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Abstract

We show by example that communication can generate a failure of common knowledge
acquisition. In the absence of communication, agents acquire approximate common knowledge
of some parameter, but with communication they do not.

1 Introduction

The significance of common knowledge in determining equilibrium outcomes of games has be-

come well established since the seminal work of Lewis (1969). In settings where players acquire

information over time, an important question is whether (approximate) common knowledge of

certain events will eventually be attained. An interesting recent paper by Cripps, Ely, Mailath,

and Samuelson (2008, henceforth CEMS) identifies conditions under which a parameter becomes

common knowledge if agents privately learn the value of the parameter over time. They refer to

common knowledge acquisition as “common learning.”

In addition to private learning, economic agents frequently acquire information through commu-

nication. Intuitively, one might think that introducing communication could only help to achieve

common learning since it improves the information agents have about each others’ knowledge and

beliefs. This intuition is false. We show by example that communication can cause common learn-

ing to fail. Our example exhibits common learning of an underlying parameter if players do not

communicate, but when communication is introduced according to a particular protocol, com-

mon learning does not occur. Moreover, the failure of common learning is profound; approximate

common knowledge of the parameter fails uniformly across all periods in every state.
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The example is as follows. Two agents, 1 and 2, independently observe the value of some

underlying parameter at stochastic times. If the agents do not communicate, then the value of

the parameter becomes approximate common knowledge since each agent eventually assigns high

probability to the other agent having observed the parameter.

In addition to direct observation of the parameter, agents communicate according to the fol-

lowing variant of the Rubinstein (1989) email game. When Agent 1 observes the value of the

parameter, she sends a message to Agent 2, which is privately received following some stochastic

delay. Upon receipt, Agent 2 sends a confirmation message to Agent 1, which is again subject to

stochastic delay. Agent 1 in turn sends a confirmation to Agent 2, and so on. There is no other

communication. All communication is truthful and consists only of each agent (partially) reporting

her own information to the other agent.

Under this communication protocol, common learning of the parameter fails (for some delay

distributions). With communication, if Agent 2 has not received the first message from Agent 1,

it is no longer true that she assigns high probability to Agent 1 having observed the parameter,

even after many periods. Although the unconditional probability that Agent 1 has observed the

parameter becomes high, the probability conditional on the first message not having been received

is bounded away from 1. Agent 2 therefore faces second-order uncertainty, that is, uncertainty

about Agent 1’s beliefs about the parameter, until she receives the first message. Since Agent 1 is

uncertain of the time at which this message is received, she faces third-order uncertainty until she

receives Agent 1’s confirmation. Continuing in this fashion, some higher order uncertainty persists

regardless of how many messages have been delivered.

The Rubinstein (1989) email game showed that communication can have a double-edged effect

on common knowledge acquisition. In the email game, Agent 1 observes a parameter, sends a

message informing Agent 2 of the parameter, Agent 2 sends a confirmation message, and so on.

Communication terminates at each step with some small fixed probability. On the one hand,

communication enhances knowledge acquisition; without it, Agent 2 never learns the value of the

parameter. Furthermore, as discussed by Rubinstein, if communication is restricted to a fixed

number of messages, beliefs approach common knowledge with high probability as the likelihood

of delivery failure vanishes. On the other hand, when the number of messages is unbounded,

approximate common knowledge of the parameter is never acquired. Our example differs from
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the original email game in two significant respects. First, common knowledge is attained without

communication, and thus communication only hinders common learning. Second, in our example,

every finite order of interactive knowledge of the parameter is eventually acquired with probability

1, whereas in the email game knowledge is (almost surely) acquired only to some finite order.

Our example fits into the framework of CEMS when there is no communication. CEMS assume

that each agent learns about the underlying parameter through an infinite sequence of signals that

are i.i.d. across time conditional on the parameter. They prove that if the signal spaces are finite

then individual learning of the parameter implies common learning. The addition of communication

in our example can be viewed as a relaxation of the i.i.d. assumption. Communication naturally

generates dependence in signal profiles across time since any informative message received by an

agent depends on the information possessed by the sender at the time the message was sent.

2 The Example

The example is closely based on the framework of CEMS with the addition of a specific form of

communication. Two agents, 1 and 2, learn about a parameter θ in periods t = 0, 1, . . .. The

parameter θ is drawn before period 0 from the set Θ = {θ1, θ2} according to the prior distribution

p(θ1) = p(θ2) = 1/2, and remains fixed over time. In each period t, each agent i receives a signal

zit ∈ Z i = {θ1, θ2, u}. Conditional on θ, these signals are i.i.d. across time and agents. Signals are

generated with probabilities Pr(zit = θk | θk) = λ and Pr(zit = u | θk) = 1− λ for each k = 1, 2 and

some fixed λ ∈ (0, 1). Note that after receiving signal zit = θk, Agent i knows that the parameter

is θ = θk. If zis = θ for some s ≤ t, we will say that Agent i has observed θ by t. Also note that

the signal u carries no information about the value of θ, and hence, absent communication, agents

beliefs about θ remain equal to their prior beliefs until they observe θ.

Our main purpose is to understand whether approximate common knowledge of the parameter

θ will eventually be acquired by the two agents. Accordingly, following CEMS, we say that Θ is

commonly learned if for each θ ∈ Θ and q ∈ (0, 1), there exists some T such that for all t > T ,

Pr (θ is common q-belief at t | θ) > q,
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where common q-belief is as defined by Monderer and Samet (1989).

It easy to show that in the absence of communication, Θ is commonly learned in this setting.1

Consider the event F that θ = θk and both agents have observed θ by time t. At any state in

F , each agent assigns probability 1 − (1 − λ)t+1 at time t to the other agent having observed θ.

Conditional on θk, the event F occurs with probability
(
1− (1− λ)t+1

)2. Choosing T large enough

so that q <
(
1− (1− λ)T+1

)2, θk is common q-belief on the event F , which occurs with probability

greater than q conditional on θk.

We now enrich the example by adding communication according to the following protocol. In

each period t, each agent i privately observes a message mi
t ∈ Mi = {c, s}, representing “confir-

mation” and “silence” respectively. The messages mi
t are determined by the following stochastic

process. As soon as Agent 1 first observes θ in some period t0, she sends the message c to Agent 2.

This message is received by Agent 2 at some date t1 > t0 according to the distribution described

below. At time t1, Agent 2 sends a message c which is received by Agent 1 at some time t2 > t1.

At time t2, Agent 1 again sends a message c received by Agent 2 at time t3 > t2, and so on. In

every period t 6= tk for k odd, Agent 2 receives the message s, and similarly Agent 1 receives the

message s in every period t 6= tk for k ≥ 2 even.2

The distribution of delivery times is determined as follows. With probability 1/2, there is odd

delay, otherwise there is even delay. With odd delay, each message c from Agent 1 is received by

Agent 2 with stochastic delay according to a geometric distribution with parameter δ ∈ (λ, 1); that

is, given tk with k even, tk+1−tk is geometrically distributed on the set {1, 2, . . .} with parameter δ.

Each message c from Agent 2 is received by Agent 1 exactly one period later; that is, tk+1− tk = 1

for all odd k. Even delay is identical to odd delay except with the roles of the two agents reversed.

Letting M =M1 ×M2 and Z = Z1 × Z2, the set of states is given by Θ × Z∞ ×M∞. The

information of Agent i at time t is captured by the natural projection of Θ × Z∞ ×M∞ onto

(Z i)t+1 × (Mi)t+1. We will write hit(ω) ∈ (Z i)t+1 × (Mi)t+1 for the private history of Agent i at

time t. We abuse notation by writing θ for the event {θ} × Z∞ ×M∞.

As above, we will write t0(ω), or simply t0 when the state is clear, for the time at which Agent

1 first observes the parameter. For k ≥ 1, we will write tk(ω), or simply tk, for the time at which
1This result also follows immediately from either Proposition 2 or Proposition 3 of CEMS.
2The main result would be unchanged if the agents similarly exchanged messages beginning with Agent 2’s obser-

vation of θ. We focus on the asymmetric version to keep the notation and analysis simple.
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the kth confirmation message is received. Formally, let t0 = min{t | z1
t = θ} and for k ≥ 1, define

tk recursively by tk = min{t > tk−1 | mi
t = c for i = 1 or 2}.

The following result indicates that communication can destroy common learning.

Proposition 1. In the example with communication, for each θ ∈ Θ, there exists some q ∈ (0, 1)

such that θ is not common q-belief at any t in any state of the world. In particular, common

learning does not occur.

For integers k, t ≥ 0, let

Mk
t = {ω : tk(ω) ≤ t and tk+1(ω) > t} .

Thus Mk
t consists of those states in which, by time t, Agent 1 has observed θ and exactly k

confirmation messages have been received. Similarly, let M−1
t denote the event that, by time t,

Agent 1 has not observed θ; formally,

M−1
t = {ω : t0(ω) > t} .

Lemma 1. There exists some p > 0 such that, for each t ≥ 0 and k = 0, . . . , t, given any ω ∈Mk
t ,

Pr
(
Mk−1
t | hit(ω)

)
≥ p for some i ∈ {1, 2}.

For k ≥ 1, Lemma 1 states that if exactly k confirmation messages have been received by t then

one of the agents assigns probability at least p to only k − 1 confirmation messages having been

received. For k = 0, the lemma states that if Agent 2 has not received a confirmation message by

t then she assigns probability at least p to Agent 1 not having observed θ. The proof of Lemma 1

is in the appendix.

Proof of Proposition 1. Choose any q ∈
(

1
2 , 1
)

such that 1− q < p, with p as in Lemma 1. Suppose

for contradiction that θ is common q-belief at time t in some state ω. By the characterization

of Monderer and Samet (1989), there exists an event F containing ω such that, at time t, F is

q-evident and both agents q-believe θ on F .

We will show that F contains a state in M−1
t , i.e. one in which Agent 1 has not observed θ by

time t. In such a state, Agent 1 assigns probability 1/2 to the event θ′ for θ′ 6= θ. Since q > 1/2,
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these beliefs violate the hypothesis that both agents q-believe θ on F at time t, giving the desired

contradiction.

Let k∗ = min
{
k | F ∩Mk

t 6= ∅
}

and choose some ω′ ∈ F ∩Mk∗
t . We will show that k∗ = −1.

Suppose for contradiction that k∗ ≥ 0. By Lemma 1, for some i, Agent i assigns probability at

least p to the event Mk∗−1
t at the private history hit(ω

′). Writing Bi
p(E) for the event that Agent i

p-believes the event E at time t, we have

ω′ ∈ Bi
p

(
Mk∗−1
t

)
.

Since F is q-evident at time t, we also have

ω′ ∈ Bi
q(F ).

By the choice of q, p+q > 1 and hence Mk∗−1
t ∩F 6= ∅, contradicting the definition of k∗. Therefore,

k∗ = −1.

3 Discussion

The key to the example is that the possibility of delay generates persistent higher order uncertainty

regarding whether Agent 1 has observed the parameter. This feature does not arise if, instead of

delay, each message fails to be delivered with some positive probability (as in the original email

game). In this case, common learning turns out to occur because if Agent 2 does not receive the first

message from Agent 1, then after many periods Agent 2 assigns high probability to the event that

Agent 1 observed the parameter but her message was not delivered. Similarly, a simpler alternative

to our example would be to suppose that each agent’s messages can be delayed in each round of

communication.3 However, common learning occurs under this alternative formulation. One can

show that conditional on not having received a confirmation of the last message she sent, an agent’s

belief that her last message has been received tends to 1 over time. This feature suffices to generate

common learning since, for any q ∈ (0, 1), the event that the message was received eventually
3Morris (2001) studies this form of communication in a finite horizon continuous time setting without private

learning. Common learning again depends on whether the receipt of the first message becomes common knowledge,
which fails more easily with a finite horizon.
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becomes q-evident. In our example, the agents’ uncertainty about the delay distributions prevents

this convergence of beliefs.

For common learning to fail in our example, it was necessary to assume that δ > λ, so that

delays in communication tend to be shorter than delays in agents’ observation of θ. Otherwise,

if after many periods Agent 2 has not received the first message from Agent 1, then she assigns

high probability to Agent 1 having observed θ but the message having been delayed. Paradoxically,

lowering δ can rescue common learning even though doing so makes communication worse in the

sense that message delays tend to be longer.

Questions about the influence of communication on common knowledge acquisition are related

to a larger literature on the emergence of consensus with communication. A consensus is said

to emerge about an event E if all agents eventually have the same belief about E. Heifetz (1996)

showed that, as suggested by Parikh and Krasucki (1990), consensus can emerge in dynamic settings

without ever becoming common knowledge. Koessler (2001) proved that, although consensus may

emerge, full common knowledge of an event is never attained under any noisy and non-public

communication protocol unless the event was common knowledge initially. We diverge from this

literature by combining communication with the individual learning of CEMS. Consensus about

θ almost surely emerges in our example with or without communication. Unlike the previous

literature, however, common learning of θ fails only with communication.

It is easy to construct examples in which communication enables common learning, that is,

in which common learning occurs with communication but fails without it. This would be the

case, for instance, if only one agent privately learns the parameter, and communication consists of

that agent publicly announcing each of her signals. That communication can also cause common

learning to fail raises interesting questions about the role of communication in common knowledge

acquisition and the conditions under which it enhances or hinders common learning. We plan to

pursue these questions in future research.

A Appendix

Proof of Lemma 1. Let O and E denote the events that there is odd or even delay respectively, that

is, letO = {ω | tk+1(ω)− tk(ω) = 1 for all k odd}, and E = {ω | tk+1(ω)− tk(ω) = 1 for all k even}.
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We begin by calculating each agent’s beliefs over O and E after any finite history, beginning with

Agent 2.

Fix t > 0. Since O and E are equally likely ex ante,

Pr (E | t1 = t) =
Pr (t1 = t | E)

Pr (t1 = t | E) + Pr (t1 = t | O)
. (1)

We have

Pr (t1 = t | E) = λ(1− λ)t−1 (2)

and

Pr (t1 = t | O) =
t−1∑
s=0

λ(1− λ)sδ(1− δ)t−s−1

= δλ
(1− λ)t − (1− δ)t

δ − λ
. (3)

Substituting equations (2) and (3) into equation (1) gives

Pr (E | t1 = t) =

(
1 +

δ(1− λ)
δ − λ

(
1−

(
1− δ
1− λ

)t))−1

. (4)

Since δ > λ by construction, this last expression is decreasing in t and approaches δ−λ
2δ−δλ−λ > 0 as

t tends to infinity.

Note that, in any state ω, Agent 2 assigns probability Pr (E | t1(ω) = t) to E at any time

t′ ≥ t1(ω) since the distribution of all subsequent messages received by Agent 2 is independent of O

or E. Similarly, Agent 1 assigns probability 1
2 to O after any finite history. Let σ1 denote Agent’s

1 belief in O and σ2 denote Agent’s 2 belief in E, suppressing from the notation the dependence of

σ2 on the history.

Next we compute Agent i’s belief that her most recent message has been received. For any

k ≥ 1, consider the event Mk
t that k confirmation messages have been received by time t. Let i be

the sender of the kth confirmation message, that is i = 1 for k odd and i = 2 for k even. Fix any

state ω ∈Mk
t , and let d = t− tk−1 be the length of time that has passed since Agent i sent her last
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confirmation message. Note that d > 0. We have (given σi)

Pr
(
Mk−1
t | hit(ω)

)
=

σi(1− δ)d

(1− σi)(1− δ)d−1 + σiδ(1− δ)d−1 + σi(1− δ)d
= σi(1− δ). (5)

Since σi is bounded away from 0, there exists some p1 > 0 such that

Pr
(
Mk−1
t | hit(ω)

)
≥ p1.

Finally, consider Agent 2’s belief of whether Agent 1 has observed θ if she has not yet received

a confirmation message at time t ≥ 0. For any ω ∈M0
t , we have

Pr
(
M−1
t | h2

t (ω)
)

=
(1− λ)t+1

(1− λ)t+1 + λ(1− λ)t + 1
2

∑t−1
s=0 λ(1− λ)s(1− δ)t−s

=
δ − λ

1− 1−δ
1−λ + 1

2λ
1−δ
1−λ

(
1−

(
1−δ
1−λ

)t) , (6)

which is decreasing in t and approaches 2(δ−λ)(1−λ)
2δ−λ−δλ > 0 as t tends to infinity.

Taking p = min
{
p1,

2(δ−λ)(1−λ)
2δ−λ−δλ

}
gives the result.
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