allows the number of breaks as well as model parameters to be estimated
jointly in one run and can handle models with path dependence conveniently. Our em-
pirical application underscores the importance of model assumptions when investigating
breaks. A model with normal return innovations result in strong evidence of breaks; while
more flexible return distributions such as t-innovations or adding jumps to the model still
favor breaks but indicate much more uncertainty regarding the time and impact of them.

Chib (1998) proposes a convenient state-space formulation of structural break models
in which a discrete latent state variable drives structural breaks and follows a constrained
Markov chain. An efficient MCMC algorithm for estimation and computing Bayes factors
for the purpose of model selection is provided in Chib (1996,1998). One limitation of this
method is that the number of possible structural breaks needs to be specified a priori. The
model is repeatedly estimated conditional on k = 0, 1, ..., kmax breaks occurring. Inference
on the number of break points requires computation of the marginal likelihoods for all
specifications.2

There is a significant Bayesian literature on analysis of structural breaks using Markov
chain Monte Carlo (MCMC) methods, e.g. Barry and Hartigan (1993), McCulloch and
Tsay (1993), Green (1995) and Gerlach, Carter, and Kohn (2000). Recent work by Koop
and Potter (2004), Maheu and Gordon (2008) and Pesaran, Pettenuzzo, and Timmermann
(2006) extends this to forecasting out-of-sample in the presence of structural breaks.

These MCMC approaches are based on the entire sample of data. Whenever a new
observation arrives, the whole posterior sampling algorithm has to be re-run in order to
update estimates of parameters and state variables. Computation becomes cumbersome

1Other papers that find structural change in volatility dynamics include Liu and Maheu (2008) and
Starica and Granger (2005).

2In the MCMC context setting kmax to a sufficiently large number and doing only one estimation run
is not an attractive alternative. This forces there to be kmax breaks in-sample, which may be larger than
the true number of breaks, and as a result will increase parameter uncertainty and decrease the quality
of predictions. On the other hand, not enforcing that all states are visited in sampling may cause state
collapsing in which no data are sorted into some states. This leads to poor convergence of the chain
(Scott 2002).
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and practically infeasible when new observations arrive in high frequency such as in many
financial applications. The method proposed in this paper allows for fast efficient updates
to posterior quantities as new data arrives.

Another challenging problem for MCMC analysis of structural breaks is how to handle
models with path dependence, e.g. GARCH models. For example, a change in a parameter
of the conditional variance at time t will affect all future conditional variances (Gray 1996).
Due to this path dependence the dimension of the state space grows at an exponential
rate. Computing the likelihood of the model requires integrating over all possible paths
of break points, which quickly become computationally intractable. As a result, the
forward-backward filter of Chib (1998) which allows for an efficient MCMC approach is
not available for this class of models.3

This paper proposes a particle filter algorithm that can provide fast approximate
updates to posterior quantities as new data arrives and estimate the number of break
points simultaneously with other parameters and state variables in a single run. It can
estimate models with path dependence conveniently and compute the marginal likelihoods
as a by-product of estimation. By focusing on the sequential filtering problem rather than
the smoothing problem (MCMC), the path dependence that structural breaks induce in
GARCH models is eliminated.

A particle filter is a class of sequential Monte Carlo filtering methods that approx-
imate the posterior distribution of the latent state variables by a set of particles and
associated probability weights. The original particle filtering algorithm is proposed by
Gordon, Salmond, and Smith (1993). Important subsequent contributions include Kita-
gawa (1996), Liu and Chen (1998), Pitt and Shephard (1999), Carpenter, Clifford, and
Fearnhead (1999), Johannes and Polson (2006) and Polson, Stroud, and Muller (2008)
among others.

Chopin (2007) has developed a particle filtering algorithm for estimating structural
break models in which the fixed model parameters are formulated as part of the state
variables. Our approach differs in that we use Chib’s formulation of a structural break
model and the fixed parameters are treated separately from state variables. Parameter
learning is realized through the mixture kernel smoothing method of Liu and West (2001).4

Our formulation of structural breaks has the advantage that it can easily incorporate the
case where only a subset of parameters have breaks while in the Chopin approach, it is
not straightforward, if not impossible, due to the path dependence problem that occurs
in local MCMC moves.5 In contrast, we are able to compare GARCH specifications that
allow breaks in all parameters with versions that allow breaks only to the intercept of
the conditional variance. It is this latter specification that isolates breaks in the long-run

3Bauwens, Preminger, and Rombouts (2006) develops a single-move Gibbs sampler which can deal with
path dependence in a Markov switching GARCH model with a fixed number of regimes. To determine
the number of regimes would require computing the marginal likelihood, which as far as we know, there
is no efficient method available.

4The mixture kernel smoothing approach of Liu and West (2001) has been successfully used in several
papers including Carvalho and Lopes (2007), Casarin and Trecroci (2006) and Raggi and Bordignon
(2008).

5Chopin (2007) uses local MCMC sampling based on Gilks and Berzuini (2001) to rejuvenate the
particles and avoid degeneracy.
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variance and has empirical support (Starica and Granger 2005).
We assume structural breaks are governed by a finite dimension nonhomogenous

Markov chain. In contrast to the MCMC method of Chib (1998), our approach does
not enforce that all states be visited. Following Chopin and Pelgrin (2004), we specify
an upper bound on the number of structural breaks to facilitate computation. As long
as the upper bound on the number of breaks is large enough we can jointly estimate the
model parameters and the number of structural breaks at each point in time based on a
single run of the algorithm.

The proposed algorithm is applied to structural break GARCH (SB-GARCH) mod-
els. We investigate 4 specifications, namely, a partial SB-GARCH model in which only
the intercept of the volatility equation has breaks with normal and t return innovations,
and a full SB-GARCH models in which all parameters are subject to breaks with normal
and t return innovations. Based on simulated data, we find that the algorithm performs
well in estimating the number and locations of breaks as well as fixed parameters. Fur-
thermore, the marginal likelihoods, computed as a byproduct of the particle filter, can
be used to identify the true model specification correctly. For empirical application, we
analyze the daily NASDAQ returns from January 3, 1995 to December 29, 2006. Our
benchmark GARCH model with normal innovations identifies two breaks in late 1997 and
early 2004, which are associated with changes in the long-run variance of returns. Based
on marginal likelihoods, a partial SB-GARCH model with t-innovations has the highest
cumulative predictive power compared with full SB-GARCH models as well as no-break
GARCH models. The structural break GARCH model with student-t return innovations
outperforms the normal specification and indicates much more uncertainty regarding the
time and impact of breaks on the model.

We find it important to use a flexible model for daily returns, failure to do so may
result in the false identification of structural change. According to the filter estimates
of the states the evidence of structural change with normal return innovations is largely
removed once we use t-innovations or introduce jumps into the model. Nevertheless, Bayes
factors favor the structural break model even with the large amount of uncertainty about
breaks.

In summary, we propose a particle filtering technique that allows for fast and efficient
updates of posterior quantities and forecasts of GARCH with structural breaks. The
method can handle the path dependence problem in the conditional variance and can
estimate specifications in which all parameters change from a break as well as the case
where only a subset of parameters change. The performance of the method is analyzed
using both simulated and NASDAQ return data.

The paper is organized as follows. Section 2 presents the general structural break
model we consider. Section 3 provides a brief review of particle filtering methods and the
algorithm for the general structural break model. In Section 4, we detail the SB-GARCH
models we estimate. Section 5 gives the simulation results of the algorithm and Section
6 is the empirical application on daily NASDAQ returns. The conclusions are presented
in Section 7.
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2 A General Structural Break Model

We consider a general structure break model in which the observation yt is drawn from an
analytically tractable density p(yt|Dt−1, θt), where Dt−1 is the set of information known
at time t− 1 and θt is the set of parameters. The changing parameters θt are assumed to
be driven by an unobservable state variable st such that

θt = θk when st = k, k ∈ {1, 2, ..., K}

where θk is the parameter value in state k. Note some of the elements of θt may be
constant across states. The state variable st is modeled as a Markov chain with the
transition probability matrix

P =


p11 1 − p11 0 ... 0
0 p22 1 − p22 ... 0

...
0 0 ... pK−1,K−1 1 − pK−1,K−1

0 0 ... 0 1

 (1)

A structural break at time t occurs when st−1 6= st. This formulation of structural breaks
was originally proposed by Chib (1998) and is used extensively in subsequent papers in
the literature, e.g. Pastor and Stambaugh (2001), Kim, Morley, and Nelson (2005) and
Liu and Maheu (2008). It has two major benefits. First, it automatically enforces an
ordering of break points in the series yt. Moreover, when viewed as a hidden Markov
model (HMM), it facilitates the marriage with the existing large literature on HMM’s
and hence the development of efficient estimation methods (Scott (2002)).

Chib (1998) has developed a general MCMC algorithm for structural break models
with a fixed number of states. But there are important limitations of this approach. As
a smoothing algorithm, estimates of state variables rely on the information of the entire
sample. It is not computationally feasible to update estimates as each new observation
arrives in high frequency since the whole algorithm has to be re-run to incorporate this
new information. It is inconvenient to determine the number of states via the existing
MCMC methods. The usual practice is to run the algorithm repeatedly conditional on
a fixed number K of states specified a prior and calculate their marginal likelihoods
for several K. The number of states is then determined by comparing these marginal
likelihoods. Computing the marginal likelihood is unfortunately often a complicated issue
in the MCMC context. The whole estimation process can be time-consuming and become
impractical in real applications where inference needs to be updated frequently. In the
case of models with path dependence such as the structural break GARCH model, which
we discuss next, the Chib algorithm is not directly applicable.

2.1 Structural Breaks and GARCH

In this section we review some of the computational issues in estimating structural breaks
in GARCH specifications and the resulting path dependence. The GARCH model of
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Engle (1982) and Bollerslev (1986) has been widely used in practice for estimating the
volatility of asset returns. One typical form is

yt = σtεt, εt ∼ i.i.d.(0, 1) (2)

σ2
t = c + αy2

t−1 + βσ2
t−1 (3)

where yt is the return of some financial asset. The sum α + β measures the persistence
of the volatility process. A common finding in the literature is that estimates of this
sum tend to be close to one, indicating that the volatility is highly persistent. However,
it has been argued that this high persistence may be due to structural breaks in the
volatility process, e.g. see Diebold (1986), Lamoureux and Lastrapes (1990) and Mikosch
and Starica (2004), and the omission of possible shifts in parameters would bias upward
the estimate of persistence parameters and impair volatility forecast, see Hamilton and
Susmel (1994), Gray (1996) and Klaassen (2002), among others.

Mikosch and Starica (2004) showed theoretically that structural breaks in the uncondi-
tional variance of the GARCH volatility process could cause spuriously high persistence
estimates. This motivates specifying a partial structural break GARCH (SB-GARCH)
model

yt = σtεt (4)

σ2
t = cst + αy2

t−1 + βσ2
t−1 (5)

where st is the unobserved state variable driving the breaks in the volatility process.
Estimating SB-GARCH models is a challenging problem since the likelihood of yt

depends on the entire sequence of past states up to time t due to the recursive structure
of its volatility. For example, consider the evolution of the conditional variance given
a start-up value of σ2

1 and s1 = 1. At t = 2 there can be a break s2 = 2 in which
σ2

2 = c2 + αy2
1 + βσ2

1 or no break s2 = 1, σ2
2 = c1 + αy2

1 + βσ2
1. It is clear that the

variance is a function of s2 so we denote it as σ2
2(s2). Now at time t = 3 there is again

the possibility of a break or no break. In this case the conditional variance is a function
of s2 and s3, i.e. σ2

3(s2, s3). In general the likelihood at time t is a function of the entire
history of states {s2, s3, ..., st}, so that the dimension of the state space explodes over
time. As a result, the Hamilton filter and the Chib simulation smoother which efficient
MCMC methods are based on is not available for this model.6 The path dependence in
the conditional variance also occurs when α and/or β change from a break.

To circumvent the path dependence problem in the context of Markov switching
GARCH, a variety of alternative tractable approximations have been proposed in the
literature, e.g. Gray (1996), Klaassen (2002) and Haas, Mittnik, and Paolella (2004).
Bauwens, Preminger, and Rombouts (2006) develops a single-move MCMC algorithm
that could be adapted to estimate SB-GARCH models with a known fixed number of
states. However, this would not provide real time estimates, nor is it feasible to estimate
SB-GARCH models with an unknown number of states via existing MCMC methods.7

6The particle filter approach of Chopin and Pelgrin (2004) which is based on forward backward sim-
ulation smoother is also not applicable due to the path dependence problem.

7As far as we know, no methods for computing marginal likelihoods of this class of models are available.
So it is effectively infeasible to estimate this class of models via existing MCMC methods unless one is
willing to assume that the number of break points is known a priori.
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By focusing on the sequential filtering problem rather than the smoothing problem
(MCMC), the path dependence that structural breaks induce in GARCH models is elim-
inated.

3 Particle Filter

In this paper, we propose a sequential Monte Carlo filter algorithm that can provide online
real time inference and estimate the number of states simultaneously with other parame-
ters and state variables in a single run. Out-of-sample forecasts integrate out uncertainty
from both parameters and break points. The algorithm can estimate structural break
models with path dependence conveniently and compute the marginal likelihood through
a predictive likelihood decomposition.

3.1 Particle Filter with Known Parameters

To facilitate the discussion of the estimation algorithm, we first provide a brief review
of particle filters with known parameters since the particle filter was originally proposed
to estimate time-varying state variables while assuming the fixed parameters are known.
For detailed discussions of particle filter, see the books edited by Doucet, de Freitas, and
Gordon (2001) and Ristic, Arulampalam, and Gordon (2004).

The foundational particle filtering algorithm is proposed by Gordon, Salmond, and
Smith (1993). Roughly speaking, the particle filter is a class of sequential Monte Carlo
filtering methods which approximate the posterior distribution of the state variables,
p(st|Dt) , by a set of particles {s(i)

t }N
i=1, with probability weights {w(i)

t }N
i=1, where

∑N
i=1 w

(i)
t =

1. This relation is conventionally denoted as

{s(i)
t , w

(i)
t }N

i=1 ∼ p(st|Dt).

Given a set of particles and weights, the posterior mean of any function of the state
variable f(st) can be directly estimated as

E[f(st)|Dt] ≈
N∑

i=1

f(s
(i)
t )w

(i)
t

The predictive density is approximated as

p(st+1|Dt) =

∫
p(st+1|st)p(st|Dt)dst ≈

N∑
i=1

p(st+1|s(i)
t )w

(i)
t (6)

and the filtering density is approximated as

p(st+1|Dt+1) ∝ p(yt+1|st+1)p(st+1|Dt) ≈ p(yt+1|st+1)
N∑

i=1

p(st+1|s(i)
t )w

(i)
t . (7)
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The centerpiece of a particle filter algorithm is how to propagate particles forward
from {s(i)

t , w
(i)
t }N

i=1 to {s(i)
t+1, w

(i)
t+1}N

i=1. Gordon, Salmond, and Smith (1993) employ a
sampling/importance resampling (SIR) scheme. Though intuitive and straightforward to
implement, the SIR filter is vulnerable to the weight degeneracy problem, that is, only
a small subset of the particles is assigned appreciable weights in the propagation stage
and hence the effective size of particles is reduced, which leads to greater approximation
errors.

Many extensions on the basic SIR filter have been proposed in the literature, e.g. see
Kitagawa (1996), Carpenter, Clifford, and Fearnhead (1999) and Johannes and Polson
(2006). In this paper, we focus on the auxiliary particle filter (APT) developed in Pitt
and Shephard (1999) which is widely used and reliable.

The basic idea of the APT is to treat Equation 7 as a mixture distribution and intro-
duces an auxiliary variable r to index the mixture components

p(st+1, r|Dt+1) ∝ p(yt+1|st+1)p(st+1|s(r)
t )w

(r)
t

Given a set of particles and weights {s(i)
t , w

(i)
t }N

i=1, the sequential scheme first samples the

indices {ri}N
i=1, ri ∈ {1, 2, ..., N}, by using the weights p(yt+1|ŝ(i)

t+1)w
(i)
t where ŝ

(i)
t+1 is a

predictive value of s
(i)
t+1 such as the mode or the mean of p(st+1|s(i)

t ). Then s
(i)
t+1 is sampled

from p(st+1|sri

t ) and the new weights are computed as w
(i)
t+1 ∝ p(yt+1|s(i)

t+1)/p(yt+1|ŝri

t+1).
By giving more importance to particles with large predictive values, the APF improves
sampling efficiency while significantly reducing weight degeneracy problems.

3.2 Particle Filter with Unknown Parameters

In general, the model parameters are unknown and have to be estimated from the ob-
served data. There have been a number of useful approaches of learning model parameters
θ proposed in the literature. Following an idea in Gordon et al. (1993), one approach
adds artificial evolution noise to the parameters and treats them as part of the state vari-
ables. Hence the original particle filters can be literally applied to models with unknown
parameters. The main drawback of this approach is that the artificial noise would reduce
the precision of parameter estimates and result in far too diffusive posteriors relative to
the theoretical ones for the parameters.

In the context of structural break models, a similar idea of treating possibly time-
varying parameters as state variables has appeared in Chopin (2007). Since the parameters
remain constant with positive probability, the usual particle filters are highly inefficient
and remedies such as local MCMC moves (Gilks and Berzuini 2001) are introduced in
order to artificially rejuvenate the parameter particles. This approach is generally not
available when structural breaks affect only a subset of parameters as the conditional
posterior for the constant parameters depends on the whole history of latent break points
and the full sample of data.8

8The path dependence will also affect a GARCH model in which all parameters change from a break.
Then local MCMC moves would require the history of states to perform sampling. One possible solution
could be to reset the volatility process after a break so that the conditional variance starts up from a
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An alternative approach is proposed in Storvik (2002) on the basis that the posterior
distribution of parameters p(θ|st, ..., s1, Dt) is analytically tractable and depends on the
observed data and latent state variables only through a vector of sufficient statistics. This
requirement of sufficient statistics limits its applicability in certain models. A related
approach is discussed in Johannes and Polson (2006).

In this paper we follow Liu and West (2001) to incorporate parameter learning. It is
based on the Bayes decomposition of the posterior density

p(st+1, θ|Dt+1) ∝ p(yt+1|st+1, θ,Dt)p(st+1|θ,Dt)p(θ|Dt)

and uses a kernel smoothing method with shrinkage to approximate p(θ|Dt). Specifically,
the posterior density p(θ|Dt) is approximated by a mixture of multivariate normals

p(θ|Dt) ≈
N∑

i=1

w
(i)
t N(θ|aθ

(i)
t + (1 − a)θt, b

2Vt)

where θt =
∑N

i=1 w
(i)
t θ

(i)
t and Vt =

∑N
i=1 w

(i)
t (θ

(i)
t − θt)(θ

(i)
t − θt)

′, and N(θ|., .) is the
multivariate normal pdf. The constants a and b measure the extent of the shrinkage and
are determined via a discount factor δ ∈ (0, 1) as a =

√
1 − b2 and b2 = 1− [(3δ−1)/2δ]2.

Liu and West (2001) shows that this kernel smoothing approach connects to the artificial
evolution approach but removes the problem of information loss over time via shrinkage.

Conditional on samples of θ drawn from the mixture, the usual particle filters can
be applied to estimate the state variables. As shown in Liu and West (2001), the kernel
smoothing approach combined with an efficient particle filter such as the APF produces
rather efficient estimates.9 It also has the additional benefit of small extra computation
cost.

3.3 A Robust Algorithm for Structural Break Models

We combine the APF with the kernel smoothing approach to design a sequential Monte
Carlo algorithm for the general structural break model. The state at time t, st, will equal
the number of states that have actually appeared in the studied time series up to time
t. In contrast to the MCMC method of Chib (1998), this approach does not enforce that
all states be visited.10 We follow Chopin (2007), and Chopin and Pelgrin (2004), and
specify an upper bound K on the number of states to facilitate computation. As long
as the upper bound on the number of states is large enough we can jointly estimate the
model parameters and the number of structural breaks at each point in time. Therefore,
the problem of determining the number of states is automatically solved by sequentially

preset value or the implied unconditional value and is not a function of past data. A drawback is that
there may be a drop in the precision of the conditional variance.

9Casarin and Marin (2007) find this method to be the best among several other alternatives for
estimation of fixed parameters and states for a stochastic volatility model.

10The MCMC method in Chib (1998) samples the state variables backward from the end of sample
and assumes that the final state is K and the first state in the sample is 1 so that all states are visited.
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learning about the state variables over time. We consider this a major benefit of sequential
Monte Carlo methods for structural break models.

The parameters θ should be reparameterized to take values on the real line since they
will be sampled through a mixture of normal kernels. For example, the probability pij

can be reparameterized as log(
pij

1−pij
). To simplify notation, we will use θ to denote the

transformed parameters as well in the following discussion.
To initialize the algorithm, we need to specify a upper bound K for the possible

number of states in the studied dataset. The only requirement for K is that it should
be larger than the estimated number of states so that the number of states is freely
determined. Let {θ(i)

k,t}N
i=1, k = 1, 2, ..., K, denote the particles of the parameters in state

k and let θ
(i)
t ≡ {θ(i)

1,t, ..., θ
(i)

K,t
}. Let p

(i)
t denote the transition probability components of

θ
(i)
t . Note the subscript t indicates that the parameter values are learned at time t, and

not necessarily time-varying. Initial particles and weights are set as s
(i)
1 = 1, w

(i)
1 = 1

N
, for

i = 1, 2, ..., N and parameters are drawn from the prior. The prior {θ(i)
1 }N

i=1 will depend
on the specific model.

Our initial algorithm which employed the standard multinomial resampling performed
poorly in practice, delivering rather unstable estimates of the parameters and states over
repeated runs. The discrepancy of estimates between multiple runs of this algorithm are
usually unacceptably large. An efficient sampling scheme for drawing the auxiliary indices
is necessary to reduce the Monte Carlo variation and stabilize the estimates.

To stabilize estimates over multiple runs we use stratified sampling (Carpenter, Clif-
ford, and Fearnhead 1999).11 To produce a new sample of size m from a population
{xt}N

t=1 with weights {wt}N
t=1, stratified sampling first produces stratified uniform random

variables {ut}m
t=1 by drawing ut ∼ U( t−1

m
, t

m
) independently. From each of these draws

xt is selected based on multinomial sampling. We find this method fast and effective in
stabilizing estimates across different runs.

Given a set of particles and weights {θ(i)
t , s

(i)
t , w

(i)
t }N

i=1 ∼ p(st, θ|Dt), the following is
a general algorithm for structural break models following Liu and West (2001) with the
addition of stratified sampling.

1. For i = 1, 2, ..., N , let r be the mode of p(st+1|s(i)
t , θ

(i)
t ). Compute the weights for the

auxiliary index w̃
(i)
t+1 ∝ p(yt+1|Dt, aθ

(i)
r,t + (1 − a)θr,t)w

(i)
t , where θr,t =

∑N
i=1 w

(i)
t θ

(i)
r,t .

2. Draw stratified uniform random variables {uj}N
j=1 with uj ∼ U( j−1

N
, j

N
).

3. Produce the auxiliary indices {ri}N
i=1, ri ∈ {1, 2, ..., N}, by retaining N i copies

of i, i = 1, 2, ..., N , where N i is the number of {uj}N
j=1 falling in the interval

(
∑i−1

j=0 w̃j,
∑i

j=0 w̃j] with w̃0 = 0.

4. For i = 1, 2, ..., N , sample θ
(i)
t+1 from N(m

(ri)
t , b2Vt), where m

(ri)
t = aθ

(ri)
t + (1 −

a)θt, Vt =
∑N

i=1 w
(i)
t (θ

(i)
t − θt)(θ

(i)
t − θt)

′.

11We also investigated residual sampling (Liu and Chen (1998)) and found this was effective in stabi-
lizing the estimates. However, stratified sampling is both easy to program and can directly exploit the
O(N) computational speed of multinomial sampling.
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5. For i = 1, 2, ..., N , sample s
(i)
t+1 ∈ {1, 2, ..., K} from p

(i)
t+1(st+1|s(ri)

t ).

6. Let s = s
(i)
t+1. Compute w

(i)
t+1 ∝ p(yt+1|Dt, θ

(i)
s,t+1)/p(yt+1|Dt, aθ

(ri)
r,t + (1 − a)θr,t).

This gives the sample {s(i)
t+1, θ

(i)
t+1, w

(i)
t+1}N

i=1 ∼ p(st+1, θ|Dt+1).

3.4 Predictive Likelihoods and Model Selection

The predictive likelihood p(yt+1|Dt) can be computed from

p(yt+1|Dt) =

∫ ∫ ∫
p(yt+1|st+1, θ)p(st+1|st, θ)p(st, θ|Dt)dst+1dstdθ. (8)

Once a set of particles and weights {s(i)
t , θ

(i)
t , w

(i)
t }N

i=1 ∼ p(st, θ|Dt) is available, one can
compute the approximation

p(yt+1|Dt) ≈
N∑

i=1

w
(i)
t

∫
p(yt+1|st+1, θ

(i)
t )p(st+1|s(i)

t , θ
(i)
t )dst+1

where∫
p(yt+1|st+1, θ

(i)
t )p(st+1|s(i)

t , θ
(i)
t )dst+1 = p(yt+1|st+1 = s

(i)
t , θ

(i)
t )p(st+1 = s

(i)
t |s(i)

t , θ
(i)
t )

+p(yt+1|st+1 = s
(i)
t + 1, θ

(i)
t )p(st+1 = s

(i)
t + 1|s(i)

t , θ
(i)
t ). (9)

If the information set is Dt = {y1, y2, ..., yt}, the marginal likelihoods can be computed
sequentially via predictive likelihoods

p(y1, ..., yt) = p(y1)
t∏

τ=2

p(yτ |y1, ..., yτ−1), t = 2, ..., T

By construction, the marginal likelihood can be interpreted as a measure of the cumulative
out-of-sample predictive power of the model under investigation. Sequential Bayes factors
(the ratio of marginal likelihoods of two specifications) can be then used to conduct model

selection. Let BFAB = p(y1,...,yT |Model A)
p(y1,...,yT |Model B)

. Kass and Raftery (1995) suggest interpreting the
evidence for A as: not worth more than a bare mention if 0 ≤ BFAB < 3; positive if
3 ≤ BFAB < 20; strong if 20 ≤ BFAB < 150; and very strong if BFAB ≥ 150.

4 Structural Break GARCH Models

As discussed above, the number of states, K ≤ K, is to be determined by the data rather
than being specified a priori. The state variable st evolves according to the transition
probability matrix in Equation 1. According to this formulation, the chain can either stay
in the current state or go to the next one. The state at the last period, sT , will exactly
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equal the number of in-sample states K. The estimate of the number of break points
equals K − 1.

Let θk = [ck, α, β, P ] be the model parameters in state k and θ = {θ1, ..., , θK}. The
likelihood of yt for the partial break model in Equation 2, when εt ∼ NID(0, 1) is

p(yt|Dt−1, st, θ) = p(yt|Dt−1, θst) (10)

=
1√
2πσ2

t

exp

(
− y2

t

2σ2
t

)
(11)

where σ2
t = cst +αy2

t−1 +βσ2
t−1. We refer to this structural break specification as a partial

SB-GARCH-N model since only the intercept of the conditional variance is subject to
breaks.

Empirical studies often suggest fat tails in the distribution of asset returns, therefore,
an alternative specification for the return innovation εt would be a student-t distribution
with v degrees of freedom. Let SB-GARCH-t denote this model and if θk = [ck, α, β, v, P ],
then the data density of yt becomes

p(yt|Dt−1, st, θ) = p(yt|Dt−1, θst) (12)

=
Γ(v+1

2
)

σtΓ(v
2
)
√

πv

(
1 +

y2
t

vσ2
t

)− v+1
2

(13)

where σ2
t = cst + αy2

t−1 + βσ2
t−1.

It is possible that all parameters of the volatility process, not just the unconditional
variance, may be subject to structural breaks. So we also consider a full SB-GARCH
model (SB-GARCH-N and SB-GARCH-t)

yt = σtεt (14)

σ2
t = cst + αsty

2
t−1 + βstσ

2
t−1 (15)

where θk = [ck, αk, βk, P ], or θk = [ck, αk, βk, v, P ], depending on the specification of the
innovation εt. The algorithm presented in Section 3.3 can be applied to estimate these
models and compute their marginal likelihoods for model comparison purposes.

5 Simulation Evidence

To analyze the performance of the proposed algorithm, we simulated 3000 observations
from the partial SB-GARCH-N model with 2 break points. The parameter values are as
follows

c1 = 0.2, c2 = 0.6, c3 = 0.1

α = 0.1, β = 0.8

with the break points at 1000 and 2000. A plot of the simulated data is presented in
Figure 1.
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The size of particles is set to be 300,000 and the upper bound of possible states K = 5.
Following Liu and West (2001), the discount factor is set as δ = 0.99. In the empirical
work we restrict pii = p for parsimony. The priors are as follows

ci ∼ Gamma(1, 0.2), i = 1, ..., K

α ∼ Beta(1, 8), β ∼ Beta(4, 1)

log

(
p

1 − p

)
∼ N(10, 1)

when using the student-t distribution for returns, the prior on the degrees of freedom is
set as v ∼ Gamma(1.2, 30).

In our experiments, we find that a prior on the transition probability p close to one is
critical for obtaining sensible results since estimates of states are sensitive to outliers.12

A prior for log
(

p
1−p

)
centered on lower values (ie. 5) quickly results in all states being

visited and being stuck in the final state K for the rest of the sample. Therefore, to avoid
state saturation it is necessary to have an informative prior. As such our prior favors
no breaks. On the other hand the priors for remaining parameters cover a wide range of
values consistent with existing empirical studies on GARCH models.

All estimations in this paper are performed using the GNU scientific library in C.
Each filtering iteration takes about 2-3 seconds. The estimates of states are presented in
the middle panel of Figure 1. The lower panel of Figure 1 provides the distribution of
the state estimates (the filter P (st|Dt)) over time, which shows clearly the evolution of
the state particles. It can be seen that the algorithm is able to successfully identify the
number and locations of break points. There are a few spikes in the filter estimates but
they are quickly corrected. Intuitively, these spikes are caused by outlier observations.
The state particles in these ”false” states are subsequently dominated by particles which
stay in the ”true” states as the algorithm updates information by using new observations
and gives higher weights to these correct particles.

The full-sample parameter estimates are presented in Table 1 and their sequential
posterior means and 95% credible intervals are plotted in Figure 2. For all parameters,
the posteriors collapse nicely to their true values. It is worthwhile to note that estimates
of the parameters c2 and c3, which are specific to state 2 and 3 respectively, change
sharply upon the break points with their credible intervals quickly shrinking afterwards.
This pattern suggests that new information is correctly used and estimates are timely
updated.

Figure 3 presents the filtered volatility estimates along with the volatilities from the
true model. It can be seen that the estimates track the true volatilities closely. We also
plot the sequence of the effective sample size of particles in Figure 4 to check for weight
degeneracy. The effective sample size of particles with weights {w(i)

t }N
i=1 is computed as

1/
∑N

i=1(w
(i)
t )2, which equals N when all weights equal 1/N whereas more concentrated

distributions of weights lead to smaller values of effective sample size. In the plot, there
are sporadic drops in the effective sample size, usually around large outliers and break

12A false estimate of states usually leads to poor estimates of parameters.
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points, but they return to normal quickly afterwards, suggesting that weight degeneracy
is minor in this study.

To see if the algorithm has the power to detect the true model when there are compet-
ing ones, we also estimate a partial SB-GARCH-t model, a full SB-GARCH-N model and
a standard GARCH model with normal innovations for the simulated data. The results
are presented in Table 1. The partial SB-GARCH-N model has the largest marginal likeli-
hood, with the partial SB-GARCH-t model closely behind. The no-break GARCH model
has a much smaller marginal likelihood than the structural break alternatives. We also
plot the sequences of marginal likelihoods differences through time between the partial
SB-GARCH-N model and its competitors in Figure 5. Based on these plots, the par-
tial SB-GARCH-N model consistently outperforms the full SB-GARCH-N and no-break
GARCH models whereas it does slightly better than the partial SB-GARCH-t model.13

6 Empirical Application

In this section, we apply the proposed algorithm to the daily NASDAQ composite returns
from January 3, 1995 to December 29, 2006 (3022 observations). The data source is the
Center for Research in Security Prices (CRSP). In estimation, returns are demeaned and
scaled up by 100. The priors, number of particles, K, a, b, and δ are the same as in the
simulation experiments.

6.1 Estimation Results

To compare the performance of competing SB-GARCH models for the NASDAQ returns,
we consider estimating 4 models: the partial SB-GARCH models with normal and t
innovations and the full SB-GARCH models with normal and t innovations. To explore
the importance of modeling structural breaks, we also fix K = 1 and estimate two no-
break GARCH models with normal and t innovations respectively. The estimated full-
sample marginal likelihoods of the six models are presented in Table 2. Based on these
estimates, the partial SB-GARCH-t model is the most favored while the versions in which
all parameters change after a break have lower marginal likelihoods.

We first provide a comparison of the SB-GARCH-t models with the SB-GARCH-N
models, which are the ones most commonly studied in the existing literature. The full-
sample marginal likelihoods of Table 2 provide overwhelming evidence in favor of the
specification with t-innovations: the t models have larger marginal likelihoods than the
normal models in both the partial SB-GARCH and the no-break categories. Second each
of the break models provides a large improvement over the no-break alternative. For
instance, the log-Bayes factors are 22.99 (normal innovations) and 9.46 (t-innovations) in
favor of the partial break model.

13This is expected as the SB-GARCH-t model nests the true SB-GARCH-N model. The marginal
likelihood imposes a penalty on this model from the additional parameter uncertainty of the degree of
freedom, v.
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The sequentially filtered estimates of states and parameters of the partial SB-GARCH-
N model are presented in Figures 6 and 7. This model identifies two break points asso-
ciated with a sustained increase in NASDAQ volatility lasting from late 1997 to early
2004.14 The full-sample posterior means and 95% credible sets of parameter estimates
are reported in Table 3. The resulting persistence estimate α + β = 0.966 is lower than
the estimate of 0.983 by the no-break GARCH model with normal innovations. The full
SB-GARCH-N model has much smaller values of α + β in each regime. This finding is
consistent with the existing studies of GARCH models that find lower persistence once
structural breaks in the volatility process are taken into account.

The results are different when we fit the more flexible partial SB-GARCH-t model
to the data. Figure 8 and 9 present the sequentially filtered estimates of states and
parameters of this model. It identifies a similar pattern of breaks, but there is more
uncertainty. Recall that our analysis addresses the real time filtering problem, and as such
smoothed historical estimates of breaks may be more precise. By the end of the sample
there is substantial probability that no break has occurred. For example, at the end of
the sample p(ST = 1|DT ) = 0.671, p(ST = 2|DT ) = 0.0002, and p(ST = 3|DT ) = 0.321.
Compared to the specification with normal innovations this model has a built in robustness
from the fat tailed t-innovations. A structural break can temporarily appear as tail
observations and it may take many observations to disentangle these effects. This is
consistent with Maheu and McCurdy (2007) who model the unconditional distribution
of returns and find less breaks when fat-tailed innovations are used instead of normal
innovations. Nevertheless, Bayes factors favor the structural break model even with the
large amount of uncertainty about breaks.

Sequential parameter estimates appear in Figure 9. Early in the sample the degree
of freedom parameter takes a large drop. The first break found in the SB-GARCH-N
model (Oct. 27,1997) is classified as an increase in tail thickness by this model (v drops
in Figure 9). It is not till closer to mid-sample that the evidence for a structural break
increases.

In common with the other break models Table 3 shows that α + β is lower for the
t-innovation specifications when break are allowed. We also find that by the end of the
sample the degree of freedom parameter is larger, (27 versus 19 for the no break model)
for the SB-GARCH-t model.

The filtered conditional standard deviations through time are displayed in Figure 10
for 2 alternative models. Although the volatility estimates are broadly similar, panel
B which displays their difference, show that the no break GARCH-N tend to produce
larger estimates and is persistently larger near the end of the sample. As was mentioned
above, model estimates may attribute higher persistence to volatility when breaks are not
modeled.

Figures 11 and 12 provide information on the predictive value of modeling breaks. The
first figure displays the cumulative log-Bayes factor in favor of the partial SB-GARCH-
N against the no break alternative. There are some minor gains mid-sample but the
real improvements occur at the latter part of the sample. Here the improvements in the

14The dates of the break points are October 27, 1997 and January 23, 2004 based on the mode of the
filtering density p(st|Dt).
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predictive densities are consistent and ongoing. Similarly for the partial SB-GARCH-t
model, the gains come at the end of the sample. In the middle of the sample there are
some penalties incurred from the increased model complexity of the break specification.
There is always a trade-off between modeling the structural change and the resulting
increase in parameter uncertainty around break points.

6.2 Robustness

To investigate weight degeneracy, we plot the sequence of survival rates for the particles in
Figure 13. This estimate is the number of particles that survive in Step 3 of the stratified
sampling version of the particle filter in Section 3.3 to the next iteration and is computed
as (number of unique indices in {ri}N

i=1)/N . We can conclude from this plot that there is
no evidence of persistent degeneracy. In addition, we found the effective sample size (not
shown) supported this conclusion and showed minor transient drops that are close to the
full sample size of particles.

We experimented running the programs under different seeds of the random number
generator to check the stability of estimates. The difference between parameter estimates
across runs is generally less than 0.01 while the difference between estimated marginal
likelihoods is less than 1. We found that 100,000 or more particles produced reliable
results while less than this could be unstable across repeated runs.

Table 4 reports the sensitivity of the marginal likelihood for the partial SB-GARCH-t
model for different priors. In each case, a change is made to the benchmark prior and this
is listed in the first column of the table. Although there are some changes in parameter
estimates and state inference, the improved predictions this model provides are robust to
different priors.

A possibility is that outliers in returns may be identified as permanent structural
breaks. To investigate the effect of including jumps we consider the following partial
break GARCH-N model with jumps

yt = σtεt + Jtηt, εt ∼ N(0, 1) (16)

σ2
t = cst + αy2

t−1 + βσ2
t−1 (17)

p(Jt = 0) = q, p(Jt = 1) = 1 − q, ηt ∼ N(0, h). (18)

Estimating the SB-GARCH models with jumps can be done by augmenting the latent
states with the jump indicator Jt and applying the algorithm in Section 3 with straight-
forward extensions. Using a prior probability of no jump q ∼ Beta(40, 2), and jump size
variance h ∼ Gamma(2, 1), while keeping priors of other parameters unchanged, we ob-
tain similar estimates as in the SB-GARCH-t model. Model estimates appear in Table 3
while state and jump estimates are plotted in Figure 14. In particular, the break points
identified by the SB-GARCH-N model with jumps are close to those by the SB-GARCH-t
model. The marginal likelihood of the SB-GARCH-N model with jumps is larger than
that of the SB-GARCH-N model but slightly lower than the SB-GARCH-t model. We also
notice that the parameter estimates of the SB-GARCH-N model with jumps are similar
to those of the SB-GARCH-N model. We conclude that it is important to use a flexible
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model for daily returns, failure to do so may results in false identification of structural
change.

Finally, we note that modeling jumps generally tends to reduce the effect of temporary
outliers and hence enables lowering the strong prior on the transition probabilities of

states. For example, using a prior of the transition probability log
(

p
1−p

)
∼ N(8.5, 1)

produces similar results.

7 Conclusion

This paper proposes a sequential Monte Carlo filtering algorithm to estimate GARCH
models subject to structural breaks. There are several notable features of the proposed
algorithm: the number of breaks is estimated simultaneously with other model parameters
and states in a single run; the estimates of parameters and states are fast and efficiently
updated once new observations become available; and by focusing on the sequential filter-
ing problem the path dependence that structural breaks induce in GARCH models does
not cause any problems for estimation.

Simulation examples show that the algorithm is able to perform accurate sequential
inference. Our empirical application underscores the importance of model assumptions
when investigating breaks. A model with normal return innovations result in strong evi-
dence of breaks; while more flexible return distributions such as t-innovations or adding
jumps to the model still favor breaks but indicate much more uncertainty regarding the
time and impact of them. We also find that the partial structural break specification deliv-
ers better performance than the full structural break specification in which all parameters
change from a break.
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Table 1: Parameter Estimates for Simulated Data

True Value Partial Partial Full GARCH-N
SB-GARCH-N SB-GARCH-t SB-GARCH-N

c1 0.2 0.167 0.169 0.229 0.088
(0.102,0.259) (0.103,0.262) (0.076,0.541) (0.064,0.117)

c2 0.6 0.580 0.573 0.480
(0.333,0.946) (0.331,0.922) (0.242,0.852)

c3 0.1 0.098 0.098 0.160
(0.055,0.162) (0.055,0.159) (0.071,0.306)

α1 0.1 0.069 0.066 0.034 0.098
(0.039,0.112) (0.039,0.103) (0.006,0.108) (0.069,0.135)

α2 0.071
(0.036,0.124)

α3 0.072
(0.029,0.145)

β1 0.8 0.834 0.829 0.821 0.875
(0.751,0.898) (0.748,0.893) (0.617,0.941) (0.834,0.908)

β2 0.846
(0.757,0.912)

β3 0.755
(0.582,0.884)

v 42.734
(21.239,77.134)

LML -5463.023 -5464.364 -5466.228 -5507.791
This table reports the full-sample posterior means of parameters for simulated
data. Numbers in parenthesis are 95% credible sets. LML stands for log
marginal likelihood.
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Table 2: Marginal Likelihoods

Partial Partial Full Full
SB-GARCH-N SB-GARCH-t SB-GARCH-N SB-GARCH-t

LML -5231.25 -5225.46 -5228.40 -5228.41
Partial

GARCH-N GARCH-t SB-GARCH-N-Jump
LML -5254.24 -5234.92 -5227.26

This table reports the full-sample log marginal likelihoods for NASDAQ return
series from Jan 03,1995 to Dec 29,2006. LML stands for log marginal likelihood.
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Table 3: Parameter Estimates for NASDAQ Returns

Partial Partial Partial
SB-GARCH-N SB-GARCH-t GARCH-N GARCH-t SB-GARCH-N-Jump

c1 0.070 0.043 0.052 0.033 0.048
(0.038,0.113) (0.027,0.067) ( 0.032,0.071) (0.023,0.0448) (0.022,0.082)

c2 0.171 0.211 0.231
(0.090,0.303) (0.097,0.391) (0.115,0.417)

c3 0.055 0.171
(0.006,0.324) (0.006,0.947)

α 0.074 0.062 0.095 0.070 0.064
(0.054,0.098) (0.043,0.085) (0.072,0.124) (0.044,0.088) (0.046,0.090)

β 0.892 0.890 0.888 0.909 0.875
(0.851,0.924) (0.848,0.924) (0.859,0.912) (0.835,0.908) (0.846,0.919)

v 27.190 19.268
(16.021,43.337) (12.797,27.874)

q 0.959
(0.899,0.988)

h 2.149
(0.695,5.135)

This table reports the full-sample posterior means of parameters for NASDAQ
return series from Jan 03,1995 to Dec 29,2006. Numbers in parenthesis are
95% credible sets.

23



Table 4: Marginal Likelihood Estimates for Different Priors: Partial SB-GARCH-t

Prior LML
benchmark -5225.46
ci ∼ Gamma(1, 0.4) -5227.18
α ∼ U(0, 1), β ∼ U(0, 1) -5226.46
log(pii/(1 − pii)) ∼ N(8, 1) -5220.04
K = 7 -5225.91
ν ∼ Gamma(1.2, 10) -5224.41

This table reports the log-marginal likelihood (LML) for the partial SB-
GARCH-t model based on the benchmark prior in Section 5 with any changes
listed in the first column.
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Figure 1: State Estimates of the Partial SB-GARCH-N Model, Simulated Data. For the
distribution of states, bold solid: p(st = 1|Dt), dot: p(st = 2|Dt), dash: p(st = 3|Dt),
dash-dot: p(st = 4|Dt), solid: p(st = 5|Dt)
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Figure 2: Sequential Parameters Estimates of the Partial SB-GARCH-N Model, Simulated
Data.
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Figure 3: Volatility Estimates of the Partial SB-GARCH-N Model, Simulated Data.
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Figure 4: Effective Sample Size of Particles for the Partial SB-GARCH-N Model, Simu-
lated Data
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Figure 5: Cumulative Log-Bayes Factors for Partial SB-GARCH-N v.s. Misspecified
Models, Simulated Data. LMLpn is the log marginal likelihood of the partial SB-GARCH-N model.
LMLpt is the log marginal likelihood of the partial SB-GARCH-t model. LMLfn is the log marginal
likelihood of the full SB-GARCH-N model. LMLn is the log marginal likelihood of the no-break GARCH-
N model.
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Figure 6: State Variable Estimates of the Partial SB-GARCH-N Model, NASDAQ Data.
For the distribution of states, bold solid: p(st = 1|Dt), dot: p(st = 2|Dt), dash: p(st =
3|Dt), dash-dot: p(st = 4|Dt), solid: p(st = 5|Dt)
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Figure 7: Parameters Estimates of the Partial SB-GARCH-N Model, NASDAQ Data
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Figure 8: State Variable Estimates of the Partial SB-GARCH-t Model, NASDAQ Data.
For the distribution of states, bold solid: p(st = 1|Dt), dot: p(st = 2|Dt), dash: p(st =
3|Dt), dash-dot: p(st = 4|Dt), solid: p(st = 5|Dt)
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Figure 9: Parameters Estimates of the Partial SB-GARCH-t Model, NASDAQ Data

33



 0

 1

 2

 3

 4

 5

 6

 7

1996 1998 2000 2002 2004 2006

A. Conditional Stdev

GARCH-N
SB-GARCH-t

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1996 1998 2000 2002 2004 2006

B. Difference in Conditional Stdev

Figure 10: Conditional Standard Deviations: A. No-break GARCH-N v.s. partial SB-
GARCH-t, and B. their difference

34



-5

 0

 5

 10

 15

 20

 25

1996 1998 2000 2002 2004 2006

Figure 11: Cumulative Log-Bayes Factor: Partial SB-GARCH-N vs No Break GARCH-N
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Figure 12: Cumulative Log-Bayes Factor: Partial SB-GARCH-t vs No Break GARCH-t
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Figure 13: Survival Rate of Particles for the Partial SB-GARCH-t Model, NASDAQ Data
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Figure 14: State Variable Estimates of the Partial SB-GARCH-N Model with Jumps,
NASDAQ Data. For the distribution of states, bold solid: p(st = 1|Dt), dot: p(st = 2|Dt),
dash: p(st = 3|Dt), dash-dot: p(st = 4|Dt), solid: p(st = 5|Dt)

37


